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Abstract 

The research presented in this thesis concerns antenna designs based on 

metamaterial-inspired structures. Based on a review of the existing literature and 

understanding of the background theories, different metamaterial-inspired structures 

are applied to designs of resonant antennas (RAs) and leaky wave antennas (LWAs) 

for improved antenna characteristics. Extended composite right/left-handed (ECRLH) 

unit cell structures enable the RA designs with multiband or wideband properties; the 

novel metamaterial-inspired supercell structures enable the LWA designs with the 

dual-passband property and the backward-to-forward leaky-wave radiation 

characteristics in each passband. In addition, two tunable antennas are presented to 

mainly achieve the frequency reconfigurability and possibly the pattern 

reconfigurability by electronically controlling surface-mounted semiconductor 

varactors or discrete ferroelectric barium strontium titanium (BST) thin-film varactors. 

Furthermore, the uncertainty analysis in determination of permittivity of BST film 

materials from the characterization process is discussed in this thesis, in order to 

provide the design clues when the antenna with BST materials is designed. The 

conclusions are drawn and the possible future research directions are explained as 

well. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

As important components in wireless communication systems, antennas have attracted 

a lot of research interest for many decades. Antennas with good performance can 

always facilitate the improvement of the final communication quality and 

simplification of the entire communication system architecture. 

In the last decade, due to the unusual and interesting properties of artificial 

electromagnetic metamaterial structures, such as simultaneously negative permittivity 

and negative permeability, an increasing number of antennas based on different 

metamaterial-inspired structures have been designed and investigated to achieve 

interesting antenna characteristics. As two major fields of the metamaterial-inspired 

antennas, resonant antennas (RAs) and leaky wave antennas (LWAs) have attracted a 

lot of research interest. The combination of the antenna design with the artificial 

electromagnetic metamaterial structure can enable the RA or LWA to have some novel 

antenna characteristics. For example, the classic metamaterial composite 
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right/left-handed (CRLH) transmission line (TL) structure may be used to enhance the 

bandwidth of some metamaterial-inspired RAs; new metamaterial-inspired supercell 

structures may enable multi-passband leaky-wave radiation characteristics for 

one-dimension (1-D) LWAs.  

Evidently, the research fields of artificial electromagnetic metamaterial structures and 

their applications are still in progress and have great potentials and values to be 

further explored. The antenna designs based on new artificial electromagnetic 

metamaterial structures can exhibit some improvements in antenna performance, such 

as the frequency response, radiation pattern, gain or polarization. Due to the possible 

improvements of the antenna performance, antenna designs based on new artificial 

electromagnetic metamaterial structures with novel antenna characteristics are a very 

important and interesting research direction. 

1.2 Motivations and Objectives 

1.2.1 Motivations 

Multiband or frequency-agile antennas are very important and useful in modern 

wireless communication systems, e.g., the cellular communication system, because 

they can support a variety of wireless frequency bands using their multiband or 

frequency tunable characteristics at microwave frequencies. The increasing demands 

of multiband or frequency-agile antennas have enabled a lot of antenna designs with 

multiband or frequency tunable characteristics. The artificial electromagnetic 
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metamaterial-inspired structures can provide a good way to help antennas achieve the 

expected multiband or frequency tunable characteristics. For example, a 

metamaterial-inspired monopole antenna loaded with one CRLH unit cell can be used 

for tri-band applications [1]; an internal antenna with an epsilon negative resonator 

can realize the frequency tunability from 474 MHz to 702 MHz for digital video 

broadcasting-handheld services [2]. In artificial electromagnetic metamaterial 

structures, the extended CRLH (ECRLH) structure and some metamaterial-inspired 

supercell structures exhibit multiband properties. They can be applied to antenna 

designs, such as RAs and LWAs, in order to enable antennas to have multiband or 

frequency tunable characteristics. For example, a substrate integrated waveguided 

(SIW) LWA based on one ECRLH structure can achieve the backward-to-forward 

leaky-wave radiation characteristics within both passbands [3]; an SIW LWA based on 

the cascaded metamaterial-inspired supercell structures can achieve the forward-only 

and backward-to-forward leaky-wave radiation characteristics within two passbands, 

respectively [4].    

Based on these considerations and motivations above, in order to design novel 

antennas with multiband or frequency tunable characteristics and simultaneously 

explore the applications of artificial electromagnetic metamaterial structures, the RAs 

and LWAs based on the ECRLH structures or the metamaterial-inspired supercell 

structures are carefully designed for multiband operations. For metamaterial-inspired 

RAs, a class of the RAs based on one ECRLH unit cell structure is designed for 

multiband or frequency-agile applications. For metamaterial-inspired LWAs, 
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according to the observation that the LWA based on the ECRLH structure does not 

have the backward-to-forward leaky-wave radiation characteristics within its high 

passband, the LWAs based on two novel metamaterial-inspired supercell structures 

are proposed to achieve the backward-to-forward leaky-wave radiation within its both 

passbands. In addition, an electronically tunable LWA with semiconductor varactors is 

presented in order to investigate the frequency tunability of its balanced points within 

both passbands. 

1.2.2 Objectives 

In this thesis, the main objectives are summarized as followings: 

(1) To design RAs and LWAs based on the metamaterial ECRLH structures based on 

the background theory of the ECRLH structure, and to further investigate their 

antenna characteristics. 

(2) To design dual-passband LWAs based on two metamaterial-inspired supercell 

structures, in order to achieve the backward-to-forward leaky-wave radiation 

within both passbands. 

(3) To develop an electronically tunable LWA with discrete ferroelectric (FE) barium 

strontium titanium (BST) thin-film varactors, and to further analyze the 

uncertainty in the determination of the BST permittivity from the characterization 

process. 
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1.3 Outline of Thesis 

The focus of this thesis is novel RA and LWA designs based on different 

metamaterial-inspired structures at microwave frequencies. A brief introduction to the 

background and a description of motivations, objectives, and contributions have been 

presented in this chapter. The content of the remaining chapters in this thesis is briefly 

explained as follows: 

In Chapter II, the background theories of conventional LWAs, the CRLH structure, 

the metamaterial-inspired RA based on the CRLH structure, and the ECRLH structure 

with multiband properties are briefly introduced and explained. The antenna designs 

in this thesis are based on these background theories. 

In Chapter III, the existing designs of the metamaterial-inspired RAs, the 1-D LWAs 

based on different CRLH TL structures, the 1-D LWAs based on different 

metamaterial-inspired supercell structures, the antennas with FE BST materials are 

briefly reviewed. In addition, the tuning techniques used in existing antenna designs at 

microwave frequencies are reviewed as well. The reported antenna designs in these 

five fields are compared and summarized in five tables, respectively. 

In Chapter IV, a class of the metamaterial-inspired RAs based on one ECRLH unit 

cell structure is proposed. As an extension of conventional metamaterial-inspired ones 

based on the CRLH unit cell structure, the resonant theory of a resonant structure 

based on the ECRLH unit cell structure is developed. Three open-ended RAs based on 

one ECRLH unit cell structure are proposed for multiband or frequency-agile 
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applications. The first design is incorporated with surface-mounted (SMD) chip 

capacitors for initial theoretical realization. In order to avoid the losses from these 

chip capacitors, the second design is realized using interdigital structures (IDSs). The 

third design using one SMD GaAs semiconductor varactor is further proposed to 

achieve the frequency tunability of one operating resonance at the low frequency 

while maintaining the wideband coverage formed by the other operating resonances.    

In Chapter V, 1-D dual-passband LWAs based on the ECRLH TL structure and the 

metamaterial-inspired supercell structures are proposed to achieve different 

leaky-wave radiation characteristics. The first dual-passband LWA based on the 

ECRLH TL structure is analyzed in terms of its leaky-wave radiation characteristics. 

Due to the fact that the first LWA does not have the backward-to-forward leaky-wave 

radiation characteristics within its high passband, two metamaterial-inspired supercell 

structures, i.e., Supercell_v1 and Supercell_v2, are developed and applied to the 

second and third LWA designs, in order to achieve the backward-to-forward 

leaky-wave radiation characteristics within both passbands. Supercell_v1 and 

Supercell_v2 are the given names of these two proposed metamaterial-inspired 

supercells. The Supercell_v2 structure is developed from the Supercell_v1 structure. 

In addition, the fourth design is an electronically tunable LWA based on the 

Supercell_v2 structure, which can achieve the relatively independent tunability of the 

low balanced point while keeping the frequency position of the high balanced point 

and maintaining the backward-to-forward leaky-wave radiation characteristics within 

the high passband. 
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In Chapter VI, the additional research related to the FE BST material is presented. 

Firstly, an electronically tunable 1-D LWA incorporated with discrete BST thin-film 

varactors is designed and its frequency tunability is also demonstrated in the 

simulation. Due to the importance of knowledge of the BST permittivity used as an 

input quantity in the antenna design, the uncertainty analysis in determination of the 

permittivity of the FE BST material is also included in this chapter. 

In Chapter VII, the conclusions of the works are presented, and the possible research 

directions of the future work are discussed. 

1.4 Contributions 

The main contributions of the research in this thesis are summarized as followings: 

(1) A class of microstrip-fed open-ended metamaterial-inspired RAs based on one 

asymmetric ECRLH unit cell structure for multiband or frequency-agile 

applications will be presented in Chapter IV. The RAs in this class can provide 

new ideas for future small antenna designs in mobile devices. The investigation 

of the ECRLH structure in these RA designs may enable new structures of small 

antenna design for multiband or frequency-agile applications. Most existing RA 

designs based on the CRLH structure only generate a few operating resonances to 

cover a few frequency bands. Compared to them, the proposed RAs generate 

more operating resonances working at the chosen frequency bands. The passive 

RAs can achieve the multiband coverage over 0.5-6.0 GHz, while a tunable one 
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can achieve the frequency tunability of one operating resonance at the low 

frequency to cover 0.7-0.96 GHz and keeping the wideband coverage over 

1.7-6.0 GHz. 

(2) The LWAs based on the ECRLH and novel metamaterial-inspired supercell 

structures (i.e., Supercell_v1 and Supercell_v2) are mainly designed for 

dual-passband applications with different leaky-wave radiation characteristics, 

which will be presented in Chapter V. According to the observation that a 

microstrip LWA based on the ECRLH structure does not present the conventional 

backward-to-forward leaky-wave radiation characteristics within its high 

passband, the LWAs based on the Supercell_v1 and Supercell_v2 structures can 

achieve the backward-to-forward leaky-wave radiation characteristics within both 

passbands. Most existing LWA designs based on the CRLH structures mainly 

focus on the performance improvement within its single operating band. Most 

existing LWA designs based on metamaterial-inspired structures are mainly 

designed based on the passive SIW structure, which may lose the tunability or 

control for the operation bands or the beam patterns. These dual-passband LWA 

designs are suitable for dual-band high-directivity applications. The investigation 

of these supercell structures may be used as references to design other kinds of 

antennas.   

(3) An LWA design with discrete FE BST varactors presented in Chapter VI provides 

a good way to integrate the antenna structure with BST materials. Most existing 

BST-based antennas mainly use an entire piece of the BST layer, which may 
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introduce unnecessary losses to degrade the antenna radiation performance. The 

proposed LWA uses discrete BST varactors on the necessary positions, which may 

be very helpful to reduce the losses from the BST varactors. Furthermore, the 

uncertainty analysis in the determination of the BST permittivity from the 

characterization process can provide design clues and can be very helpful to 

optimize the antenna design process.  
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CHAPTER II 

BACKGROUND THEORY 

2.1 Introduction 

This chapter introduces the relevant background theories for the proposed antenna 

designs in this thesis. These theories lay the solid bases for the antenna research in 

this thesis. In section 2.2, the background theory of conventional LWAs is introduced. 

The basic theory of the CRLH structure is presented in Section 2.3. Furthermore, the 

resonant theory of a resonant structure based on the CRLH unit cell structure is 

presented in Section 2.4. In Section 2.5, the background theory of the ECRLH 

structure with multiband properties is introduced.  

2.2 Theory of Conventional Leaky Wave Antennas 

Generally, an LWA is designed based on a wave-guiding structure which has some 

power leakage from this structure during wave propagation. The LWAs can achieve 

different leaky-wave characteristics, depending on structural forms (i.e., 1-D or 2-D) 



 

11 
 

and excitation positions (i.e., end excitation or center excitation) [5]. The 1-D LWAs 

with an end excitation are a major research field of interest in this thesis, so the 

discussion of 1-D LWAs with an end excitation will be presented in this section.  

Generally, the background theory can be briefly explained as following: the energy of 

a guided wave flows through the guiding structure for an LWA, and the branches for 

perturbation in the guiding structure will interrupt the smooth wave propagation along 

this guiding structure. The energy can be mainly radiated or leaked at these 

perturbation branches from the guiding structure, which can be used for leaky-wave 

applications. The energy radiation from uniform or periodic perturbation branches can 

result in a fan beam with high directivity. One distinct characteristic of the LWA is 

that the main beam direction changes with frequency, which can be used for 

high-directivity applications. Figure 2.1 shows some LWA examples.  

   

Figure 2.1 Examples of conventional LWAs. 

For an LWA, its leaky-wave radiation is dependent on its complex propagation 

constant 𝛾 = 𝛼 + 𝑗𝛽 [6], where 𝛼 is the attenuation constant and 𝛽 is the phase 

constant. Notably, 𝛼 and 𝛽 are two critical parameters for a leaky-wave structure, 

which can determine the main beamwidth, radiation efficiency and radiation angle, 
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respectively [6]. The radiated power from the beginning of a guiding structure to the 

end generally follows an exponentially decreasing function. As the parameter for the 

power attenuation or leakage, a larger 𝛼 can result in a shorter effective aperture with 

less power leakage for radiation and wider beamwidth [6]. In contrast, a smaller 𝛼 

can lead to a longer effective aperture with more power leakage for radiation and 

narrower beamwidth [6]. Generally, one LWA should be designed to achieve desirably 

around 90% of the accepted power along its guiding structure being radiated when the 

wave reached the antenna end [6]. With a matched load at the end of the guiding 

structure, the remaining power can be absorbed totally. The phase constant 𝛽 

changes as the operating frequency changes, which can further result in the change of 

the beam direction [6]. The intrinsic space harmonics of the antenna structure can be 

expressed in Eq. (2-1), in terms of 𝛽: 

                            𝛽𝑛 = 𝛽0 +
2𝑛𝜋

𝑑
                      Eq. (2-1) 

where 𝛽0 is the phase constant of the lowest order space harmonic, 𝛽𝑛 is the phase 

constant of the nth-order space harmonic, 𝑑 is the period, and 𝑛 is the number of 

space harmonics [5]. 

In general, 1-D LWAs can be mainly divided into two types – uniform (or 

quasi-uniform) and periodic. The radiation mechanisms of LWAs in these two types 

are different, which are respectively explained below. 

2.2.1 Uniform or Quasi-Uniform LWAs 

For LWAs in uniform or quasi-uniform type, the guiding structure is either of uniform 
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structure or is composed of multiple cascaded periodic unit cells in which the period 

is much less than one guided wavelength (i.e., 𝑑 ≪  λg). This type of LWAs uses a 

fast wave for radiation. The fast wave is with respect to the wave velocity in free 

space, and the complex wave-number of the leaky mode 𝑘𝑧 = 𝛽𝑛 − 𝑗𝛼  with 

0 < 𝛽𝑛 < 𝑘0, where 𝑘0 the wave-number in free space [5]. The beam direction and 

beamwidth of the LWA of this type can be expressed in Eq. (2-2) and Eq. (2-3) [6]: 

                                 sin 𝜃𝑚 ≈  𝛽𝑛 / 𝑘0                       Eq. (2-2) 

                                  ∆𝜃 ≈
1

(𝐿/λ0)∙cos𝜃𝑚
                       Eq. (2-3) 

where 𝜃𝑚 is the radiation angle of the main beam, L is the physical length of the 

guiding structure of the LWA, λ0  is the wavelength in free space, ∆𝜃  is the 

beamwidth of the main beam and 𝑘0 = (2𝜋)/λ0 [6]. From Eq. (2-3), the physical 

length L of an LWA can affect the beamwidth ∆𝜃 of its main beam. The relationship 

between the physical length L and the attenuation constant 𝛼 can be approximately 

expressed in Eq. (2-4) [6]: 

                                   𝐿

λ0
≈

0.18

𝛼
∙ 𝑘0                        Eq. (2-4) 

2.2.2 Periodic LWAs 

For periodic LWAs, the radiation mechanism of an LWA in this type is different from 

the one in uniform or quasi-uniform type. This type of LWAs supports a slow wave. 

The slow wave is with respect to free space, i.e., 𝛽𝑛 > 𝑘0. The fundamental mode of 

a periodic LWA is slow with respect to the free-space velocity [5]. The periodic 

modulation is introduced to the wave-guiding structure in order to produce 



 

14 
 

leaky-wave radiation using proper harmonic modes. For a periodic LWA, the intrinsic 

space harmonics can be expressed using Eq. (2-2) as well. 

As mentioned above, there are two major regions – fast-wave region (i.e., 0 < 𝛽𝑛 <

𝑘0) and slow-wave region (i.e., 𝛽𝑛 > 𝑘0). Due to the non-radiation property of the 

fundamental mode space harmonic, a periodic LWA mainly uses the 

negative-order-mode (𝑚 = −1, −2, −3…) space harmonics to operate within the 

fast-wave region for leaky wave radiation [6]. A periodic LWA usually uses the 

first-negative-order (𝑚 = −1) harmonic mode for leaky-wave radiation, which is 

different from a uniform or quasi-uniform one that usually uses the fundamental mode 

(𝑚 = 0) for radiation. Conventional LWAs usually suffer from the open stopband 

problem, which will be explained in Chapter III. An effective technique to suppress or 

even eliminate the open stopband region near broadside for a periodic LWA has been 

proposed in [7]. The radiation angle of the main beam in a periodic LWA can be 

expressed [5]: 

                         sin 𝜃𝑚 ≈  𝛽−1 / 𝑘0                     Eq. (2-5) 

where 𝛽−1 is the phase constant of the first-negative-order harmonic, i.e.,  

                           𝛽−1 = 𝛽0 −
2𝜋

𝑑
                        Eq. (2-6) 

where 𝑑 is the period of the unit cell. For the beamwidth, Eq. (2-3) is still applicable 

to a periodic LWA. For the relationship between the physical length L of the guiding 

structure and its attenuation constant 𝛼, Eq. (2-4) is applicable to the LWAs in the 

periodic type as well. 
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2.3 Theory of Composite Right/Left Handed Transmission Line 

Structure 

 
(a) 

 
(b) 

 
(c) 

Figure 2.2 Equivalent models of different unit cell structure, (a) one conventional RH unit cell 
structure; (b) one LH unit cell structure; (c) one asymmetric CRLH unit cell structure. 

The CRLH structure, as a classic artificial electromagnetic metamaterial structure, can 

be used to model the equivalent TL structure using multiple cascaded CRLH unit cells, 

if the condition for the effectively homogeneous medium can be satisfied. The CRLH 
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structure can be viewed as a combination of the conventional RH and LH structure. 

The equivalent models of the RH and LH unit cell structure are shown in Figure 2.2(a) 

and Figure 2.2(b), respectively.  

The equivalent model of one CRLH unit cell structure is shown in Figure 2.2(c). The 

physical length of one unit cell is P, which is also the period of unit cells. When 

P ≪  λg, these cascaded CRLH unit cell structures can be used to effectively model a 

TL structure; λg  is the guided wavelength [8]. As shown in Figure 2.2(c), the 

equivalent model consists of an inductance 𝐿𝑠𝑒  in series with a capacitance 𝐶𝑠𝑒 in 

the horizontal branch and a shunt inductance 𝐿𝑠ℎ in parallel with a capacitance 𝐶𝑠ℎ  

in the vertical branch. The impedance of the horizontal branch and the admittance of 

the vertical branch are shown respectively as below: 

                          𝑍(𝜔) = 𝑗𝜔𝐿𝑠𝑒 +
1

𝑗𝜔𝐶𝑠𝑒
                         Eq. (2-7) 

                          𝑌(𝜔) = 𝑗𝜔𝐶𝑠ℎ +
1

𝑗𝜔𝐿𝑠ℎ
                         Eq. (2-8) 

The propagation constant of this CRLH structure is expressed in Eq. (2-9): 

                         𝛾 = 𝛼 + 𝑗𝛽 = √𝑍(𝜔)𝑌(𝜔)              Eq. (2-9) 

where 𝛼 is the attenuation constant and 𝛽 is the phase constant. The characteristic 

impedance of the CRLH structure is expressed in Eq. (2-10): 

                          𝑍𝑐(𝜔) =
𝑍(𝜔)

𝛾
= √

𝑍(𝜔)

𝑌(𝜔)
                Eq. (2-10) 

The resonant frequencies of the series and shunt L-C resonators can be expressed in 

Eq. (2-11) and Eq. (2-12), respectively [8]: 

  𝜔𝑠𝑒 =
1

√𝐿𝑠𝑒𝐶𝑠𝑒
                    Eq. (2-11) 
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                             𝜔𝑠ℎ =
1

√𝐿𝑠ℎ𝐶𝑠ℎ
                    Eq. (2-12) 

The center operation frequency of the CRLH structure is obtained as below [8]: 

                           𝜔0 =
1

√𝐿𝑠𝑒𝐶𝑠𝑒𝐿𝑠ℎ𝐶𝑠ℎ
4                   Eq. (2-13) 

As mentioned above, the CRLH structure can be considered as a combination of the 

RH and LH structure, thus the resonant frequencies of the corresponding RH and LH 

L-C resonators in the CRLH structure can be expressed [8]:        

                            𝜔𝑅𝐻 =
1

√𝐿𝑠e𝐶𝑠ℎ
                     Eq. (2-14) 

                            𝜔𝐿𝐻 =
1

√𝐿𝑠ℎ𝐶𝑠𝑒
                     Eq. (2-15) 

The impedances of the RH and LH structure can be expressed in Eq. (2-16) and    

Eq. (2-17), respectively [8]: 

                             𝑍𝑅𝐻 = √
𝐿𝑠e

𝐶𝑠ℎ
                      Eq. (2-16) 

                              𝑍𝐿𝐻 = √
𝐿𝑠ℎ

𝐶𝑠e
                      Eq. (2-17) 

Through transformations, the propagation constant can be re-written as below [8]: 

    𝛾 = 𝛼 + 𝑗𝛽 = 𝑗𝑠(𝜔)√(
𝜔

𝜔𝑅𝐻
)

2

+ (
𝜔𝐿𝐻

𝜔
)

2

− (𝐿𝑠𝑒𝐶𝑠𝑒 + 𝐿𝑠ℎ𝐶𝑠ℎ)𝜔𝐿𝐻
2     Eq. (2-18) 

where 𝑠(𝜔) can be either negative or positive as a sign function, 

            𝑠(𝜔) = {
−1
+1

,
,
 if 𝜔 < min (𝜔𝑠𝑒 , 𝜔𝑠ℎ) 
 if 𝜔 > max (𝜔𝑠𝑒 , 𝜔𝑠ℎ)

 
,
, 

LH Range
RH Range

         Eq. (2-19) 

The propagation constant 𝛾  can be purely real or purely imaginary, which is 

dependent on the operating band characteristics. The propagation constant is purely 

imaginary within the passband, i.e., 𝛾 = 𝑗𝛽 , while it is purely real within the 

stopband, i.e., 𝛾 = 𝛼 [8]. 



 

18 
 

The dispersion relation of the CRLH unit cell can be derived in Eq. (2-20) by 

applying the periodic boundary conditions (PBCs) according to the Bloch-Floquet 

Theorem [8]: 

                        𝛽(𝜔) =
1

P
cos−1(1 +

𝑍𝑌

2
)                Eq. (2-20) 

where Z and Y are the total impedance of the series branch and the total admittance of 

the shunt branch. Due to the small electrical length of the unit cell, Eq. (2-21) can be 

approximately obtained using the Taylor approximation [8]: 

              𝛽(𝜔) =
𝑠(𝜔)

P
√𝜔2𝐿𝑠𝑒𝐶𝑠ℎ +

1

𝜔2𝐿𝑠ℎ𝐶𝑠𝑒
− (

𝐿𝑠𝑒

𝐿𝑠ℎ
+

𝐶𝑠ℎ

𝐶𝑠𝑒
)       Eq. (2-21) 

Without considering the inter-cell coupling effects, the TL approach can also be used 

as a simple and useful way to analyze the characteristics and performance of the 

CRLH structure. The transmission ABCD matrix of one single asymmetric CRLH 

unit cell can be expressed [8]: 

               [
𝐴 𝐵
𝐶 𝐷

]
𝑎𝑦𝑠𝑚

= [
1 𝑍
0 1

] [
1 0
𝑌 1

] = [
1 + 𝑍𝑌 𝑍

𝑌 1
]         Eq. (2-22) 

where 𝑍 and 𝑌 are the total impedance of the series branch and the total admittance 

of the shunt branch. By translating Eq. (2-7), Eq. (2-8), Eq. (2-11), and Eq. (2-12) into 

Eq. (2-22), the transmission ABCD matrix can be re-written as below [8]: 

                [
𝐴 𝐵
𝐶 𝐷

]
𝑎𝑦𝑠𝑚

= [
1 − ξ 𝑗

(𝜔/𝜔𝑠𝑒)2−1

𝜔𝐶𝑠𝑒

𝑗
(𝜔/𝜔𝑠ℎ)2−1

𝜔𝐿𝑠ℎ
1

]          Eq. (2-23) 

where 

                    𝜉 = 𝑍𝑌 = (
𝜔

𝜔𝑅𝐻
)2 + (

𝜔𝐿𝐻

𝜔
)2 − 𝜖𝜔𝐿

2            Eq. (2-24) 

                          𝜖 = 𝐿𝑠𝑒𝐶𝑠𝑒 + 𝐿𝑠ℎ𝐶𝑠ℎ                  Eq. (2-25) 
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Thus, the dispersion relation and the characteristic impedance of the CRLH structure 

can be respectively re-written in Eq. (2-26) and Eq. (2-27), respectively, in terms of 

the elements of the transmission ABCD matrix 

                          𝛽 =
1

P
cos−1(

𝐴+𝐷

2
)                    Eq. (2-26) 

                             𝑍𝑐 = √
𝐵

𝐶
                        Eq. (2-27) 

The CRLH structure can work under two different operating conditions – unbalanced 

condition and balanced condition [8]. Under the unbalanced condition, there is an 

open stopband existing from the LH band to the RH band, due to the difference 

between the resonant frequencies of the series branch and the shunt branch,       

i.e., 𝜔𝑠𝑒 ≠ 𝜔𝑠ℎ [8]. This open stopband will be explained in Section 3.3 of Chapter 

III. Under the balanced condition, the open stopband is closed and a balanced point is 

formed at the transition frequency from the LH band to the RH band. In this condition, 

the resonant frequencies of the series branch and the shunt branch are equal,      

i.e., 𝜔𝑠𝑒 = 𝜔𝑠ℎ.  

Generally, the leaky-wave characteristics of an LWA are analyzed and investigated 

using the dispersion diagram. A dispersion diagram is a graphical representation for 

the phase constant of the space harmonic modes with different velocities as a function 

of the angular frequency [9]. From the dispersion diagram, the characteristics of the 

passbands, stopbands and propagation space harmonic modes for the LWA can be 

observed and studies. The dispersion diagrams of the CRLH structure under the 

unbalanced and balanced condition are shown in Figure 2.3(a) and Figure 2.3(b), 
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respectively. 

 
(a) 

 
(b) 

Figure 2.3 Dispersion diagrams of the CRLH structure, (a) the unbalanced condition; (b) the balanced 
condition. 

2.4 Theory of Metamaterial-Inspired Resonant Antennas 

The concept of the metamaterial-inspired structure brings novel ideas to RA designs. 

