135 research outputs found

    Düşük güçte çalışan sensörler i̇çi̇n bi̇r radyo frekansı enerji̇ hasatlayıcı devre tasarımı ve geli̇şti̇ri̇lmesi̇

    Get PDF
    This thesis presents a systematic design and implementation of a rectenna. As a beginning, a receiving antenna is proposed. In the design of the receiving antenna, a fractal topology is utilized to widen the antenna bandwidth. Moreover, a rectifier circuit with a proposed dualband matching technique is realized to aggregate the DC power. Ultimately, the broadband fractal antenna and the proposed dual-band rectifier circuit have been assembled to realize the rectenna. In addition, a simple RF spectrum study and a field measurement are conducted to obtain a better understanding of the available electric field density in the Middle East Technical University–Northern Cyprus Campus. Finally, the energy harvesting capability of the proposed rectenna has been verified in both controlled environment (laboratory) and ambient. As a result of the laboratory measurements, the proposed rectenna yields the highest RF-toDC conversion efficiency of 51.9% when the total power density of the two tone signal is 11.1 µW/cm2 . As a result of the ambient measurements, the proposed rectenna features an openvoltage in the range of 195–417 mV in the ambient when the highest electric field densities are 4.137 V/m and 1.818 V/m from the standards of GSM-900 and 3G (UMTS), respectivelyBu tez, bir dogrultucu antenin sistematik tasarımını ve uygunlamasını sunmaktadır. İlk olarak, alıcı antenin bant genişligini arttırmak için fraktal topoloji ile tasarımına yer verilir. Bunun yanında, önerilen çift bantlı empedans uyumlaştırma özelligine sahip bir doğrultucu devresinin tasarımı ele alınır. Son olarak, geniş bantlı alıcı anten ile önerilen dogrultucu devre enerji hasatlayıcı devreyi gerçekleştirmek için birleştirilir. Bunlara ek olarak, Orta Dogu Teknik Üniversitesi Kuzey Kıbrıs Kampüsü’ndeki mevcut elektriksel alan yogunluğunun belirlen mesi için yapılan ölçümler ve sonuçları sunulur. Önerilen dogrultucu anten hem laboratu varda hem de dış ortamda bulunan RF sinyalleri ile test edilir. Laboratuvar ölçümlerinin sonucunda, dogrultucu antenin, iki ton RF sinyalinden gelen ve toplam güç yoğunluğunun 11.1 µW/cm2 oldugu bir test düzeneğinde, sağlayabildiği en yüksek dönüşüm verimliliği % 51.9 olarak kaydedilmiştir. Dış ortamdaki ölçümler sonucunda, dogrultucu antenin elektriksel alan yogunluklarının 4.137 V /m ile 1.818 V/m arasında degiştiği bir dış ortamda, 195 mV ile 417 mV arasında degişen yüksüz çıkış voltajı sağladığı kaydedilmiştir.M.S. - Master of Scienc

    A Comprehensive Survey of 'Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications'

    Get PDF
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (epsilon < 0) and negative permeability (mu < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called "metamaterials". These artificial structures include series left-handed (LH) capacitances (C-L), shunt LH inductances (L-L), series right-handed (RH) inductances (L-R), and shunt RH capacitances (C-R) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems

    A comprehensive survey of "metamaterial transmission-line based antennas: design, challenges, and applications"

    Get PDF
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (ε < 0) and negative permeability (μ < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called "metamaterials". These artificial structures include series left-handed (LH) capacitances (CL), shunt LH inductances (LL), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems

    Transparent and Flexible Radio Frequency (RF) Structures

    Full text link
    With increasing demand for a wearable devices, medical devices, RFID, and small devices, there is a growing interest in the field of transparent and flexible electronics. In order to realize optically transparent and flexible microwave components, novel materials can be used. The combination of new materials and radio frequency (RF) structures can open interesting perspectives for the implementation of cost effective wireless communication system and wearable device design. The transparent and flexible RF structures can facilitate its application in the transparent and curved surfaces. In this dissertation, we present several demonstrations, all based on optically transparent and flexible materials and structures. We firstly demonstrate an optically transparent, flexible, polarization-independent, and broadband microwave absorber. The bow-tie shaped array which possesses double resonances is designed and measured. The combined resonances lead to more than 90% total absorption covering a wide frequency range from 5.8 to 12.2 GHz. Due to the use of thin metal and PDMS, the whole structure is optically transparent and flexible. Secondly, we demonstrate a new method for fabricating transparent and stretchable radiofrequency small antennas by using stretchable micromesh structures. Size reduction is achieved by using the zeroth-order resonant (ZOR) property. The antennas consist of a series of tortuous micromesh structures, which provides a high degree of freedom for stretching when encapsulated in elastomeric polymers and is optically transparent. Accordingly, these antennas can be stretched up to 40% in size without breaking. The resonant frequency of the antennas is linearly reconfigurable from 2.94 GHz to 2.46 GHz upon stretching. Next, we describe an ultra-low profile and flexible triple-polarization antenna. It is realized by using ZOR array antenna with high port-to-port isolation. This flexible antenna is fabricated with a flexible substrate and silver nanowire vias to be used in various wearable applications. Lastly, we demonstrate a dual-band tri-polarized antenna based on half-mode hexagonal (HMH) SIW structure. CRLH HMHSIW antenna and ZOR HMHSIW antenna are designed to have dual-band operating frequencies. This novel antenna can provide much improved wireless communication efficiency for the WBAN system under various incident field angles and polarizations.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147562/1/tjang_1.pd

