
Multi-level Visualization of Concurrent and
Distributed Computation in Erlang

Robert Baker
School of Computing

University of Kent, UK
rb440@kent.ac.uk

Peter Rodgers
School of Computing

University of Kent, UK
P.J.Rodgers@kent.ac.uk

Simon Thompson
School of Computing

University of Kent, UK
S.J.Thompson@kent.ac.uk

Huiqing Li
School of Computing

University of Kent, UK
H.Li@kent.ac.uk

Abstract—This paper describes a prototype visualization sys-
tem for concurrent and distributed applications programmed
using Erlang, providing two levels of granularity of view. Both
visualizations are animated to show the dynamics of aspects of
the computation.

At the low level, we show the concurrent behaviour of the
Erlang schedulers on a single instance of the Erlang virtual
machine, which we call an Erlang node. Typically there will be
one scheduler per core on a multicore system. Each scheduler
maintains a run queue of processes to execute, and we visualize
the migration of Erlang concurrent processes from one run queue
to another as work is redistributed to fully exploit the hardware.
The schedulers are shown as a graph with a circular layout. Next
to each scheduler we draw a variable length bar indicating the
current size of the run queue for the scheduler.

At the high level, we visualize the distributed aspects of the
system, showing interactions between Erlang nodes as a dynamic
graph drawn with a force model. Specifically we show message
passing between nodes as edges and lay out nodes according to
their current connections. In addition, we also show the grouping
of nodes into “s groups” using an Euler diagram drawn with
circles.

I. INTRODUCTION

Erlang applications are typically concurrent and distributed,
and run on multicore platforms. By visualizing the concurrent
processes involved we can convey how individual processes
are performing and communicating. This means the program-
mer can evaluate performance, verify program correctness and
gain insight into program behaviour [10]. This paper describes
a prototype visualization system for Erlang applications, giv-
ing two (low and high level) views of the system.

Erlang [2], [6] is a programming language with built-in
support for concurrency and distribution. Erlang models the
world as sets of parallel processes that can interact only by
message passing, that is without any shared memory. Erlang
concurrency is directly supported in the implementation of
the Erlang Virtual Machine (VM), rather than indirectly by
operating system threads.

Messages between processes can consist of data of any Er-
lang type: as well as the basic types (integers, booleans, strings
and bit strings, or binaries) these can be tuples (consisting of a
number of values of different types), lists or functions. Process
identifiers and symbolic names can also be communicated as
(parts of) messages.

Erlang supports multi-core programming “out of the box”.
At startup, the Erlang VM automatically detects the CPU

topology on which it is running and creates a process scheduler
for each available CPU core. Each process scheduler maintains
its own run queue of processes to execute. In order to balance
the workload between schedulers, a process migration (work
stealing) mechanism is applied periodically, so that schedulers
with less work pull processes from schedulers with more work,
while schedulers with more work push processes to others.

A distributed Erlang system consists of a number of Erlang
VMs communicating with each other. Each VM is called an
Erlang node. Message passing between processes on different
nodes is indistinguishable from communication on the same
node (at least when process identifiers (pids) are used for mes-
sage addressing). Whilst different Erlang nodes in a distributed
Erlang system can run on physically separated computers, it is
also possible for multiple nodes to run on the same computer.

The default model for an Erlang distributed system is for all
nodes to be connected to all other nodes, but this has negative
consequences for the scalability of systems. Erlang nodes in
a distributed Erlang system can be partitioned into groups,
where every element in a group is connected to all others, but
the fact that the groups are disjoint means that certain kinds
of architectures are not possible.

One of the outcomes of the ongoing FP7 RELEASE
project [3] is the notion of s groups. These extend Erlang’s
original partition-based grouping in a number of ways. As far
as the work described in this paper is concerned, the major
difference between s groups and groups is that s groups are
not necessarily disjoint, and so one Erlang node may be a
member of multiple s groups, or indeed a member of none.

This paper describes a prototype visualization system for
concurrent and distributed Erlang applications. In the system
we provide two granularities of view: low level and high level.

