97 research outputs found

    Interfaces neuronales CMOS haute résolution pour l'électrophysiologie et l'optogénétique en boucle fermée

    Get PDF
    L’avenir de la recherche sur les maladies du cerveau repose sur le développement de nouvelles technologies qui permettront de comprendre comment cet organe si complexe traite, intègre et transfère l’information. Parmi celles-ci, l’optogénétique est une technologie révolutionnaire qui permet d’utiliser de la lumière afin d’activer sélectivement les neurones du cortex d’animaux transgéniques pour observer leur effet dans un vaste réseau biologique. Ce cadre expérimental repose typiquement sur l’observation de l’activité neuronale de souris transgéniques, car elles peuvent exprimer une grande variété de gènes et de maladies et qu’elles sont peu couteuses. Toutefois, la plupart des appareils de mesure ou de stimulation optogénétique disponible ne sont pas appropriés, car ils sont câblés, trop lourds et/ou trop simplistes. Malheureusement, peu de systèmes sans fil existent, et ces derniers sont grandement limités par la bande passante requise pour transmettre les données neuronales, et ils ne fournissent pas de stimulation optogénétique multicanal afin de stimuler et observer plusieurs régions du cerveau. Dans les dispositifs actuels, l’interprétation des données neuronales est effectuée ex situ, alors que la recherche bénéficierait grandement de systèmes sans fil assez intelligents pour interpréter et stimuler les neurones en boucle fermée, in situ. Le but de ce projet de recherche est de concevoir des circuits analogiques-numériques d’acquisition et de traitement des signaux neuronaux, des algorithmes d’analyse et de traitement de ces signaux et des systèmes electro-optiques miniatures et sans fil pour : i) Mener des expériences combinant l’enregistrement neuronal et l’optogénétique multicanal haute résolution avec des animaux libres de leurs mouvements. ii) Mener des expériences optogénétiques synchronisées avec l’observation, c.-à-d. en boucle fermée, chez des animaux libres de leurs mouvements. iii) Réduire la taille, le poids et la consommation énergétique des systèmes optogénétiques sans fil afin de minimiser l’impact de la recherche chez de petits animaux. Ce projet est en 3 phases, et ses principales contributions ont été rapportées dans dix conférences internationales (ISSCC, ISCAS, EMBC, etc.) et quatre articles de journaux publiés ou soumis, ainsi que dans un brevet et deux divulgations. La conception d’un système optogénétique haute résolution pose plusieurs défis importants. Notamment, puisque les signaux neuronaux ont un contenu fréquentiel élevé (_10 kHz), le nombre de canaux sous observation est limité par la bande passante des transmetteurs sans fil (2-4 canaux en général). Ainsi, la première phase du projet a visé le développement d’algorithmes de compression des signaux neuronaux et leur intégration dans un système optogénétique sans fil miniature et léger (2.8 g) haute résolution possédant 32 canaux d’acquisition et 32 canaux de stimulation optique. Le système détecte, compresse et transmet les formes d’onde des potentiels d’action (PA) produits par les neurones avec un field programmable gate array (FPGA) embarqué à faible consommation énergétique. Ce processeur implémente un algorithme de détection des PAs basé sur un seuillage adaptatif, ce qui permet de compresser les signaux en transmettant seulement les formes détectées. Chaque PA est davantage compressé par une transformée en ondelette discrète (DWT) de type Symmlet-2 suivie d’une technique de discrimination et de requantification dynamique des coefficients. Les résultats obtenus démontrent que cet algorithme est plus robuste que les méthodes existantes tout en permettant de reconstruire les signaux compressés avec une meilleure qualité (SNDR moyen de 25 dB _ 5% pour un taux de compression (CR) de 4.2). Avec la détection, des CR supérieurs à 500 sont rapportés lors de la validation in vivo. L’utilisation de composantes commerciales dans des systèmes optogénétiques sans fil augmentela taille et la consommation énergétique, en plus de ne pas être optimisée pour cette application. La seconde phase du projet a permis de concevoir un système sur puce (SoC) complementary metal oxide semiconductor (CMOS) pour faire de l’enregistrement neuronal et de optogénétique multicanal, permettant de réduire significativement la taille et la consommation énergétique comparativement aux alternatives commerciales. Ceci