    Flexible Hilbert-Curve Loop Antenna Having a Triple-Band and Omnidirectional Pattern for WLAN/WiMAX Applications

    Get PDF
    A triple-band flexible loop antenna is proposed for WLAN/WiMAX applications in this paper. The proposed antenna is formed by the third-order Hilbert-curve and bending type structure which provides flexible characteristics. Even though the radius of the curvature for bending antennas is changed, a triple-band feature still remains in the proposed antenna. Moreover, the antenna exhibits the characteristics of omnidirectional radiation pattern and circular polarization. To verify the receiving performance of antenna, a simulation on the antenna factor was conducted by an EM simulator. Based on these results, the suggested antenna makes a noteworthy performance over typical loop antennas

    Antenna designs based on metamaterial-inspired structures

    Get PDF
    The research presented in this thesis concerns antenna designs based on metamaterial-inspired structures. Based on a review of the existing literature and understanding of the background theories, different metamaterial-inspired structures are applied to designs of resonant antennas (RAs) and leaky wave antennas (LWAs) for improved antenna characteristics. Extended composite right/left-handed (ECRLH) unit cell structures enable the RA designs with multiband or wideband properties; the novel metamaterial-inspired supercell structures enable the LWA designs with the dual-passband property and the backward-to-forward leaky-wave radiation characteristics in each passband. In addition, two tunable antennas are presented to mainly achieve the frequency reconfigurability and possibly the pattern reconfigurability by electronically controlling surface-mounted semiconductor varactors or discrete ferroelectric barium strontium titanium (BST) thin-film varactors. Furthermore, the uncertainty analysis in determination of permittivity of BST film materials from the characterization process is discussed in this thesis, in order to provide the design clues when the antenna with BST materials is designed. The conclusions are drawn and the possible future research directions are explained as well

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Antenna System Design for 5G and Beyond – A Modal Approach

    Get PDF
    Antennas are one of the key components that empower a new generation of wireless technologies, such as 5G and new radar systems. It has been shown that antenna design strategies based on modal theories represent a powerful systematic approach to design practical antenna systems with high performance. In this thesis, several innovative multi-antenna systems are proposed for wireless applications in different frequency bands: from sub-6 GHz to millimeter-wave (mm-wave) bands. The thesis consists of an overview (Part I) and six scientific papers published in peer-reviewed international journals (Part II). Part I provides the overall framework of the thesis work: It presents the background and motivation for the problems at hand, the fundamental modal theories utilized to address these problems, as well as subject-specific research challenges. Brief conclusions and future outlook are also provided. The included papers of Part II can be divided into two tracks with different 5G and beyond wireless applications, both aiming for higher data rates.In the first track, Papers [I] to [IV] investigate different aspects of antenna system design for smart-phone application. Since Long Term Evolution (LTE) (so-called 3.5G) was deployed in 2009, mobile communication systems have utilized multiple-input multiple-output antenna technology (MIMO) technology to increase the spectral efficiency of the transmission channel and provide higher data rates in existing and new sub-6 GHz bands. However, MIMO requires multi-antennas at both the base stations and the user equipment (mainly smartphones) and it is very challenging to implement sub-6 GHz multi-antennas within the limited space of smartphones. This points to the need for innovative design strategies. The theory of characteristic modes (TCM) is one type of modal theory in the antenna community, which has been shown to be a versatile tool to analyze the inherent resonance properties of an arbitrarily shaped radiating structure. Characteristic modes (CMs) have the useful property of their fields being orthogonal over both the source region and the sphere at infinity. This property makes TCM uniquely suited for electrically compact MIMO antenna design.In the second track, Papers [V]-[VI] investigate new integrated antenna arrays and subarrays for the two wireless applications, which are both implemented in a higher part of the mm-wave frequency range (i.e. E-band). Furthermore, a newly developed high resolution multi-layer “Any-Layer” PCB technology is investigated to realize antenna-in-package solutions for these mmwave antenna system designs. High gain and high efficiency antennas are essential for high-speed wireless point-to-point communication systems. To meet these requirements, Paper [V] proposes directive multilayer substrate integrated waveguide (SIW) cavity-backed slot antenna array and subarray. As a background, the microwave community has already shown the benefits of modal theory in the design and analysis of closed structures like waveguides and cavities. Higher-order cavity modes are used in the antenna array design process to facilitate lower loss, simpler feeding network, and lower sensitivity to fabrication errors, which are favorable for E-band communication systems. However, waveguide/cavity modes are confined to fields within the guided media and can only help to design special types of antennas that contain those structures. As an example of the versatility of TCM, Paper [VI] shows that apart from smartphone antenna designs proposed in Papers [I]-[IV], TCM can alsobe used to find the desirable modes of the linear antenna arrays. Furthermore, apart from E-band communications, the proposed series-fed patch array topology in Paper [VI] is a good candidate for application in 79 GHz MIMO automotive radar due to its low cost, compact size, ability to suppress surface waves, as well as relatively wide impedance and flat-gain bandwidths
    corecore