Most existing metamaterial-inspired RA designs are mainly based on the CRLH 

structure. For metamaterial-inspired RAs, a metamaterial-inspired structure is 

generally terminated with a short or an open end. Take the class of RAs based on the 

CRLH structure as one example for analysis and explanation. These RAs include one 



 

21 
 

or multiple CRLH unit cell structures as the major resonant structures. With a proper 

feeding approach, the intrinsic resonant modes can be excited for radiation. The 

resonant modes of a CRLH resonant structure with the total physical length L, which 

is composed of N unit cells with the period P, are expressed as Eq. (2-28) [10]: 

                   𝛽𝑚 ∙ 𝐿 = 𝑚 ∙ 𝜋,     𝑚 = (0, ±1, ±2, ⋯ )        Eq. (2-28) 

where 𝛽𝑚 is the phase constant of the mth-order resonant mode, 𝐿 = 𝑁 ∙ P, and m is 

the sequence number of one specific resonant mode. Specifically, for the resonant 

modes, 𝑚 can be both positive for RH bands (i.e., 𝑚 = +1, +2, ⋯) and negative for 

LH bands (i.e., 𝑚 = −1, −2, ⋯) and even zero (𝑚 = 0) which exists at the transition 

frequency area [10]. A CRLH-based resonant structure consisting of N unit cells can 

be excited to generate a finite number of 2N (under the unbalanced condition) or 2N-1 

(under the balanced condition) resonances [10]. The corresponding resonant modes 

can be expressed in Eq. (2-29) [10]: 

            𝛽𝑚 ∙ P = 𝛽𝑚 ∙ (
𝐿

𝑁
) = 𝑚 ∙ 𝜋/𝑁,   𝑚 = (0, ±1, ±2, ⋯ )    Eq. (2-29) 

In terms of the dispersion relation, each resonant mode can have its corresponding 

axis of the phase constant (𝛽𝑚) and its corresponding operating frequency (𝜔𝑚). As 

mention above, the CRLH structure mainly has two operating conditions – 

unbalanced condition and balanced condition [8]. The resonance spectrums of a 

resonant structure based on the CRLH structure under the unbalanced and balanced 

condition are presented in Figure 2.4(a) and Figure 2.4(b), respectively. 
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(a) 

 
(b) 

Figure 2.4 Resonance spectrums of the CRLH structure, (a) the unbalanced condition; (b) the balanced 
condition. 

Generally, CRLH-based RAs can mainly be divided into two types – short-ended and 

open-ended [10]. For short-ended RAs, one or multiple CRLH unit cells are integrated 

together as a major resonant structure, and the termination of the antenna is directly 

connected to the ground plane or connected to a virtual ground plane. With a proper 

excitation, the multiple operating resonances of the resonant structure can be 

generated using the zeroth-order mode ( 𝑚 = 0 ), negative-order modes ( 𝑚 =

−1, −2, ⋯) and positive-order modes (𝑚 = +1, +2, ⋯). Thus, the RAs with a short 

end can achieve multi-band or wideband operations using these operating resonances. 

The other type is open-ended RAs. In this type, the RAs are usually realized by either 
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of one conventional open-ended antenna (e.g., monopole antenna) loaded with one or 

multiple metamaterial-based CRLH unit cells, or one or multiple open-ended unit 

cells excited directly by a proper feeding approach. Two major advantages of the 

metamaterial-inspired open-ended RAs can be summarized in comparison with 

conventional open-ended antennas [1]: (1) more operating resonances for multiband 

or wideband operations; (2) at least one operating resonance working at lower 

frequency than conventional monopole antennas. These advantages have attracted a 

lot of research interest on the metamaterial-inspired RAs and have enabled the 

antenna performance improvement. 

Most metamaterial-inspired RAs are usually designed to use the zeroth-order mode 

(𝑚 = 0) as the major radiated resonance. The utilization of the zeroth-order mode 

might enable the electrically small antenna designs [10]. This kind of RAs is also 

called the ZOR antennas. The resonant modes can be derived from Eq. (2-21). When 

𝑚 = 0, the phase constant of the zeroth-order mode is close to zero, i.e., 𝛽0 → 0. The 

resonant frequency of the zeroth-order mode is independent of the physical length of 

the antenna, but is determined by inductance and capacitance values in the unit cell 

[11]. The input impedance (Zin) of the lossless CRLH structure (α = 0) can be 

expressed in Eq. (2-30) in terms of the TL theory: 

                       𝑍𝑖𝑛 = 𝑍𝑐 [
𝑍𝐿+𝑗𝑍𝑐𝑡𝑎𝑛 (𝛽𝐿)

𝑍𝑐+𝑗𝑍𝐿𝑡𝑎𝑛 (𝛽𝐿)
]                  Eq. (2-30) 

where 𝑍𝑐  is the characteristic impedance of the CRLH structure, 𝑍𝐿  is the 

impedance of the load at the end, 𝛽 is the phase constant, and 𝐿 is the total physical 

length of the CRLH structure.  
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For the zeroth-order resonant mode, i.e., 𝑚 = 0, 𝛽 → 0, of an open-ended RA, i.e., 

𝑍𝐿 = ∞, Eq. (2-31) can be re-written as: 

          𝑍𝑖𝑛
𝑜𝑝𝑒𝑛 = −𝑗𝑍𝑐cot (𝛽𝐿) ≈ −

𝑗𝑍𝑐

𝛽𝐿
= −𝑗√

𝑍

𝑌
(

1

−𝑗√𝑍𝑌𝐿
) =

1

𝑌𝑁P
     Eq. (2-31) 

where 𝑌 is the shunt admittance, 𝑍 is the series impedance, N is the number of unit 

cells in the CRLH resonant structure, and P is the period of the unit cell. In this case, 

the zeroth-order resonant frequency 𝜔𝑍𝑂𝑅 of this CRLH-based resonant structure 

with an open end can be written as below: 

                        𝜔𝑍𝑂𝑅 = 𝜔𝑠ℎ =
1

√𝐿𝑠ℎ𝐶𝑠ℎ
                  Eq. (2-32) 

where 𝜔𝑠ℎ is the resonant frequency of the shunt branch in the CRLH unit cell 

structure, and 𝐿𝑠ℎ  and 𝐶𝑠ℎ  are the inductance and the capacitance in the shunt branch. 

From Eq. (2-31) and Eq. (2-32), it is obvious that the resonant frequency of the 

zeroth-order mode (𝑚 = 0) for the open-ended case is primarily determined by the 

inductance and capacitance in the shunt branch of the CRLH unit cell structure. 

Similarly, for the zeroth-order resonant mode, i.e., 𝑚 = 0, 𝛽 → 0, and the RA is 

short-ended, i.e., 𝑍𝐿 = 0, Eq. (2-30) can be re-written as: 

             𝑍𝑖𝑛
𝑠ℎ𝑜𝑟𝑡 = 𝑗𝑍𝑐 𝑡𝑎𝑛(𝛽𝐿) ≈ 𝑗𝑍𝑐𝛽𝐿 = √

𝑍

𝑌
√𝑍𝑌𝐿 = 𝑍𝑁P     Eq. (2-33) 

Correspondingly, in this case, the zeroth-order resonant frequency 𝜔𝑍𝑂𝑅  of a 

CRLH-based resonant structure with a short end can be written as below: 

                        𝜔𝑍𝑂𝑅 = 𝜔𝑠𝑒 =
1

√𝐿𝑠𝑒𝐶𝑠𝑒
                   Eq. (2-34) 

where 𝜔𝑠𝑒 is the resonant frequency of the shunt branch in the CRLH unit cell 

structure, and 𝐿𝑠𝑒  and 𝐶𝑠𝑒  are the inductance and the capacitance in the series 

branch. From Eq. (2-33) and Eq. (2-34), it is obvious that the resonant frequency of 
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the zeroth-order mode for the short-ended case is primarily determined by the 

inductance and capacitance in the series branch of the CRLH unit cell structure. 

2.5 Theory of Extended Composite Right/Left Handed Transmission 

Line Structure 

 

Figure 2.5 Equivalent circuit model of one ECRLH unit cell structure. 

The metamaterial ECRLH structure was introduced in [12] as a generalized extension 

of the conventional CRLH structure, which is also call the generalized 

negative-refractive-index (GNRI) structure [13]. The equivalent circuit model of the 

ECRLH unit cell structure is shown in Figure 2.5. P is the physical length of the 

ECRLH unit cell. By inserting one parallel L-C resonator into the series branch and 

one series L-C resonator into the shunt branch in the equivalent model of the 

conventional CRLH structure, there are four L-C resonators are in the equivalent 

model. The ECRLH structure can be seen as a combination the conventional CRLH 

structure and the dual CRLH (DCRLH) structure. The equivalent model of the 

DCRLH unit cell structure is shown in Figure 2.6. The ECRLH structure yields two 

pairs of left-handed (LH) backward-wave and right-handed (RH) forward-wave bands, 
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instead of one pair in the conventional CRLH structure [12]. There is one middle 

bandgap existing between these two pairs of the LH and RH bands.  

 

Figure 2.6 Equivalent circuit model of the DCRLH unit cell structure. 

The impedance for the series resonator and the admittance of the parallel resonator in 

the horizontal branch can be respectively written as: 

                          𝑍ℎ𝑠 = 𝑗𝜔𝐿ℎ𝑠 +
1

𝑗𝜔𝐶ℎ𝑠
                  Eq. (2-35) 

                         𝑌ℎ𝑝 = 𝑗𝜔𝐶ℎ𝑝 +
1

𝑗𝜔𝐿ℎ𝑝
                  Eq. (2-36) 

In the same way, the impedance for the series resonator and the admittance for the 

parallel resonator in the vertical branch can be respectively written as: 

                          𝑍𝑣𝑠 = 𝑗𝜔𝐿𝑣𝑠 +
1

𝑗𝜔𝐶𝑣𝑠
                   Eq. (2-37) 

                         𝑌𝑣𝑝 = 𝑗𝜔𝐶𝑣𝑝 +
1

𝑗𝜔𝐿𝑣𝑝
                   Eq. (2-38) 

Each of four resonators in the circuit model has its own resonant frequency. ωhs, ωhp, 

ωvs and ωvp are used to represent the resonant frequencies of the horizontal series and 

parallel resonators and the vertical series and parallel resonators respectively, and can 

be written [13]: 

                           𝜔ℎ𝑠 =
1

√𝐿ℎ𝑠𝐶ℎ𝑠
                       Eq. (2-39) 

                          𝜔ℎ𝑝 =
1

√𝐿ℎ𝑝𝐶ℎ𝑝
                       Eq. (2-40) 
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                          𝜔𝑣𝑠 =
1

√𝐿𝑣𝑠𝐶𝑣𝑠
                        Eq. (2-41) 

                           𝜔𝑣𝑝 =
1

√𝐿𝑣𝑝𝐶𝑣𝑝
                       Eq. (2-42) 

The total impedance of the horizontal branch (ZH) and the total admittance of the 

vertical branch (Yv) are expressed in Eq. (2-43) and Eq. (2-44), respectively: 

          𝑍𝐻 = 𝑍ℎ𝑠 +
1

𝑌ℎ𝑝
= 𝑗𝜔𝐿ℎ𝑠 +

1

𝑗𝜔𝐶ℎ𝑠
+ 1/(𝑗𝜔𝐶ℎ𝑝 +

1

𝑗𝜔𝐿ℎ𝑝
)      Eq. (2-43) 

          𝑌𝑉 = 𝑌𝑣𝑝 +
1

𝑍𝑣𝑠
= 𝑗𝜔𝐶𝑣𝑝 +

1

𝑗𝜔𝐿𝑣𝑝
+ 1/(𝑗𝜔𝐿𝑣𝑠 +

1

𝑗𝜔𝐶𝑣𝑠
)       Eq. (2-44) 

The resonant frequencies of the horizontal and vertical branches are expressed in   

Eq. (2-45) and Eq. (2-46) [13]: 

                          𝜔ℎ𝑠ℎ𝑝 =
1

√𝐿ℎ𝑠𝐶ℎ𝑝
                     Eq. (2-45) 

                           𝜔𝑣𝑠𝑣𝑝 =
1

√𝐿𝑣𝑠𝐶𝑣𝑝
                     Eq. (2-46) 

In order to use multiple cascaded ECRLH unit cells to model an effectively 

homogenous TL structure, the period P of the unit cell should meet the homogeneity 

condition [8]; the period of the unit cell should be much smaller than one guided 

wavelength, i.e., P ≪ λg. The propagation constant (γ) of one ideal ECRLH structure 

is expressed in Eq. (2-47): 

                        𝛾 = 𝛼 + 𝑗𝛽 = √𝑍𝐻𝑌𝑉                   Eq. (2-47) 

where 𝛼  and 𝛽  are the attenuation constant and the propagation constant, 

respectively. 

The characteristic impedance of the proposed ECRLH is expressed in Eq. (2-48) [12]: 

           𝑍𝑐 = √
𝑍𝐻

𝑌𝑉
= √

𝐿ℎ𝑠

𝐶𝑣𝑝
√

1−( 𝜔ℎ𝑠/ω)2+(𝐿ℎ𝑝/𝐿ℎ𝑠)/[1−(ω/ 𝜔ℎ𝑝)2]

1−( 𝜔𝑣𝑝/ω)2+(𝐶𝑣𝑠/𝐶𝑣𝑝)/[1−(ω/ 𝜔𝑣𝑠)2
       Eq. (2-48) 

The dispersion characteristic of the ECRLH unit cell is obtained from the PBCs 

related to the Bloch-Floquet theorem [8]: 
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            𝛽 ∙ P = cos−1(1 +
𝑍𝐻∙𝑌𝑉

2
)                 Eq. (2-49) 

where 𝛽 ∙ P is the phase shift of the ECRLH unit cell of the physical length of P, and 

𝛽 is the phase constant or propagation constant of the ECRLH unit cell. 

The ABCD transmission matrix of the proposed asymmetric ECRLH unit cell is 

written in Eq. (2-50) 

               [
𝐴 𝐵
𝐶 𝐷

] = [
1 𝑍𝐻

0 1
] [

1 0
𝑌𝑉 1

] = [
1 + 𝑍𝐻𝑌𝑉 𝑍𝐻

𝑌𝑉 1
]       Eq. (2-50) 

Thus, based on the analysis using the transmission line approach [8], Eq. (2-49) can 

also be re-written as 

               𝛽 ∙ P = cos−1(
𝐴+𝐷

2
)                  Eq. (2-51) 

Eq. (2-48) can also be re-written in terms of the transmission matrix elements of 𝐵 

and 𝐶: 

                 𝑍𝑐 = √𝐵/𝐶                    Eq. (2-52) 

Similar as the conventional CRLH structure, the ECRLH structure also has two 

operating conditions – unbalanced condition and balanced condition. Under the 

unbalanced condition, within each pair of the LH and RH band, one open stopband 

exists between the LH and RH band. These two open stopbands are called the low 

open stopband and high open stopband, respectively. The background theory of the 

open stopband is same for the phenomenon of the CRLH structure in the unbalanced 

condition. In the balanced condition, the ECRLH structure, the open stopband within 

each pair of the LH and RH band can be closed to form the balanced point at the 

transition frequency from the LH band to the RH band, thereby forming two entire 
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passbands with separation by one middle bandgap. These two balanced points are 

represented by low balanced point and high balanced point, respectively. The ECRLH 

structure can be used for dual-band, tri-band, quad-band or even multiband 

applications, depending on different operating conditions and different designs. In the 

balanced condition, one operating frequency within the middle bandgap area is 

denoted by 𝜔0. At 𝜔0, the horizontal branch becomes short circuited and the vertical 

branch is open circuited [13]. 

In order to derive the equations for the balanced and unbalanced condition, Eq. (2-43) 

and Eq. (2-44) can be re-written as below, in terms of the resonant frequencies [13]: 

                   𝑍𝐻 = 𝑗𝜔𝐿ℎ𝑠 (1 −
𝜔ℎ𝑠

2

𝜔2 ) −
𝑗

𝜔𝐶ℎ𝑝(1−𝜔ℎ𝑝
2 /𝜔2)

         Eq. (2-52) 

                   𝑌𝑉 = 𝑗𝜔𝐶𝑣𝑝 (1 −
𝜔𝑣𝑝

2

𝜔2 ) −
𝑗

𝜔𝐿𝑣𝑠(1−𝜔𝑣𝑠
2 /𝜔2)

          Eq. (2-53) 

For 𝛽 = 0, Eq. (2-54) and Eq. (2-55) can be derived by setting 𝑍𝐻 = 𝑌𝑉 = 0 [13]: 

 𝜔𝐻,𝑧𝑒𝑟𝑜
2 = 0.5(𝜔ℎ𝑝

2 + 𝜔ℎ𝑠
2 + 𝜔ℎ𝑠ℎ𝑝

2 ) ± 0.5√(𝜔ℎ𝑝
2 + 𝜔ℎ𝑠

2 + 𝜔ℎ𝑠ℎ𝑝
2 )

2
− 4𝜔ℎ𝑝

2 𝜔ℎ𝑠
2   Eq. (3-54) 

  𝜔V,𝑧𝑒𝑟𝑜
2 = 0.5(𝜔𝑣𝑝

2 + 𝜔𝑣𝑠
2 + 𝜔𝑣𝑠𝑣𝑝

2 ) ± 0.5√(𝜔𝑣𝑝
2 + 𝜔𝑣𝑠

2 + 𝜔𝑣𝑠𝑣𝑝
2 )

2
− 4𝜔𝑣𝑝

2 𝜔𝑣𝑠
2    Eq. (3-55) 

The balanced condition can be determined by setting 𝜔𝐻,𝑧𝑒𝑟𝑜 = 𝜔𝑉,𝑧𝑒𝑟𝑜 = 0, thereby 

yielding Eq. (2-56), Eq. (2-57), and Eq. (2-58) for the balanced condition [13]: 

                            𝜔ℎ𝑠 =  𝜔𝑣𝑝                        Eq. (2-56) 

                         𝜔ℎ𝑝 =  𝜔𝑣𝑠 =  𝜔0                     Eq. (2-57) 

                          𝜔ℎ𝑠ℎ𝑝 =  𝜔𝑣𝑠𝑣𝑝                      Eq. (2-58) 

The dispersion diagrams of the ECRLH structure in the unbalanced and balanced 

condition are respectively shown in Figure 2.7(a) and Figure 2.7(b). In this condition, 

the characteristic impedance can be expressed as below [13]: 
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                𝑍𝑐,𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 = √
𝐿ℎ𝑠

𝐶𝑣𝑝
= √

𝐿𝑣𝑝

𝐶ℎ𝑠
= √

𝐿ℎ𝑝

𝐶𝑣𝑠
= √

𝐿𝑣𝑠

𝐶ℎ𝑝
          Eq. (2-59) 

 
(a) 

 
(b) 

Figure 2.7 Dispersion diagrams of the ECRLH structure, (a) the unbalanced condition; (b) the balanced 
condition. 

2.6 Summary 

This chapter introduces the background theory of the conventional LWAs, the 

metamaterial CRLH structure, the resonant theory for the CRLH-based resonant 

structure, and the metamaterial ECRLH structure. These background theories provide 

important theoretical tools and supports for design and analysis of antennas in the 

following chapters. 
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CHAPTER III 

REVIEW OF ARTIFICIAL 

ELECTROMAGNETIC STRUCTURES AND 

BARIUM STRONTIUM TITANIUM 

MATERIALS APPLIED TO ANTENNA 

DESIGNS 

3.1 Introduction 

Since the concept of the metamaterial CRLH structure was firstly proposed in 2004 

[14], this novel artificial electromagnetic structure has attracted a lot of research 

interest and has been applied to many different designs of components and antennas 

from microwave to optical frequencies, due to its unusual and interesting properties, 

such as simultaneously negative permittivity and negative permeability. With 

inspirations from the CRLH structure, many metamaterial-inspired structures have 

been proposed and applied to antenna designs for microwave, millimeter-wave or 

even optical applications. Generally, antennas based on metamaterial-inspired 
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structures can be mainly divided into two categories – metamaterial-inspired RAs and 

metamaterial-inspired LWAs. 

The antenna designs in this thesis can be mainly divided into three parts. The first part 

is the metamaterial-inspired RA designs based on the ECRLH unit cell structure, 

which will be presented in Chapter IV. The second part is the dual-passband LWA 

designs based on the metamaterial-inspired supercell structures, which will be 

presented in Chapter V. The third part is an electronically tunable LWA design based 

on the CRLH structure with discrete BST thin-film varactors and the uncertainty 

analysis in the determination of the FE BST permittivity, which will be introduced in 

Chapter VI. Therefore, corresponding to this arrangement of the content in this thesis, 

literature reviews in this chapter is organized as follows. In Section 3.2, the literature 

of some existing RAs based on metamaterial-inspired structures is introduced. In 

Section 3.3, a literature review of some existing LWAs based on the CRLH structure 

is presented. Most existing multiband LWAs based on different metamaterial-inspired 

structures are reviewed in Section 3.3 as well. In Section 3.4, antenna and component 

designs using BST materials are introduced and reviewed. In addition, some existing 

antenna designs using different tuning techniques are reviewed and compared in 

Section 3.5. The summary is given in Section 3.6. 

3.2 Literature of Metamaterial-Inspired RAs 

Metamaterial-inspired RAs are an interesting category of resonant antennas. With a 
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proper excitation, antennas in this category can generate one or multiple operating 

resonances for radiation using its intrinsic resonant modes. Most existing RAs are 

designed based on metamaterial structures, especially the CRLH structure. The 

background theory of a resonant structure based on the CRLH unit cell structure has 

been presented in Section 2.4 of Chapter II.  

 

Figure 3.1 Configuration of four-cell ZOR antenna [14]. 

The first design of the RA in this category was proposed in 2003 [15]. This RA is 

designed based on the CRLH structure. The resonant structure of this antenna consists 

of four cascaded microstrip-based CRLH unit cells. Each unit cell has an interdigital 

capacitor (IDC) and a shunt meander line connected to a rectangular patch [14]. Each 

rectangular patch is modeled as a virtual ground plane (GP). The configuration of this 

antenna is shown in Figure 3.1. By exciting this resonant structure through a 

microstrip line, this antenna can generate multiple operating resonances resulting 

from its intrinsic resonant modes (e.g., the zeroth-order mode) to work at different 

frequencies. The zeroth-order mode (𝑚 = 0) resonance operates at 4.88 GHz. The 

resonant frequencies resulting from the negative-order modes (𝑚 < 0) resonances 

work below the ZOR resonant frequency, while the positive-order modes (𝑚 > 0) 
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resonances work above the bandgap around 11.8 GHz. In [15], the authors also 

compare the proposed antenna to a reference conventional patch antenna, in order to 

demonstrate the antenna size reduction. When this RA and the referenced patch 

antenna work at the same frequency, the RA achieves a smaller size. In comparison 

with this reference patch antenna, this ZOR antenna can achieve 75% footprint area 

reduction. 

        
(a)                                       (b) 

Figure 3.2 Configurations of the proposed ZOR antennas, (a) ENG; (b) DNG [16]. 

In [16], a novel ZOR antenna is presented based on the epsilon negative (ENG) 

meta-structured TL (MTL) structure. The equivalent model of the ENG MTL structure 

is composed of the series inductance, the shunt inductance and shunt capacitance. 

According to the feature that the ENG MTL structure supports the zeroth-order 

(𝑚 = 0) operating resonance which is same as the CRLH TL structure, the proposed 

ZOR antenna is designed with three ENG MTL unit cells to generate a zeroth-order 

mode resonance for radiation. The configuration of this antenna based on the ENG 

MTL structure is shown in Figure 3.2(a). In comparison, a ZOR antenna, based on the 

double negative (DNG) MTL which is also the CRLH TL structure, is also designed 

in [16] to work at the same zeroth-order mode resonant frequency of 10 GHz. The 
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configuration of this RA based on the DNG MTL structure is shown in Figure 3.2(b). 

The measured results show that the ENG ZOR antenna has wider bandwidth of the 

zeroth-order mode resonance compared to the DNG ZOR antenna. However, these 

two RAs have similar radiation patterns at the zeroth-order mode resonant frequency 

of 10 GHz. 

 

Figure 3.3 Configuration of the proposed ZOR antenna using mushroom structure [17]. 

 

Figure 3.4 Configuration of the proposed antenna with bandwidth extension [18]. 

In [17], a low-profile RA is presented using the CRLH-based mushroom structure. 

The antenna configuration with six mushroom structures is shown in Figure 3.3. The 

mushroom structure can be used to model the CRLH structure. With an excitation on 

one mushroom structure, the magnetic current flows through these six mushroom 

structures and forms a closed loop trajectory. Thus, this antenna can also be 

recognized as a loop RA. The zeroth-order mode (𝑚 = 0) resonant frequency of this 

loop RA is 7.9 GHz. This proposed RA, which is a loop ZOR antenna, can be used for 
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multiband applications. 

In [18], a CRLH-based RA with bandwidth extension is presented. The configuration 

of this RA is shown in Figure 3.4. This antenna is realized using a planar CRLH unit 

cell structure. This antenna supports the zeroth-order mode resonance for radiation 

and also has wideband characteristics. By merging the zeroth-order mode (𝑚 = 0) 

resonance at 2.24 GHz and the first-negative-order mode (𝑚 = −1) resonance at 1.99 

GHz together, this CRLH-based RA achieves a wideband coverage from 1.9 GHz to 

2.35 GHz. This method of bandwidth extension can be considered as an efficient way 

to improve bandwidth of antenna designs for mobile devices. 

    
(a)                                   (b) 

Figure 3.5 Configurations of the proposed ZOR antenna, (a) top view; (b) rear view [19]. 

In [19], a compact ZOR antenna with two cascaded CRLH unit cells is presented. The 

configurations of this antenna are shown in Figure 3.5, in terms of the top view and 

rear view. In this antenna structure, two asymmetrical straight meta-strip lines with 

via-holes, metal-insulator-metal (MIM) parallel-plate capacitors and the gap capacitor 

between unit cells are used to model the shunt inductors, series capacitances and shunt 

capacitances, respectively, in order to achieve good impedance matching and improve 
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antenna efficiencies. This ZOR antenna exhibits a linear polarization with an 

enhanced peak gain of 2.3 dB and efficiency of 79%, at the zeroth-order mode 

(𝑚 = 0) resonant frequency of 2.3 GHz. 

 

Figure 3.6 Configuration of the proposed CPW ZOR antenna [20]. 

      

(a)                                       (b) 

Figure 3.7 (a) Top view and side view of the antenna configuration; (b) top view and side view of the 
designed CRLH elements [21]. 

In [20], a compact vialess asymmetric coplanar waveguided (CPW) ZOR antenna 

with bandwidth improvement is presented. The antenna configuration is shown in 

Figure 3.6. Two cascaded CRLH unit cell are used to form a major resonant structure. 

Interdigital structures are used to model the series capacitor and inductor, and the 

meander-line structures are used to model the shunt inductor. The interdigital 

structures are very helpful to decrease the quality factor of the resonator and improve 
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the working bandwidth. This antenna works at 0.75 GHz for the first-negative order 

mode (𝑚 = −1) resonance and 2.16 GHz for the zeroth-order mode (𝑚 = 0) 

resonance. For the zeroth-order mode resonance, this antenna has an improved 

bandwidth from 2.05 GHz to 2.35 GHz. 

In [21], a dual-band ZOR antenna based on the CRLH structure is presented for 

compact multiband smart phone applications. The configuration of this proposed 

antenna is shown in Figure 3.7. Through an excitation of a monopole antenna, with 

two parasitic metal-strip elements connected to the GP in different dimensions, this 

proposed antenna can form dual bands using the zeroth-order mode ( 𝑚 = 0 ) 

resonances of two CRLH unit cells for proper radiation. This antenna can work at  

0.9 GHz with the measured antenna gain of 0.09 dBi and 2.0 GHz with the gain of  

2.2 dBi. Thus, this antenna can be used for mobile handset applications to work at 

GSM850/900 (824-960MHz) and DCS1800/PCS1900/UTMS (1710-2170 MHz). 