est une contribution importante, car c’est la première puce à être doté de ces deux fonctionnalités. Le SoC possède 10 canaux d’enregistrement et 4 canaux de stimulation optogénétique. La conception du bioamplificateur inclut une bande passante programmable (0.5 Hz - 7 kHz) et un faible bruit referré à l’entré (IRN de 3.2 μVrms), ce qui permet de cibler différents types de signaux biologiques (PA, LFP, etc.). Le convertisseur analogique numérique (ADC) de type Delta- Sigma (DS) MASH 1-1-1 est conçu pour fonctionner de faibles taux de sur-échantillonnage (OSR _50) pour réduire sa consommation et possède une résolution programmable (ENOB de 9.75 Bits avec un OSR de 25). Cet ADC exploite une nouvelle technique réduisant la taille du circuit en soustrayant la sortie de chaque branche du DS dans le domaine numérique, comparativement à la méthode analogique classique. La consommation totale d’un canal d’enregistrement est de 11.2 μW. Le SoC implémente un nouveau circuit de stimulation optique basé sur une source de courant de type cascode avec rétroaction, ce qui permet d’accommoder une large gamme de LED et de tensions de batterie comparativement aux circuits existants. Le SoC est intégré dans un système optogénétique sans fil et validé in vivo. À ce jour et en excluant ce projet, aucun système sans-fil ne fait de l’optogénétique en boucle fermée simultanément au suivi temps réel de l’activité neuronale. Une contribution importante de ce travail est d’avoir développé le premier système optogénétique multicanal qui est capable de fonctionner en boucle fermée et le premier à être validé lors d’expériences in vivo impliquant des animaux libres de leurs mouvements. Pour ce faire, la troisième phase du projet a visé la conception d’un SoC CMOS numérique, appelé neural decoder integrated circuit (ND-IC). Le ND-IC et le SoC développé lors de la phase 2 ont été intégrés dans un système optogénétique sans fil. Le ND-IC possède 3 modules : 1) le détecteur de PA adaptatif, 2) le module de compression possédant un nouvel arbre de tri pour discriminer les coefficients, et 3) le module de classement automatique des PA qui réutilise les données générées par le module de détection et de compression pour réduire sa complexité. Un lien entre un canal d’enregistrement et un canal de stimulation est établi selon l’association de chaque PA à un neurone, grâce à la classification, et selon l’activité de ce neurone dans le temps. Le ND-IC consomme 56.9 μW et occupe 0.08 mm2 par canal. Le système pèse 1.05 g, occupe un volume de 1.12 cm3, possède une autonomie de 3h, et est validé in vivo.The future of brain research lies in the development of new technologies that will help understand how this complex organ processes, integrates and transfers information. Among these, optogenetics is a recent technology that allows the use of light to selectively activate neurons in the cortex of transgenic animals to observe their effect in a large biological network. This experimental setting is typically based on observing the neuronal activity of transgenic mice, as they express a wide variety of genes and diseases, while being inexpensive. However, most available neural recording or optogenetic devices are not suitable, because they are hard-wired, too heavy and/or too simplistic. Unfortunately, few wireless systems exist, and they are greatly limited by the required bandwidth to transmit neural data, while not providing simultaneous multi-channel neural recording and optogenetic, a must for stimulating and observing several areas of the brain. In current devices, the analysis of the neuronal data is performed ex situ, while the research would greatly benefit from wireless systems that are smart enough to interpret and stimulate the neurons in closed-loop, in situ. The goal of this project is to design analog-digital circuits for acquisition and processing of neural signals, algorithms for analysis and processing of these signals and miniature electrooptical wireless systems for: i) Conducting experiments combining high-resolution multi-channel neuronal recording and high-resolution multi-channel optogenetics with freely-moving animals. ii) Conduct optogenetic experiments synchronized with the neural recording, i.e. in closed loop, with freely-moving animals. iii) Increase the resolution while reducing the size, weight and energy consumption of the wireless optogenetic systems to minimize the impact of research with small animals. This project is in 3 phases, and