The low level view shows the concurrent behaviour of
Erlang processes on a single Erlang node, focussing in par-
ticular on scheduling aspects. The schedulers are laid out
in a circle: we indicate the size of their run queues by the
length of bars which are drawn next to the schedulers. We
also visualize the migration of Erlang concurrent processes
from one scheduler to another, as work is redistributed to fully
exploit the hardware: this migration is represented by animated
edges between schedulers.

The high level view visualizes the distributed aspects of the
system, with each graph node representing an Erlang node. We

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/16268850?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


show message passing between nodes as edges, laying nodes
out according to their current connections. The grouping of
nodes into s groups is shown by surrounding each s group
by an interlinking circle. Dynamic communication behaviour
is animated using a force model [7].

The high level layout is produced by first drawing an Euler
diagram for the intersecting s groups of Erlang nodes [19].
The nodes are then placed in the appropriate zone of the
diagram, and a force-directed layout is applied to the commu-
nication graph. The forces in the layout include the standard
spring embedder forces [7], with an additional repulsion from
the edges of the circles to keep the nodes within the correct
regions [16]. Whilst the number of nodes and their grouping
into s groups is fixed and does not change during execution
(at least in this prototype), the communication between nodes
does change over time, and the use of a force based approach
allows the layout of the graph to alter dynamically in an
animated way.

The research contribution of this paper is to describe the first
visualization for concurrent and distributed Erlang execution.
The visualization has novel features:

• The use of Euler diagrams to show groups of virtual
machine nodes in concurrent programs is new.

• Whilst inspired by previous approaches [16], [7], our
method of integrating Euler diagrams with graphs rep-
resents a new combination of forces.

• The two different levels of view with discrete visualiza-
tions has not been seen, to our knowledge, in previous
systems for concurrent and distributed visualization.

• The combination of bar charts and circular graph layout
appears to be new in the context of concurrent process
visualization.

In the remainder of this paper, we first discuss related work
in Section II. Section III then provides an overview of the low
level visualization and animation method, whilst Section IV
discusses the high level method. Finally, Section V presents
our conclusions and outlines possible future work.

II. RELATED WORK

Circular layout has been used previously for processes on
a core [10]. However, in this earlier work, communication
was shown by dots moving from one process to another. This
requires the users attention during the movement of the dot to
identify the start and ending processes, which is particularly
problematic when several processes are communicating at the
same time. We improve on this by using curved edges to show
the communication between two processes. These edges fade
over time, to prevent the display from becoming overly clut-
tered. We note that the use of curved edges follow the Gestalt
principle of good continuation [17], and so can be justified
by perceptual theories. Justification for grouping processes by
surrounding groups with contours – which overlap in the high
level view, and do not overlap in the low level view – is
provided by the preattentive principle of closure [20].

Visualization of communication graphs in concurrent pro-
cesses has been prevalent for some time. Visputer [22] has

a multi-level approach to visualizing such graphs, where a
single node can contain either a process or a communication
subgraph. This consistent approach to the different levels,
where lower levels have the same syntax as higher levels,
contrasts with our approach where the visual display of the
two levels is tuned to the different diagram semantics. The Me-
ander project [21] not only visualized communication graphs,
it used them as the basis for a visual concurrent programming
language. The use of graph visualization for the presentation
of communication graphs is widespread, see for instance a
1992 survey [11]. More recent work has applied a variety
of graph drawing methods to automatically generate layouts
for various graphs associated with concurrent and distributed
programs [4], [14], [18].

Another approach to visualising Erlang programs is pro-
vided by Percept2 [12]. Percept2 is a tool for offline visuali-
sation of Erlang application level concurrency and identifying
concurrency bottlenecks. It utilises Erlang’s built-in support
for tracing to monitor events from process states. Trace events
are collected and stored in a file, which can then be analysed
offline. Once the analysis is done, the data can be viewed in
chart form through a web-based interface.

