1,863 research outputs found

    Multi-level Visualization of Concurrent and Distributed Computation in Erlang

    Get PDF
    This paper describes a prototype visualization system for concurrent and distributed applications programmed using Erlang, providing two levels of granularity of view. Both visualizations are animated to show the dynamics of aspects of the computation. At the low level, we show the concurrent behaviour of the Erlang schedulers on a single instance of the Erlang virtual machine, which we call an Erlang node. Typically there will be one scheduler per core on a multicore system. Each scheduler maintains a run queue of processes to execute, and we visualize the migration of Erlang concurrent processes from one run queue to another as work is redistributed to fully exploit the hardware. The schedulers are shown as a graph with a circular layout. Next to each scheduler we draw a variable length bar indicating the current size of the run queue for the scheduler. At the high level, we visualize the distributed aspects of the system, showing interactions between Erlang nodes as a dynamic graph drawn with a force model. Speci?cally we show message passing between nodes as edges and lay out nodes according to their current connections. In addition, we also show the grouping of nodes into “s_groups” using an Euler diagram drawn with circles

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    Design, construction, and application of a generic visual language generation environment

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    Approaches to parallel performance prediction

    Get PDF
    • 

    corecore