its main contributions have been reported in ten conferences (ISSCC, ISCAS, EMBC, etc.) and four published journal papers, or submitted, as well as in a patent and two disclosures. The design of a high resolution optogenetic system poses several challenges. In particular, since the neuronal signals have a high frequency content (10 kHz), the number of chanv nels under observation is limited by the bandwidth of the wireless transmitters (2-4 channels in general). Thus, the first phase of the project focused on the development of neural signal compression algorithms and their integration into a high-resolution miniature and lightweight wireless optogenetics system (2.8g), having 32 recording channels and 32 optical stimulation channels. This system detects, compresses and transmits the waveforms of the signals produced by the neurons, i.e. action potentials (AP), in real time, via an embedded low-power field programmable gate array (FPGA). This processor implements an AP detector algorithm based on adaptive thresholding, which allows to compress the signals by transmitting only the detected waveforms. Each AP is further compressed by a Symmlet-2 discrete wavelet transform (DWT) followed dynamic discrimination and requantification of the DWT coefficients, making it possible to achieve high compression ratios with a good reconstruction quality. Results demonstrate that this algorithm is more robust than existing approach, while allowing to reconstruct the compressed signals with better quality (average SNDR of 25 dB 5% for a compression ratio (CR) of 4.2). With detection, CRs greater than 500 are reported during the in vivo validation. The use of commercial components in wireless optogenetic systems increases the size and power consumption, while not being optimized for this application. The second phase of the project consisted in designing a complementary metal oxide semiconductor (CMOS) system-on-chip (SoC) for neural recording and multi-channel optogenetics, which significantly reduces the size and energy consumption compared to commercial alternatives. This is important contribution, since it’s the first chip to integrate both features. This SoC has 10 recording channels and 4 optogenetic stimulation channels. The bioamplifier design includes a programmable bandwidth (0.5 Hz -7 kHz) and a low input-referred noise (IRN of 3.2 μVrms), which allows targeting different biological signals (AP, LFP, etc.). The Delta-Sigma (DS) MASH 1-1-1 low-power analog-to-digital converter (ADC) is designed to work with low OSR (50), as to reduce its power consumption, and has a programmable resolution (ENOB of 9.75 bits with an OSR of 25). This ADC uses a new technique to reduce its circuit size by subtracting the output of each DS branch in the digital domain, rather than in the analog domain, as done conventionally. A recording channel, including the bioamplifier, the DS and the decimation filter, consumes 11.2 μW. Optical stimulation is performed with an on-chip LED driver using a regulated cascode current source with feedback, which accommodates a wide range of LED parameters and battery voltages. The SoC is integrated into a wireless optogenetic platform and validated in vivo.To date and excluding this project, no wireless system is making closed-loop optogenetics simultaneously to real-time monitoring of neuronal activity. An important contribution of this work is to have developed the first multi-channel optogenetic system that is able to work in closed-loop, and the first to be validated during in vivo experiments involving freely-moving animals. To do so, the third phase of the project aimed to design a digital CMOS chip, called neural decoder integrated circuit (ND-IC). The ND-IC and the SoC developed in Phase 2 are integrated within a wireless optogenetic system. The ND-IC has 3 main cores: 1) the adaptive AP detector core, 2) the compression core with a new sorting tree for discriminating the DWT coefficients, and 3 ) the AP automatic classification core that reuses the data generated by the detection and compression cores to reduce its complexity. A link between a recording channel and a stimulation channel is established according to the association of each AP with a neuron, thanks to the classification, and according to the bursting activity of this neuron. The ND-IC consumes 56.9 μW and occupies 0.08 mm2 per channel. The system weighs 1.05 g, occupies a volume of 1.12 cm3, has an autonomy of 3h, and is validated in vivo