Furthermore, this antenna design has great potentials for future wireless mobile 

terminals. 

In [22], a compact asymmetric CPW antenna is presented for dual-band applications. 

The antenna configurations are shown in Figure 3.8. In this antenna structure, the 

major resonant structure consists of two asymmetric cascaded CRLH unit cells with a 

short end at the termination, and the GP is also modified to be asymmetric. This CPW 

RA forms a dual-band frequency response with one narrow band at 1.5 GHz for the 

first-negative order (𝑚 = −1) resonance and one broad band of 2.69-9.15 GHz. The 

zeroth-order mode (𝑚 = 0) and the first-positive order (𝑚 = +1) resonances of the 
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CRLH-based resonant structure and a half-wavelength and a one-wavelength 

resonance of the modified GP work together to form a wide band coverage with   

-10 dB bandwidth of 6.46 GHz. 

    

(a)                                     (b) 

Figure 3.8 Configurations of the asymmetric CPW antenna, (a) top view; (b) rear view [22]. 

 

Figure 3.9 Configuration of the proposed CPW ZOR antenna. [23] 

In [23], a novel CRLH-based CPW ZOR antenna with bandwidth improvement is 

presented. The configuration of this antenna is shown in Figure 3.9. The antenna 

structure is designed with one CRLH unit cell structure. With an excitation of one 

conventional monopole, this ZOR antenna can radiate properly using its zeroth-order 

mode (𝑚 = 0) resonance. A split-ring resonant structure is included in the antenna 

structure to generate a new operating resonance, in order to improve the operating 
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bandwidth of this antenna. According to the measurement, this antenna works at  

1.75 GHz using the zeroth-order mode resonance and has a wide band of 1.67-2.51 

GHz. This antenna is a good candidate for GSM/UMTS/LTE/WLAN applications. 

The metamaterial-inspired RAs introduced above are designed mainly based on one 

or multiple metamaterial unit cells, e.g., the CRLH unit cell. The features of these 

RAs in this category include planar configurations, multi-band applications, the 

zeroth-order mode (𝑚 = 0) resonance for radiation, usually with multiple cascaded 

unit cells. The brief information and advantageous features of these antennas in 

[15]-[23] are summarized in Table 3.1. 

Table 3.1 Summary of the metamaterial-inspired RAs in [15]-[23]. 

 

However, most of these RAs only generate a few operating resonances using the 

intrinsic resonant modes to cover a few frequency bands. In terms of modern 

commercial frequency bands, most of these RA designs are not capable of a sufficient 

number of operating resonances for multiband or wideband applications. The 

metamaterial-inspired RAs presented in Chapter IV have two major advantages 
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compared to most existing ones: (1) more operating resonances (e.g., six or ten 

operating resonances) working at the chosen frequency bands for the passive designs; 

(2) frequency tunability over 0.7-0.96 GHz of one operating resonance at the low 

frequency while keeping the wideband coverage over 1.7-6.0 GHz formed by the 

other operating resonances. The proposed RAs can be used for multiband or 

frequency-agile applications.    

3.3 Literature of Metamaterial-Inspired LWAs 

In 1940, the first LWA was proposed in the form of a rectangular waveguide with 

periodic slots [24]. During these decades, LWAs have attracted a lot of research 

interest and industrial applications. In recent twenty years, LWAs have a rapid and 

steady development in terms of the structural design and antenna theory. In this thesis, 

1-D LWAs with an end excitation are the major research field of interest. The 

background theory of conventional LWAs has been explained in Section 2.2 of 

Chapter II. 

It is worthy to note here that conventional LWAs usually suffer from a stopband 

region for the radiation degradation around broadside. This problem is known as the 

open stopband problem [7]. The open stopband region around broadside results from 

the coupling of a pair of space harmonics in the radiation region of an open guiding 

structure [7]. The coupling mechanism in this open stopband region can be briefly 

explained as following: It is very similar as the one of closed stopbands, and the 
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difference is the effects on the dispersion curve [7]. In an open stopband region, the 

propagation wavenumber is complex and the slope of the dispersion curve is around 

zero within a frequency range of the open stopband region [7]. Due to the coupling 

between the radiated space harmonics, the amplitude drops dramatically and the 

amount of the radiated power is decreased either [7]. Besides, the pertinent pair of 

oppositely-directed space harmonics is equal in terms of the amplitude, thereby 

leading to a standing-wave effect and the complex Bloch impedance around broadside 

[7]. One effective approach has been proposed for a periodic LWA to suppress or 

eliminate the open stopband region [7]. 

In [7], based on a review of negative effects of an open stopband region on the 

broadside radiation in a 1-D periodic LWA in terms of its dispersion relation and the 

scanning capability, a novel and effective technique to completely eliminate the open 

stopband region around broadside is proposed. With integration of quarter-wave 

transformers or alternatively matching stubs into each unit cell structure, the 

Bloch-wave impedance of the antenna remains real and non-zero around broadside. 

Furthermore, with incorporation of two stubs into each unit cell structure, the open 

stopband problem is mitigated around broadside. 

3.3.1 Literature of LWA Designs Based On CRLH Structures 

The concept of the metamaterial CRLH structure brings novel ideas to 1-D LWA 

designs. If the period of one CRLH unit cell can be much less than one guided 

wavelength and the condition to model an effective transmission medium for 
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electromagnetic homogeneity [8] can be satisfied, multiple CRLH unit cells can be 

cascaded together to model the guiding structure of a 1-D LWA. Thus, many different 

1-D LWAs based on the CRLH structure have been designed and investigated in terms 

of the antenna performance and background theories. 

   

(a)                                       (b) 

Figure 3.10 Configurations of the first CRLH-based 1-D LWA, (a) unit cell structure; (b) fabricated 
LWA [25]. 

The first 1-D LWA based on the CRLH structure was proposed in 2003 [25]. Based on 

the background theory of the CRLH structure [8], a microstrip 1-D LWA can be 

designed with multiple cascaded CRLH unit cells. The CRLH unit cell structure is 

shown in Figure 3.10(a), while the configuration of the fabricated LWA with 24 

cascaded CRLH unit cells is shown in Figure 3.10(b). The period of each unit cell is 

much less than one guided wavelength, thus the multiple cascaded unit cells can be 

used to model the guiding structure of this LWA, because the effective-medium 

condition [8] for electromagnetic homogeneity can be successfully satisfied. The 

major characteristics of this 1-D LWA can be summarized as follows: (1) the main 

beam of this LWA can scan from backward to forward through broadside smoothly 

without suffering the open stopband problem around broadside in the balanced 

condition; (2) because the period of each unit cell is much less that one operating 
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wavelength, the antenna mainly radiates from its fundamental mode space harmonic, 

thus this antenna can be classified as quasi-uniform [5]. 

    

(a) 

 
(b) 

Figure 3.11 (a) Layout and equivalent circuits of the proposed tunable CRLH unit cell structure; (b) the 
fabricated tunable LWA with 30 cascaded CRLH unit cells [28]. 

In [26], based on the dispersion analysis of a planar microstrip CRLH-based LWA 

(e.g., the LWA design in [25]) using a full-wave modal approach [27], with 

consideration of all the proper and improper space harmonics, it is confirmed that the 

balanced condition is very useful for the LWA to eliminate the open stopband region 
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around broadside, and achieve the frequency scanning from backward to forward 

through broadside smoothly without suffering the open stopband problem. In the 

balanced condition, the open stopband between the LH and RH band can be closed 

due to mutual cancellation of the generated operating resonances, which can result in 

a continuous transition from the LH band to the RH band. By comparing the results of 

three different analysis approaches (i.e., the full-wave modal approach, the artificial 

transmission-line approach and the Bloch-wave analysis approach), the full-wave 

modal approach is selected to analyze and optimize the microstrip CRLH LWA for 

elimination of the open stopband region. 

In [28], an electronically controlled tunable LWA is presented based on the CRLH 

structure. Due to incorporation of silicon semiconductor varactors into the antenna 

structure, this LWA can operate at two different modes – the mode of tunable radiation 

angle and the mode of tunable beamwidth. The layout and equivalent models of a 

microstrip CRLH unit cell is shown in Figure 3.11(a), and the fabricated LWA with 30 

unit cells is shown in Figure 3.11(b). For the mode of tunable radiation angle, when 

all the varactors are uniformly biased, this antenna can achieve the beam scanning at a 

fixed frequency. However, if all the semiconductor varactors are non-uniformly biased, 

the antenna beamwidth can be continuously controlled. The proposed functions of this 

antenna have been experimentally demonstrated at different modes. 

In [29], a high-gain active LWA is presented based on the CRLH structure. With 

integration of power amplifiers into the antenna structure, the amplitude of the signal 

can be re-amplified repeatedly in the radiation process. The antenna configurations 
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are shown in Figure 3.12. The proposed active LWA can achieve a strongly improved 

gain of 17.8 dB at its center operation frequency of 3.7 GHz, due to the power 

concomitance and matching regeneration from the amplifiers. This proposed LWA 

concept can also be used for static and dynamic beam forming [29]. 

].  

(a) 

 
(b) 

Figure 3.12 Configurations of the active LWA with 48 CRLH unit cells and 7 amplifiers, (a) top view; 
(b) rear view [29]. 

In [30], a novel non-uniform tapered LWA was presented based on the CRLH 

structure. The configuration of the proposed LWA is shown in Figure 3.13. The major 

advantage of this LWA is that the sidelobes of this antenna can be minimized to a 

lower level. Based on experiments on this antenna at its operating frequency of   

2.45 GHz, an 8 dB reduction of the sidelobe level can be achieved in comparison with 

a uniform CRLH-based LWA with 12 unit cells which has the same gain. It is also 

noted here that this LWA is designed using an automatic co-simulation approach 

based on a genetic algorithm optimization. 
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Figure 3.13 Configuration of this non-uniform CRLH-based LWA [30]. 

   

(a)                                   (b) 

Figure 3.14 Configurations of this CRLH-based LWA, (a) cross-sectional view; (b) top view [31]. 

In [31], a multilayered SIW LWA based on the CRLH structure is presented, in order 

to achieve consistent gains within the beam continuous scanning region from 

backward to forward. The cross-sectional view of one CRLH unit cell is shown in 

Figure 3.14(a), and the top view of the LWA layout is shown in Figure 3.14(b). Each 

CRLH unit cell consists of a slot on the upper ground layer of the SIW structure and a 

patch beneath the slot. In the balanced condition, a full upper half-spherical beam of 

this antenna can be scanned with consistent realized gains from backward to the 

forward. This antenna can work from 8.25 GHz to 12.8 GHz with consistent gains of 

around 12.8 dBi. 

In [32], a planar slot-line LWA is presented based on the CRLH structure. The 

configuration of this LWA with 17 CRLH unit cells is shown in Figure 3.15. In this 

antenna structure, the split-ring resonators (SRRs) are used to provide the CRLH 

characteristics. This planar LWA can achieve the continuous beam scanning using its 
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fundamental mode from the LH band to the RH band with the balanced transition 

frequency point of 2.5 GHz. In experiments, the presented LWA can achieve the 

maximum measured gains of 7.1 dBi and 11.3 dBi for the LH and RH band, 

respectively. 

 

Figure 3.15 Configuration of this CRLH-based LWA with SRRs [32]. 

 

Figure 3.16 Prototype of the fabricated LWA based on the SIW CRLH structure [33]. 

In [33], an SIW LWA based on the CRLH structure is presented with an improved 

frequency beam-scanning capability. The fabricated antenna configuration is shown in 

Figure 3.16. The proposed SIW LWA is composed of 12 CRLH unit cells with the 

etched slots on the surface metal. In experiments, the fabricated LWA can work from 

23.95 GHz to 27.725 GHz. The LWA can scan from −17o to +13o within the 

frequency range of 24-27 GHz. In comparison with some conventional SIW 

CRLH-based LWAs, this LWA has good radiation performance with less gain 
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variation, which makes this antenna very suitable for automotive communications or 

radar applications. 

 

Figure 3.17 Prototype of the fabricated HMSIW LWA with CP [34]. 

      

(a)                                     (b) 

Figure 3.18 (a) Layout of the single CRLH unit cell structure; (b) configuration of the fabricated LWA 
with 1-D multiple cascaded unit cells [35]. 

In [34], a miniaturized LWA with circular polarization (CP) is presented for frequency 

scanning applications. In this antenna structure, interdigital structures (IDSs) are used 

in the half-mode SIW (HMSIW) to model the CRLH unit cell structure. The 

configurations of this LWA using the HMSIW structure are shown in Figure 3.17. In 

the balanced condition, this LWA can work from 7.4 GHz to 13.5 GHz with 

continuous frequency scanning from −70o to +70o and with the measured realized 

gains of 7.8-12.0 dBi. The axial ratio of lower than 3.1 in the direction of the main 

beam can be obtained in experiments, which can verify the CP of this LWA. 

In [35], a systematic method is introduced to design the planar CRLH TL structure. 
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This method is demonstrated at 26 GHz in experiments for the frequency response 

and the structural design. The layout of the proposed CRLH unit cell structure is 

shown in Figure 3.18(a), and a fabricated LWA with 1-D multiple cascaded CRLH 

unit cells is shown in Figure 3.18(b). It should be noted that the effect from the 

inter-cell coupling is further investigated. It can be found that the inter-cell coupling 

can generate the parasitic components and change the original values of the 

components, based on analysis of the corresponding coupling coefficients. However, 

when the number of the cascaded unit cell is larger than 12, the component values 

reach their saturation points and achieve relatively stable levels. A scheme for 

compensation of the component values is introduced for the design, which is an 

efficient approach for the LWA design and optimization. In addition, this paper 

summarizes the design steps for a TL structure of 1-D multiple cascaded CRLH unit 

cells, which can be used as a reference for future designs. 

The concept of the CRLH structure has brought inspirations to LWA designs. Based 

on different CRLH structures, LWAs can be designed to achieve different 

characteristics. The brief information and advantageous features of the antennas in 

[25], [28]-[34] are further summarized in Table 3.2. 

However, these CRLH-based LWAs mainly focus on the antenna performance 

improvement within one single operating band. For comparison, the LWAs with the 

multiband feature can bring more flexibility and more potential to applications. Thus, 

multiband LWAs with novel metamaterial-inspired structures are a new research topic 

and have attracted a lot of research interest so far. The proposed passive 
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metamaterial-inspired LWAs in Chapter V have two major advantages over most 

existing LWA designs based on the CRLH structure: (1) two distinct passbands 

separated by a middle separation area; (2) the CRLH backward-to-forward 

leaky-wave radiation characteristics within each passband. These two advantages 

make the proposed LWAs suitable for dual-band applications. 

Table 3.2 Summary of the CRLH-based LWAs in [25], [28]-[34]. 

 

3.3.2 Literature of LWA Designs Based On Metamaterial-Inspired Structures 

LWAs with multiband properties have attracted a lot of research interest in recent 

years. Many metamaterial-inspired structures have been proposed and applied to LWA 

designs. These structures can enable LWAs to have multiband properties and different 

leaky-wave radiation characteristics for different applications. Some existing LWA 

designs with multiband leaky wave radiation characteristics are introduced as follows. 
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(a) 

 
(b) 

Figure 3.19 (a) Equivalent circuit of one ECRLH unit cell; (b) photograph of the fabricated LWA based 
on the ECRLH structure [36]. 

 
(a) 

 
(b) 

Figure 3.20 (a) Equivalent circuit of one DP-CRLH unit cell; (b) photograph of the fabricated LWA 
based on the DP-CRLH structure [37]. 

In [36], a dual-band SIW LWA is presented based on the ECRLH TL structure. This 

LWA consists of 1-D multiple cascaded ECRLH unit cells. The equivalent circuit of 
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one ECRLH unit cell is shown in Figure 3.19(a), and the photograph of the fabricated 

LWA is shown in Figure 3.19(b). This LWA has two distinct passbands with the 

CRLH leaky-wave radiation characteristic within both passbands. One middle 

bandgap exists between these two passbands. 

 
(a) 

 
(b) 

Figure 3.21 (a) Equivalent circuit of one metamaterial-inspired supercell; (b) photograph of the 
fabricated half-width microstrip LWA [38]. 

An SIW LWA based on a double periodic CRLH (DP-CRLH) structure is proposed in 

[37]. One DP-CRLH unit cell structure is composed of two different CRLH unit cells. 

The equivalent circuit of the DP-CRLH unit cell structure is shown in Figure 3.20(a), 

and the photograph of the fabricated LWA based on the DP-CRLH structure is 

presented in Figure 3.20(b). This LWA has a RH leaky-wave band at low frequencies 

over 5.9-6.2 GHz and a conventional CRLH leaky-wave band at high frequencies 

over 11.9-17.9 GHz. 
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(a) 

 
(b) 

Figure 3.22 (a) Layout of one dual-band CRLH unit cell structure; (b) photograph of the fabricated 
SIW LWA [39]. 

In [38], a half-width microstrip LWA based on a metamaterial-inspired TL structure is 

proposed for dual-band applications. This metamaterial-inspired TL structure is 

composed of 1-D multiple periodic U-shaped slots. The equivalent circuit of one 

metamaterial-inspired supercell structure is shown in Figure 3.21(a), and the 

fabricated half-width microstrip LWA is shown in Figure 3.21(b). Figure 3.21(a) 

shows that one supercell consists of three CRLH unit cells in series connection. This 

LWA can achieve one RH band of 5.24-6.37 GHz and one LH band of 7.9-9.02 GHz, 

respectively.  

In [39], an SIW LWA based on a dual-band CRLH structure is presented for dual-band 

applications. The dual-band CRLH unit cell structure is realized by the SIW periodic 

meander slot structure. The layout of the SIW meander slot unit cell structure is 

shown in Figure 3.22(a), and the photograph of the fabricated SIW LWA is presented 
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in Figure 3.22(b). This dual-band LWA can achieve the CRLH leaky-wave radiation 

characteristics in both passbands. 

 
(a) 

 
(b) 

Figure 3.23 (a) Layout of one MNG unit cell structure; (b) photograph of the fabricated LWA based on 
the MNG structure [40]. 

In [40], an LWA based on the MNG TL structure is presented for dual-band 

applications. This MNG TL structure is composed of 1-D multiple cascaded MNG 

unit cells. The layout of one MNG unit cell is shown in Figure 3.23(a), and the 

photograph of the fabricated LWA based on the MNG TL structure is shown in Figure 

3.23(b). This LWA has two CRLH bands of 3.7-5.5 GHz and 6.7-10 GHz. 

The metamaterial-inspired structures have enabled many multiband LWA designs. 

These LWAs can achieve different frequency responses and different leaky-wave 

radiation characteristics. The brief information and advantageous features of the 

multiband LWAs in [36]-[40] are summarized in Table 3.3. 
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Table 3.3 Summary of the multiband LWAs in [36]-[40]. 

 

However, the multiband LWAs introduced in [36]-[40] have one shortfall: all the 

designs are based on the passive structures without control or tunability of the 

operating bands and the main beam direction. The electronically tunable LWA 

proposed in Chapter V can overcome this shortfall of most existing multiband LWA 

designs. In addition to have the dual-passband CRLH leaky-wave radiation 

characteristics, this electronically tunable LWA can realize the relatively independent 

tunability of the balanced point within the low passband while maintaining the CRLH 

backward-to forward leaky-wave radiation characteristics of the high passband. Thus, 

the proposed LWA can be used for the electronically controlled scanning within the 

low passband while keeping frequency scanning within the high passband.     

3.4 Literature of Component Designs with BST Materials 

BST, as one of the most popular tunable materials for microwave frequency-agile 
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applications, has attracted extensive interest for both fundamental and applied 

research in recent years, due to its advantages, such as chemical stability, good 

temperature behavior, high electric-field-dependent permittivity, high tunability and 

the low loss tangent at microwave frequencies [41]. As an important category of FE 

materials, BST is known to exhibit a largely diversifiable ferroelectric/dielectric 

behavior that is influenced by a number of structural factors, such as lattice 

tetragonality [42].  

Generally, the materials with low losses and low hysteretic effects are preferred for 

microwave applications. Therefore, BST materials in the paraelectric phase are 

usually desired for microwave applications. Depending on composition and 

fabrication of the BST materials, they can have a permittivity of a few hundreds to 

even thousand, which is favorable for miniaturization of antenna or component 

designs at microwave frequencies. Generally, the DC bias voltages of 2-8 V/um are 

applied across the BST material, in order to tune its permittivity by up to 60% [43]. 

The BST varactors can be divided into two categories – parallel-plate type and planar 

type. Thus, the total DC bias voltages required to tune the capacitance of a BST 

varactor can be determined by the thickness of the BST layer for the parallel-plate 

type or the gap width for the planar type [43]. Some antenna and component designs 

with BST materials are briefly introduced as follows. 
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(a) 

 

(b) 

Figure 3.24 (a) Photograph of the fabricated phased array antenna; (b) layout of the loaded-line phase 
shifter with MIM BST varactors [44]. 

In [44], a beam-steerable dielectric resonator phased array antenna is presented based 

on inkjet-printed tunable loaded-line phase shifters using parallel-plate BST 

thick-film varactors. Figure 3.24(a) shows the photograph of the fabricated phase 

array antenna, and Figure 3.24(b) shows the layout of a loaded-line phase shifter. At  

8 GHz, a relative tunability of 46% is achievable by applying 50 V DC bias voltages 

across the BST film with thickness of 1.2 um. The loaded-line phase shifter can 

achieve maximum 260° in measurement. The main beam of this phased array antenna 

can achieve ±30° scanning angle using the loaded-line phase shifter with 

parallel-plate BST varactors. 
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(a) 

 
(b) 

 
 (c)  

Figure 3.25 (a) Photograph of one BST varactor; (b) top view of the tunable FSS with BST varactors;  
(c) photograph of the fabricated antenna [45]. 

In [45], a low-profile dipole antenna using a frequency selective surface (FSS) with 

interdigital BST varactors is designed to achieve a tunable frequency range from  

2.23 GHz to 2.55 GHz. The interdigital BST varactors are shown in Figure 3.25(a), 

the top view of the tunable FSS with BST varactors is shown in Figure 3.25(b), and 
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the photograph of this antenna is shown in Figure 3.25(c). The fabricated interdigital 

BST varactors mounting on 500-um-thick alumina substrates can achieve a relative 

tunability of 33% by applying 90 V bias voltages, which are used for integration into 

the FSS structure. Thus, the antenna can be tuned over 2.33-2.55 GHz by 

electronically adjusting the capacitance of the BST varactors. 

 

Figure 3.26 Configurations of the antenna with the BST layer, (a) side view; (b) top view [46]. 

 

Figure 3.27 Antenna layout, (a) top view of the antenna; (b) side view of the BST varactor; (c) top view 
of the BST varactor. [47] 

In [46], a reconfigurable microstrip antenna with integration of a BST layer is 

presented. The permittivity of this BST layer in this antenna structure is around 100, 
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and the thickness of this BST layer is 0.3 mm. This BST layer is used as part of the 

substrate of the antenna. The configurations of this antenna are shown in Figure 3.26. 

The antenna can be continuously tuned from 13.3 GHz to 14.7 GHz as the DC bias 

voltages increase from 0 to 10 V/um. 

In [47], a frequency-reconfigurable folded slot antenna with a BST thick film is 

presented. The configuration of this antenna is shown in Figure 3.27. The 

parallel-plate BST varactor is integrated into the antenna structure. Alumina is used as 

the antenna substrate material. The thickness of this BST layer is 25 um. The 

permittivity of the BST film can be electronically tuned from 400 to 270 by applying 

the DC bias from 0 V to 200 V. Correspondingly, the parallel-plate BST varactor can 

be tuned from 1.5 pF to 1.05 pF, which achieves a relative tunability of 32%. Thus, 

this antenna can be tuned to work from 3.18 GHz to 3.29 GHz by applying the 

maximum DC bias voltages of 200 V. 

 

Figure 3.28 Configuration of the interdigital capacitor. [48] 

In [48], an interdigital capacitor with a 0.273 um BST layer growing on a LaAlO3 

substrate is presented. The configuration of the interdigital capacitor is shown in 
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Figure 3.28. This capacitor has a total length of 50 um, and has ten fingers with 5 um 

width and 1.5 um finger spacing. This capacitor has a Q factor of 200 at 1 GHz and 

has a capacitance of 0.33 pF with 0 V DC bias voltages. When 80 V DC bias voltages 

are applied to this capacitor, the Q factor is reduced to be 50 and the capacitance 

becomes around 0.18 pF. The relative tunability of this capacitor is 47%. The 

measured results of the Q factor for this capacitor also show that the Q factor will 

decrease when operating at higher frequencies. 

In [49], a BST-based interdigital capacitor with 2 um finger width and 1 um finger 

spacing is proposed and analyzed. The BST layer, which is grown on a sapphire 

substrate, has 0.1 um thickness. The capacitance of this capacitor can be effectively 

tuned from 7 pF at 0 V DC bias to 3.8 pF at 90 V DC bias, and its relative tunability 

can achieve around 57%. According to the measured results, this capacitor can 

achieve quality factors of at least 20 from 1 GHz to 24 GHz. Furthermore, this BST 

interdigital capacitor is used in a phase shifter circuit at microwave frequencies. 

Finally, this phase shift circuit shows 0°-110° phase shifts at 20 GHz with the 

maximum insertion loss of 3.4 dB. 

The FE BST material can enable flexibilities for antenna designs. The antennas with 

BST varactors can be designed to achieve miniaturization and a certain range of 

tunability. The brief information about the BST materials, and the antenna and 

component designs in [44]-[49] is further summarized in Table 3.4.  

Most existing BST-based antenna designs mainly use an entire piece of the BST 

material, which may introduce unnecessary losses to degrade the antenna radiation 
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performance. An LWA design using discrete BST varactors, which will be presented 

in Chapter VI, can reduce the unnecessary losses from the BST materials compared to 

most existing antenna designs. In addition, tunable metamaterial-inspired antennas for 

microwave applications can be also realized by integrating BST materials into the 

antenna structure, due to the advantages of BST materials at microwave frequencies. 

The metamaterial-inspired antennas with BST materials can achieve the electronic 

control of the frequency response or the beam direction by adjusting the DC bias 

voltages applied to the BST varactors. Thus, tunable metamaterial-inspired antennas 

with the BST varactors are still an open and interesting topic for antenna research. 

Table 3.4 Summary of the BST materials in [44]-[49]. 
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3.5 Literature of Antenna Designs with Different Tuning Techniques 

Generally, tunable antennas are usually designed to overcome the limitations in 

conventional passive antennas, in order to support (1) more bandwidth or more 

operating bands; (2) minimization of the environment impact which may result in 

shifts of the operating bands [50]; (3) possible control of some other antenna 

properties, such as polarization and farfield patterns. The tuning functions of tunable 

antennas may be realized by different tuning techniques. Instead of FE BST materials, 

there are some other tuning techniques for tunable antenna designs, such as 

semiconductor varactors, liquid crystal, micro-electro-mechanical-system (MEMS) 

switches, and ferrite materials. Some examples of tunable antenna designs are briefly 

introduced as follows. 