Percept2 gives a picture of application-level parallelism, as
well as how much time processes spend waiting for messages.
It also exposes scheduler-related activities to end-users, and
provides finer-grained profiling information about the existing
parallelism of an application. It is also designed to scale well
to parallel applications running on multiple cores.

VampirTrace/Vampir [15] is a tool set and a runtime library
for instrumentation and tracing of software applications. It
allows a variety of detailed performance properties to be
collected and recorded during runtime, including function
enter and leave events, MPI communication, OpenMP [1]
events, and performance counters. VampirTrace provides the
input data for the Vampir analysis and visualization tool.
Scalasca [8] is another representative trace-based tool that sup-
ports performance optimization of parallel programs by mea-
suring and analysing their runtime behaviours. The analysis
identifies potential performance bottlenecks, in particular those
concerning communication and synchronization, and offers
guidance in exploring their causes. Finally, ThreadScope [9] is
used for performance profiling of parallel Haskell programs.
ThreadScope reads GHC-generated tracing events from a log
file, and displays the thread profile information in a web-based
graphical viewer.

III. LOW LEVEL VISUALIZATION

The low level visualization shows the concurrent behaviour
of Erlang processes on a single Erlang node. We visualize the
migration of Erlang concurrent processes from one scheduler
to another and the size of the run queue on each scheduler.

The visualization system (both low level and high level
components) is developed in JavaScript and rendered in SVG
using the Data-Driven Documents library (D3) [5]. The visual-
ization is re-drawn on every iteration and this gives the effect
of animating the state of the schedulers to reflect the current



p0 10433 0p0 10719 0

p0 10673 0

p0 10705 0

p0 10725 0

p0 10707 0

p0 10708 0

Fig. 1. Low Level Visualization

situation. This constant re-drawing is required as the system
is dynamic: processes can be created, terminate or migrate
between schedulers at any time.

The data used in this paper was generated from running
Dialyzer [13], the Erlang static type analysis tool, on a se-
lection of Erlang applications and observing the computation.
During the running of the application, every process migration
between schedulers is recorded using Erlang’s built-in support
for tracing, and the size of run queues is sampled every
millisecond. The trace data are recorded in an Erlang file,
with each trace datum represented by an Erlang tuple (that is
collection of Erlang values), and data analysis is performed
by an Erlang program.

The application was run on an Intel machine, running
CentOS 6, with two processors, each having six physical CPU
cores. Through hyper-threading technology, the OS is able
to address two logical cores for each physical CPU core,
therefore there are 24 logical cores in total for an Erlang node
to exploit.

An example frame in the low level visualization can be seen
in Figure 1. The parallel machine is split into two six-core
processors, represented by the two pink semicircles. Erlang
schedulers are shown as a number that represents the unique
ID of the related threads. Pairs of Erlang schedulers that run
on a single real core are shown grouped by the blue ellipses.

Each Erlang scheduler has an individual run queue, and
this is represented by a bar radiating from the visualization.
The height and colour are used to indicate the size of the
run queue: larger queues (i.e. busier Erlang schedulers), are
shown with longer and redder bars, whereas smaller queues
are represented by shorter and greener bars. The run queue
size can be displayed on screen as a value by selecting the
relevant option in the interface, or by hovering a cursor over
the bar or Erlang scheduler in question. It is possible that the

queues can be so busy that they are not fully displayed on
screen, if this is the case, the user is able to take advantage of
the scalability of SVG graphics and alter the zoom level on
their browser.

Processes get spawned on a particular scheduler. The list of
numbers radiating from a Erlang scheduler shows the unique
ID for each process spawned on that scheduler. As can be seen
in Figure 1, Erlang scheduler 5 has just spawned a number of
new processes.

Processes may migrate from one Erlang scheduler to another
and this is shown by edges between various schedulers. These
are curved to avoid occlusion with other schedulers (e.g. a
migration from 10 to 18 would cross schedulers 20 and 8). The
edges are coloured to indicate the three types of migration:
within a single core (green), between different cores on the
same processor (grey), and from a core on one processor
to a core on the other (blue), although these migrations can
also be deduced from the start and end position of the edge.
These edges fade away after a few seconds to prevent the
visualization from becoming occluded.