    Electronic bidirectional interfaces to the peripheral nervous system for prosthetic applications

    Get PDF
    The research presented in this thesis concerns the field of bioelectronics, in particular the work has been focused on the development of special electronic devices for neural signal acquisition and Peripheral Nervous System (PNS) stimulation. The final aim of the project in which this work is involved is in fact the realization of a prosthetic hand controlled using neural signals. The commercially available prosthesis are based on Electromyographic (EMG) signals, their use implies unnatural movements for the patient that needs a special training to develop the control capabilities over the mechanical limb. The proposed approach offers a number of advantages compared to the traditional prosthesis, first because the signals used are the same used to control the biologic limb, allowing a more comfortable solution for the patient that gets closer to feel the robotic hand as a natural extension of his/her body. Secondly, placing temperature and pressure sensors on the limb surface, it is possible to trasduce such information in an electrical current that, injected into the PNS, can restore the sensory feedback in amputees. The final goal of this research is the development of a fully implantable device able to perform a bidirectional communication between the robotic hand and the patient. Due to small area, low noise and low power constraints, the only possible way to reach this aim is the design of a full custom Integrated Circuit (IC). However a preliminary evaluation of the key design features, such as neural signal amplitudes and frequencies as well as stimulation shape parameters, is necessary in order to define clearly and precisely the design specifications. A low-cost and short implementation time device is then needed for this aim, the Components Off The Shelf (COTS) approach seems to be the best solution for this purpose. A Printed Circuit Board (PCB) with discrete components has been designed, developed and tested, the information extracted by the test results have been used to guide the IC design. The generation of electrical signals in biological cells, such as neural spikes, is possible thanks to ions that move across the cell membrane. In many applications it is important, not only to record the spikes, but also to measure these small currents in order to understand which electro-chemical processes are involved in the signal generation and to have a direct measurement of the ion channels involved in the reaction. Ion currents, in fact, play a key role in several physiological processes, in neural signal generation, but also in the maintenance of heartbeat and in muscle contraction. For this purpose, a system level implementation of a Read out circuit for ion channel current detection has been developed

    Electronic bidirectional interfaces to the peripheral nervous system for prosthetic applications

    Get PDF
    The research presented in this thesis concerns the field of bioelectronics, in particular the work has been focused on the development of special electronic devices for neural signal acquisition and Peripheral Nervous System (PNS) stimulation. The final aim of the project in which this work is involved is in fact the realization of a prosthetic hand controlled using neural signals. The commercially available prosthesis are based on Electromyographic (EMG) signals, their use implies unnatural movements for the patient that needs a special training to develop the control capabilities over the mechanical limb. The proposed approach offers a number of advantages compared to the traditional prosthesis, first because the signals used are the same used to control the biologic limb, allowing a more comfortable solution for the patient that gets closer to feel the robotic hand as a natural extension of his/her body. Secondly, placing temperature and pressure sensors on the limb surface, it is possible to trasduce such information in an electrical current that, injected into the PNS, can restore the sensory feedback in amputees. The final goal of this research is the development of a fully implantable device able to perform a bidirectional communication between the robotic hand and the patient. Due to small area, low noise and low power constraints, the only possible way to reach this aim is the design of a full custom Integrated Circuit (IC). However a preliminary evaluation of the key design features, such as neural signal amplitudes and frequencies as well as stimulation shape parameters, is necessary in order to define clearly and precisely the design specifications. A low-cost and short implementation time device is then needed for this aim, the Components Off The Shelf (COTS) approach seems to be the best solution for this purpose. A Printed Circuit Board (PCB) with discrete components has been designed, developed and tested, the information extracted by the test results have been used to guide the IC design. The generation of electrical signals in biological cells, such as neural spikes, is possible thanks to ions that move across the cell membrane. In many applications it is important, not only to record the spikes, but also to measure these small currents in order to understand which electro-chemical processes are involved in the signal generation and to have a direct measurement of the ion channels involved in the reaction. Ion currents, in fact, play a key role in several physiological processes, in neural signal generation, but also in the maintenance of heartbeat and in muscle contraction. For this purpose, a system level implementation of a Read out circuit for ion channel current detection has been developed

    Analog Front-End Circuits for Massive Parallel 3-D Neural Microsystems.

    Full text link
    Understanding dynamics of the brain has tremendously improved due to the progress in neural recording techniques over the past five decades. The number of simultaneously recorded channels has actually doubled every 7 years, which implies that a recording system with a few thousand channels should be available in the next two decades. Nonetheless, a leap in the number of simultaneous channels has remained an unmet need due to many limitations, especially in the front-end recording integrated circuits (IC). This research has focused on increasing the number of simultaneously recorded channels and providing modular design approaches to improve the integration and expansion of 3-D recording microsystems. Three analog front-ends (AFE) have been developed using extremely low-power and small-area circuit techniques on both the circuit and system levels. The three prototypes have investigated some critical circuit challenges in power, area, interface, and modularity. The first AFE (16-channels) has optimized energy efficiency using techniques such as moderate inversion, minimized asynchronous interface for data acquisition, power-scalable sampling operation, and a wide configuration range of gain and bandwidth. Circuits in this part were designed in a 0.25μm CMOS process using a 0.9-V single supply and feature a power consumption of 4μW/channel and an energy-area efficiency of 7.51x10^15 in units of J^-1Vrms^-1mm^-2. The second AFE (128-channels) provides the next level of scaling using dc-coupled analog compression techniques to reject the electrode offset and reduce the implementation area further. Signal processing techniques were also explored to transfer some computational power outside the brain. Circuits in this part were designed in a 180nm CMOS process using a 0.5-V single supply and feature a power consumption of 2.5μW/channel, and energy-area efficiency of 30.2x10^15 J^-1Vrms^-1mm^-2. The last AFE (128-channels) shows another leap in neural recording using monolithic integration of recording circuits on the shanks of neural probes. Monolithic integration may be the most effective approach to allow simultaneous recording of more than 1,024 channels. The probe and circuits in this part were designed in a 150 nm SOI CMOS process using a 0.5-V single supply and feature a power consumption of only 1.4μW/channel and energy-area efficiency of 36.4x10^15 J^-1Vrms^-1mm^-2.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98070/1/ashmouny_1.pd

