7,326 research outputs found

    Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Get PDF
    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far

    ARIADNE: A Research Infrastructure for Archaeology

    Get PDF
    Research e-infrastructures, digital archives, and data services have become important pillars of scientific enterprise that in recent decades have become ever more collaborative, distributed, and data intensive. The archaeological research community has been an early adopter of digital tools for data acquisition, organization, analysis, and presentation of research results of individual projects. However, the provision of e-infrastructure and services for data sharing, discovery, access, and (re)use have lagged behind. This situation is being addressed by ARIADNE, the Advanced Research Infrastructure for Archaeological Dataset Networking in Europe. This EU-funded network has developed an e-infrastructure that enables data providers to register and provide access to their resources (datasets, collections) through the ARIADNE data portal, facilitating discovery, access, and other services across the integrated resources. This article describes the current landscape of data repositories and services for archaeologists in Europe, and the issues that make interoperability between them difficult to realize. The results of the ARIADNE surveys on users’ expectations and requirements are also presented. The main section of the article describes the architecture of the e-infrastructure, core services (data registration, discovery, and access), and various other extant or experimental services. The ongoing evaluation of the data integration and services is also discussed. Finally, the article summarizes lessons learned and outlines the prospects for the wider engagement of the archaeological research community in the sharing of data through ARIADNE

    Enabling European archaeological research: The ARIADNE E-infrastructure

    Get PDF
    Research e-infrastructures, digital archives and data services have become important pillars of scientific enterprise that in recent decades has become ever more collaborative, distributed and data-intensive. The archaeological research community has been an early adopter of digital tools for data acquisition, organisation, analysis and presentation of research results of individual projects. However, the provision of einfrastructure and services for data sharing, discovery, access and re-use has lagged behind. This situation is being addressed by ARIADNE: the Advanced Research Infrastructure for Archaeological Dataset Networking in Europe. This EUfunded network has developed an einfrastructure that enables data providers to register and provide access to their resources (datasets, collections) through the ARIADNE data portal, facilitating discovery, access and other services across the integrated resources. This article describes the current landscape of data repositories and services for archaeologists in Europe, and the issues that make interoperability between them difficult to realise. The results of the ARIADNE surveys on users' expectations and requirements are also presented. The main section of the article describes the architecture of the einfrastructure, core services (data registration, discovery and access) and various other extant or experimental services. The ongoing evaluation of the data integration and services is also discussed. Finally, the article summarises lessons learned, and outlines the prospects for the wider engagement of the archaeological research community in sharing data through ARIADNE

    Problems of Designing Geoportal Interfaces

    Get PDF
    The manuscript is devoted to analysis of the problem of designing graphical geoportal interfaces. The support points for the problem solutions are formulated and rationale of each of them is given. The emphasis was placed on the following orientations: to a flexible process of interface development, the need to introduce adaptability, progressive development, the motivated abandonment of geospatial content management systems and the use of third-party libraries where necessary, problem-solving and achieving goals. The lists of basic functional and qualitative requirements for graphical geoportal interfaces are given. In the last segment, the authors share their experience in the development of geoportal solutions