The entire visualization displays the current state of the
trace and is animated such that a new time frame (iteration)
is shown every 200 milliseconds and each time frame is 1
millisecond sample of the original trace, that is, the animation
runs 200 times more slowly than the original application. This
allows the user to focus on the changing state without being
overwhelmed with the amount of animation. In addition, it
allows enough processing time for the animations to display
correctly on slower machines. The animation can be paused
and resumed using the interface. A slider allows the selection
of a specific time frame and permits the animation of a
sequence of time frames in either direction.

Figure 2 shows three snapshots of the low level view at
various stages of execution of an Erlang program. The top
diagram shows the state at iteration 890, where the none of
the schedulers are particularly busy, and the amount of com-
munication between different schedulers is correspondingly
low. The middle diagram, at iteration 967, shows the Erlang
node in a much more active state , here the run queues are
extremely uneven. The bottom diagram shows the state at
iteration 3804, where the disparity in run queue size is now
extreme, with three outliers that have full run queues, and
others with relatively short queues.

A number of interesting phenomena are indicated by the
visualizations.

• A clear consequence of hyper-threading is that there is
an asymmetry between the two schedulers on a single
physical core. This is evident in the visualisation in the
different lengths of the two run queues on a single core
(e.g. cores 0 and 12), resulting in the alternating pattern
seen in the figure.

• Setting aside this intra-core issue, migration does not
ensure that run queues have the same size: however this
is not necessary, since all that is needed is that each core
has enough work to ensure that it is fully occupied.



p0 9152 0

p0 9501 0

p0 10890 0

Fig. 2. Three steps in the low level view

c b

a

Fig. 3. High level view.

c b

a

Fig. 4. Initial placement of Erlang nodes before force application.

IV. HIGH LEVEL VISUALIZATION

The high level visualization shows the grouping of Erlang
nodes within particular s groups and edges visualizing the
communication between the nodes. Each node on this high
level visualization corresponds to an instance of the low level
visualization.

An example of the high level visualization is shown in
Figure 3. The s groups are drawn first, with each s group
being represented by a circle. As a node may be the member
of more than one s group, the circles typically intersect.
The s group membership is derived and is passed to code
described by [19] which returns the circle centres and radii
that will then be drawn in SVG. The intersecting circles form
connected regions and the largest rectangle within each region
is calculated (shown in green in Figure 4). Nodes that are



contained in the relevant s groups are drawn in a grid pattern
within the rectangle. The method for drawing Euler diagrams
often creates extra regions, in which no node is placed. In some
visualization systems (particularly those using Venn diagrams)
these empty regions can be shaded to indicate that they have
no elements inside. However, we regard it as self-evident that
there are no elements in empty regions and so we do not add
the extra syntactic complexity of shading.

A force-directed layout is then applied to the nodes to im-
prove the layout. The forces are the standard spring embedder
attraction and repulsion forces [7], with an additional force.
This third force is applied to a node to keep it away from the
borders of the region, and is a simplified version of the force
introduced in [16]. It is proportional to the node’s distance
from the circumference every circle, pushing the node toward
the centre of circles in which it is inside, whilst pushing the
node away from the centre of circles which it is outside of.
Additionally, a test is made to ensure that nodes do not leave
the region to which they belong by disregarding any node
movement that moves it outside the correct region (although
nodes are allowed to move outside their starting rectangle).

Communication between nodes is represented by edges
and these may change during the program’s execution. The
shading of the edges is related to the frequency of messages
within the timeframe. The darker the edge, the more frequently
messages are sent. Edges are removed if no communication
exists between them and new edges are introduced when
communication is initiated between nodes. The use of a force-
directed layout method allows the visualization to be dynamic,
so that the repositioning of the nodes can be shown in an
animated manner as the diagram reaches a new equilibrium.