    An implantable micro-system for neural prosthesis control and sensory feedback restoration in amputees

    Get PDF
    In this work, the prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of two Integrated Circuits (ICs): a standard CMOS device for neural recording and a High Voltage (HV) CMOS device for neural stimulation. The integrated circuits have been realized in two different 0.35μm CMOS processes available fromAustriaMicroSystem(AMS). The recoding IC incorporates 8 channels each including the analog front-end and the A/D conversion based on a sigma delta architecture. It has a total area of 16.8mm2 and exhibits an overall power consumption of 27.2mW. The neural stimulation IC is able to provide biphasic current pulses to stimulate 8 electrodes independently. A voltage booster generates a 17V voltage supply in order to guarantee the programmed stimulation current even in case of high impedances at the electrode-tissue interface in the order of tens of k­. The stimulation patterns, generated by a 5-bit current DAC, are programmable in terms of amplitude, frequency and pulse width. Due to the huge capacitors of the implemented voltage boosters, the stimulation IC has a wider area of 18.6mm2. In addition, a maximum power consumption of 29mW was measured. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7μVrms , and to selectively elicit the tibial and plantarmuscles using different active sites of the electrode. In order to get a completely implantable interface, a biocompatible and biostable package was designed. It hosts the developed ICs with the minimal electronics required for their proper operation. The package consists of an alumina tube closed at both extremities by two ceramic caps hermetically sealed on it. Moreover, the two caps serve as substrate for the hermetic feedthroughs to enable the device powering and data exchange with the external digital controller implemented on a Field-Programmable Gate Array (FPGA) board. The package has an outer diameter of 7mm and a total length of 26mm. In addition, a humidity and temperature sensor was also included inside the package to allow future hermeticity and life-time estimation tests. Moreover, a wireless, wearable and non-invasive EEG recording system is proposed in order to improve the control over the artificial limb,by integrating the neural signals recorded from the PNS with those directly acquired from the brain. To first investigate the system requirements, a Component-Off-The-Shelf (COTS) device was designed. It includes a low-power 8- channel acquisition module and a Bluetooth (BT) transceiver to transmit the acquired data to a remote platform. It was designed with the aimof creating a cheap and user-friendly system that can be easily interfaced with the nowadays widely spread smartphones or tablets by means of a mobile-based application. The presented system, validated through in-vivo experiments, allows EEG signals recording at different sample rates and with a maximum bandwidth of 524Hz. It was realized on a 19cm2 custom PCB with a maximum power consumption of 270mW