In [28], an electronically controlled LWA based on the CRLH TL structure with 

semiconductor varactors has been briefly introduced in Section 2.3. By supplying the 

uniform or non-uniform DC bias to the varactors in the antenna structure, this LWA 

can achieve the electronically controlled tunable radiation angle or the electronically 

controlled tunable beamwidth. In this tunable LWA design, silicon abrupt varactors 

are selected due to their low losses at microwave frequencies. The capacitance of the 

varactor is mainly controlled by the doping of the depletion layer. When the reverse 

DC bias applied to the P-N junction of the varactor increases, the depletion region 

also increases [51]. Because capacitance and dielectric capacitance are inversely 

related, the capacitance will decrease as the reverse voltage increases [51]. The 
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varactors have been evaluated to have the capacitance tuning range from 2.54 pF 

under 0 V DC bias to 0.7 pF under 20 V DC bias [28]. The insertion loss from a single 

varactor is also evaluated to be 0.94-0.99 dB depending on the reverse DC bias 

voltages and the operating frequencies.   

 

Figure 3.29 Configuration of a patch antenna on the liquid crystal substrate. [52] 

In [52], a rectangular patch antenna using a liquid crystal substrate is designed for 

microwave applications. The liquid crystals are partly ordered materials between their 

solid and liquid phases, which have some advantageous features, such as low 

dielectric loss, low moisture absorption, light weight, mechanical stiffness, thermal 

stability and so on [52]. The configuration of this antenna is shown in Figure 3.29. In 

this antenna design, the liquid crystal can achieve the permittivity tuning range from 

2.9 under 0 V DC bias to 2.13 under 15 V DC bias, so that this patch antenna can 

achieve the frequency tunability from 2.06 GHz to 2.64 GHz.    

In [53], an RF-MEMS-integrated antenna is proposed for two-mode operations. The 

configurations of the antenna are shown in Figure 3.30. The RF MEMS switch can be 

modelled as a capacitor with 30 fF in the OFF state or a resistor with 1 Ω in the ON 

state. This antenna can operate at two different modes, depending on the operation 
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state of the RF-MEMS switch. When the switch is on, the antenna has a narrow 

frequency band at 710 MHz with 20 MHz bandwidth. When the switch is off, this 

antenna achieves a frequency band of 4960 MHz with 233 MHz. 

          
(a)                                  (b) 

Figure 3.30 Configurations of a RF-MEMS-based antenna, (a) bottom view; (b) top view. [53] 

 

Figure 3.31 Configuration of a ferrite loaded antenna. [54] 

In [54], an SIW bowtie-slot antenna loaded with ferrite slabs is designed to achieve 

broadband frequency tunability of 9.76-10.69 GHz by tuning the bias magnetic field. 

The configuration of this ferrite loaded antenna is shown in Figure 3.31. The bowtie 

slot is used to improve the bandwidth of this antenna. Two ferrite slabs are loaded in 
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the SIW cavity of this antenna. This antenna can achieve the magnetically controlled 

frequency tunability of around 10% by changing the magnitude of bias magnetic 

fields between 0 T and 0.31 T. Meanwhile, the radiation patterns and gains of this 

antenna have little changes during the tuning.  

Table 3.5 Summary of the tuning techniques for tunable antenna designs in [44], [28], [52]-[54]. 

 

Different tuning techniques for tunable antenna designs have been briefly presented in 

[44], [28], [52]-[54], including BST materials, silicon varactors, crystal liquid, RF 

MEMS switch, and ferrite materials. The brief information of these tuning techniques 

is summarized and compared in Table 3.5.  

Based on comparison of the tuning techniques for tunable antennas in Table 3.5, some 

conclusions can be draw as followings: (1) BST, ferrite, and crystal liquid are more 
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convenient to be integrated with antenna structures, compared to SMD varactors and 

MEMS switches; (2) The relative tunabilities of BST, ferrite, and crystal liquid seem 

worse than SMD varactors; (3) The losses of BST and crystal liquid are relatively low 

at microwave frequencies, while varactors may contribute more losses compared to 

the others.  

3.6 Summary 

This chapter presents the literature review of artificial electromagnetic structures, BST 

materials and some tunable techniques applied to antenna designs. Most existing 

antenna designs based on artificial electromagnetic structures can have some 

performance improvement, such as bandwidth enhancement, radiation improvement, 

multiband leaky-wave radiation characteristics, and so on. The BST materials, as 

popular tunable materials, enable the frequency or pattern reconfigurability of antenna 

designs, due to its advantages at microwave frequencies. In addition, the literature of 

existing antenna designs using some other tuning techniques, i.e., silicon varactors, 

liquid crystal, MEMS switch, is reviewed and compared. However, these antennas 

suffer from some limitations, such as a limited number of operating resonances in the 

RA designs, the single passband in the CRLH-based LWAs, and 

non-frequency-reconfigurable or non-pattern-reconfigurable designs for the multiband 

LWA. The antenna designs proposed in the following chapters will present some 

advantages over most existing antenna designs, such as multiband and frequency 

tunable characteristics. 



 

69 
 

 

CHAPTER IV 

OPEN-ENDED RESONANT ANTENNAS 

BASED ON EXTENDED COMPOSITE 

RIGHT/LEFT HANDED TRANSMISSION-LINE 

UNIT CELL STRUCTURE 

4.1 Introduction 

The rapid development of novel wireless communication techniques encourages an 

increasing number of wireless services at different frequency bands. As an important 

component in wireless communication systems or mobile devices, the single or 

multiple antennas capable of operating at diverse commercial frequency bands while 

occupying small space are very necessary. The high demands for multiband or 

frequency-agile antennas have attracted great research interest in recent years. 

The interesting properties of the CRLH structure make this artificial electromagnetic 

material very attractive for antenna designs. A group of antennas, which is called the 

metamaterial-inspired RAs, is formed by combining metamaterial-inspired structures 

with RA designs. The metamaterial-inspired RAs can be categorized into two types – 
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short-ended and open-ended [10]. In short-ended RAs, one or multiple 

metamaterial-inspired unit cell structures are usually used to form a radiated resonant 

structure with a termination connected to the main GP or the virtual GP. With a proper 

feeding approach, the intrinsic modes (i.e., the zeroth-order mode, negative-order 

modes and positive-order modes) of the resonant structure can be excited, thereby 

generating multiple operating resonances for radiation. One distinct feature of the 

RAs in this type is the zeroth-order mode (𝑚 = 0) for radiation, due to the advantages 

of this mode, such as the size reduction [10]. Thus, these metamaterial-inspired RAs 

with this feature are also called ZOR antennas. On the other hand, RAs with an open 

end can be realized with one conventional open-ended antenna (e.g., monopole 

antenna) usually loaded with one metamaterial-inspired unit cell. The RAs can usually 

be designed with one unit cell with an open end at the termination. Compared with 

conventional open-ended antennas, metamaterial-inspired open-ended RAs mainly 

have two advantages [12]: (1) multiple operating resonances for multiband or 

wideband operations; (2) at least one operating resonance working at lower frequency 

compared to conventional monopole antennas.  

Most existing metamaterial-inspired RA designs in both short-ended and open-ended 

types, which have been introduced in Section 3.2 of Chapter III, can usually generate 

a few operating resonances to cover a few frequency bands. In order to meet the needs 

of modern wireless services, metamaterial-inspired RAs should be designed to have 

multiple operating resonances working at as many commercial frequency bands as 

possible. 
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In this chapter, three open-ended RA designs based on one ECRLH unit cell structure 

are introduced as a novel class of metamaterial-inspired RAs for multiband or 

frequency-agile applications. The RAs include a short microstrip line as the feeding 

line and one ECRLH unit cell structure as the main radiation body. Due to the 

multiband properties of the ECRLH structure, these RAs can generate multiple 

operating resonances working at the chosen frequencies. The equivalent model of the 

proposed RAs is also developed in order to understand the antenna characteristics. In 

addition, the control of the operating resonances by changing the dimension of some 

parts in the antenna structure is summarized. The first RA is designed with SMD chip 

capacitors for the initial theoretical realization. The second RA is designed with 

interdigital structures (IDSs) in order to avoid the losses from the SMD chip 

capacitors. Based on exploration of the resonance control by important parts in the 

antenna structure, the third RA is designed with a GaAs semiconductor varactor as a 

tunable antenna, which can achieve the electronically controlled frequency tunability 

of one specific operating resonance over 0.7-0.96 GHz, while keeping the wideband 

coverage over 1.7-6 GHz formed by the other operating resonances. Therefore, the 

major advantages of metamaterial-inspired RAs in this class are summarized as 

below: 

(1) multiple operating resonances at chosen frequencies to achieve multiband or 

frequency-agile applications; 

(2) at least one operating resonance at lower frequencies in comparison with a 

conventional monopole antenna within similar space; 
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(3) electronically controlled tunability of one operating resonance at low frequency 

without destroying the wideband coverage formed by the other operating 

resonances in the tunable RA design. 

This chapter is organized as follows. In Section 4.2, the resonant theory of an ECRLH 

structure will be explained by extending the resonant theory of a CRLH structure. A 

passive RA design with three SMD chip capacitors will be presented in Section 4.3. In 

Section 4.4, a passive RA design with three IDSs will be presented. Section 4.5 will 

introduce an electronically tunable RA design with one SMD GaAs semiconductor 

varactor. The summary will be given in Section 4.6. 

4.2 Resonant Theory of ECRLH Structure 

 
Figure 4.1 Equivalent circuit model of one ECRLH unit cell structure. 

The introduction of the CRLH theory has been presented in Section 2.5 of Chapter II. 

The resonant theory of the ECRLH structure is developed based on that of the CRLH 

structure. The equivalent circuit model of one ECRLH unit cell structure is shown in 

Figure 4.1. An ECRLH resonant structure generally consists of one or multiple 

ECRLH unit cells. Theoretically, the ECRLH structure generates two pairs of LH and 
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RH bands which can further form two CRLH bands respectively at low and high 

frequencies. One middle bandgap exists between two CRLH bands for separation. For 

a resonant structure with N ECRLH unit cells, a set of intrinsic harmonic modes exists 

in the low CRLH band (𝑚𝐿𝑜𝑤), while another set of intrinsic modes (𝑚𝐻𝑖𝑔ℎ) exists in 

the high CRLH band. Within the low CRLH band, the modes can be positive for the 

RH band (i.e., 𝑚𝐿𝑜𝑤 = +1, +2, ⋯) or negative for the LH band (i.e., 𝑚𝐿𝑜𝑤 =

−1, −2, ⋯) or even zero (𝑚𝐿𝑜𝑤 = 0) at the transition frequency area from the LH to 

RH band. Similarly, for the high CRLH band, it also has a set of intrinsic modes (i.e., 

𝑚𝐻𝑖𝑔ℎ = 0, 𝑚𝐻𝑖𝑔ℎ = −1, −2, ⋯ and 𝑚𝐻𝑖𝑔ℎ = +1, +2, ⋯).  

As mentioned in Section 2.5 of Chapter II, the ECRLH structure has two operation 

conditions – unbalanced condition and balanced condition. The corresponding 

resonant modes of an ECRLH resonant structure with length 𝐿 in both CRLH bands 

can be expressed as Eq. (4-1): 

                𝛽𝑚P = 𝛽𝑚
𝐿

𝑁
= 𝑚

𝜋

𝑁
= 𝑚𝐿𝑜𝑤

𝜋

𝑁
= 𝑚𝐻𝑖𝑔ℎ

𝜋

𝑁
            Eq. (4-1) 

where P is the period of the unit cell, N is the number of unit cells, 𝐿 = 𝑁 × 𝑃, and 

𝑚𝐿𝑜𝑤  and 𝑚𝐻𝑖𝑔ℎ  are the resonant modes for the low and high CRLH bands 

respectively, i.e., 𝑚𝐿𝑜𝑤 = 0, ±1, ±2, ⋯, and 𝑚𝐻𝑖𝑔ℎ = 0, ±1, ±2, ⋯. Figure 4.2(a) 

and Figure 4.2(b) show the resonance spectrum of a resonant structure with N ECRLH 

unit cells for the unbalanced and balanced condition, respectively. In the unbalanced 

condition, an open stopband region exists in the transition area between the LH and 

RH band within each CRLH band. In the balanced condition, the open stopband 
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region originally in the unbalanced condition is closed and the balanced point is 

formed to achieve the smooth transition from the LH to RH band within each CRLH 

band. In this condition, as explained in [48], ω0 is the resonant frequency of Lhp-Chp 

and Lvs-Cvs, i.e., ω0 = ωhp = ωvs, which is generally within the middle bandgap 

area. 

  

(a) 

 

(b) 

Figure 4.2 Resonance spectrums of one ECRLH unit cell structure in different operation conditions, (a) 
the unbalanced condition; (b) the balanced condition. 

Different operation conditions may have different effects on the frequency response of 

an RA. In [1], it has demonstrated that an open-ended RA with the unit cell in the 
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unbalanced condition can generate more operating resonances to work at the chosen 

frequency bands than one with the unit cell in the balanced condition. Thus, 

benefiting from the characteristics of the unbalanced condition, RAs are usually 

designed with one or multiple unit cells in this condition in order to generate multiple 

operating resonances working at the chosen frequency bands. 

4.3 Passive RA Design with SMD Capacitors 

       
(a)                                   (b) 

Figure 4.3 Configurations of the passive RA with SMD capacitors, (a) top view; (b) rear view. 

In this section, the RA based on one ECRLH unit cell structure with SMD chip 

capacitors is designed for the initial theoretical realization. The design and analysis 

process for this RA is explained as the following steps: (1) the resonant structure are 

realized using the copper strips to model the ECRLH structure; (2) with a short 

microstrip line for feeding, the proposed RA generates multiple operating resonances 

for radiation; (3) after optimizing the dimensions of this RA, these operating 

resonances can work at the chosen frequencies; (4) the equivalent circuit model for 

this RA is developed and the parameter values in this model are extracted from the 
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full-wave simulated data; (5) the resonance control by the RA structure is discussed 

and summarized. 

Table 4.1 Dimensions of the proposed passive RA with SMD chip capacitors and the capacitances of 
the SMD capacitors in this RA. 

 

               
(a)                                    (b) 

Figure 4.4 Photographs of the fabricated passive RA with SMD capacitors, (a) top view; (b) rear view. 

The passive RA design is printed on a Rogers RT/duroid 5880 substrate with dielectric 

constant of 2.2, loss tangent of 0.0009 and thickness of 1.575 mm. The configurations 

of the proposed RA with three SMD capacitors are shown in Figure 4.3. In this 

antenna structure, Lhs, Lhp, Lvs and Lvp are realized by the horizontal and vertical 
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copper strips, respectively. The parallel vertical copper strips are connected through 

two metalized vias. The metal strip at the bottom layer is modelled as the virtual 

ground of the ECRLH unit cell structure. This virtual ground is not directly connected 

to the main ground of the antenna. The ECRLH unit cell is properly excited by one 

microstrip feeding line. Chs, Chp and Cvs are realized by the SMD MURATA 0402 

capacitors while Cvp is modeled by parasitic capacitance between the parallel vertical 

copper strips. The information of MURATA 0402 capacitors is included in Appendix A. 

For example, the loop part with a SMD chip capacitor in the antenna structure is 

constructed to model Lhp-Chp in Figure 4.1; the vertical parallel strips on the top and 

bottom layers and one SMD chip capacitor are used to model Lvp-Cvp and Lvs-Cvs in 

Figure 4.1. The proposed RA is open-ended at the termination of the structure. The 

detailed dimensions of the proposed RA are listed in Table 4.1. The overall size of the 

proposed RA in the unbalanced condition is 47 mm  55 mm  1.575 mm (i.e., 0.11λ0 

 0.13λ0  0.0037 λ0, where λ0 is the free-space wavelength of the lowest operating 

frequency of 0.707 GHz). The prototypes of the fabricated RA with an ECRLH unit 

cell structure are shown in Figure 4.4. 

4.3.1 Measurement and Simulation 

Figure 4.5 presents the full-wave simulated (purple dash line) and measured (blue 

solid line) S11 results of the proposed RA. Clearly, the proposed RA generates 

multiple operating resonances and has the triple-band feature of one narrow band at 

0.707 GHz and two wide bands of 1.7-3.0 GHz and 4.5-6.0 GHz, working at LTE, 

WIFI 2.4 GHz and 5 GHz bands. The simulated (blue crossing) and measured (red 
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triangle) gains of this RA are shown in Figure 4.6.  

 

Figure 4.5 Full-wave simulated, circuit-model simulated and measured S11 results of the proposed RA. 

 

Figure 4.6 Full-wave simulated and measured gains of the proposed RA with SMD capacitors. 

             
(a)                                 (b) 

Figure 4.7 Current distributions of this RA, (a) 0.707 GHz; (b) 5.5 GHz. 
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(a)                                  (b) 

      

(c)                               (d) 

      

(e)                                (f) 

Figure 4.8 Measured and simulated normalized farfield patterns of the RA for co-polarization and 
cross-polarization, (a) YOZ plane at 0.707 GHz; (b) XOY plane at 0.707 GHz; (c) YOZ plane at    

2.4 GHz; (d) XOY plane at 2.4 GHz; (e) YOZ plane at 5.5 GHz; (f) XOY plane at 5.5 GHz. 
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This proposed RA suffers from low gain at 0.707 GHz, which is due to the electrically 

small size of the loop part in the antenna structure. At the resonant frequency of  

0.707 GHz, the current mainly flows around the loop part, which is shown in   

Figure 4.7(a). This results in the low radiation efficiency and low gain. However, the 

radiation efficiency and antenna gain of this operating resonance will be further 

improved at higher frequencies according to simulations. In addition, the SMD chip 

capacitors introduce a certain amount of loss to degrade the antenna gain. Figure 4.6 

also presents the simulated gains of the antenna structure with the ideal lossless 

capacitors (purple circle). After comparing two simulated results (i.e., blue crossings 

and purple circles) in Figure 4.6, it shows that the SMD capacitors introduce around 

0.1-0.4 dB loss for the antenna gain degradation depending on frequencies.  

The simulated and measured normalized farfield radiation patterns at the YOZ and 

XOY planes for 0.707, 2.4, and 5.5 GHz are shown in Figure 4.8. Figure 4.8 shows 

that this antenna has the omnidirectional farfield patterns at 0.707 GHz and 2.4 GHz, 

but the non-omnidirectional patterns at 5.5 GHz due to a combination of multiple 

radiation parts in the antenna structure shown in Figure 4.7(b). 

The differences between the full-wave simulated and measured results in Figure 4.5, 

Figure 4.6 and Figure 4.8 mainly come from two reasons: 

(1) the fabrication and measurement deviations; 

(2) the loss resulting from soldering; 
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4.3.2 Analysis of passive RA with SMD chip capacitors 

 

Figure 4.9 Equivalent circuit model of the proposed RA with SMD capacitors. 

Table 4.2 Component values in the equivalent circuit model of this RA with SMD chip capacitors. 

 

In order to analyze the antenna characteristics, the equivalent circuit model of the 

proposed RA is developed, which is shown in Figure 4.9. In this model, the microstrip 

feeding line is modelled as a 50 Ω TL. C01, C02, C03, and C04 are used to model the 

equivalent capacitors between different parts of the ECRLH unit cell structure and the 

main ground of the antenna. The component values in this equivalent model are listed 

in Table 4.2, which are extracted in the following steps:  

(1) each part of this RA structure is analyzed using the full-wave simulations, so that 

the approximate values can be assigned to the components in the model. 

Specifically, through the full-wave simulation of each metal strip segment, the S 
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parameters of this strip can be obtained. Thus, the total inductance can be 

approximately derived using the equation of 𝐿 = Im(1/Y11)/ω, where ω is the 

angular frequency and Y11 is an element in Y parameters [55]. 

(2) In addition to the known capacitances of the chip capacitors, the parallel-plate 

capacitance Cvp can be approximately calculated using the equation of       

𝐶 = 𝜀0𝜀𝐴/𝑑, where 𝜀0 is the permittivity in free space, 𝜀 is the permittivity of 

the dielectrics between the plates, 𝐴 is the overlapping area of two plates, and 𝑑 

is the distance between two plates. 

(3) After assigning the approximate values to the components in this model, final 

optimizations are implemented in order to make the circuit-model simulated 

results close to the full-wave simulated ones.   

The circuit-model simulated S11 (brown dot dash line) is also presented in Figure 4.5. 

The circuit-model and full-wave simulated results have differences because this 

equivalent circuit does not fully take into account all coupling effects among the RA 

structure. However, the equivalent circuit approach could not only provide an insight 

into the frequency response of the proposed RA, but also provide a fast tool for an 

initial approximation of the RA in terms of the frequency response. 

Furthermore, different parts in the RA structure have some effects on these operating 

resonances. Figure 4.10 shows the effects on these operating resonances by changing 

the dimension of each part of the antenna structure. As examples, the effects on the 

frequency response of the RA by changing the capacitance of Chp, Chs, and Cvs are 

shown in Figure 4.10(a), Figure 4.10(b), and Figure 4.10(c), respectively.      

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html#c3
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Figure 4.10(a) shows that the capacitance changing of Chp mainly shifts the 1st 

operating resonances without obviously affecting other operating resonances.   

Figure 4.10(b) shows that the capacitance changing of Chs mainly affects 2nd, 3rd, 4th 

and 6th operating resonances. Figure 4.10(c) shows that the capacitance changing of 

Cvs mainly affects 3rd, 4th, and 5th operating resonances. Table 4.3 summarizes the 

important parts of the antenna structure and the operating resonances correspondingly 

controlled by each part. From this summary, the effects shown in Figure 4.10(a) may 

be used to design a tunable antenna, because only one operating resonance at the low 

frequency will be affected by the capacitance of Chp. 

Table 4.3 Some parts of the RA with SMD chip capacitors and the operating resonances 
correspondingly controlled by each part. 

 

 

  

                 (a)                                         (b) 



 

84 
 

  
                 (c)                                         (d) 

  
                 (e)                                         (f) 

  
                 (g)                                         (h) 

 
                                        (i) 

Figure 4.10 Effects of the dimension changing of the part of the antenna structure on the frequency 
response of this RA, (a) Chp; (b) Chs; (c) Cvs; (d) L10; (e) L9; (f) L6; (g) L7; (h) L1; (i) L3. 
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4.4 Passive RA Design with IDSs 

     
(a)                                  (b) 

Figure 4.11 Configurations of the passive RA with IDSs, (a) top view; (b) rear view. 

     
(a)                    (b)                      (c) 

Figure 4.12 IDSs in the proposed antenna structure, (a) Chp; (b) Chs; (c) Cvs.  

Table 4.4 Dimensions of the proposed passive RA with IDSs. 
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In this section, the RA with IDSs are designed, in order to avoid the losses from the 

SMD chip capacitors used in the RA design of Section 4.3. The design and analysis 

process for this RA are similar as the one in Section 4.3. In addition, this RA is 

compared to a conventional reference monopole, in order to demonstrate that this RA 

can have one operating resonance working at lower frequencies than this monopole. 

The passive design of the RA with IDSs is shown in Figure 4.11, which is realized on 

a Rogers RT/duroid 5880 substrate with dielectric constant of 2.2, loss tangent of 

0.0009 and thickness of 1.575 mm. The main radiator of this RA is an ECRLH unit 

cell with three IDSs. These three IDSs are respectively used to realize Chs, Chp, and 

Cvs, which are shown in Figure 4.12. Similarly, Cvp is achieved by the parasitic 

capacitance of the vertical parallel copper strips. These vertical paralleled strips are 

respectively placed on the top and bottom layers and are connected through two 

metalized vias. Lhs, Lhp, Lvp and Lvs are realized by the horizontal and vertical copper 

strips. The copper strip at the bottom layer is used to model the ground of the ECRLH 

TL unit cell structure, which is not directly connected to the main ground of the 

proposed RA. The overall size of the proposed RA is 56 mm  64 mm  1.575 mm 

(i.e., 0.16λ0  0.18λ0  0.004λ0, where λ0 is the wavelength of the lowest operating 

frequency of 0.887 GHz). The detailed dimensions of the proposed RA and the IDSs 

are listed in Table 4.4. The prototypes of the fabricated antenna are presented in 

Figure 4.13. 
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(a)                                   (b) 

Figure 4.13 Prototypes of the fabricated RA with IDSs, (a) front view; (b) rear view. 

4.4.1 Measurement and Simulation 

 

Figure 4.14 Full-wave simulated, circuit-model simulated and measured S11 results of the proposed 
RA with the IDSs. 

 

Figure 4.15 Simulated and measured gains of the proposed RA at resonant frequencies. 
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                    (a)                                      (b) 

Figure 4.16 Current distribution of this RA, (a) 0.887 GHz; (b) 5.5 GHz. 

The full-wave simulated (purple dash line) and measured (blue solid line) S11 results 

of the proposed RA are presented in Figure 4.14. The simulated and measured S11 

results have a close agreement, with respect to the -6 dB bandwidth. In the full-wave 

simulated S11, the proposed RA has ten operating resonances over 0.5-6.0 GHz 

working at GSM-850, DCS, PCS, UMTS, Bluetooth, WiFi (2.4 GHz and 5 GHz), 

TD-2500 and WiMAX (2500-2690 MHz, 3400-3690 MHz, and 5250-5280 MHz). 

Figure 4.15 shows the measured and simulated gains of this antenna. At 0.887 GHz, 

the simulated gain is -2.358 dBi, whereas the measured gain is -3.38 dBi. The antenna 

gain is low at 0.887 GHz, due to the electrically small size of the loop part in the RA 

structure. At 0.887 GHz, the current mainly flows around this loop part, which is 

shown in Figure 4.16(a). This results in low radiation efficiency and low gain. 

However, according to the simulations, the antenna gain and the radiation efficiency 

will be improved at higher frequencies. According to the simulation, the antenna gain 

using this operating resonance will be improved to be -1.7 dB at 0.96 GHz.  
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(a)                                       (b) 

          
(c)                                       (d) 

          
(e)                                       (f) 

Figure 4.17 Measured and simulated normalized farfield patterns of this RA for co-polarization and 
cross-polarization, (a) YOZ plane at 0.887 GHz; (b) XOY plane at 0.887 GHz; (c) YOZ plane at    

2.4 GHz; (d) XOY plane at 2.4 GHz; (e) YOZ plane at 5.5 GHz; (f) XOY plane at 5.5 GHz. 
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Figure 4.17 presents the simulated and measured normalized farfield radiation 

patterns at the YOZ and XOY planes for 0.887, 2.4, and 5.5 GHz. Similarly, the 

proposed antenna presents the omnidirectional patterns at 0.887 GHz and 2.4 GHz. At 

5.5 GHz, the patterns are not omnidirectional, due to a combination of multiple 

radiation parts in the RA structure, which is shown in Figure 4.16(b). 

The differences between the simulated and measured results in Figure 4.14,     

Figure 4.15 and Figure 4.17 can be mainly summarized as the following reasons: 

(1) The fabrication and measurement deviations; 

(2) the loss resulting from soldering; 

4.4.2 Analysis of passive RA with IDSs 

Table 4.5 Component values in the equivalent circuit model of this RA with IDSs. 

 

Similarly, the equivalent circuit model of the proposed RA with IDSs can also be 

represented as the model shown in Figure 4.9, but with different component values. 

The component values in this model are listed in Table 4.5. The component values in 

this equivalent model are extracted by the similar steps as the ones in Section 4.3. In 

addition, the capacitance for one IDS can be derived using the full-wave simulation. 
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After getting the full-wave simulated S parameters of an IDS, the total capacitance 

can be approximately derived using the equation of 𝐶 = −1/[ω ∙ Im(Y11)], where ω 

is the angular frequency and Y11 is an element in Y parameters [55]. 

The circuit-model simulated S11 (brown dot dash line) is also presented in     

Figure 4.14. The differences between the circuit-model and full-wave simulated 

results are due to the same reasons as the case in Section 4.3. Besides, the parasitic 

inductance in each IDS is not taken into consideration in this equivalent model, which 

may contribute to the differences.  

Table 4.6 Some parts of the RA with IDSs and the operating resonances correspondingly controlled by 
each part. 

