3 research outputs found

    A visual demonstration of convergence properties of cooperative coevolution

    Get PDF
    We introduce a model for cooperative coevolutionary algorithms (CCEAs) using partial mixing, which allows us to compute the expected long-run convergence of such algorithms when individuals ’ fitness is based on the maximum payoff of some N evaluations with partners chosen at random from the other population. Using this model, we devise novel visualization mechanisms to attempt to qualitatively explain a difficult-to-conceptualize pathology in CCEAs: the tendency for them to converge to suboptimal Nash equilibria. We further demonstrate visually how increasing the size of N, or biasing the fitness to include an ideal-collaboration factor, both improve the likelihood of optimal convergence, and under which initial population configurations they are not much help

    Novelty-driven cooperative coevolution

    Get PDF
    Cooperative coevolutionary algorithms (CCEAs) rely on multiple coevolving populations for the evolution of solutions composed of coadapted components. CCEAs enable, for instance, the evolution of cooperative multiagent systems composed of heterogeneous agents, where each agent is modelled as a component of the solution. Previous works have, however, shown that CCEAs are biased toward stability: the evolutionary process tends to converge prematurely to stable states instead of (near-)optimal solutions. In this study, we show how novelty search can be used to avoid the counterproductive attraction to stable states in coevolution. Novelty search is an evolutionary technique that drives evolution toward behavioural novelty and diversity rather than exclusively pursuing a static objective. We evaluate three novelty-based approaches that rely on, respectively (1) the novelty of the team as a whole, (2) the novelty of the agents’ individual behaviour, and (3) the combination of the two. We compare the proposed approaches with traditional fitness-driven cooperative coevolution in three simulated multirobot tasks. Our results show that team-level novelty scoring is the most effective approach, significantly outperforming fitness-driven coevolution at multiple levels. Novelty-driven cooperative coevolution can substantially increase the potential of CCEAs while maintaining a computational complexity that scales well with the number of populations.info:eu-repo/semantics/publishedVersio

    Multiagent systems: games and learning from structures

    Get PDF
    Multiple agents have become increasingly utilized in various fields for both physical robots and software agents, such as search and rescue robots, automated driving, auctions and electronic commerce agents, and so on. In multiagent domains, agents interact and coadapt with other agents. Each agent's choice of policy depends on the others' joint policy to achieve the best available performance. During this process, the environment evolves and is no longer stationary, where each agent adapts to proceed towards its target. Each micro-level step in time may present a different learning problem which needs to be addressed. However, in this non-stationary environment, a holistic phenomenon forms along with the rational strategies of all players; we define this phenomenon as structural properties. In our research, we present the importance of analyzing the structural properties, and how to extract the structural properties in multiagent environments. According to the agents' objectives, a multiagent environment can be classified as self-interested, cooperative, or competitive. We examine the structure from these three general multiagent environments: self-interested random graphical game playing, distributed cooperative team playing, and competitive group survival. In each scenario, we analyze the structure in each environmental setting, and demonstrate the structure learned as a comprehensive representation: structure of players' action influence, structure of constraints in teamwork communication, and structure of inter-connections among strategies. This structure represents macro-level knowledge arising in a multiagent system, and provides critical, holistic information for each problem domain. Last, we present some open issues and point toward future research
    corecore