    Resource-Constrained Acquisition Circuits for Next Generation Neural Interfaces

    Get PDF
    The development of neural interfaces allowing the acquisition of signals from the cortex of the brain has seen an increasing amount of interest both in academic research as well as in the commercial space due to their ability to aid people with various medical conditions, such as spinal cord injuries, as well as their potential to allow more seamless interactions between people and machines. While it has already been demonstrated that neural implants can allow tetraplegic patients to control robotic arms, thus to an extent returning some motoric function, the current state of the art often involves the use of heavy table-top instruments connected by wires passing through the patient’s skull, thus making the applications impractical and chronically infeasible. Those limitations are leading to the development of the next generation of neural interfaces that will overcome those issues by being minimal in size and completely wireless, thus paving a way to the possibility of their chronic application. Their development however faces several challenges in numerous aspects of engineering due to constraints presented by their minimal size, amount of power available as well as the materials that can be utilised. The aim of this work is to explore some of those challenges and investigate novel circuit techniques that would allow the implementation of acquisition analogue front-ends under the presented constraints. This is facilitated by first giving an overview of the problematic of recording electrodes and their electrical characterisation in terms of their impedance profile and added noise that can be used to guide the design of analogue front-ends. Continuous time (CT) acquisition is then investigated as a promising signal digitisation technique alternative to more conventional methods in terms of its suitability. This is complemented by a description of practical implementations of a CT analogue-to-digital converter (ADC) including a novel technique of clockless stochastic chopping aimed at the suppression of flicker noise that commonly affects the acquisition of low-frequency signals. A compact design is presented, implementing a 450 nW, 5.5 bit ENOB CT ADC, occupying an area of 0.0288 mm2 in a 0.18 μm CMOS technology, making this the smallest presented design in literature to the best of our knowledge. As completely wireless neural implants rely on power delivered through wireless links, their supply voltage is often subject to large high frequency variations as well voltage uncertainty making it necessary to design reference circuits and voltage regulators providing stable reference voltage and supply in the constrained space afforded to them. This results in numerous challenges that are explored and a design of a practical implementation of a reference circuit and voltage regulator is presented. Two designs in a 0.35 μm CMOS technology are presented, showing respectively a measured PSRR of ≈60 dB and ≈53 dB at DC and a worst-case PSRR of ≈42 dB and ≈33 dB with a less than 1% standard deviation in the output reference voltage of 1.2 V while consuming a power of ≈7 μW. Finally, ΣΔ modulators are investigated for their suitability in neural signal acquisition chains, their properties explained and a practical implementation of a ΣΔ DC-coupled neural acquisition circuit presented. This implements a 10-kHz, 40 dB SNDR ΣΔ analogue front-end implemented in a 0.18 μm CMOS technology occupying a compact area of 0.044 μm2 per channel while consuming 31.1 μW per channel.Open Acces

    A review of vibration signal processing techniques for use in a real time condition monitoring system

    Get PDF
    Bibliography: p. 181-183.The analysis of the vibrations produced by roller bearings is one of the most widely used techniques in condition determination of rolling element bearings. This project forms part of an overall plan to gain experience in condition monitoring and produce a computer aided vibration monitoring system that would initially be applied to rolling element bearings, and then later to other machine components. The particular goal of this project is to study signal processing techniques that will be of use in this system. The general signal processing problems are as follows. The vibration of an undamaged bearing is characterised by a Gaussian distribution and a white power spectral density. Once a bearing is damaged the nature of the vibration changes often with spikes or impulses present in the vibration signal. By detecting these impulses a measure of the condition of the bearing may be obtained. The primary goal in machine condition determination then becomes the detection of these impulses in the presence of noise and contaminating. signals and to discriminate between those caused by the component in question and those from other sources. A wide range of signal processing techniques were reviewed and some of these tested on vibrations recorded on the Mechanical engineering departments bearing test rig. It was found that the time domain statistics (RMS, kurtosis, crest factor) were the simplest to use, but could be unreliable. On the other hand, frequency domain analysis techniques, such as the power spectrum were more reliable, but more difficult to apply. By making use of a variety of these techniques and applying them in a systematic manner, it is possible to make an assessment of bearing condition under a wide variety of operating conditions. A small number of the signal processing techniques were programmed for a DSP processor. It was found that all of the techniques, with the exception of the bispectrum could be programmed for the DSP chip. It was found however that the available DSP card did not have sufficient memory to allow analysis and preprocessing routines to be combined. In addition to this the analogue to digital conversion system would benefit from a buffered IO system. The project should continue, with the DSP card being upgraded and all the necessary signal processing routines programmed. The project can then move to the next phase which would be inclusion of display and interface software and Artificial Intelligence analysis aids

    Low-power CMOS digital-pixel Imagers for high-speed uncooled PbSe IR applications