 

 

  
                 (a)                                         (b) 
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                 (c)                                         (d) 

  
                 (e)                                         (f) 

  
                 (g)                                         (h) 

 
                                        (i) 

Figure 4.18 Effects of the dimension changing of the part of the antenna structure on the frequency 
response of the antenna, (a) Wf1; (b) Wf2; (c) Wf3; (d) W3; (e) W2; (f) L6; (g) L7; (h) L1; (i) L3. 

In this RA, different parts of the antenna structure have different effects on the 

frequency response of this antenna. The effects on the frequency response by 
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changing some important parts of the structure (e.g., Wf1, Wf2, and Wf3) are shown in 

Figure 4.16. As examples, Figure 4.16(a) shows that the dimension changing of the 

finger length for the IDS of Chp (i.e., Wf1) mainly affects the 1st and 2nd operating 

resonances. Figure 4.16(b) shows that the dimension changing of the finger length for 

the IDS of Chs (i.e., Wf2) mainly affects 2nd, 3rd, 4th, and 7th operating resonances. 

However, the changing of Wf2 does not destroy the frequency coverage from 4.5 GHz 

to 6 GHz. In Figure 4.16(c), it shows that the dimension changing of the finger length 

for the IDS of Cvs (i.e., Wf3) mainly affects 3rd, 4th, 5th, 6th, 9th, and 10th operating 

resonances. However, the dimension changing of Wf3 does not affect the frequency 

coverage of 1.71-2.69 GHz and 4.5-6 GHz. The summary of the operating resonances 

controlled by some important parts of the antenna structure is presented in Table 4.6. 

According to this summary, it may be possible to design a tunable RA using the 

phenomenon in Figure 4.18(a), in order to realize the frequency tunability of one 

operating resonance at the low frequency without destroying the wideband coverage 

formed by the other operating resonances. 

4.4.3 Comparison with A Conventional Monopole Antenna 

For comparison, a conventional monopole antenna within similar space is realized on 

the same substrate material. The configuration of this monopole antenna is shown in 

Figure 4.19, and the detailed dimensions of this monopole antenna are listed in   

Table 4.7. Figure 4.20 presents the comparison between full-wave simulated S11 

results of the RA with IDSs and this monopole antenna. The lowest working 

frequency of the RA is at 0.887 GHz, while that of the conventional monopole 
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antenna is 1.1 GHz. Thus, the proposed RA can work at a lower frequency compared 

to this conventional monopole antenna within the similar space. Furthermore, this RA 

has ten operating resonances to achieve multiband coverage. However, this 

conventional monopole antenna only has three operating resonances over 0.5-6 GHz.  

 

Figure 4.19 Configuration of a conventional monopole antenna. 

Table 4.7 Dimensions of a conventional monopole antenna. 

 

 

Figure 4.20 Comparison of S11 results between the RA with IDSs and this monopole antenna. 
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4.5 Tunable RA Design with One Semiconductor Varactor 

      
(a)                                 (b) 

             
(c)                                     (d) 

Figure 4.21 Configurations of the tunable RA with one varactor, (a) top view; (b) rear view; (c) the IDS 
for Chs; (d) the IDS for Cvs. 

The tunable RA design is inspired by the antenna characteristics which are found in 

Figure 4.10(a) and Figure 4.18(a). In either Figure 4.10(a) or Figure 4.18(a), one 

operating resonance at the low frequency is shifted by changing the capacitance of Chp 

in the antenna structure while the frequency coverage of the other operating 

resonances is almost kept. For this electronically tunable RA, one SMD 

semiconductor varactor is incorporated into the part of Chp in the antenna structure to 

achieve the electronically controlled tunability of one operating resonance in order to 

cover the commercial 4G LTE low frequency band of 0.70-0.96 GHz. 
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Figure 4.22 Equivalent circuit model of MICROSEMI MV34002 semiconductor varactor. 

Table 4.8 Dimensions of the tunable antenna with one varactor. 

 

             

(a)                                   (b) 

Figure 4.23 Configurations of the tunable RA with one varactor, (a) top view; (b) rear view. 
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Same as the previous RAs, this proposed RA is also designed on a Rogers RT/duroid 

5880 substrate with dielectric constant of 2.2, loss tangent of 0.0009 and thickness of 

1.575 mm. Figure 4.20 shows the configurations of this RA. In this antenna structure, 

Chs and Cvs are realized by the IDSs, which are shown in Figure 4.21(c) and Figure 

4.21(d), respectively. In order to achieve the frequency tunability of one operating 

resonance, Chp is chosen as the tuning element and is realized by a combination of one 

SMD GaAs semiconductor varactor and one DC block 0603 10 pF chip capacitor. 

This semiconductor varactor used in the structure for Chp is MICROSEMI MV34002. 

The equivalent circuit model of this varactor is briefly presented in Figure 4.22. In 

this circuit model, Ls and Cp represent the parasitic inductance and capacitance 

resulting from the packaging, respectively, and Rs is used to represent the equivalent 

resistance mainly resulting from the semiconductor [56]. CJ represents the tunable 

capacitance for the tuning function of the varactor [56]. The brief information of 

MICROSEMI MV34002 semiconductor varactor and the relationship between Ct and 

the reverse voltage are included in Appendix B. The varactor is biased by one DC bias 

line with one 0402 1 MΩ resistor as the RF block. In experiments, a bias Tee is used 

to connect with the feed line in order to supply the negative “-” bias voltage, while the 

positive “+” bias voltage is supplied through a DC bias line. The overall size of the 

proposed antenna is 45 mm  60 mm  1.575 mm. The detailed dimensions of this 

tunable antenna and its two IDSs are listed in Table 4.8. The photographs of this 

fabricated tunable antenna are shown in Figure 4.23. 
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4.5.1 Simulation and Measurement 

 

Figure 4.24 Simulated S11 of the RA with different capacitances of Chp. 

 

Figure 4.25 Measured S11 of the RA by applying different DC bias voltages to the varactor. 

Figure 4.24 presents the full-wave simulated S11 of the RA by changing the 

capacitance of Chp  from 4.3 pF to 1.5 pF, which shows that one operating resonance 

at the low frequency can be tuned to cover the entire 4G LTE low band from 0.7 GHz 

to 0.96 GHz without affecting the wideband coverage over 1.7-6.0 GHz formed by the 

other operating resonances. In simulations, Chp represents CJ in the equivalent circuit 

model shown in Figure 4.22. According to Appendix B, the other component values 

used in simulations are Rs ≈ 1.415 Ω, Ls = 0.45 nH, and Cp=0.1 pF, respectively. 
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Figure 4.25 presents the measured S11 results of this tunable RA, which demonstrates 

that the 4G LTE low band over 0.7-0.96 GHz is covered by one electronically tunable 

operating resonance at the low frequency with different DC bias of 1.5-4.37 V applied 

to the varactor for Chp. A wide frequency band covering 1.7-6.0 GHz is formed by the 

other operating resonances, with respect to the -6 dB bandwidth. The measured results 

show that the electronic tunability of one operating resonance over 0.7-0.96 GHz does 

not destroy the frequency coverage of the wide band of 1.7-6 GHz. Thus, this antenna 

has potentials for 4G LTE applications for most modern commercial frequency bands. 

The measured and simulated normalized farfield patterns at 0.7 GHz with 1.5 V bias 

voltages, 0.85 GHz with 2.85 V bias voltages and 0.96 GHz with 4.37 V bias voltages 

are shown in Figure 4.26, respectively. Figure 4.26 shows that the measured farfield 

patterns at 0.7 GHz, 0.85 GHz, and 0.96 GHz are quasi-omnidirectional and are close 

to omnidirectional. Figure 4.27 shows the measured and simulated normalized farfield 

patterns of the tunable antenna with 2.85 V bias for 2.4 GHz and 5.5 GHz as examples. 

Based on the results, this tunable antenna presents the quasi-omnidirectional patterns 

at the low frequencies over 0.7-0.96 GHz, and the omnidirectional patterns at 2.4 GHz, 

but the non-omnidirectional patterns at the high frequencies, e.g., 5.5 GHz. The 

non-omnidirectional patterns at the high frequencies result from a combination of the 

multiple radiation parts in the antenna structure.   
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(a)                                  (b) 

      
(c)                               (d) 

      
(e)                               (f) 

Figure 4.26 Measured and simulated normalized patterns of the tunable RA for co-polarization and 
cross-polarization, (a) YOZ plane at 0.7 GHz with 1.5 V; (b) XOY plane at 0.7 GHz with 1.5 V;      

(c) YOZ plane at 0.85 GHz with 2.85 V; (d) XOY plane at 0.85 GHz with 2.85 V; (e) YOZ plane at 
0.96 GHz with 4.37 V; (f) XOY plane at 0.96 GHz with 4.37 V. 
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(a)                                  (b) 

      
(c)                               (d) 

Figure 4.27 Measured and simulated normalized patterns of the tunable RA with 2.85 V bias voltage 
for co-polarization and cross-polarization, (a) YOZ plane at 2.4 GHz; (b) XOY plane at 2.4 GHz; (c) 

YOZ plane at 5.5 GHz; (d) XOY plane at 5.5 GHz. 

 

Figure 4.28 Simulated and measured gains of the tunable RA with different bias voltages at 0.7 GHz, 
0.85 GHz, and 0.96 GHz. 
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Figure 4.29 Simulated and measured gains of the tunable RA over 1.7-6.0 GHz with 2.85 V DC bias. 

The measured and simulated gains of this antenna with 1.5 V, 2.85 V and 4.37 V bias 

voltages at 0.7 GHz, 0.85 GHz, and 0.96 GHz are presented in Figure 4.28. This RA 

suffers from low gain at low frequency, e.g. 0.7 GHz, which is due to the same reason 

as two pervious RA designs, i.e., the electrically small size of the loop part in the 

antenna structure. According to the simulated and measured results, antenna gains are 

improved at higher frequencies, e.g., 0.96 GHz. Figure 4.29 shows the measured and 

simulated gains of this tunable RA over 1.7-6.0 GHz under 2.85 V DC bias voltages 

as an example. The differences between the measured and simulated results for this 

active RA mainly come from four reasons: 

(1) the measurement deviations; 

(2) the loss resulting from soldering; 

(3) the parasitic effects and losses from the SMD components, such as the resistor and 

the varactor, particularly the varactor. Some parasitic effects and losses from the 

varactor are the main contributor to the differences in the full-wave simulated and 

measured S parameters, gains and farfield patterns. 
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4.5.2 Loss Analysis of Varactor 

 

Figure 4.30 Comparison of the simulated gains of the tunable RA with a lossy and lossless equivalent 
circuit model of the varactor with Chp of 2.5 pF. 

The SMD MICROSEMI MV34002 semiconductor varactor, as a lossy component in 

this RA design, introduces a certain amount of losses to degrade the antenna radiation 

performance. The losses introduced by this varactor are evaluated in simulations by 

comparing the antenna gains in the lossy and lossless case. The case of this tunable 

RA with Chp of 2.5 pF is taken as an example. In the lossy case, the antenna is 

simulated with the equivalent model of the varactor shown in Figure 4.22. In this 

equivalent model, Rs is used to represent the equivalent resistance mainly resulting 

from the semiconductor [56], and Rs ≈ 1.415 Ω according to Appendix B. In the 

lossless case, this equivalent resistance (i.e., Rs) in the equivalent model of the 

varactor is removed, in order to avoid any losses in the model. Thus, this equivalent 

model of the varactor becomes the lossless and ideal in this case. Figure 4.30 presents 

the comparison of the simulated gains of this tunable RA with the lossy (blue crossing) 

and lossless (pink circle) equivalent model of the varactors. It shows that the antenna 

gains achieve -2.36 dBi at 0.85 GHz, 1.52 dBi at 2.4 GHz, and 2.7 dBi at 5.5 GHz in 
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the lossless case. For comparison, the antenna gains are -2.82 dBi at 0.85 GHz,    

1.4 dBi at 2.4 GHz, and 2.8 dBi at 5.5 GHz. Thus, it can be estimated that this 

semiconductor varactor introduces around 0.1-0.8 dB losses to degrade the antenna 

radiation performance depending on frequencies. 

4.6 Summary 

Table 4.9 Summary of the RAs in this chapter. 

 

A class of the open-ended RAs based on one ECRLH unit cell structure is presented 

for multiband or frequency-agile applications. The RAs can generate multiple 

operating resonances with excitation by a short microstrip feeding line. The passive 

RAs can achieve multiband properties. In addition, compared to one conventional 

monopole antenna occupying similar space, the passive RA with IDSs has at least one 

operating resonance working at lower frequency. Based on the explorations of the 

resonance control by the part of Chp in the RA structures, an electronically tunable RA 

with one semiconductor varactor is designed to achieve the frequency tunability over 
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0.7-0.96 GHz by one operating resonance at the low frequency and maintain the 

wideband coverage over 1.7-6.0 GHz formed by the other operating resonances. The 

summary of the RAs in this chapter is listed in Table 4.9. Compared to most existing 

RA designs introduced in Section 3.2 of Chapter III, the RAs in this class can generate 

more operating resonances working at the chosen frequency bands. In addition to the 

multiband properties, the tunable RA design achieves the electronically controlled 

frequency tunability of one operating resonance at low frequency while keeping the 

wideband coverage formed by the other operating resonances.  
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CHAPTER V 

DUAL-BAND LEAKY WAVE ANTENNAS 

BASED ON METAMATERIAL-INSPIRED 

TRANSMISSION-LINE STRUCTURES 

5.1 Introduction 

In past decades, LWAs have attracted significant research interest due to their 

advantageous features: (1) the main beam steered by the variation of the operation 

frequency; (2) relatively low profile; (3) low cost for fabrication; (4) single or 

multiple high directivity beams depending on feeding methods. 

Since the theory of the metamaterial CRLH structure was proposed in [8], many 

LWAs have been designed based on metamaterial-inspired structures. In recent years, 

LWAs with multiband properties have aroused a lot of research interest. A 

conventional approach for metamaterial-inspired LWAs to achieve multiband 

properties is to use different intrinsic harmonic modes of the antenna structure. 

However, the disadvantage of this approach is that the multiple passbands of the LWA 

cannot be controlled independently. Specifically, when one passband shifts, the other 
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passbands will shift as well. The ECRLH structure [12] can enable LWAs to achieve 

the multiband properties. The equivalent model of the ECRLH structure has been 

shown in Figure 4.1. There are four L-C resonators in the model with adding one 

parallel L-C resonator in the horizontal branch and one series L-C resonator in the 

vertical branch of the conventional CRLH unit cell structure. Theoretically, the 

ECRLH structure can generate two pairs of LH and RH bands. The component 

designs can utilize combinations of these LH and RH bands in different operation 

conditions (i.e., balanced and unbalanced conditions) for dual-band, tri-band, 

quad-band or even multiband applications. 

In [36], a SIW LWA based on the ECRLH structure composing of 1-D cascaded unit 

cells is presented for dual-band applications with simultaneous filtering characteristics. 

This LWA utilizes the balanced condition of the ECRLH structure to achieve two 

distinct passbands. The main beam of this antenna would be scanned from the 

backward (LH band) to forward (RH band) direction through broadside smoothly. The 

main advantages of this LWA can be summarized as followings: (1) two distinct 

complete passbands can be generated respectively at low and high frequencies with 

separation of one middle bandgap; (2) the CRLH backward-to-forward leaky-wave 

radiation characteristics can be found in both passbands. However, notably, the CRLH 

radiation characteristics happen at the low edge of the passband at high frequencies. 

This will easily result in the unexpected disappearance of the CRLH characteristics 

within this passband and the loss of the backward-to-forward leaky-wave radiation 

characteristics within this passband, if the LWA design is inappropriate. 
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Figure 5.1 Simplified equivalent circuit model of one Supercell_v1 structure. 

 

Figure 5.2 Simplified equivalent circuit model of one Supercell_v2 structure. 

In this chapter, four LWA designs based on metamaterial-inspired structures are 

presented to achieve the dual-passband characteristics. The first LWA is designed 

based on the ECRLH structure with SMD chip capacitors. This LWA design 

demonstrates the phenomenon that the conventional CRLH backward-to-forward 

leaky-wave radiation characteristic disappears within its high passband. According to 

the observation that this LWA does not achieve the CRLH backward-to-forward 

leaky-wave radiation characteristics within its high passband, two LWAs respectively 

based on the Supercell_v1 and Supercell_v2 structure are proposed to improve this 

leaky wave radiation status and achieve the CRLH backward-to-forward leaky-wave 

radiation characteristics within both passbands. The simplified equivalent models of 

one single Supercell_v1 and Supercell_v2 structure are shown in Figure 5.1 and 
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Figure 5.2, respectively. The Supercell_v2 structure is developed from the 

Supercell_v2 structure by removing the Lhp-Chp resonator. In addition, an 

electronically tunable LWA based on the Supercell_v2 structure is proposed to achieve 

the relatively independent tunability of the low balanced point while keeping the 

frequency position of the high balanced point and maintaining the CRLH 

backward-to-forward leaky-wave radiation characteristics within its high passband.  

This chapter is organized as follows. In Section 5.2, a microstrip LWA based on 14 

cascaded ECRLH unit cells with SMD chip capacitors is presented. In Section 5.3, by 

following the analysis of the metamaterial-inspired Supercell_v1 structure using the 

TL approach, a microstrip LWA based on 6 cascaded Supercell_v1 structures is 

presented. In Section 5.4, a microstrip LWA based on 7 cascaded Supercell_v2 

structures with SMD chip capacitors is introduced for the initial theoretical 

demonstration; an electronically tunable LWA based on the Supercell_v2 structure 

with integration of SMD silicon semiconductor varactors is proposed to investigate its 

frequency tunability in this section. Finally, the summary is given in Section 5.5. 

5.2 Passive LWA Design Based On ECRLH Structure 

In this section, a microstrip LWA is designed based on the ECRLH structure with 

SMD chip capacitors. The substrate material is Rogers RT/duroid 5880 with dielectric 

constant of 2.2, loss tangent of 0.0009 and thickness of 1.575 mm. The ECRLH TL 

structure is composed of 14 cascaded ECRLH unit cells. The configuration of one 
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ECRLH unit cell structure is shown in Figure 5.3. In this unit cell structure, Chs, Chp1, 

Chp2, Cvs, and Cvp  are realized by the SMD MURATA 0402 chip capacitors, which are 

3.8 pF, 20 pF, 4.1 pF, 1.5 pF, and 0.1 pF, respectively. The information of MURATA 

0402 chip capacitors is shown in Appendix A. The dimensions of this unit cell 

structure are listed in Table 5.1. This antenna is simulated in the software CST 

Microwave Studio and then fabricated for antenna measurements. A photograph of the 

fabricated LWA with 14 cascaded ECRLH unit cells is shown in Figure 5.4. The total 

length and width of this LWA are 280.4 mm and 50 mm, respectively. 

 
Figure 5.3 Configuration of one asymmetric ECRLH unit cell structure. 

 
Figure 5.4 Photograph of the fabricated LWA with 14 ECRLH unit cells. 
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Table 5.1 Dimensions of one ECRLH unit cell structure. 

 

5.2.1 Measurement Results 

The simulated and measured results of S11 and S21 of this LWA are shown in  

Figure 5.5. It shows that two distinct passbands at the low and high frequencies are 

formed separated by a middle bandgap. These two passbands at the low and high 

frequencies are called the low and high passbands, respectively. With respect to the  

-6 dB bandwidth, the low passband is over 0.6-1.55 GHz, while the high passband is 

over 3.1-6.5 GHz. 

 

Figure 5.5 Simulated and measured S11 and S21 of the passive LWA with 14 ECRLH unit cells. 

The leaky-wave radiation characteristics of this LWA within the low and high 

passband are further investigated. Figure 5.6 shows the measured and simulated 

normalized co-polarized farfield leaky-wave radiation patterns at the XOZ plane of 
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this LWA within the two passbands. Figure 5.6(a) shows, within the low passband, the 

main beam scans from -42° to +36° over 0.9-1.25 GHz. However, the farfield 

leaky-wave radiation characteristics within the high passband are different from the 

low passband. The forward (RH band) leaky-wave radiation happens in the low-edge 

region of the high passband, while the backward (LH band) leaky-wave radiation 

happens in the high-edge region of the high passband. The simulated and measured 

co-polarized normalized farfield leaky-wave radiation patterns within the high 

passband are shown in Figure 5.6(b) and Figure 5.6(c), respectively. Figure 5.6(b) 

shows the leaky-wave radiation of this antenna is from +12° to +60° over 3.1-3.6 GHz, 

which is at the low edge of the high passband. In Figure 5.6(c), the main beam scans 

from -80° to -24° over 5.7-6.2 GHz, which happens at the high edge of the high 

passband. There is no smooth transition from the backward to forward direction 

through broadside with the high passband. Within the high passband, there is a 

stopband area between these two leaky-wave regions, so there is no leaky wave 

radiation in this area. The reason for this will be explored in Section 5.2.2.  

The measured and simulated gains of this antenna at the leaky-wave regions are 

shown in Figure 5.7. In experiments, this LWA achieves the peak gain of -10.2 dBi 

within the low passband. Within the high passband, the measured peak gains of   

-1.8 dBi and 8.5 dBi are achieved at the RH and LH leaky-wave regions, respectively.  

The differences between the full-wave simulated and measured results in Figure 5.5, 

Figure 5.6, and Figure 5.7 are summarized as the following reasons: 

(1) the fabrication and measurement deviations; 
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(2) the loss resulting from soldering; 

 
(a) 

 
(b) 

 
(c) 

Figure 5.6 Normalized simulated and measured co-polarized farfield leaky-wave radiation patterns at 
the XOZ plane within two passbands, (a) 0.9-1.25 GHz; (b) 3.1-3.6 GHz; (c) 5.7-6.2 GHz. 
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Figure 5.7 Simulated and measured gains in dBi of this passive LWA at the leaky-wave regions. 

          
(a)               (b)               (c) 

Figure 5.8 Leakage rates of this LWA at the leaky-wave regions, (a) 0.9-1.25 GHz; (b) 3.1-3.6 GHz;  
(c) 5.7-6.2 GHz. 

 

Figure 5.9 Simulated directivities of this LWA at the leaky-wave regions within both passbands. 

According to the results shown in Figure 5.7, this LWA suffers from low gains, 

particularly at low frequencies, because most of the accepted power by this antenna is 
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absorbed by an absorption load at one end of the LWA structure, and just a small 

amount of power is radiated. This is due to the limitation of the printed circuit board 

(PCB) size which results in an ineffective antenna aperture and high leakage rates [4]. 

The leakage rates of this LWA can be approximately calculated by 

                               α/k0 ≈ (0.18λ0)/𝐿                  Eq. (5-1) 

where L is the entire physical length of the LWA, 𝐿 = N ∙ 𝑃1, 𝑃1 is the period of the 

ECRLH unit cell, N is the number of the unit cells in the LWA structure, k0 is the 

wave-number in the free space, and λ0 is the wavelength in free space. The leakage 

rates of this LWA at the leaky-wave regions are shown in Figure 5.8. The antenna 

gains could be improved by cascading more ECRLH unit cells in the structure. In 

simulations, a LWA with 50 ECRLH unit cells can achieve the peak gains of 1.2 dBi 

within the low passband, and 10.2 dBi and 17.5 dBi respectively for the RH and LH 

leaky wave regions within the high passband. The simulated directivities of this LWA 

are presented in Figure 5.9. 

5.2.2 Analysis of One ECRLH TL Unit Cell 

 

Figure 5.10 Equivalent circuit model of one ECRLH unit cell structure. 
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Table 5.2 Component values used in the equivalent circuit model of one ECRLH unit cell structure. 

 

 
(a) 

              
(b) 

Figure 5.11 Full-wave and circuit-model simulated performances of one ECRLH unit cell in the 
antenna structure, (a) the frequency response; (b) the dispersion diagram. 

The dispersion relation of one unit cell can be used to investigate the leaky-wave 

radiation characteristics of the LWA. The equivalent circuit model of one ECRLH unit 

cell structure is developed in Figure 5.10. Compared to the model in Figure 4.1, the 



 

117 
 

equivalent model in Figure 5.10 considers the parasitic effects among the antenna 

structure, such as the parasitic capacitances between the top-layer metal and the main 

GP. In this model, parasitic capacitances and inductances (i.e., C1, C2, L1 and L2) are 

included. The component values in this equivalent circuit model are listed in Table 5.2. 

They are extracted from the full-wave simulations using the same steps as introduced 

in Chapter IV. The dispersion relation can be derived using Eq. (2-51). The full-wave 

and circuit-model simulated frequency responses and dispersion diagrams of one 

ECRLH unit cell structure are shown in Figure 5.11(a) and Figure 5.11(b), 

respectively. The full-wave simulated S parameters (blue solid line and red dash line) 

in Figure 5.11(a) show that the low passband over 0.7-1.4 GHz and the high passband 

over 3.5-5.7 GHz are formed, with respect to the -6 dB bandwidth.  

In the full-wave simulated dispersion diagram (red solid line) in Figure 5.11(b), there 

is one balanced point at the transition frequency point from the LH to RH band within 

the low passband. Thus, the LWA scans from the backward to forward direction 

through broadside smoothly within the low passband. However, there is no balanced 

point within the high passband. Instead, there is one RH band at the low edge and one 

LH band at the high edge, respectively. There is a stopband existing between the RH 

and LH band. The conventional CRLH characteristics within the high passband are 

destroyed mainly by the parasitic capacitor C1, which is the parasitic capacitance 

between the branch of Lvs and the main GP. Thus, the forward (RH band) frequency 

scanning is at the low edge and the backward (LH band) frequency scanning happens 

at the high edge of the high passband.  
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There are some differences between the full-wave and circuit-model simulated results. 

The equivalent model in Figure 5.10 does not fully consider all the coupling effects 

among the ECRLH unit cell structure. However, this model can provide a fast and 

convenient way to analyze and understand the characteristics of the ECRLH unit cell 

in this LWA structure. 

5.2.3 Loss of SMD Chip Capacitors 

 

Figure 5.12 Comparison of the simulated gains of this passive LWA at the leaky-wave regions in the 
lossy and lossless case. 

 

Figure 5.13 Comparison of the simulated total efficiencies of this passive LWA at the leaky-wave 
regions in the lossy and lossless case. 

The chip capacitors used in this LWA introduce some losses to degrade the antenna 

radiation performance. The losses introduced by chip capacitors can be evaluated by 
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replacing them with ideal lossless capacitors in simulations. In the lossy case, the 

LWA simulated with SMD chip capacitors and ideal lossless capacitors are labelled as 

the lossy and lossless case, respectively. The comparisons between the simulated 

gains and total efficiencies of the LWA within the leaky-wave regions in the lossy and 

lossless case are shown in Figure 5.12 and Figure 5.13, respectively. Figure 5.12 

shows that the gain degradations resulting from the losses of the SMD capacitors are 

around 0.2-1.4 dBi over 0.9-1.25 GHz, 0.1-0.4 dBi over 3.1-3.6 GHz, and 0.2-0.6 dBi 

over 5.7-6.2 GHz, respectively. Figure 5.13 shows that the simulated total efficiencies 

of the LWA are decreased by the losses from the chip capacitors with 0.2%-0.3% over 

0.9-1.25 GHz, 0.4%-2% over 3.1-3.6 GHz, and 2%-4% over 5.7-6.2 GHz, 

respectively.   