The data used in this paper was generated by running a
distributed Erlang benchmark application on a collection of
Erlang nodes, which were configured to form the s groups
(these s groups were manually defined, as no s group data is
currently present in the trace data). The total wallclock runtime
of the application was 222 seconds. On each participating
Erlang node, Erlang’s built-in support for tracing was used
to record message sending events. Each such event recorded
contains the name of the sending node, the name of the
receiving node as well as the actual message sent. Trace data
from each node were written to a file, and the data files
were then collected, analyzed and synthesized to provide the
visualization tool with the accumulated communication data
on each iteration, which occurs every 200 milliseconds.

Figure 5 shows some steps in the animation process. The
top diagram shows the visualization after 100 iterations since
the start of the trace. At this point there are relatively few
communication edges between Erlang nodes. In the middle
diagram, an iteration later, the number of communication
edges suddenly increases dramatically, indicating that the
scheduling has initiated a number of communications between
nodes. In terms of the visualization, the middle diagram has
not had time for the forces to be applied to the nodes, and so
the nodes are shown in the same position as in the top diagram.
After another 99 iterations, the forces find an new equilibrium,

100 iterations

101 iterations

b a

d

c

200 iterations

b a

d

c

b a

d

c

Fig. 5. Three steps in the animation of the high level view.



with the nodes in the positions as shown in the lower diagram.
Here, the nodes have moved further away from the region
centres, so indicating a stronger affinity to nodes outside their
regions. However, the only node in s group “c” (top circle)
has been relatively unaffected by this, as the number of nodes
it is communicating with has not changed.

V. CONCLUSION

This paper has described a two level visualization for Erlang
distributed and concurrent processes. The complexity of such
systems requires a mixed approach where concurrency and
distribution are visualized by distinct methods.

Concurrency in Erlang nodes has been represented in a
low level visualization by animating communication edges
between Erlang schedulers which are shown in a circular
layout. How busy each Erlang scheduler is can be seen by
the length of the bar associated with that scheduler.

The distributed nature of Erlang computation is shown in
a high level visualization using a dynamic graph of commu-
nication between Erlang nodes. Nodes are placed in s groups
which is shown by drawing the nodes in regions of a Euler
diagram drawn with circles. The changes in communication
between nodes is animated by a force-directed layout, which
also maintains the nodes in their s groups.

Informal feedback from RELEASE project members has
been solicited. This has resulted in broadly positive reactions,
with suggestions for alternative data that might be represented
by the edges between processes or nodes. This leads to the
first aspect of further work: once the system is more stable,
there is potential for formal evaluation of the system to see if
it is successful in its aims of:

• assisting system performance evaluation;
• aiding the verification of program correctness; and
• improving insight into program behaviour.

Given the limited number of distributed Erlang experts, and
the considerable amount of time that would need to be
devoted to using the visualizations to get useful information,
a longitudinal study with a handful of participants might be
the best mechanism for this. Before such an evaluation, the
user interface will have to be improved, and the connection
between the two levels of visualization needs to integrated
more closely.

Other further work relates to modifying the system to deal
with an increasing amount of distribution. The current high
level visualization shows each Erlang node as a graphical
node. Whilst this has the advantage of showing all Erlang
nodes, it can become unwieldy when their number grows. To
allow the system to scale we expect to cluster Erlang nodes,
using mechanisms similar to those developed in [22]. When
applied to distributed Erlang, a graphical node might represent
an s group, and edge affinity could be a composite measure
of overlap and communication bandwidth between groups.

The system so far supports offline visualisation, but the same
graphical approach can be used to provide an online – that
is, real time – view. The challenge of online visualisation
in this case is to provide streams of suitable aggregate data

without adversely affecting the performance of the system
under observation. These streams of data could be provided
by the built-in Erlang tracing mechanism, or using a Unix
teaching framework such as DTrace / SystemTap.
Acknowledgements This research is supported by EU
FP7 collaborative project RELEASE (http://www.release-
project.eu/), grant number 287510.