    Get PDF
    This PhD dissertation describes the research and development of a new low-cost medium wavelength infrared MWIR monolithic imager technology for high-speed uncooled industrial applications. It takes the baton on the latest technological advances in the field of vapour phase deposition (VPD) PbSe-based medium wavelength IR (MWIR) detection accomplished by the industrial partner NIT S.L., adding fundamental knowledge on the investigation of novel VLSI analog and mixed-signal design techniques at circuit and system levels for the development of the readout integrated device attached to the detector. The work supports on the hypothesis that, by the use of the preceding design techniques, current standard inexpensive CMOS technologies fulfill all operational requirements of the VPD PbSe detector in terms of connectivity, reliability, functionality and scalability to integrate the device. The resulting monolithic PbSe-CMOS camera must consume very low power, operate at kHz frequencies, exhibit good uniformity and fit the CMOS read-out active pixels in the compact pitch of the focal plane, all while addressing the particular characteristics of the MWIR detector: high dark-to-signal ratios, large input parasitic capacitance values and remarkable mismatching in PbSe integration. In order to achieve these demands, this thesis proposes null inter-pixel crosstalk vision sensor architectures based on a digital-only focal plane array (FPA) of configurable pixel sensors. Each digital pixel sensor (DPS) cell is equipped with fast communication modules, self-biasing, offset cancellation, analog-to-digital converter (ADC) and fixed pattern noise (FPN) correction. In-pixel power consumption is minimized by the use of comprehensive MOSFET subthreshold operation. The main aim is to potentiate the integration of PbSe-based infra-red (IR)-image sensing technologies so as to widen its use, not only in distinct scenarios, but also at different stages of PbSe-CMOS integration maturity. For this purpose, we posit to investigate a comprehensive set of functional blocks distributed in two parallel approaches: • Frame-based “Smart” MWIR imaging based on new DPS circuit topologies with gain and offset FPN correction capabilities. This research line exploits the detector pitch to offer fully-digital programmability at pixel level and complete functionality with input parasitic capacitance compensation and internal frame memory. • Frame-free “Compact”-pitch MWIR vision based on a novel DPS lossless analog integrator and configurable temporal difference, combined with asynchronous communication protocols inside the focal plane. This strategy is conceived to allow extensive pitch compaction and readout speed increase by the suppression of in-pixel digital filtering, and the use of dynamic bandwidth allocation in each pixel of the FPA. In order make the electrical validation of first prototypes independent of the expensive PbSe deposition processes at wafer level, investigation is extended as well to the development of affordable sensor emulation strategies and integrated test platforms specifically oriented to image read-out integrated circuits. DPS cells, imagers and test chips have been fabricated and characterized in standard 0.15μm 1P6M, 0.35μm 2P4M and 2.5μm 2P1M CMOS technologies, all as part of research projects with industrial partnership. The research has led to the first high-speed uncooled frame-based IR quantum imager monolithically fabricated in a standard VLSI CMOS technology, and has given rise to the Tachyon series [1], a new line of commercial IR cameras used in real-time industrial, environmental and transportation control systems. The frame-free architectures investigated in this work represent a firm step forward to push further pixel pitch and system bandwidth up to the limits imposed by the evolving PbSe detector in future generations of the device.La present tesi doctoral descriu la recerca i el desenvolupament d'una nova tecnologia monolítica d'imatgeria infraroja de longitud d'ona mitja (MWIR), no refrigerada i de baix cost, per a usos industrials d'alta velocitat. El treball pren el relleu dels últims avenços assolits pel soci industrial NIT S.L. en el camp dels detectors MWIR de PbSe depositats en fase vapor (VPD), afegint-hi coneixement fonamental en la investigació de noves tècniques de disseny de circuits VLSI analògics i mixtes pel desenvolupament del dispositiu integrat de lectura unit al detector pixelat. Es parteix de la hipòtesi que, mitjançant l'ús de les esmentades tècniques de disseny, les tecnologies CMOS estàndard satisfan tots els requeriments operacionals del detector VPD PbSe respecte a connectivitat, fiabilitat, funcionalitat i escalabilitat per integrar de forma econòmica el dispositiu. La càmera PbSe-CMOS resultant ha de consumir molt baixa potència, operar a freqüències de kHz, exhibir bona uniformitat, i encabir els píxels actius CMOS de lectura en el pitch compacte del pla focal de la imatge, tot atenent a les particulars característiques del detector: altes relacions de corrent d'obscuritat a senyal, elevats valors de capacitat paràsita a l'entrada i dispersions importants en el procés de fabricació. Amb la finalitat de complir amb els requisits previs, es proposen arquitectures de sensors de visió de molt baix acoblament interpíxel basades en l'ús d'una matriu de pla focal (FPA) de píxels actius exclusivament digitals. Cada píxel sensor digital (DPS) està equipat amb mòduls de comunicació d'alta velocitat, autopolarització, cancel·lació de l'offset, conversió analògica-digital (ADC) i correcció del soroll de patró fixe (FPN). El consum en cada cel·la es minimitza fent un ús exhaustiu del MOSFET operant en subllindar. L'objectiu últim és potenciar la integració de les tecnologies de sensat d'imatge infraroja (IR) basades en PbSe per expandir-ne el seu ús, no només a diferents escenaris, sinó també en diferents estadis de maduresa de la integració PbSe-CMOS. En aquest sentit, es proposa investigar un conjunt complet de blocs funcionals distribuïts en dos enfocs paral·lels: - Dispositius d'imatgeria MWIR "Smart" basats en frames utilitzant noves topologies de circuit DPS amb correcció de l'FPN en guany i offset. Aquesta línia de recerca exprimeix el pitch del detector per oferir una programabilitat completament digital a nivell de píxel i plena funcionalitat amb compensació de la capacitat paràsita d'entrada i memòria interna de fotograma. - Dispositius de visió MWIR "Compact"-pitch "frame-free" en base a un novedós esquema d'integració analògica en el DPS i diferenciació temporal configurable, combinats amb protocols de comunicació asíncrons dins del pla focal. Aquesta estratègia es concep per permetre una alta compactació del pitch i un increment de la velocitat de lectura, mitjançant la supressió del filtrat digital intern i l'assignació dinàmica de l'ample de banda a cada píxel de l'FPA. Per tal d'independitzar la validació elèctrica dels primers prototips respecte a costosos processos de deposició del PbSe sensor a nivell d'oblia, la recerca s'amplia també al desenvolupament de noves estratègies d'emulació del detector d'IR i plataformes de test integrades especialment orientades a circuits integrats de lectura d'imatge. Cel·les DPS, dispositius d'imatge i xips de test s'han fabricat i caracteritzat, respectivament, en tecnologies CMOS estàndard 0.15 micres 1P6M, 0.35 micres 2P4M i 2.5 micres 2P1M, tots dins el marc de projectes de recerca amb socis industrials. Aquest treball ha conduït a la fabricació del primer dispositiu quàntic d'imatgeria IR d'alta velocitat, no refrigerat, basat en frames, i monolíticament fabricat en tecnologia VLSI CMOS estàndard, i ha donat lloc a Tachyon, una nova línia de càmeres IR comercials emprades en sistemes de control industrial, mediambiental i de transport en temps real.Postprint (published version