5.3 Passive LWA Design Based On Supercell_v1 Structure 

5.3.1 Analysis Using TL Approach 

The simplified equivalent model of the Supercell_v1 structure has been shown in 

Figure 5.1. It is composed of six L-C resonators totally. The total impedance of the 

horizontal branch and the total admittance of the vertical branch in the asymmetric 

ECRLH unit cell are expressed in Eq. (5-2) and Eq. (5-3), respectively: 

                     𝑍𝐻 = 𝑗𝜔𝐿ℎ𝑠 +
1

𝑗𝜔𝐶ℎ𝑠
+ 1/(𝑗𝜔𝐶ℎ𝑝 +

1

𝑗𝜔𝐿ℎ𝑝
)         Eq. (5-2) 

                   𝑌𝑉 = 𝑗𝜔𝐶𝑣𝑝 +
1

𝑗𝜔𝐿𝑣𝑝
+ 1/(𝑗𝜔𝐿𝑣𝑠 +

1

𝑗𝜔𝐶𝑣𝑠
)          Eq. (5-3) 

Similarly, the total impedance of the horizontal branch and the total admittance of the 
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vertical branch in the asymmetric CRLH unit cell are respectively expressed by 

                         𝑍𝑠𝑒 = 𝑗𝜔𝐿𝑠𝑒 +
1

𝑗𝜔𝐶𝑠𝑒
                    Eq. (5-4) 

                          𝑌𝑠𝑡 = 𝑗𝜔𝐶𝑠𝑡 +
1

𝑗𝜔𝐿𝑠𝑡
                    Eq. (5-5) 

 
 (a) 

 
 (b) 

Figure 5.14 Dispersion diagrams of a Supercell_v1 structure in different conditions, (a) the unbalanced 
condition; (b) the balanced condition. 

The transmission ABCD matrix of a Supercell_v1 structure is expressed by 

                     [
A B
C D

] = [
A1 B1

C1 D1
] [

A2 B2

C2 D2
] 

                             = [
1 + 𝑍𝐻𝑌𝑉 𝑍𝐻

𝑌𝑉 1
] [

1 + 𝑍𝑠𝑒𝑌𝑠𝑡 𝑍𝑠𝑒

𝑌𝑠𝑡 1
]  Eq. (5-6) 

The expressions for the coefficients “A”, “B”, “C” and “D” are obtained respectively: 

                A = 1 + 𝑍𝐻𝑌𝑉 + 𝑍𝑠𝑒𝑌𝑠𝑡 + 𝑍𝐻𝑌𝑉𝑍𝑠𝑒𝑌𝑠𝑡 + 𝑍𝐻𝑌𝑠𝑡        Eq. (5-7) 
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                        B = 𝑍𝑠𝑒 + 𝑍𝑠𝑒𝑍𝐻𝑌𝑉 + 𝑍𝐻                 Eq. (5-8) 

                          C = 𝑌𝑉 + 𝑌𝑉𝑍𝑠𝑒𝑌𝑠𝑡 + 𝑌𝑠𝑡                 Eq. (5-9) 

                             D = 𝑌𝑉𝑌𝑠𝑡 + 1                     Eq. (5-10) 

Multiple Supercell_v1 structures can be cascaded to model an effectively homogenous 

TL, if the period meets the homogeneity condition [8]. The condition requires that the 

period of one Supercell_v1 structure should be much smaller than the guided 

wavelength, i.e., P2 ≪ λg. Then the dispersion relation of the Supercell_v1 structure 

can be derived based on the Bloch-Floquet theorem [8]: 

                            𝛽 ∙ P2 = cos−1(
A+D

2
)                    Eq. (5-11) 

where 𝛽 is the phase constant and P2 is the period of a Supercell_v1 structure. 

Similarly, the Supercell_v1 structure has two operation conditions – the unbalanced 

and balanced conditions. The dispersion relations of the Supercell_v1 structure can be 

derived using Eq. (5-11). Figure 5.14(a) and Figure 5.14(b) show the dispersion 

diagrams of the Supercell_v1 structure in the unbalanced and balanced condition, 

respectively. Figure 5.14(a) shows that there is an open stopband at the transition area 

from the LH band to the RH band within each passband. The two passbands are 

separated by one middle separation area. In contrast, Figure 5.13(b) shows that, in the 

balanced condition of the Supercell_v1 structure, the open stopband within each 

passband is closed and one balanced point is formed at the transition frequency point 

from the LH to RH band within each passband.  
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5.3.2 Antenna Design 

The full configuration of a Supercell_v1 structure is shown in Figure 5.15. In one 

Supercell_v1 structure, seven SMD MURATA 0402 chip capacitors are integrated at 

the positions of Chs, Chp1, Chp2, Cvs, Cvp, Cse, and Cst, respectively, which are 

illustrated in Figure 5.15. The detailed equivalent circuit model of this Supercell_v1 

structure with considerations of the parasitic capacitances and inductances among the 

Supercell_v1 structure is shown in Figure 5.16, and the component values in this 

circuit model are listed in Table 5.3. The component values are extracted in the same 

way as introduced in Chapter IV.  

 
Figure 5.15 Configuration of one Supercell_v1 structure. 

 

Figure 5.16 Equivalent circuit model of one Supercell_v1 structure.  

The proposed LWA is composed of 6 cascaded Supercell_v1 structures, which is 
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printed on a Rogers RT/duroid 5880 substrate with dielectric constant of 2.2, loss 

tangent of 0.0009 and thickness of 1.575 mm. This LWA employs the Supercell_v1 

structures to work in the balanced condition. Table 5.4 lists the detailed dimensions of 

a Supercell_v1 structure in the balanced condition. The SMD capacitors used for Chs, 

Chp1, Chp2, Cvs, Cvp, Cse, and Cst, are 8.0 pF, 20.0 pF, 3.0 pF, 1.7 pF, 0.2 pF, 2.0 pF, and 

0.2 pF, respectively. The physical length of a Supercell_v1 structure is 43.5 mm. A 

photograph of the fabricated LWA with 6 cascaded Supercell_v1 structures is shown 

in Figure 5.17. The total length and width of the LWA are 281 mm and 50 mm, 

respectively. 

Table 5.3 Component values in the equivalent circuit model of one Supercell_v1 structure. 

 

Table 5.4 Dimensions of one Supercell_v1 structure. 
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Figure 5.17 Photograph of the fabricated LWA with 6 Supercell_v1 structures. 

5.3.3 Analysis of Supercell_v1 Structure 

 
(a) 

 
(b) 

Figure 5.18 Full-wave and circuit-model simulated performances of a Supercell_v1 structure, (a) the 
frequency response; (b) the dispersion diagram. 

The full-wave and circuit-model simulated results of the frequency response of a 

single Supercell_v1 structure in the LWA are shown in Figure 5.18(a). The full-wave 
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simulated results (blue solid line and red dash line) in Figure 5.18(a) show that this 

Supercell_v1 structure has two distinct passbands respectively at the low and high 

frequencies separated by a middle separation area. The full-wave simulated dispersion 

diagram (red solid line) in Figure 5.18(b) shows the corresponding dispersion diagram 

of this structure and shows that there is a CRLH band and a balanced point within 

each passband. Thus, this Supercell_v1 structure operates in the balanced condition. 

There are some differences between the full-wave and circuit-model simulated results. 

The equivalent circuit model in Figure 5.16 does not fully consider all the coupling 

effects among the Supercell_v1 structure. But the equivalent circuit model can provide 

a fast and convenient way to analyze and understand the characteristics of the 

Supercell_v1 structure. 

5.3.4 Measurement Results of LWA 

 

Figure 5.19 Full-wave simulated and measured S11 and S21 of the passive LWA with 6 Supercell_v1 
structures. 

Figure 5.19 shows the full-wave simulated and measured results of S11 and S21 of the 

LWA with 6 cascaded Supercell_v1 structures. Figure 5.19 shows that the low 
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passband over 0.8-1.45 GHz and the high passband over 3.55-5.4 GHz are formed 

with respect to the -6 dB bandwidth. These two passbands are separated by a middle 

separation area. In this area, there is an unmatched passband over 2.5-2.8 GHz. For 

this LWA, the leaky-wave radiation characteristics within the low and high passband 

are the main focus, thus this unmatched passband is neglected here. The balanced 

points within the low and high passbands are at 1.1 GHz and 4.65 GHz, respectively. 

Compared to the results of the single Supercell_v1 structure, the operating frequencies 

of these two balanced points have a small shift, due to the inter-cell coupling effects 

among these cascaded Supercell_v1 structures in the LWA. 

 
(a) 

 
(b) 

Figure 5.20 Co-polarized simulated and measured normalized farfield leaky-wave radiation patterns at 
the XOZ plane within two passbands, (a) 0.88-1.25 GHz; (b) 3.7-5.3 GHz. 
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The simulated and measured normalized farfield leaky-wave radiation patterns at the 

XOZ plane within both passbands are shown in Figure 5.20. The measured results 

show that the main beam scans from -42° to +36° over 0.88-1.25 GHz for the low 

passband and scans from -42° to +30° over 3.7-5.3 GHz for the high passband, 

respectively. Thus, the desired CRLH leaky-wave radiation characteristics are 

demonstrated within both passbands. 

 

Figure 5.21 Simulated and measured gains at the leaky-wave regions within both passbands. 

The simulated and measured gains of this LWA at the leaky-wave regions within both 

passbands are shown in Fig. 5.21. The measured peak gain within the low passband is 

-10.1 dBi, whereas the measured peak gain within the high passband is 2.14 dBi. This 

LWA also suffers from low gain, particularly at the low frequencies, due to the same 

reason as the LWA in Section 5.2. The leakage rates at the leaky-wave regions of this 

LWA are calculated using Eq. (5-11), which are shown in Figure 5.22. In simulations, 

a LWA with 25 cascaded Supercell_v1 structures can achieve an improved gain of   

0.85 dBi peak gain within the low passband. The simulated directivities of this LWA 

are shown in Figure 5.23. 



 

128 
 

 
(a)                      (b)                     

Figure 5.22 Leakage rates of this LWA at the leaky-wave regions, (a) 0.8-1.25 GHz; (b) 3.7-5.3 GHz. 

 

Figure 5.23 Simulated directivities of this LWA at the leaky-wave regions within both passbands. 

The differences between the full-wave simulated and measured results in Figure 5.19, 

Figure 5.20, and Figure 5.21 are summarized as the following reasons: 

(1) the fabrication and measurement deviations; 

(2) the loss resulting from soldering; 

5.3.5 Loss of SMD Chip Capacitors 

The losses of all SMD chip capacitors are evaluated by replacing the real SMD chip 

capacitors with the ideal lossless capacitors in simulations. Similarly, the simulated 

gains and total efficiencies of this LWA at the leaky-wave regions within both 
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passbands in the lossy and lossless case are compared in Figure 5.24 and Figure 5.25, 

respectively. Figure 5.24 shows that all SMD chip capacitors degrade the antenna 

gains of around 0.2-0.8 dBi over 0.88-1.25 GHz and 0.1-1.0 dBi over 3.7-5.3 GHz, 

respectively. Figure 5.25 shows that the simulated total efficiencies are reduced by the 

losses of all chip capacitors with 0.2%-0.4% over 0.88-1.25 GHz and 0.2%-1.2% over 

3.7-5.3 GHz, respectively. 

 

Figure 5.24 Comparison of the simulated gains of this passive LWA at the leaky-wave regions within 
both passbands in the lossy and lossless case. 

 

Figure 5.25 Comparison of the simulated total efficiencies of this passive LWA at the leaky-wave 
regions within both passbands in the lossy and lossless case. 
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5.4 LWA Designs Based On Supercell_v2 Structure 

5.4.1 Analysis of Supercell_v2 Structure Using TL Approach 

As shown in Figure 5.2, the simplified model of the Supercell_v2 structure mainly 

contains five L-C resonators totally. The Supercell_v2 structure is improved compared 

with the Supercell_v1 structure by removing the Lhp-Chp resonator. Similar as the 

Supercell_v1 structure, the Supercell_v2 structure also enables two distinct passbands 

at the low and high frequencies with a middle separation area. The physical length of 

a Supercell_v2 structure is represented by P3. The total impedances of the first and 

second horizontal branches and the total admittances of the first and second vertical 

branches are respectively expressed by the following equations: 

                         𝑍1 = 𝑗𝜔𝐿ℎ𝑠 +
1

𝑗𝜔𝐶ℎ𝑠
                   Eq. (5-12)                                 

                          𝑍2 = 𝑗𝜔𝐿𝑠𝑒 +
1

𝑗𝜔𝐶𝑠𝑒
                   Eq. (5-13) 

                  𝑌1 = 𝑗𝜔𝐶𝑣𝑝 +
1

𝑗𝜔𝐿𝑣𝑝
+ 1/(𝑗𝜔𝐿𝑣𝑠 +

1

𝑗𝜔𝐶𝑣𝑠
)         Eq. (5-14) 

                         𝑌2 = 𝑗𝜔𝐶𝑠𝑡 +
1

𝑗𝜔𝐿𝑠𝑡
                    Eq. (5-15) 

The transmission ABCD matrix of a Supercell_v2 structure is expressed in Eq. (5-16): 

                   [
A B
C D

] = [
A1 B1

C1 D1
] [

A2 B2

C2 D2
] 

                          = [
1 + 𝑍1𝑌1 𝑍1

𝑌1 1
] [

1 + 𝑍2𝑌2 𝑍2

𝑌2 1
]       Eq. (5-16) 

The expressions for the coefficients “A”, “B”, “C” and “D” are obtained respectively: 

                 A = 1 + 𝑍1𝑌1 + 𝑍2𝑌2 + 𝑍1𝑌1𝑍2𝑌2 + 𝑍1𝑌2          Eq. (5-17) 

                       B = 𝑍2 + 𝑍2𝑍1𝑌1 + 𝑍1                   Eq. (5-18) 

                        C = 𝑌1 + 𝑌1𝑍2𝑌2 + 𝑌2                    Eq. (5-19) 
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                           D = 𝑌1𝑌2 + 1                       Eq. (5-20) 

The period of the Supercell_v2 structure is much smaller than the guided wavelength 

(i.e., P3 ≪  λg) for electromagnetic homogeneity [8]. Thus, multiple periodic 

Supercell_v2 structures can be cascaded together to model an effectively homogenous 

TL structure. Based on the Bloch-Floquet theorem [8], the dispersion relation of this 

Supercell_v2 structure can be derived using the coefficients of “A” and “D” in      

Eq. (5-21): 

                            𝛽 ∙ P3 = cos−1(
A+D

2
)                   Eq. (5-21) 

where 𝛽 ∙ P3 is the phase shift of the single Supercell_v2 structure, and β is the 

propagation constant. 

Similar to the Supercell_v1 structure, the Supercell_v2 structure also has two 

operation conditions – unbalanced condition and balanced condition. The dispersion 

relations of the Supercell_v2 structure in the unbalanced and balanced condition are 

derived from Eq. (5-21). Figure 5.26(a) and Figure 5.26(b) present the dispersion 

diagram of a Supercell_v2 structure in the unbalanced and balanced condition, 

respectively. In the unbalanced condition shown in Figure 5.26(a), there is an open 

stopband existing at the transition frequency area between the LH and RH band 

within each passband. In the balanced condition, the open stopband is closed to form a 

balanced point at the transition frequency point from the LH band to the RH band 

within each passband. 
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(a) 

 
(b) 

Figure 5.26 Dispersion diagrams of one Supercell_v2 structure in different conditions, (a) the 
unbalanced condition; (b) the balanced condition. 

5.4.2 Passive LWA Design Based On Supercell_v2 Structure 

5.4.2.1 Passive antenna design 

 

Figure 5.27 Configuration of a Supercell_v2 structure. 
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Figure 5.28 Detailed equivalent circuit model of one Supercell_v2 structure.  

Table 5.5 Component values in the equivalent circuit model of one Supercell_v2 structure. 

 

Table 5.6 Dimensions of one Supercell_v2 structure. 

 

A passive microstrip LWA is designed with 7 cascaded Supercell_v2 structures. The 

antenna layout is printed on the substrate of Taconic TLY-5 laminate with thickness of 

1.575 mm, permittivity of 2.2, and loss tangent of 0.0009. The configuration of a 

Supercell_v2 structure is shown in Figure 5.27. The corresponding equivalent circuit 
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model with considering parasitic capacitances and inductances among this 

Supercell_v2 structure is shown in Figure 5.28, and the extracted component values in 

this circuit model are listed in Table 5.5. The steps for extracting these component 

values are same as the ones introduced in Chapter IV. The detailed dimensions of one 

Supercell_v2 structure are listed in Table 5.6. In each Supercell_v2 structure, the 

capacitors of Chs, Cvp, Cvs, Cse, and Cst shown in Figure 5.27 are realized by SMD 

MURATA 0402 chip capacitors with the capacitance of 4.9 pF, 0.1 pF, 1.2 pF, 1.4 pF, 

and 0.1 pF, respectively. The photograph of the fabricated LWA with 7 cascaded 

Supercell_v2 structures is shown in Figure 5.29. The whole length and width of the 

fabricated LWA are 352.5 mm and 45 mm, respectively. 

 

Figure 5.29 Photograph of the passive LWA with 7 cascaded Supercell_v2 structures.  

5.4.2.2 Analysis of Supercell_v2 structure 

Figure 5.30(a) presents the full-wave (blue solid line and red dash line) and 

circuit-model simulated results of S11 and S21 of a Supercell_v2 structure. This 

Supercell_v2 structure forms two distinct passbands respectively at the low and high 

frequencies with separated by a middle separation area as well, which is similar to the 

Supercell_v1 structure. The dispersion relation of a Supercell_v2 structure can be 

derived using Eq. (5-21). Figure 5.30(b) shows the full-wave and circuit-model 

simulated dispersion diagrams of this Supercell_v2 structure. The full-wave simulated 
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dispersion diagram (red solid line) shows that this Supercell_v2 structure has a full 

CRLH band with a balanced point at the transition frequency point from the LH to 

RH band within each passband. 

 
(a) 

 
(b) 

Figure 5.30 Full-wave and circuit-model simulated performances of a Supercell_v2 structure, (a) the 
frequency response; (b) the dispersion diagram. 

There are some differences between the full-wave and circuit-model simulated results. 

The equivalent circuit model in Figure 5.28 does not fully consider all the coupling 

effects among the Supercell_v2 structure. However, the equivalent circuit model can 

provide a fast and convenient way to analyze and understand the characteristics of the 

Supercell_v2 structure. 
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5.4.2.3 Measurement results 

The simulated and measured results of S11 and S21 of the fabricated LWA with 7 

cascaded Supercell_v2 structures are shown in Figure 5.31. The measured results 

show that this LWA has two distinct passbands at the low and high frequencies 

separated by a middle separation area. With respect to the -6 dB bandwidth, the low 

CRLH passband has the bandwidth from 0.88 GHz to 1.56 GHz, whereas the high 

CRLH passband covers from 3.65 GHz to 5.3 GHz. 

 

Figure 5.31 Measured and simulated S11 and S21 of the passive LWA with 7 Supercell_v2 structures. 

The normalized co-polarized farfield patterns at the XOZ plane at the leaky-wave 

radiation regions within two CRLH passbands are shown in Figure 5.32(a) and  

Figure 5.32(b), respectively. Figure 5.32(a) shows that the main beam of this LWA 

scans between -42° to +48° over 0.9-1.3 GHz within the low passband, whereas 

Figure 5.29(a) shows that the main beam of this LWA scans between -42° to +24° 

over 3.8-5.7 GHz within the high passband. Within both passband, the LWA has the 

leaky-wave radiation from the backward to forward direction. The measured and 

simulated gains of this LWA at the leaky-wave regions within both passbands are 
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presented in Figure 5.33. The peak gains of -8.5 dBi and 3.9 dBi are observed within 

the low and high passbands, respectively. 

 
(a) 

 
(b) 

Figure 5.32 Co-polarized simulated and measured normalized farfield leaky-wave radiation patterns at 
the XOZ plane within two passbands, (a) 1.0-1.3 GHz; (b) 3.8-5.7 GHz. 

 

Figure 5.33 Simulated and measured gains of this LWA at the leaky-wave regions within both 
passbands. 
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The differences between the full-wave simulated and measured results in Figure 5.31, 

Figure 5.32, and Figure 5.33 are summarized as the following reasons: 

(1) the fabrication and measurement deviations; 

(2) the loss resulting from soldering. 

 
(a)                        (b)                     

Figure 5.34 Leakage rates of this LWA at the leaky-wave regions, (a) 1.0-1.3 GHz; (b) 3.8-5.7 GHz. 

 

Figure 5.35 Simulated directivities of this LWA at the leaky-wave regions within both passbands. 

This LWA also suffers from low gain, particularly for the low passband, due to the 

limited PCB size which results in that most of the accepted power by this LWA is 

absorbed by an absorption load at one end of the antenna and just a small amount of 

the power is radiated. The leakage rates can be used to reflect this phenomenon. The 
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leakage rates derived from Eq. (5-21) are shown in Figure 5.34. This LWA has high 

leakage rates at the leaky wave regions within both passbands. Similarly, the antenna 

gains will be improved if the LWA is designed with more cascaded Supercell_v2 

structures. According to the simulations, a LWA with 25 cascaded Supercell_v2 

structures can achieve a peak gain of 0.88 dBi within the low passband. The simulated 

directivities of this LWA are presented in Figure 5.35. 

5.4.2.4 Loss of SMD chip capacitors 

 

Figure 5.36 Comparison of the simulated gains of this passive LWA at the leaky-wave regions in the 
lossy and lossless case. 

 

Figure 5.37 Comparison of the simulated total efficiencies of this passive LWA at the leaky-wave 
regions in the lossy and lossless case. 
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In the same way, the losses introduced by the SMD chip capacitors in the LWA 

structure can be evaluated by replacing the real chip capacitors with the ideal lossless 

capacitors in simulation. The comparisons of the simulated gains and total efficiencies 

of the LWA in the lossy and lossless cases are shown in Figure 5.36 and Figure 5.37, 

respectively. Figure 5.36 shows that the losses of 0.5-1.0 dBi over 1.0-1.3 GHz and 

0.5-2.0 dBi over 3.8-5.7 GHz are introduced by all real chip capacitors. Figure 5.37 

shows that the total efficiencies are decreased by all real chip capacitors with 

0.2%-0.9% dBi over 1.0-1.3 GHz and 0.3%-8% over 3.8-5.7 GHz, depending on 

frequencies. 

5.4.2.5 Influence of capacitors on dispersion relation of Supercell_v2 structure 

The influence of the capacitance of different capacitors (i.e., Chs, Cvp, Cvs, Cse, and Cst) 

on the dispersion relation of the Supercell_v2 structure is investigated. Figure 5.38 

presents the comparisons of dispersion diagrams of the Supercell_v2 structure with 

different capacitances of each SMD chip capacitor.  

Figure 5.38(a) shows the capacitance of Chs has almost no obvious influence on both 

the low and high CRLH passbands and the operation condition of each CRLH 

passband. Figure 5.38(b) and Figure 5.38(c) show that the capacitance of Cse and Cvs 

mainly affects the operation condition of the low CRLH passband and secondarily has 

little influence on the operation condition of the high CRLH passband as well. Thus, 

Cse and Cvs can be used to tune the frequency position of the low balanced point while 

almost keeping the position of the high balanced point without destroying the CRLH 
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leaky-wave radiation characteristics of the high CRLH passband simultaneously. In 

Figure 5.33(d) and Figure 5.33(e), the capacitance of Cvp and Cst only affects the 

operation condition of the high CRLH passband without affecting the balanced 

condition of the low CRLH passband at all. Thus, Cvp and Cst can be used to achieve 

independent control of the operation condition of the high CRLH passband. 

  
(a)                                        (b) 

  
(c)                                        (d)                    

 
(e) 

Figure 5.38 Comparison of dispersion diagrams with different capacitances of each capacitor,       
(a) Chs; (b) Cse; (c) Cvs; (d) Cvp; (e) Cst. 

In summary, four major capacitors (i.e., Cse, Cvs, Cvp, and Cst) can be used to achieve 

relatively independent tunability of the balanced point of the low CRLH passband. 
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Simultaneously, the effects on the high CRLH passband resulting from the 

capacitance changing of Cse and Cvs can be slightly compensated by adjusting the 

capacitances of Cvp and Cst. 

5.4.3 Tunable LWA Design Based On Supercell_v2 Structure 

5.4.3.1 Tunable antenna design 

 

Figure 5.39 Configuration of a tunable Supercell_v2 structure. 

Table 5.7 Dimensions of one tunable Supercell_v2 structure. 
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Following by the influence investigations of each capacitor in Figure 5.38, an 

electronically tunable LWA is designed with SMD silicon semiconductor varactors. 

The configuration of a tunable Supercell_v2 structure is shown in Figure 5.39. The 

detailed dimensions of this tunable Supercell_v2 structure are listed in Table 5.7. In a 

single Supercell_v2 structure shown in Figure 5.39, Chs is realized by a SMD 

MURATA 0402 chip capacitor with a fixed capacitance of 4.9 pF. Cse, Cvs, Cvp, and Cst 

are also realized as the DC blocks by MURATA 0402 chip capacitors with 3.6 pF,  

2.4 pF, 0.2 pF, and 0.2 pF, respectively.  

SMD SKYWORKS SMV1234-040LF silicon semiconductor varactors are integrated 

into the Supercell_v2 structure to realize VARse, VARvs, VARvp, and VARst. The 

equivalent model of a SKYWORKS SMV1234-040LF varactor can be also represented 

by the one in Figure 4.22, but with a different set of parameter values. The 

information of this SKYWORKS SMV1234-040LF varactor is included in Appendix C. 

The tuning capacitance range of a varactor is from 9.63 pF with 0 V DC bias to 1.32 

pF with 15 V bias. The capacitance of the DC block capacitor also affects the total 

capacitance tuning range in the corresponding branch. VARse_final, VARvs_final, 

VARvp_final, and VARst_final are used to represent the total capacitance tuning range of 

the varactor combined with the corresponding DC block capacitor in different 

branches, respectively. Thus, the final tuning ranges of VARse_final, VARvs_final, 

VARvp_final, and VARst_final are 2.62-0.97 pF, 1.92-0.86 pF, 0.196-0.174 pF, and 

0.196-0.174 pF from 0 V bias to 15 V bias, respectively.  
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Figure 5.40 Photograph of this tunable LWA with 7 cascaded Supercell_v2 structures.  

In addition, SMD 0402 1 MΩ resistors are used as the RF blocks in this Supercell_v2 

structure. In order to electronically tune the capacitance of the varactors, the positive 

(“+”) DC bias are applied to this tunable Supercell_v2 structure through bias lines. 

The photograph of this fabricated tunable LWA with all SMD components is shown in 

Figure 5.40. This tunable LWA structure consists of 7 cascaded Supercell_v2 

structures. In the bias network, in order to avoid overlapping of these bias lines on the 

same metal layer, the SMD 0805 0 Ω resistors are used as jumpers in this antenna 

structure. The total length and width of the fabricated LWA are 384.5 mm and 70 mm, 

respectively. 

5.4.3.2 Frequency responses 

(1) Initial state 

In the initial state of this LWA, the DC bias applied to VARse, VARvs, VARvp, and 

VARst are 3 V, 0 V, 0 V, and 14.5 V, respectively. Figure 5.41 presents the measured 

and simulated results of S11 and S21 of this LWA in the initial state over 0.5-5.0 GHz. 

In simulations, the equivalent model of this varactor Rs = 0.8 Ω, Ls = 0.45 nH, 

Cp=1.15 pF, and CJ = 3.8 pF is used in the initial state. Figure 5.41 shows that this 
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tunable LWA has two distinct passbands at the low and high frequencies separated by 

a middle separation area. Within this middle separation area, there is an unmatched 

passband over 2.2-2.5 GHz. Because two CRLH passbands are the main interest in 

this LWA design, this unmatched passband is not discussed here. In measurements, 

the -6 dB bandwidth of the low and high passband is 0.79-1.41 GHz and 2.8-4.3 GHz, 

respectively. The measured results show that there is a small open-stopband area 

existing at around 1.08 GHz within the low CRLH passband. 

 

Figure 5.41 Measured and simulated results of S11 and S21 of this tunable LWA in the initial state. 

(2) Tuning and controlling states 

Table 5.8 List of all states with different sets of DC bias voltages. 
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Figure 5.42 Comparison of the measured results of S11 and S21 of the low CRLH passband between 
the initial state and the tuning states. 