    Enabling European Archaeological Research: The ARIADNE E-Infrastructure

    Get PDF
    In the last 20 years, e-infrastructures have become ever more important for the conduct and progress of research in all branches of scientific enterprise. Increasingly collaborative, distributed and data-intensive research requires the sharing of resources (data, tools, computing facilities) via e-infrastructure as well as support for effective co-operation among research groups (ESF 2011; ESFRI 2016). Moreover there is the expectation that with large datasets ('big data'), e-infrastructure and advanced computing techniques, new scientific questions can be tackled. The archaeological research community has been an early adopter of various digital methods and tools for data acquisition, organisation, analysis and presentation of research results of individual projects. The provision of e-infrastructure and services for data sharing, discovery, access and re-use for the heritage sector is, however, lagging behind other research fields, such as the natural and life sciences. The consequence is a high level of fragmentation of archaeological data and limited capability for collaborative research across institutional and national as well as disciplinary boundaries (Aspöck and Geser 2014). This situation is being addressed by ARIADNE: the Advanced Research Infrastructure for Archaeological Dataset Networking in Europe. This e-infrastructure initiative is being promoted by a consortium of archaeological institutes, data archives and technology developers, and funded under the European Commission's Seventh Framework Programme (ARIADNE 2014a; Niccolucci and Richards 2013). ARIADNE enables archaeological data providers, large and small, to register and connect their resources (datasets, collections) to the e-infrastructure, and a data portal provides search, access and other services across the integrated resources. The portal puts into operation a proof of concept exemplar first developed under the ARENA (Archaeological Records of Europe Networked Access) project (Kenny and Richards 2005; Kilbride 2004), itself inspired by a proposal made by Hansen (1993). ARIADNE integrates resource discovery metadata using various controlled vocabularies, e.g. the W3C Data Catalogue Vocabulary (adapted for describing archaeological datasets), subject thesauri, gazetteers, chronologies, and the CIDOC Conceptual Reference Model (CRM). Based on this integration the data portal offers several ways to search and access resources made available by data providers located in different countries. ARIADNE thus acts as a broker between data providers and users and offers additional web services for products such as high-resolution images, Reflectance Transformation Imaging (RTI), 3D objects and landscapes. Employing such services in research projects or for content deposited in digital archives will greatly enhance the ability of researchers to publish, access and study archaeological content online. ARIADNE therefore represents a substantial advance for archaeology; in particular it provides a common platform where dispersed data resources can be uniformly described, discovered and accessed. It is also an essential step towards the even more ambitious goal of offering archaeologists integrated data, tools and computing resources for web-based research that creates new knowledge (e-archaeology). The next section describes the current landscape of data repositories and services for archaeologists in Europe, and the issues that make interoperability between them difficult to realise. The results of the ARIADNE user surveys undertaken to match expectations and requirements for the e-infrastructure and data portal services are then presented. The main part of the article describes ARIADNE's overall architecture, core services (data registration, discovery and access) and other extant or experimental services. A further section presents the on-going evaluation of the data integration and set of services. Finally, the article summarises some lessons already learned in the integration of data resources and services, and considers the prospects for the wider engagement of the archaeological research community in sharing data through the ARIADNE e-infrastructure and portal

    Web-based Remote Sensing Applications and Java Tools for Environmental Monitoring

    Get PDF
    This paper introduces a web-based remote sensing application which can provide advanced image comparison and processing functions for natural habitat conservation and environmental monitoring. This project is one of several NASA Affiliated Research Center (ARC) projects being developed at San Diego State University in response to NASA\u27s Earth Science Enterprise (ESE) Focus Area program. This project utilized Java programming and commercial Internet Map Server technology to provide integrated web-based analytical capabilities to regional government agencies and park services. A prototype website (http://map.sdsu.edu/arc) was established to demonstrate the on-line analytical functions and potential operational applications for environmental monitoring and habitat managers. The web-based prototype was tested and evaluated by several user groups, including park rangers, graduate students, and GIS professionals. Users\u27 feedback indicated that the Java-based tools and Internet Map Servers can provide a flexible way to access both remote sensing data and geospatial analytical tools for environmental monitoring tasks

    Integrated Solution Support System for Water Management

    Get PDF
    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework Directive (WFD). The WFD requires an integrated approach in water management to achieve good ecological status of all water bodies. It consists amongst others of the following main planning stages: describing objectives, assessing present state, identifying gaps between objectives and present state, developing management plan, implementing measures and evaluating their impacts. The directive prescribes broad participation and consultation to achieve its objectives. Besides the obvious desktop software, such an integrated approach can benefit from using a variety of support tools. In addition to tools for specific tasks such as numerical models and questionnaires, knowledge bases on options and process support tools may be utilized. Water stress, defined as the lack of water of appropriate quality is one issue related to, but not specifically addressed by the WFD. However, like in the WFD, a participatory approach could be used to mitigate water stress. Similarly various tools can or need to be used in such a complex process. In the AquaStress Integrated project the Integrated Solution Support System (I3S ¿ I-triple-S) is developed. One of the cornerstones of the approach taken in AquaStress is that organizing available knowledge provides sufficient information to improve the possibility to make a water stress mitigation process truly end-user driven, meaning that dedicated local information is only collected after specific need is expressed by the stakeholders in the process. The novelty of the I3S lies in the combination of such knowledge stored in knowledge-bases, with adaptable workflow management facilities and with specific task-oriented tools ¿ all originating from different sources. This paper describes the I3S

    Search improvement within the geospatial web in the context of spatial data infrastructures