    INJECTION-LOCKING TECHNIQUES FOR MULTI-CHANNEL ENERGY EFFICIENT TRANSMITTER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Closed-Loop Bidirectional Brain-Machine Interface System For Freely Behaving Animals

    Get PDF
    A brain-machine interface (BMI) creates an artificial pathway between the brain and the external world. The research and applications of BMI have received enormous attention among the scientific community as well as the public in the past decade. However, most research of BMI relies on experiments with tethered or sedated animals, using rack-mount equipment, which significantly restricts the experimental methods and paradigms. Moreover, most research to date has focused on neural signal recording or decoding in an open-loop method. Although the use of a closed-loop, wireless BMI is critical to the success of an extensive range of neuroscience research, it is an approach yet to be widely used, with the electronics design being one of the major bottlenecks. The key goal of this research is to address the design challenges of a closed-loop, bidirectional BMI by providing innovative solutions from the neuron-electronics interface up to the system level. Circuit design innovations have been proposed in the neural recording front-end, the neural feature extraction module, and the neural stimulator. Practical design issues of the bidirectional neural interface, the closed-loop controller and the overall system integration have been carefully studied and discussed.To the best of our knowledge, this work presents the first reported portable system to provide all required hardware for a closed-loop sensorimotor neural interface, the first wireless sensory encoding experiment conducted in freely swimming animals, and the first bidirectional study of the hippocampal field potentials in freely behaving animals from sedation to sleep. This thesis gives a comprehensive survey of bidirectional BMI designs, reviews the key design trade-offs in neural recorders and stimulators, and summarizes neural features and mechanisms for a successful closed-loop operation. The circuit and system design details are presented with bench testing and animal experimental results. The methods, circuit techniques, system topology, and experimental paradigms proposed in this work can be used in a wide range of relevant neurophysiology research and neuroprosthetic development, especially in experiments using freely behaving animals
    corecore