 

Figure 5.43 Comparison of the measured results of S11 and S21 of the high CRLH passband between 
the initial state and the tuning states. 

Table 5.8 lists all the states with different applied DC bias voltages. The 2nd, 3rd and 

4th state are defined as the tuning states, whereas the 5th and 6th state are defined as 

the controlling states. For this LWA, the balanced points within the low and high 

CRLH passband are labelled as the low and high balanced point, respectively. For the 

tuning states, the relatively independent tunability of the low balanced point is 

achieved by applying different sets of DC bias voltages to VARse and VARvs with little 

effects on the operation condition and the band coverage of the high CRLH passband. 

For the controlling states, the operation condition of the high CRLH passband is 
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adjusted without obvious effects on the balanced condition of the low CRLH 

passband by applying different sets of DC bias voltages to VARvp and VARst. 

The tuning states (i.e., the 2nd, 3rd, and 4th states) are mainly used to explain the 

relatively independent tunability of the low CRLH passband by applying different sets 

of DC bias voltages to VARse and VARvs. Figure 5.42 shows the comparison of the 

measured results of S11 and S21 for the low CRLH passband between the initial state 

and the tuning states. In Figure 5.42, the low balanced point is electronically tuned 

upwards from the initial state to the 4th state in terms of the operating frequency. In 

the 4th state, the low CRLH passband has the -6 dB bandwidth of 0.81-1.64 GHz. 

Figure 5.43 presents the comparison of the measured results of S11 and S21 for the 

high CRLH passband of this LWA between the initial state and the tuning states. The 

compared results show that the band coverage of the high CRLH passband is affected 

and the operation condition of the high CRLH passband is also affected slightly. In the 

4th state, the -6 dB bandwidth coverage of the high CRLH passband is 3.0-4.3 GHz. A 

small open stopband appears at 3.8 GHz in the 4th state. Therefore, different sets of 

the bias voltages applied to VARse and VARvs and the fixed DC bias to VARvp and 

VARst can mainly achieve the relatively independent tunability of the low CRLH 

passband and have some small effects on the band coverage and operation condition 

of the high CRLH passband. However, the CRLH characteristics within the high 

CRLH passband are maintained even though its band coverage is slightly affected.  
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Figure 5.44 Comparison of the measured results of S11 and S21 of the low CRLH passband between 
the initial state and the controlling states. 

 

Figure 5.45 Comparison of the measured results of S11 and S21 of the high CRLH passband between 
the initial state and the controlling states. 

The effects of different sets of the bias voltages to VARvp and VARst with the fixed 

bias voltages to VARse and VARvs are investigated by comparing the initial state and 

the controlling states. Figure 5.44 shows that the comparison of the measured results 

of S11 and S21 for the low CRLH passband between the initial state and the 

controlling states. The results show that the low CRLH passband is not clearly 

affected in the initial, 5th, and 6th states. Figure 5.45 shows that the comparison of the 

measured results of S11 and S21 for the high CRLH passband between the initial state 

and the controlling states. Figure 5.45 shows that the operation condition of the high 
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CRLH passband changes from the balanced condition in the initial state to the slightly 

unbalanced condition in the 6th state. In the 6th state, a small open stopband between 

the LH and RH band within the high CRLH passband appears at 3.8 GHz. Therefore, 

different sets of the bias voltages applied to VARvp and VARst and the fixed DC bias 

to VARse and VARvs can mainly affect the operation condition of the high CRLH 

passband without affecting the performance of the low CRLH passband. 

In summary, the capacitance tuning of VARse and VARvs by supplying different DC 

bias voltages enables relatively independent tunability of the low balanced point. 

Simultaneously, the capacitance tuning of VARse and VARvs has effects on the band 

coverage of the high CRLH passband and has slight effects on its operation condition. 

However, the conventional CRLH characteristics of the high CRLH passband are 

maintained during the capacitance changing of VARse and VARvs. The capacitance 

tuning of VARvp and VARst is mainly used to adjust the operation condition of the 

high CRLH passband. 

5.4.3.3 Dispersion relations 

The corresponding dispersion relation of this tunable Supercell_v2 structure can be 

derived using Eq. (5-22): 

 𝛽 ∙ P4 = cos−1(
A+D

2
)                  Eq. (5-22) 

Figure 5.46 shows the comparison of the simulated dispersion diagrams of this 

tunable Supercell_v2 structure in the initial and 4th states. It proves the phenomenon 

discovered in Figure 5.42 and Figure 5.43. The low CRLH passband is relatively 
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independently tuned from the initial state to the 4th state with slight effects on the 

operation condition of the high CRLH passband. It is obvious that the low balanced 

point is tuned from 1.03 GHz in the initial state to 1.12 GHz in the 4th state, which 

achieves a relative tunability of around 8.9%. Simultaneously, the operation condition 

of the high CRLH passband is transferred from the balanced condition to the slightly 

unbalanced condition. 

 

Figure 5.46 Comparison of the simulated dispersion diagrams of the single tunable Supercell_v2 
structure between the initial state and the 4th state. 

 

Figure 5.47 Comparison of the simulated dispersion diagrams of the single tunable Supercell_v2 
structure between the initial state and the 6th state. 

Figure 5.47 shows the comparison of the simulated dispersion diagrams of this 

tunable Supercell_v2 structure in the initial and 6th states. It shows that there is no 
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obvious change within the low CRLH passband between the initial and the 4th states. 

However, the high CRLH passband in the 6th state has an open stopband appearing 

between the LH and RH band in comparison with the high CRLH passband in the 

initial state. 

5.4.3.4 Farfield patterns 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 5.48 Co-polarized normalized farfield patterns of the tunable LWA at the XOZ plane, (a) the 
measured results at 1.08 GHz in the initial, 3rd, and 4th states; (b) the measured and simulated results 
over 2.8-4.3 GHz in the initial state; (c) the measured results over 3.0-4.3 GHz in the 3rd state; (d) the 

measured results over 3.0-4.3 GHz in the 4th state. 

This tunable LWA achieves electronically controlled steering of the main beam at a 

fixed frequency within the low CRLH passband while simultaneously maintaining the 

conventional frequency scanning within the high CRLH passband. For the low CRLH 

passband, the measured normalized co-polarized farfield patterns at the XOZ plane 

for the main beam steering within the low CRLH passband are shown in       

Figure 5.48(a). It shows that the main beam of this LWA is electronically steered 

between +18° in the initial state and -12° in the 4th state at a fixed frequency of   

1.08 GHz. For the high CRLH passband, the conventional frequency scanning 

characteristics of the main beam are maintained in the initial, 3rd and 4th state. The 

measured normalized co-polarized farfield patterns at the XOZ plane within the high 

CRLH passband in the initial, 3rd and 4th state are shown in Figure 5.48(b), Figure 

5.48(c), and Figure 5.48(d), respectively. Figure 5.48(b) shows that the main beam 

scans from -48° at 2.8 GHz to +24° at 4.3 GHz in the initial state. Due to the effects 

from the capacitance changing of VARse and VARvs on the band coverage of the high 
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CRLH passband, Figure 5.48(c) shows that the main beam of this antenna scans from 

-36° at 3.0 GHz to +24° at 4.3 GHz in the 3rd state, and Figure 5.48(d) shows that the 

main beam of scans from -36° at 3.0 GHz to +24° at 4.3 GHz in the 4th state as well. 

5.4.3.5 Gains and directivities 

 
(a) 

 
(b) 

Figure 5.49 Gains of this tunable LWA, (a) the simulated and measured results in the initial state;    
(b) the measured results in the 3rd and 4th states. 

Figure 5.49(a) presents the measured and simulated gains of this LWA in the initial 

state as an example. The measured peak gains within the low and high CRLH 

passband are -10 dBi and 3.67 dBi, respectively. Figure 5.49(b) presents the measured 

gains of the LWA in the 3rd and 4th state. Figure 5.49(b) shows that the measured 
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gains of this LWA in the 3rd and 4th states are almost the same as the gains in the 

initial state. The simulated directivities of this LWA are shown in Figure 5.50. 

 

Figure 5.50 Simulated directivities of this tunable LWA at the leaky-wave regions with both passbands. 

 
(a)                          (b) 

Figure 5.51 Leakage rates of this tunable LWA in the initial state at the leaky wave regions with both 
CRLH passbands, (a) 0.9-1.3 GHz; (b) 2.8-4.3 GHz. 

The differences between the full-wave simulated and measured results are 

summarized as the following reasons: 

(1) the fabrication and measurement deviations; 

(2) the loss resulting from soldering; 

(3) the parasitic effects and losses from the SMD components, particularly the 

semiconductor varactors and the 1 MΩ and 0 Ω resistors. 
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Similarly, this tunable LWA also suffers from low gain, particularly for the low 

passband, due to the same reasons that the limited size of the PCB and the antenna 

aperture is ineffective at the low frequencies. The most of the accepted power by this 

LWA is absorbed by an absorption load at one end of the antenna and just a small 

amount of the power is radiated, which results in high leakage rates. The leakage rates 

of this tunable LWA at the leaky wave regions within both CRLH passbands in the 

initial state are also calculated in the same way, which are shown in Figure 5.51. The 

gains of this tunable antenna can be improved by cascading more Supercell_v2 

structures. In simulation, a LWA with 25 Supercell_v2 structures can achieve the peak 

gains of -1.7 dBi and 9.7 dBi within the low and high CRLH passband, respectively. 

5.4.3.6 Loss of varactors and chip capacitors 

The SMD components (e.g., varactors, chip capacitors, 1 MΩ resistors and 0 Ω 

resistors) in this structure introduce some losses to degrade the antenna radiation 

performance. The detailed information of the SKYWORKS SMV1234-040LF silicon 

semiconductor varactor can be found in Appendix C, and the MURATA 0402 chip 

capacitors can be found in Appendix A.  

The losses introduced by all SMD components adversely affect the antenna radiation 

performance. Thus, the losses introduced by the varactors and the chip capacitors are 

evaluated in two scenarios in the simulation. The LWA in the initial state is taken as 

an example for the loss evaluation. In the 1st lossless scenario, the equivalent 

resistance (i.e. Rs) in the equivalent model of the varactor is removed; in the 2nd 



 

156 
 

lossless scenario, the SMD chip capacitors are replaced by the lossless capacitors, in 

addition to the 1st scenario of the removal of Rs.  

 

Figure 5.52 Comparison of the simulated gains the leaky-wave regions within both CRLH passbands in 
the lossy, and the 1st and 2nd lossless scenario. 

 

Figure 5.53 Comparison of the simulated total efficiencies at the leaky-wave regions within both 
CRLH passbands in the lossy, and the 1st and 2nd lossless scenario. 

The comparisons of the simulated gains and total efficiencies of this LWA in the lossy 

case, and the 1st and 2nd lossless scenario are presented in Figure 5.52 and    

Figure 5.53, respectively. After comparing the simulated gain results, it is observed 

that the varactors and chip capacitors introduce the loss of 0.8-2.6 dBi and 0.3-0.8 dBi 

to degrade the antenna gain at the low leaky-wave region, respectively. For the high 
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leaky-wave region, 0.3-1.4 dBi and 0.2-0.7 dBi gain degradations are introduced by 

the varactors and capacitors, respectively. In terms of the total efficiency, it is 

observed that the varactors and chip capacitors result in the decrease of the total 

efficiencies with 0.2%-1.2% within the low CRLH passband and 0.8-4.5% within the 

high CRLH passband, depending on the operating frequencies. 

5.5 Summary 

Table 5.9 Summary of the LWAs in this chapter. 

 

In this chapter, four microstrip dual-band LWAs are presented with step-by-step 
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advances in different leaky-wave radiation characteristics. The LWA based on the 

ECRLH structure with SMD chip capacitors achieves the backward-to-forward 

frequency scanning at the low passband, the forward frequency scanning at the low 

edge of the high passband, and the backward frequency scanning at the high edge of 

the high passband, respectively. The LWAs based on the cascaded Supercell_v1 and 

Supercell_v2 structures with SMD chip capacitors achieve the backward-to-forward 

frequency scanning within both the low and high passbands. Furthermore, an 

electronically tunable LWA with SMD semiconductor varactors achieves relatively 

independent tunability of the low balanced point while maintaining the frequency 

position of the high balanced point and the backward-to-forward CRLH leaky-wave 

characteristics within the high CRLH passband. The summary of the LWAs presented 

in this chapter is listed in Table 5.9. Compared to most existing designs, the LWAs 

based on the Supercell_v1 and Supercell_v2 structures have the following advantages: 

(1) two distinct CRLH passbands and the CRLH backward-to-forward leaky-wave 

radiation characteristics within both passbands; 

(2) for the tunable design, the relative independent tunability of the low balanced 

point with maintaining the frequency position of the high balanced point and the 

CRLH backward-to-forward leaky-wave radiation characteristics within the high 

passbands.  
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CHAPTER VI 

UNCERTAINTY ANALYSIS OF 

DETERMINATION IN PERMITTIVITY OF 

FERROELECTRIC MATERIALS AND 

IMPLICATIONS FOR DESIGN OF             

A CRLH-BASED LEAKY WAVE ANTENNA 

6.1 Introduction 

The FE BST material is one of the most popular tunable materials for microwave 

applications, due to its properties, such as the high electric-field-dependent dielectric 

permittivity and the relatively low dielectric loss tangent at microwave frequencies 

[43]. Depending on the composition and fabrication techniques of BST materials, the 

dielectric permittivity can generally achieve a few hundreds or even thousand, which 

is favorable for miniaturization of antenna or component designs at microwave 

frequencies. Typically, the DC bias voltages of 2-8 V/um are applied across the BST 

material in order to tune its permittivity by up to 60% [43]. The DC bias voltage 

needed for BST materials is determined by the thickness of the BST layer for a 
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parallel-plate varactor or the gap width in the metallization for a planar varactor [47]. 

The typical thickness of the BST layer is around 0.4-1.0 um or the gap width is 

around 10-50 um. The FE BST materials have been applied to many component 

designs at microwave frequencies, such as tunable antennas and phased arrays based 

on BST varactors [44]-[47], phase shifters [57], [58], and tunable filters [59], [60]. 

This chapter is organized as follows. The FE BST material is briefly introduced in 

Section 6.2. In Section 6.3, a microstrip LWA based on the CRLH structure with 

integration of discrete BST interdigital varactors is described. In Section 6.4, the 

uncertainty analysis in determination of permittivity of the BST material is presented. 

The summary is given in Section 6.5. This work was undertaken as a side project to 

the main work of the thesis and was published in the proceedings of 2015 Joint IEEE 

International Symposium on the Applications of Ferroelectric (ISAF) [61]. 

6.2 Background of BST Material 

Two quantities are generally used to describe the electric-field-dependent permittivity. 

The complex expression of a complex quantity is εr = εr
′ − jεr

′′. εr
′ is the real part 

of the complex permittivity, which expresses the stored energy in the dielectric 

medium and generally referred to as the relative permittivity or dielectric constant; 

and εr
′′  is the imaginary part of the complex permittivity, which expresses the 

dissipated energy in the dielectric medium. The tunability (n) is defined as the ratio of 

εr
′ under zero electric-field bias (0) to εr

′ under a non-zero electric-field bias (E) 
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[43]. The relative tunability (nr) is defined the ratio of the change in εr
′ between the 

zero and a defined electric-field bias with respect to εr
′ under the zero electric-field 

bias [43]. The tunability and the relative tunability are expressed in Eq. (6-1) and   

Eq. (6-2), respectively: 

                           𝑛 = εr
′(0)/ εr

′(E)                   Eq. (6-1) 

                        𝑛𝑟 = [εr
′(0) − εr

′(E)]/εr
′(E)              Eq. (6-2) 

The loss tangent (𝑡𝑎𝑛𝛿) of the BST film is defined as the ratio the imaginary and real 

parts of the dielectric permittivity [43], which is shown in Eq. (6-3): 

                           𝑡𝑎𝑛𝛿 =
Im(εr)

Re(εr)
=

εr
′′

εr
′                    Eq. (6-3) 

The quality factor, i.e., 𝑄 = 1/𝑡𝑎𝑛𝛿, is another way to describe the loss of the 

material [43].  

The FE BST film varactors normally can be constructed in two different types – 

parallel-plate type and co-planar type. Illustrations of a parallel-plate and planar BST 

varactor are shown in Figure 6.1(a) and Figure 6.1(b), respectively. 

The commutation quality factor (CQF) is an important parameter to measure the 

performance of the FE BST varactor, which is expressed in Eq. (6-4) [43]: 

                   CQF = (𝑛 − 1)2/ (𝑛 ∙ 𝑡𝑎𝑛𝛿1 ∙ 𝑡𝑎𝑛𝛿2)            Eq. (6-4) 

where 𝑛  is the tunability defined in Eq. (6-1), 𝑡𝑎𝑛𝛿1  and 𝑡𝑎𝑛𝛿2  are the loss 

tangents of the FE BST varactor under the zero and non-zero DC bias voltages, 

respectively. 
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(a) 

 

(b) 

Figure 6.1 Types of the BST varactors, (a) parallel-plate type; (b) planar type. 

Table 6.1 Comparison of BST with GaAs and MEMS techniques [43]. 

 

The desired parameters of the BST thin-film varactors at microwave frequencies have 

been briefly summarized: (1) low loss tangent, i.e., 𝑡𝑎𝑛𝛿 < 0.01; (2) high tunability, 

i.e., 𝑛 > 2 or 𝑛𝑟 > 50%; (3) low loss of production on inexpensive substrates;    

(4) reliability and reproducibility [43]. A comparison of the BST varactor with other 

two types of varactor technologies, i.e., GaAs semiconductor varactors and 

micro-electrical mechanical systems varactors, is presented in Table 6.1 [34]. 
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Obviously, compared to GaAs and MEMS varactors, the varactors with BST materials 

are a very good option for tunable component designs at microwave frequencies.  

6.3 CRLH-Based LWA with BST Varactors 

                              
(a)                                  (b) 

                  

     (c)                                  (d) 

Figure 6.2 Expanded views of the CRLH unit cell with and without BST varactors, (a) top view 
without BST varactors; (b) top view with BST varactors; (c) perspective view without BST varactors; 

(d) perspective view with BST varactors. 
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(a)                                        (b) 

    
(c)                                         (d) 

Figure 6.3 Expanded views of the discrete BST varactors, (a) top view of BST_varactor_1; (b) top view 
of BST_varactor_2; (c) perspective view of BST_varactor_1; (d) perspective view of BST_varactor_2. 

A microstrip LWA based on the CRLH structure with discrete FE BST interdigital 

varactors has been simulated in the software CST Microwave Studio. This antenna 

structure is composed of multiple cascaded CRLH unit cells with discrete BST 

varactors. The discrete BST varactors are integrated with the antenna structure in a 

flip-chip way. This antenna is simulated on Rogers RT/duroid 6002 of thickness 0.762 

mm, permittivity 2.94, and loss tangent 0.0012. Expanded views of one CRLH unit 

cell without the BST varactors and with the BST varactors are shown in Figure 6.2(a), 

Figure 6.2(b), Figure 6.2(c), and Figure 6.2(d), respectively. In this unit cell structure, 

three BST varactors are used as discrete tuning elements. Two identical BST varactors 

are represented as BST_varactor_1, while the other one is represented as 

BST_varactor_2. Expanded views of BST_varactor_1 and BST_varactor_2 are 

presented in Figure 6.3. The detailed dimensions of the CRLH unit cell, 
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BST_varactor_1 and BST_varactor_2 are listed in Table 6.2. 

Table 6.2 Dimensions of one CRLH unit cell and BST varactors. 

 

For BST_varactor_1 and BST_varactor_2, the BST layers used in the varactors are 

assumed to have the thickness of 600 nm. The BST films are grown on MgO 

substrates with thickness of around 0.5 mm, which was suggested by Dr M. M. 

Kechik and Dr T. J. Jackson [61]. The relative permittivity of MgO is 9.9. The gold 

layer is grown on the BST layer. For design purpose, the parameters closely to the 

BST layer at microwave frequencies were taken from typical literature values. Table 

6.3 lists some parameters of the BST varactors in the antenna design in the simulation. 

Table 6.3 Some parameters of the BST varactors in the LWA design in the simulation. 
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Figure 6.4 Simulated S11 and S21 of the CRLH unit cell in the initial and final state. 

 

Figure 6.5 Simulated dispersion diagram of the CRLH unit cell in the initial and final state. 

In the initial state, Figure 6.4 shows the simulated S11 and S21 of one CRLH unit cell 

with BST varactors under the 0 V DC bias voltages. The corresponding dispersion 

diagram can be derived using Eq. (3-26), which is shown in Figure 6.5. In the initial 

state that the 0 V bias is applied to both BST_varactor_1 and BST_varactor_2, i.e., 

εr
′ of both BST films is 400, the resonant frequency of the single CRLH TL unit cell 

is at 2.4 GHz. Figure 6.5 shows that a balanced point exists at the transition frequency 

point of 2.4 GHz from the LH band to the RH band. 



 

167 
 

       
(a)                                         (b) 

Figure 6.6 Configurations of the unit cell with feeding lines and bias lines, (a) without BST varactors;  
(b) with BST varactors. 

Table 6.4 Dimensions of the feeding lines and bias lines. 

 

In the final state, it is assumed that εr
′ of BST_varactor_1 and BST_varactor_2 can 

be electronically tuned from 400 to 200 and from 400 to 250, respectively, i.e., the 

tunability of 50% and 37.5%, respectively. The resonant frequency of the unit cell is 

tuned by 7.1% totally. The simulated S parameters and corresponding dispersion 

diagram of the unit cell in the final state are also shown in Figure 6.4 and Figure 6.5, 

respectively. Figure 6.4 shows the resonant frequency shifts upwards by 170 MHz. 

Figure 6.5(b) shows the balanced point of this unit cell is at 2.57 GHz. 

The configurations of the single unit cell with the feeding lines and bias lines are 

shown in Figure 6.6(a), and the complete unit cell with BST varactors is shown in 

Figure 6.6(b). The dimensions of the feeding lines and bias lines are listed in Table 6.4. 
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The bias lines are mainly composed of a quarter-wavelength (λ/4) microstrip line and 

a radial stub. The bias lines are used to supply “+” DC bias voltages to all BST 

varactors in order to tune the permittivity of the BST films. 

 

Figure 6.7 Complete configuration of the LWA with BST varactors. 

 

Figure 6.8 Simulated S parameters of the LWA in the initial state. 

 

Figure 6.9 Simulated farfield patterns of the LWA over 2.2-2.6 GHz in the initial state. 
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Figure 6.10 Simulated gains in dBi of the LWA over 2.1-2.6 GHz in the initial state. 

 

Figure 6.11 Simulated S parameters of the LWA in the final state. 

The complete configuration of the proposed LWA with discrete BST varactors is 

shown in Figure 6.7. In this antenna structure, 10 CRLH unit cells with discrete BST 

varactors are cascaded together as the main antenna aperture. The simulated S 

parameters of this LWA in the initial state are presented in Figure 6.8. The operating 

frequency of the LWA is at 2.4 GHz in the initial state. The -6 dB bandwidth of this 

operating band is from 1.9 GHz to 2.7 GHz. The simulated normalized farfield 

patterns at the XOZ plane over 2.2-2.6 GHz at the leaky-wave regions are plotted in 

Figure 6.9. This LWA scans from -50° to +55° over 2.2-2.6 GHz. The simulated gains 

in dBi of this LWA at the leaky-wave radiation regions are presented in Figure 6.10. 
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The simulated peak gain at the leaky-wave regions is -0.3 dBi at 2.5 GHz. The gain 

can be improved by cascading more unit cells in the LWA structure. 

 

Figure 6.12 Simulated farfield patterns of the LWA over 2.4-2.8 GHz in the final state. 

 

Figure 6.13 Simulated gains in dBi of the LWA over 2.2-3.0 GHz in the final state. 

The simulated S parameters, the normalized farfield patterns at the XOZ plane, and 

the simulated farfield gains of this tunable LWA in the final state are shown in Figure 

6.11, Figure 6.12, and Figure 6.13, respectively, using the same BST parameters for 

the single tunable unit cell. The balanced frequency point of the LWA in the final state 

is at 2.5 GHz. With respect to the -6 dB bandwidth, this antenna works from 2.0 GHz 

to 2.9 GHz. The operation frequency of the LWA shifts from 2.4 GHz to 2.6 GHz with 

a tunability of 4.1%. In this state, the main beam of the antenna scans from -55° to 
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+45° over 2.4-2.8 GHz. The simulated peak gain of the LWA within the leaky-wave 

radiation region is -0.1 dBi at 2.6 GHz. 

 

Figure 6.14 Comparison of the simulated gains in dBi of the LWA in the lossy and lossless cases under 
0 V DC bias voltages. 

The losses introduced by the BST materials in the LWA structure can be analyzed by 

comparing the lossy case and the lossless cases. In this 1st lossless case that the loss 

tangent of the BST films is set to be zero, i.e., 𝑡𝑎𝑛𝛿 = 0, the simulated gains of LWA 

with the lossless BST materials under the 0 V DC bias voltages are shown in   

Figure 6.14. In the 2nd lossless case that the entire varactors are assumed to be 

lossless, the simulated gains with the entire lossless varactors under the 0 V DC bias 

voltages are also shown in Figure 6.14. After comparing the simulated gain results in 

Figure 6.14, around 0.5-0.8 dBi gain differences for the 1st lossless case and    

0.9-2.3 dBi gain differences for the 2nd lossless case are observed, respectively. Thus, 

the BST materials in the antenna structure introduce around 0.5-0.8 dBi and all the 

varactors introduce around 0.9-2.3 dBi gain degradation for the LWA radiation 

performance. 
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6.4 Uncertainty Analysis 

Table 6.5 Some parameters used in the uncertainty analysis. 

 

In this section, the uncertainty in the determination of the BST permittivity is 

analyzed. It can be imagined that the “known” value is actually an expected value 

with a standard deviation which describes the probability that a particular varactor’s 

permittivity will be within a certain range around the expected value. The expected 

value is obtained from a characterization process. The uncertainty the determination 

of the BST permittivity will influence the initial capacitance (i.e., under 0 V DC bias 

voltages), which will further affect the initial state of the proposed LWA in Section 6.3. 

Specifically, the proposed LWA in the initial state was designed to work under the 

balanced condition. However, if the permittivity of BST materials is sufficiently 

different from the expected value, then there may result in a deviation from the 

balanced condition, causing an open stopband to exist between the LH and RH band. 
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Thus, the uncertainty analysis the determination of the BST permittivity can help us 

consider the uncertainty in the design. In this section, the uncertainty analysis of the 

calculation of the permittivity from the materials’ characterization process is the main 

focus. 𝜀𝑟_𝐵𝑆𝑇 is the effective permittivity of the BST layer that we expect to calculate 

using the conformal mapping method. 

 

Figure 6.15 Two-layer CPW TL model. 

The analysis is based on a two-layer CPW TL model in order to characterize the BST 

permittivity. The two-layer CPW model is presented in Figure 6.15. The dimensions 

of this CPW model are also represented in Figure 6.15. The BST layer is in the middle 

between the metal layer and the MgO substrate. Table 6.5 lists some parameters used 

in the uncertainty analysis. 

The S parameters can be obtained from the full-wave simulations of this CPW model. 

For the analysis, the data are provided using the software SONET EM simulation [61]. 

Then, the transmission ABCD matrix can be obtained from the S parameters using the 

following equations: 

                       𝐴 =
(1+S11)(1−S22)+S12S21

2S21
                   Eq. (6-5) 
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                       𝐵 = 𝑍0
(1+S11)(1+S22)−S12S21

2S21
                 Eq. (6-6) 

                      𝐶 =
1

𝑍0

(1−S11)(1−S22)−S12S21

2S21
                  Eq. (6-7) 

                      𝐷 =
(1−S11)(1+S22)+S12S21

2S21
                   Eq. (6-8) 

The complex propagation constant (𝛾) of this CPW TL structure is expressed by 

                           𝛾 = 𝛼 + 𝑗𝛽                         Eq. (6-9) 

where 𝛼 is the attenuation constant and 𝛽 is the phase constant.  