    Get PDF
    El trabajo desarrollado en esta tesis doctoral demuestra que es posible mejorar la búsqueda en el contexto de las Infraestructuras de Datos Espaciales mediante la aplicación de técnicas y buenas prácticas de otras comunidades científicas, especialmente de las comunidades de la Web y de la Web Semántica (por ejemplo, Linked Data). El uso de las descripciones semánticas y las aproximaciones basadas en el contenido publicado por la comunidad geoespacial pueden ayudar en la búsqueda de información sobre los fenómenos geográficos, y en la búsqueda de recursos geoespaciales en general. El trabajo comienza con un análisis de una aproximación para mejorar la búsqueda de las entidades geoespaciales desde la perspectiva de geocodificación tradicional. La arquitectura de geocodificación compuesta propuesta en este trabajo asegura una mejora de los resultados de geocodificación gracias a la utilización de diferentes proveedores de información geográfica. En este enfoque, el uso de patrones estructurales de diseño y ontologías en esta aproximación permite una arquitectura avanzada en términos de extensibilidad, flexibilidad y adaptabilidad. Además, una arquitectura basada en la selección de servicio de geocodificación permite el desarrollo de una metodología de la georreferenciación de diversos tipos de información geográfica (por ejemplo, direcciones o puntos de interés). A continuación, se presentan dos aplicaciones representativas que requieren una caracterización semántica adicional de los recursos geoespaciales. El enfoque propuesto en este trabajo utiliza contenidos basados en heurísticas para el muestreo de un conjunto de recursos geopesaciales. La primera parte se dedica a la idea de la abstracción de un fenómeno geográfico de su definición espacial. La investigación muestra que las buenas prácticas de la Web Semántica se puede reutilizar en el ámbito de una Infraestructura de Datos Espaciales para describir los servicios geoespaciales estandarizados por Open Geospatial Consortium por medio de geoidentificadores (es decir, por medio de las entidades de una ontología geográfica). La segunda parte de este capítulo desglosa la aquitectura y componentes de un servicio de geoprocesamiento para la identificación automática de ortoimágenes ofrecidas a través de un servicio estándar de publicación de mapas (es decir, los servicios que siguen la especificación OGC Web Map Service). Como resultado de este trabajo se ha propuesto un método para la identificación de los mapas ofrecidos por un Web Map Service que son ortoimágenes. A continuación, el trabajo se dedica al análisis de cuestiones relacionadas con la creación de los metadatos de recursos de la Web en el contexto del dominio geográfico. Este trabajo propone una arquitectura para la generación automática de conocimiento geográfico de los recursos Web. Ha sido necesario desarrollar un método para la estimación de la cobertura geográfica de las páginas Web. Las heurísticas propuestas están basadas en el contenido publicado por os proveedores de información geográfica. El prototipo desarrollado es capaz de generar metadatos. El modelo generado contiene el conjunto mínimo recomendado de elementos requeridos por un catálogo que sigue especificación OGC Catalogue Service for the Web, el estandar recomendado por deiferentes Infraestructuras de Datos Espaciales (por ejemplo, the Infrastructure for Spatial Information in the European Community (INSPIRE)). Además, este estudio determina algunas características de la Web Geoespacial actual. En primer lugar, ofrece algunas características del mercado de los proveedores de los recursos Web de la información geográfica. Este estudio revela algunas prácticas de la comunidad geoespacial en la producción de metadatos de las páginas Web, en particular, la falta de metadatos geográficos. Todo lo anterior es la base del estudio de la cuestión del apoyo a los usuarios no expertos en la búsqueda de recursos de la Web Geoespacial. El motor de búsqueda dedicado a la Web Geoespacial propuesto en este trabajo es capaz de usar como base un motor de búsqueda existente. Por otro lado, da soporte a la búsqueda exploratoria de los recursos geoespaciales descubiertos en la Web. El experimento sobre la precisión y la recuperación ha demostrado que el prototipo desarrollado en este trabajo es al menos tan bueno como el motor de búsqueda remoto. Un estudio dedicado a la utilidad del sistema indica que incluso los no expertos pueden realizar una tarea de búsqueda con resultados satisfactorios

    Social Media for Cities, Counties and Communities

    Get PDF
    Social media (i.e., Twitter, Facebook, Flickr, YouTube) and other tools and services with user- generated content have made a staggering amount of information (and misinformation) available. Some government officials seek to leverage these resources to improve services and communication with citizens, especially during crises and emergencies. Yet, the sheer volume of social data streams generates substantial noise that must be filtered. Potential exists to rapidly identify issues of concern for emergency management by detecting meaningful patterns or trends in the stream of messages and information flow. Similarly, monitoring these patterns and themes over time could provide officials with insights into the perceptions and mood of the community that cannot be collected through traditional methods (e.g., phone or mail surveys) due to their substantive costs, especially in light of reduced and shrinking budgets of governments at all levels. We conducted a pilot study in 2010 with government officials in Arlington, Virginia (and to a lesser extent representatives of groups from Alexandria and Fairfax, Virginia) with a view to contributing to a general understanding of the use of social media by government officials as well as community organizations, businesses and the public. We were especially interested in gaining greater insight into social media use in crisis situations (whether severe or fairly routine crises, such as traffic or weather disruptions)
    corecore