REFERENCES

[1] The OpenMP API specification for parallel programming.
http://openmp.org/wp/.

[2] Erlang/OTP. http://www.erlang.org, May 2013.
[3] RELEASE. http://www.release-project.eu/, May 2013.
[4] Benjamin Albrecht, Philip Effinger, Markus Held, Michael Kaufmann,

and Stephan Kottler. Visualization of complex bpel models. In Graph
Drawing, pages 421–423. Springer, 2010.

[5] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-
driven documents. IEEE Transactions on Visualization and Computer
Graphics, 17(12):2301–2309, December 2011.

[6] Francesco Cesarini and Simon Thompson. Erlang Programming.
O’Reilly Media, Inc., 2009.

[7] Peter Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[8] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika brahm, Daniel
Becker, Bernd Mohr, and Forschungszentrum Jlich. The SCALASCA
performance toolset architecture. Concurr. Comput. : Pract. Exper.,
22(6):702–719, April 2010.

[9] Don Jones Jr., Simon Marlow, and Satnam Singh. Parallel performance
tuning for Haskell. In Haskell Symposium 2009, Edinburgh, Scotland,
September 2009. ACM Press.

[10] Eileen Kraemer and John T Stasko. Creating an accurate portrayal of
concurrent executions. Concurrency, IEEE, 6(1):36–46, 1998.

[11] Eileen T Kraemer and John T Stasko. The visualization of parallel
systems: An overview. 1992.

[12] H. Li and S. Thompson. Multicore Profiling for Erlang Programs Using
Percept2. In Erlang Workshop 2013, 2013.

[13] Tobias Lindahl and Konstantinos Sagonas. Practical type inference
based on success typings. In Proceedings of the 8th ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming,
pages 167–178, New York, NY, USA, 2006. ACM Press.

[14] J. Lonnberg, M. Ben-Ari, and L. Malmi. Visualising concurrent
programs with dynamic dependence graphs. In Visualizing Software for
Understanding and Analysis (VISSOFT), 2011 6th IEEE International
Workshop on, pages 1–4, 2011.

[15] Matthias S. Mller, Andreas Knpfer, Matthias Jurenz, Matthias Lieber,
Holger Brunst, Hartmut Mix, and Wolfgang E. Nagel. Developing
Scalable Applications with Vampir, VampirServer and VampirTrace. In
PARCO, volume 15 of Advances in Parallel Computing, pages 637–644.
IOS Press, 2007.

[16] P. Mutton, P. Rodgers, and J. Flower. Drawing graphs in Euler
diagrams. In Proceedings of 3rd International Conference on the Theory
and Application of Diagrams, volume 2980 of LNAI, pages 66–81,
Cambridge, UK, March. Springer.

[17] A. Rusu, A.J. Fabian, R. Jianu, and A. Rusu. Using the gestalt principle
of closure to alleviate the edge crossing problem in graph drawings. In
Information Visualisation (IV), 2011 15th International Conference on,
pages 488–493, 2011.

[18] Lucas Mello Schnorr, Arnaud Legrand, Jean-Marc Vincent, et al.
Interactive analysis of large distributed systems with topology-based
visualization. 2012.

[19] Gem Stapleton, Leishi Zhang, John Howse, and Peter Rodgers. Drawing
euler diagrams with circles: The theory of piercings. Visualization and
Computer Graphics, IEEE Transactions on, 17(7):1020–1032, 2011.

[20] Anne Treisman and Janet Souther. Search asymmetry: a diagnostic for
preattentive processing of separable features. Journal of Experimental
Psychology: General, 114(3):285, 1985.

[21] Guido Wirtz. A visual approach for developing, understanding and
analyzing parallel programs. In Visual Languages, 1993., Proceedings
1993 IEEE Symposium on, pages 261–266. IEEE, 1993.

[22] Kang Zhang and Gaurav Marwaha. Visputera graphical visualization
tool for parallel programming. The Computer Journal, 38(8):658–669,
1995.