 

Figure 6.16 Two-port network in the transmission ABCD matrix. 

 

Figure 6.17 Equivalent circuit model of the CPW TL structure. 

The two-port network, which is shown in Figure 6.16, can be expressed in terms of 

the ABCD matrix. For a lossy TL, the ABCD matrix can be re-written as below [61]: 

                           𝐴 = cosh (𝛾𝐿𝐶𝑃𝑊)                   Eq. (6-10) 

                           𝐵 = 𝑍0sinh (𝛾𝐿𝐶𝑃𝑊)                  Eq. (6-11) 

                           𝐶 =
1

𝑍0
sinh (𝛾𝐿𝐶𝑃𝑊)                  Eq. (6-12) 

                           𝐷 = cosh (𝛾𝐿𝐶𝑃𝑊)                   Eq. (6-13) 

Thus, Eq. (6-9) can be re-expressed in terms of the elements “A” and “D”: 
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                         𝛾 =
1

𝐿𝐶𝑃𝑊
acosh (

A+D

2
)                  Eq. (6-14) 

The attenuation constant (𝛼) and the phase constant (𝛽) can be further derived using 

Eq. (6-14) and Eq. (6-9). The characteristic impedance of this CPW TL is expressed 

using the elements “B” and “C” in Eq. (6-15): 

                             𝑍𝑐 = √
𝐵

𝐶
                         Eq. (6-15) 

The equivalent circuit model of this CPW TL is shown in Figure 6.17. The 

propagation constant and the characteristic impedance of this TL can be written in Eq. 

(6-16) and Eq. (6-17), respectively: 

                    𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)          Eq. (6-16) 

                            𝑍𝑐 = √
𝑅+𝑗𝜔𝐿

𝐺+𝑗𝜔𝐶
                      Eq. (6-17) 

The “R”, “L”, “G”, and “C” in the equivalent circuit model can be calculated using 

the following equations: 

                            R = Re(𝛾 ∙ 𝑍𝑐)                    Eq. (6-18) 

                           L =
1

𝜔
Im(𝛾 ∙ 𝑍𝑐)                   Eq. (6-19) 

                             G = Re(𝛾/𝑍𝑐)                    Eq. (6-20) 

                            C =
1

𝜔
Im(𝛾/𝑍𝑐)                   Eq. (6-21) 

In [62], the effective permittivity of the complete CPW structure is shown to be 

calculated using Eq. (6-22): 

             𝜀𝑒𝑓𝑓 = 1 + 𝑞1(𝜀𝑟_𝐵𝑆𝑇 − 𝜀𝑟_𝑠𝑢𝑏)/2 + 𝑞2(𝜀𝑟_𝑠𝑢𝑏 − 1)/2    Eq. (6-22) 

where the filling factors 𝑞1 and 𝑞2 can be respectively calculated by 

                           𝑞1 =
𝐾(𝑘1)

𝐾(𝑘1
′ )

𝐾(𝑘0
′ )

𝐾(𝑘0)
                     Eq. (6-23) 
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                           𝑞2 =
𝐾(𝑘2)

𝐾(𝑘2
′ )

𝐾(𝑘0
′ )

𝐾(𝑘0)
                     Eq. (6-24) 

𝐾(𝑘𝑖) and 𝐾(𝑘𝑖
′) are the complete elliptic integrals of the first kind with 𝑘𝑖

′ =

√1 − 𝑘𝑖
2, 𝑖 = 0,1,2, ⋯. The complete elliptic integrals of the first kind can be found 

in [9]. In the above expressions, the parameters 𝑘0, 𝑘1, and 𝑘2 are closely related to 

the dimensions shown in Figure 6.15, which are expressed in Eq. (6-25), Eq. (6-26), 

and Eq. (6-27), respectively [62]: 

                             𝑘0 =
𝑤/2

𝑤/2+𝑠
                       Eq. (6-25) 

                           𝑘1 =
sinh(

𝜋𝑤/2

2𝐻1
)

sinh[
𝜋(

𝑤
2

+𝑠)

2𝐻1
]

                     Eq. (6-26) 

                            𝑘2 =
sinh(

𝜋𝑤/2

2𝐻
)

sinh[
𝜋(

𝑤
2

+𝑠)

2𝐻
]

                     Eq. (6-27) 

where 𝐻 is the total thickness of the two-layer substrate, i.e., 𝐻 = 𝐻1+𝐻2. The 

parameters 𝑘0
′ , 𝑘1

′ , and 𝑘2
′  are calculated by 𝑘0

′ = √1 − 𝑘0
2 , 𝑘1

′ = √1 − 𝑘1
2, and 

𝑘2
′ = √1 − 𝑘2

2, respectively.  

 
(a)                         (b)                          (c) 

Figure 6.18 Equivalent models, (a) the equivalent CPW with air filling, i.e., 𝜀𝑟 = 1; (b) the equivalent 
CPW model with permittivity of (𝜀𝑟_𝑠𝑢𝑏 − 1); (c) the equivalent CPW model with permittivity of 

(𝜀𝑟_𝐵𝑆𝑇 − 𝜀𝑟_𝑠𝑢𝑏). 

In the conformal mapping method, in order to get the permittivity of the BST film 

material, the CPW model is mapped to three equivalent models – the model of the 

CPW with air filling, the equivalent CPW model with (𝜀𝑟_𝑠𝑢𝑏 − 1) permittivity, and 

the equivalent CPW model with (𝜀𝑟_𝐵𝑆𝑇 − 𝜀𝑟_𝑠𝑢𝑏) permittivity, which are shown in 
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Figure 6.18(a), Figure 6.18(b), and Figure 6.18(c), respectively [62]. The total 

capacitance of the main CPW model (𝐶𝑡𝑜𝑡) is the sum of the capacitances of three 

equivalent CPW models [62]: 

                           𝐶𝑡𝑜𝑡 = 𝐶0 + 𝐶2 + 𝐶1                 Eq. (6-28) 

where 𝐶0, 𝐶2, and 𝐶1 are calculated by 

                            𝐶0 = 4𝜀0
𝐾(𝑘0)

𝐾(𝑘0
′ )

                     Eq. (6-29) 

                          𝐶2 = 2𝜀0(𝜀𝑟_𝑠𝑢𝑏 − 1)
𝐾(𝑘2)

𝐾(𝑘2
′ )

              Eq. (6-30) 

                       𝐶1 = 2𝜀0(𝜀𝑟_𝐵𝑆𝑇 − 𝜀𝑟_𝑠𝑢𝑏)
𝐾(𝑘1)

𝐾(𝑘1
′ )

            Eq. (6-31) 

𝐶𝑡𝑜𝑡 can also be calculated in Eq. (6-32): 

                         𝐶𝑡𝑜𝑡 = 4𝜀0𝜀𝑒𝑓𝑓
𝐾(𝑘0)

𝐾(𝑘0
′ )

                   Eq. (6-32) 

In this conformal mapping process, it is assumed that the total capacitance of the main 

CPW model is equivalent to the “C” in Figure 6.17, i.e., 𝐶𝑡𝑜𝑡 = 𝐶.  Thus, the 

effective permittivity of the structure is calculated by 

                           𝜀𝑒𝑓𝑓 =
𝐶∙𝐾(𝑘0

′ )

4𝜀0∙𝐾(𝑘0)
                     Eq. (6-33) 

The permittivity of the BST film material is further calculated in Eq. (6-34): 

                    𝜀𝑟_𝐵𝑆𝑇 =
2(𝜀𝑒𝑓𝑓−1)+𝑞2+(𝑞1−𝑞2)𝜀𝑟_𝑠𝑢𝑏

𝑞1
             Eq. (6-34) 

In measurement, three key parameters (i.e., 𝑤/2, 𝑠, and 𝐻1) are considered as the 

major contributors to the uncertainty in the extracted permittivity of the BST material 

using the conformal mapping method [61], due to the experiences from [62] and [63] 

that the thickness of the BST film and the dimensions of the signal line and gap width 

of the CPW TL are the major factors considered in the uncertainty analysis. These 

parameters with different sets of the corresponding standard deviations will trigger 
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uncertainty in the derived 𝜀𝑟_𝐵𝑆𝑇. The standard deviations come from the process for 

deposition and lithography of the films and are determined from multiple 

measurements assumed to follow a normal distribution. The uncertainty ratio (𝑈𝑖) in 

percentage are used to express the uncertainty influence, which is calculated by [61] 

                        𝑈𝑖 =
𝜎𝑖

2

𝜎𝑡𝑜𝑡
2 ,   𝑖 = 1, 2, ⋯                 Eq. (6-35) 

where 𝜎𝑡𝑜𝑡
2 = ∑ 𝜎𝑖

2, 𝑖 = 1, 2, ⋯. 

Table 6.6 The first case of the key parameters with corresponding standard deviation. 

 

 

Figure 6.19 Distribution of uncertainties in BST permittivity in the first case. 

The software MATLAB is used for analysis of the uncertainty influence and 

calculation of the uncertainty ratio. The Gaussian distributions of values of 𝑤/2, 𝑠, 

and 𝐻1 are generated by the MATLAB codes which are shown in Appendix B. Then, 



 

179 
 

one distribution of relative permittivity of the BST film at the chosen target 

frequencies are generated for each key parameter [61]. The standard deviation of the 

extracted permittivity distribution (i.e.,  𝜎𝑖 , 𝑖 = 1, 2, ⋯) for three key parameters 

respectively are used in calculation of the uncertainty index (i.e., 𝑈𝑖 ) using       

Eq. (6-35). 

Table 6.7 The second case of the key parameters with corresponding standard deviation. 

 

 

Figure 6.20 Distribution of uncertainties in BST permittivity in the second case. 

The first case of the key parameters and their corresponding standard deviations is 

listed in Table 6.6. In this case, the standard deviation for each key parameter came 

from the examination of the CPW TL in the scanning electron microscope and 

experience of reproducibility of the thickness measurements by a stylus profiler [61]. 
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The distributions of the uncertainties at 1, 2.5, 10, 20, 30, and 40 GHz are calculated 

and shown in Figure 6.19. Figure 6.19 shows that the uncertainty ratio in 𝜀𝑟_𝐵𝑆𝑇 is 

primarily dominated by the standard deviation of the gap width ( ∆𝑠 ), and is 

secondarily dominated by the standard deviation of thickness of the BST material 

(∆𝐻1). 

The key parameters in the second case have smaller standard deviations from 

lithography, as listed in Table 6.7. In this case, the distributions of the uncertainties 

are shown in Figure 6.20. In this case, the uncertainty ratio in 𝜀𝑟_𝐵𝑆𝑇 is primarily 

dominated by thickness of the BST material (∆𝐻1), and is secondarily dominated by 

the standard deviation of the gap width (∆𝑠). 

After comparing the uncertainty ratio in two cases, the conclusions can be drawn as 

follows: (1) different values of the standard deviations in the key parameters show 

different presentations of the uncertainty ratio of the BST permittivity; (2) the 

uncertainty ratio remains almost same at different frequencies. Therefore, the 

parameters that dominate the uncertainty ratio should be carefully considered in the 

design. 

6.5 Summary 

In this chapter, an electronically tunable LWA based on the CRLH structure with 

discrete FE BST interdigital varactors was presented. The BST varactors integrated 

into the LWA structure enable the frequency tunability of the CRLH-based LWA. This 
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LWA provides a good way to integrate the antenna structure with BST materials. Most 

existing BST-based antenna designs use an entire piece of the BST layer in antenna 

designs, which can introduce unnecessary losses to degrade the antenna radiation 

performance. With discrete BST varactors in the LWA structure, the losses from the 

BST materials can be reduced, so that the antenna radiation performance may be 

improved. In addition, the uncertainty analysis for the BST material is investigated 

using the conformal mapping method. The uncertainty ratios show different 

proportions with different sets of the standard deviation of the parameters and remain 

almost same at different frequencies. The uncertainty analysis can help us carefully 

consider the influence from the geometric deviations in the design, thereby helping us 

further optimize the design. 

In principle, one could use the uncertainty in ε′ to find uncertainty in the capacitance 

values of BST_varactor_1 and BST_varactor_2, and then use multiple CST 

simulations to find an uncertainty in the predicted the frequency of the balanced point, 

gain, etc. In the paper, we assumed the “worst-case” value of εr
′ and looked at how 

those affected the antenna. If one knows such limits, it is then possible to say whether 

a design can be realized with high yield in practice, or whether a fabricated antenna is 

performing as well as can be expected given the reliability of the input data. If it is 

worse than you would predict the process of manufacturing the antenna might be 

suspect. Alternatively, the design can aim for designs robust against the uncertainties 

in the input parameters. 

 



 

182 
 

 

CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

In this thesis, metamaterial-inspired RAs and LWAs have been presented for 

multiband or frequency-agile applications. The open-ended RAs based on one 

ECRLH unit cell structure achieve the multiband or frequency tunable characteristics. 

The microstrip LWAs based on the metamaterial-inspired structures (i.e., Supercell_v1 

and Supercell_v2) achieve the dual-passband features with the CRLH leaky-wave 

characteristics within both passband. An electronically tunable LWA based on the 

Supercell_v2 structure achieves the relatively independent control of the low balanced 

point with keeping the frequency position of the high balanced point and maintaining 

the backward-to-forward leaky-wave radiation characteristics within the high 

passband. Besides, as additional research, a microstrip LWA with discrete BST 

varactors has been demonstrated in simulations. Furthermore, the uncertainty in the 

determination of the BST permittivity has been analyzed in order to provide design 

clues and optimize the design process. 
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7.1.1 Class of Metamaterial-Inspired RAs 

The class of three open-ended metamaterial-inspired RAs based on one ECRLH unit 

cell structure has been proposed in Chapter IV for multiband or frequency-agile 

applications. As an extension of conventional metamaterial-inspired RAs, the ones in 

this class can generate multiple operating resonances working at the chosen 

frequencies. The passive RAs with chip capacitors and IDSs achieve multiband 

properties and support diverse wireless frequency bands over 0.5-6.0 GHz. An 

electronically tunable RA with one semiconductor varactor achieves the frequency 

tunability of one operating resonance at the low frequency without destroying the 

wideband coverage formed by the other operating resonances. This class of the RAs 

has great potentials and is a good reference to design the small antennas for multiband 

applications. The investigation of the multiband or frequency-tunable characteristics 

in these designs enables new structures of small antennas with supporting a variety of 

commercial frequency bands in modern cellular wireless communication systems. 

7.1.2 Class of Dual-Passband LWAs 

The dual-passband LWAs based on the ECRLH and new metamaterial-inspired 

supercell structures have been presented and investigated in Chapter V. According to 

the observation that the presented LWA based on the ECRLH structure does not have 

the backward-to-forward leaky-wave radiation characteristics within its high passband, 

the LWAs based on the metamaterial-inspired Supercell_v1 and Supercell_v2 

structures have been proposed to realize the backward-to-forward leaky-wave 

radiation characteristics within both passbands. Furthermore, a microstrip 
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electronically tunable LWA based on multiple cascaded Supercell_v2 structures has 

been designed to achieve the relatively independent tunability of the low balanced 

point while keeping the frequency position of the high balanced point and maintaining 

the backward-to-forward leaky-wave radiation characteristics within the high CRLH 

passband. The dual-passband LWAs with the backward-to-forward leaky-wave 

radiation characteristics can be used for dual-band high-directivity or communication 

applications. The investigation of the supercell structures may be used as references to 

design different kinds of antennas. 

7.1.3 Class of BST-Based Antennas 

In Chapter VI, a microstrip CRLH-based LWA with discrete BST thin-film flip-chip 

varactors has been designed and demonstrated in the simulation. Its balanced point is 

demonstrated to achieve relative frequency tunability of 4.1% in the simulation. Due 

to the importance of the BST permittivity for tunable antenna designs, the uncertainty 

analysis in the determination of the FE BST permittivity has been performed. The 

uncertainty ratios relate the standard deviations in the geometric parameters to the 

uncertainty in the BST permittivity. Moreover, the uncertainty ratios remain similar at 

different frequencies. The LWA design with discrete BST varactors provides a good 

way to integrate the antenna structure with BST materials. Furthermore, the 

uncertainty analysis in determination of the BST permittivity can provide useful clues 

when we are designing a BST-based antenna. The analysis results can tell us which 

geometric parameters affect the BST permittivity. We need to take the permittivity 

deviation into consideration about its influence on the antenna performance      
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(e.g., frequency response and beam direction) or appropriately reduce the expectation 

about the accuracy requirement on the antenna performance. 

Based on the above statements, the antenna characteristics, achievements, meanings 

and studies of three classes of the antennas in this thesis are summarized in Table 7.1. 

Table 7.1 Summary of the antenna characteristics, achievements, meanings and studies of three classes 
of antennas in this thesis. 

 

7.2 Future Research 

In this thesis, antenna designs based on different metamaterial-inspired structures for 
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multiband or frequency-agile applications have been presented. The combinations of 

different metamaterial-inspired structures with antenna designs are still a hot on-going 

open research topic. Thus, the future research directions of antenna designs based on 

different metamaterial-inspired structures can be summarized as follows: 

(1) For metamaterial-inspired RAs, there are two major future research directions: 

a. Investigate the antenna characteristics of open-ended RA designs with 

multiple ECRLH unit cells; 

b. Investigate the antenna characteristics of short-ended RA designs with one or 

multiple ECRLH unit cells. 

(2) For metamaterial-inspired LWAs, there are two major future research directions as 

well: 

a. Develop a LWA design with 2-D multi-layer frequency selective surfaces 

based on the proposed metamaterial-inspired structures for high-directivity 

and high-gain applications; 

b. Develop novel metamaterial-inspired supercell structures with new 

characteristics, and apply them to LWA designs. 

(3) For BST-based antennas, there are two major future research directions: 

a. Fabricate the LWA using discrete BST varactors introduced in Chapter VI for 

practical demonstration; 

b. Design a phased array with BST materials for electronically controlled beam 

steering functions.  
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Appendix A 

Brief Datasheet of MURATA 0402 Chip Capacitor 
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Appendix B 

Datasheet of MICROSEMI MV34002 Semiconductor Varactor 
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Appendix C 

Datasheet of SKYWORKS SMV1234-040LF Silicon Semiconductor Varactor 
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Appendix D 

MATLAB Function 1 

function 

[f_c,er1_BST_c]=Conformal_Mapping_BST_20150311(Tdata,par,flag,f_p) 

  

Z = 50; 

c0=3e8; 

e0=8.854e-12; 

l = 2500e-6;                % Length of transmission line 

H2=500e-6;                  % Thickness of substrate 

gpw=250e-6;                 % ground plane width 

Target_Er_sub=9.9;          % Permittivity of substrate in measurement 

 

Er2=Target_Er_sub; 

  

if (flag==1) 

    s=par/2*1e-6; % half width of centre conductor 

    g=25e-6; % gap width    

    H1=0.6e-6; % thickness of substrate 

elseif (flag==2) 

    s=25e-6; % half width of centre conductor 

    g=par*1e-6; % gap width 

    H1=0.6e-6; % thickness of substrate 

elseif (flag==3) 

    s=25e-6; % half width of centre conductor 

    g=25e-6; % gap width 

    H1=par*1e-6; % thickness of substrate 

end 

  

H=H1+H2;                    % Entire Thickness of two-layer substrate 

  

%% Reading S parameters Data from the data table 

f = Tdata(:,1).*1e9;      % frequency vector - first column of Tdata 

S11_real = Tdata(:,2) .* cos( Tdata(:,3) * pi/180); 

S11_img  = Tdata(:,2) .* sin( Tdata(:,3) * pi/180); 

S11      = S11_real + 1i*S11_img; 

S21_real = Tdata(:,4) .* cos( Tdata(:,5) * pi/180); 

S21_img  = Tdata(:,4) .* sin( Tdata(:,5) * pi/180); 

S21      = S21_real + 1i*S21_img; 
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S22_real = Tdata(:,8) .* cos( Tdata(:,9) * pi/180); 

S22_img  = Tdata(:,8) .* sin( Tdata(:,9) * pi/180); 

S22      = S22_real + 1i*S22_img; 

S12_real = Tdata(:,6) .* cos( Tdata(:,7) * pi/180); 

S12_img  = Tdata(:,6) .* sin( Tdata(:,7) * pi/180); 

S12      = S12_real + 1i*S12_img; 

  

f_c=f(f_p,1); 

 

%% Extracting ABCD parameters from Scattering parameters 

Aa = (1./(2.*S21)) .* (       ((1+S11).*(1-S22))+(S21.*S12)  ); 

Bb = (1./(2.*S21)) .* (Z   *( ((1+S11).*(1+S22))-(S12.*S21) )); 

Cc = (1./(2.*S21)) .* (1/Z *( ((1-S11).*(1-S22))-(S12.*S21) )); 

Dd = (1./(2.*S21)) .* (       ((1-S11).*(1+S22))+(S12.*S21)  ); 

% A_c=Aa(f_p,1); 

% B_c=Bb(f_p,1); 

% C_c=Cc(f_p,1); 

% D_c=Dd(f_p,1); 

  

%% Extracting propagation constant gamma 

gamma = (1/l).*(acosh((Aa+Dd)./2)); 

% gamma = 1/l*(acosh((A_c+D_c)/2)); 

alpha = real(gamma); %this has units of 'Neper' 

beta = imag(gamma); %this has units of rads per metre 

phi_gamma = atan(beta/alpha); %this is the phase of gamma 

  

%% Creating continuous beta from discontinuous beta due to standing waves 

beta_s = unwrap(beta,pi/l); 

  

%% gamma correction 

gamma_shifted = alpha + 1i.*beta_s; 

  

%% Conformal mapping definitions for BST thin film 

k0=s/(s+g); 

k0p=sqrt(1-k0^2); 

  

k1=sinh(pi*s/(2*H1))/sinh(pi*(s+g)/(2*H1)); 

k1p=sqrt(1-k1^2); 

  

k2=sinh(pi*s/(2*H))/sinh(pi*(s+g)/(2*H)); 

k2p=sqrt(1-k2^2); 

  

% The elliptic integrals of the first kind for k0,k1,k2 

Elliptic_Ratio_k0=ellipke(k0p)/ellipke(k0); 
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Elliptic_Ratio_k2=ellipke(k2p)/ellipke(k2); 

Elliptic_Ratio_k1=(2/pi)*log(4/k1);      % Version 1 

  

q1=Elliptic_Ratio_k0/Elliptic_Ratio_k1; 

q2=Elliptic_Ratio_k0/Elliptic_Ratio_k2; 

  

%% Impedance Calculation 

Z0_BC = (Bb./Cc).^0.5; 

phi_z = atan(imag(Z0_BC)./real(Z0_BC)); 

  

%% Calculation of RLGC paramters 

R = real(Z0_BC.*gamma_shifted); 

L = imag(Z0_BC.*gamma_shifted)./(2*pi*f_c); 

C = imag(gamma_shifted./Z0_BC)./(2*pi*f_c); 

G = real(gamma_shifted./Z0_BC); 

  

%% Permittivity calculation - effective permittivity 

eps_eff=(C./(4*e0)).*Elliptic_Ratio_k0;   

  

%% Thin Film Permittivity calculation - er1_BST and loss tangent 

er1_BST=(2.*(eps_eff-1)+q2+(q1-q2).*Er2)./q1; 

 

end 

MATLAB Function 2 

clear all; 

close all; 

clc; 

  

  

%% Global Parameters 

filename='CPW21.xls'; 

Tdata = xlsread(filename); 

  

H2=500e-6;                  % Thickness of substrate 

H1=0.6e-6;                  % Thickness of BST thin film 

s=25e-6;                    % Half width of centre conductor 

g=25e-6;                    % Gap width 

gpw=250e-6;                 % Ground plane width 

Length=2500e-6;             % length of transmission line 

t=500e-9;                   % Thickness of metal conductor 
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H=H1+H2;                    % Entire Thickness of two-layer substrate 

  

Target_Er_BST=400;          % Permittivity of BST in measurement 

Target_TanD_BST=0.02;       % Tangent loss of BST in measurement 

Target_Er_sub=9.9;          % Permittivity of substrate in measurement 

Target_TanD_sub=0.0001;     % Tangent loss of substrate in measurement 

  

  

%% Parameter Deviation Setting 

Para_array=[2*s, g, H1]*1e6; 

Mean_array=Para_array; 

StdVar_array=[1, 1, 0.03]; 

%Step_array=[0.1, 0.2, 0.01]; 

Num_Para=length(Para_array); 

  

factor=1;                   % The standard deviation of the normal 

distribution is factor*StdVar_array(i) 

Num_Samples=61; 

X1=Mean_array(1)+factor*StdVar_array(1)*randn(1,Num_Samples); 

X2=Mean_array(2)+factor*StdVar_array(2)*randn(1,Num_Samples); 

X3=Mean_array(3)+factor*StdVar_array(3)*randn(1,Num_Samples); 

X_array=[X1;X2;X3]; 

  

%% Conformal Mapping for calculation of Eps at 

1GHz,2.5GHz,10GHz,20GHz,30GHz,40GHz. 

TargetFre_array=[1,2.5,10,20,30,40];          % Frequeny unit: GHz 

TargetFrePos_array=[1,31,181,381,481,581]; 

length_TargetFre=length(TargetFrePos_array); 

length_par=Num_Samples; 

fre_value_array=zeros(length_TargetFre,length_par); 

Er_array=zeros(length_TargetFre,length_par); 

  

max_value_DiffSq=zeros(Num_Para,length_TargetFre); 

max_pos_DiffSq=zeros(Num_Para,length_TargetFre); 

Target_std_deviation=zeros(Num_Para,length_TargetFre); 

  

for i=1:Num_Para  % 3 parameters 

% for i=1:1 

    for m=1:length_TargetFre % 6 frequency points 

 %     for m=1:1 

        TargetF_pos=TargetFrePos_array(m);     % The sequence of target 

frequency point (GHz) 

        for n=1:length_par % 61 sample points 

             par_value=X_array(i,n);           
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[fre,Er]=Conformal_Mapping_BST_20150209(Tdata,par_value,i,TargetF_pos

);            

             fre_value_array(m,n)=fre; 

             Er_array(m,n)=Er;                   

        end 

     end    

     Diff=Er_array-Target_Er_BST; 

     Diff_square=Diff.^2; 

     for z=1:length_TargetFre 

         

[max_value_DiffSq(i,z),max_pos_DiffSq(i,z)]=max(Diff_square(z,:));         

         %Target_std_deviation(i,z)=Diff(z,max_pos_DiffSq(i,z)); 

     end 

end 

  

Uncertainty_Ratio_Table=zeros(Num_Para,length_TargetFre); 

sum_array=zeros(1,length_TargetFre); 

for y=1:length_TargetFre 

    sum_array(1,y)=sum(max_value_DiffSq(:,y)); 

    

Uncertainty_Ratio_Table(:,y)=max_value_DiffSq(:,y)/sum_array(1,y); 

end 

Uncertainty_Ratio_Table2=Uncertainty_Ratio_Table'; 

  

figure(1); 

bar(TargetFre_array,Uncertainty_Ratio_Table2); 

grid; 

ylabel('U_i in BST Permittivity [%]','FontSize', 16); 

xlabel('Frequency (GHz)','FontSize', 16); 

%title('Distribution of Uncertainty in BST Permittivity'); 

legend('\Deltaw/2','\Deltas','\DeltaH1',-1); 

set(gca,'YTickLabel',{'0','10','20','30','40','50','60','70','80','90

','100'}); 
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