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Abstract

This study aims to investigate the behaviour and applications of an Evolutionary

Algorithm (EA) based on a particular approach of Cooperative Co-evolution

Algorithm (CCEA), the “Parisian approach” where the solution of an optimisation

problem is a set of individuals (e.g. the whole population) instead of a single

individual (the best one) as in typical EAs. The CCEA we selected is called “Fly

algorithm”. It is named after flies, because the individuals are extremely primitive

and correspond to three-dimensional (3-D) points. The focus of this study relies

on visualisation to examine the Fly Algorithm (FA) to solve complex problems

-reconstruction and segmentation of two types of medical imaging modalities,

Positron emission tomography (PET) and MRI.

For image reconstruction, we compare the performance of FA with traditional

non-cooperative optimisation schemes, such as Real-Coded Genetic Algorithm

(RCGA), Particle Swarm Optimization (PSO) and Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) algorithms on two test cases: A toy problem, the

Lamps; and a complex inverse problem, PET reconstruction. This choice is based

on three facts: i) FA has been built on top of RCGA, the comparison yield an

assessment of the cooperative component that has been added, ii) PSO has been

sometimes opposed to FA, and iii) CMA-ES is considered as the state-of-the-art for

continuous optimisation. Our experiments highlight some structural differences and

experimentally compare these algorithms. In both test cases FA exhibits a better

scalability.

In another work, we propose using information visualisation and user interaction

techniques to explore the algorithm’s internal data. Our aim is to better understand

what happens during the evolutionary loop. Using PET reconstruction, we

demonstrate that it is possible to interactively discover when an early termination



could be triggered. It is implemented in a new stopping criterion that reduction of

the number of iterations without any loss of accuracy.

This methodology lead to the segmentation where, we combine optimisation,

computer vision and visualisation/data exploration to analyse MRI data and detect

peas inside the human stomach. We propose to perform the image analysis task as

a multi-objective optimisation. We rely on the FA implemented using NSGA-II. The

output of the optimisation is a succession of datasets that progressively approximate

the “Pareto front”, which needs to be understood and explored by the end-user.

Using interactive Information Visualisation (InfoVis) and clustering techniques, peas

are then semi-automatically segmented.

Once a labelled dataset became available, we performed a binary classification

as a food recognition problem, implemented using a deep Convolutional Neural

Network (CNN). The results have been analysed using interactive visualisation. We

prove in this work that advances in computer vision and machine learning can be

deployed to automatically label the content of the stomach even when the amount

of training data is low and the data imbalanced.

To make the work more robust by taking advantage of the labelled data, we compare

the performance of some more traditional machine learning classifiers by using

online application. Also, we deploy the multi-objective optimisation NSGA-II to use it

as classifier and feature selection to improve classification accuracy and reduce the

computational complexity. The result of this classifier is then refined using a residual

neural network (ResNet). We have presented a fully-automatic segmentation of

the peas using a combination of evolutionary computing, machine learning and

computer vision techniques. The final results were confirmed by experts.

In conclusion, our investigations confirm that the Fly algorithm works well with a

complex search space. We prove the use of a simple but effective visualisation

can help to understand the behaviour of the FA and extract early results without

need to wait until the optimisation loop finished also, to analyse the output of the

FA. We open the door for the researchers to try use the algorithm in segmentation



processing images with consideration the description of the object they want to

segment it.
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Chapter 1

Introduction

1.1 Context

An Evolutionary Algorithm (EA) is a nature-inspired Optimisation algorithm, which

refers to an algorithm that improves a problem solution through many iterations

(known in this context as generations). Typically, each iteration is called a

generation, and each generation is composed of a number of individuals. This

group of individuals is called a population. In addition, EAs are known as random

search methods that simulate the theory of natural biological evolution and/or the

social behaviour of creatures. To mimic the practical behaviour of these varieties,

various researchers have developed computational systems that require fast and

robust solutions to complex optimisation problems [48]. There are many different

types of optimisation algorithms. In this thesis, we focus on population-based

nature-inspired heuristics, such as Evolutionary Algorithms and Particle Swarm

Optimisation. In general, Optimisation algorithms are used to solve complex

problems, including image processing, analysing, reconstructing, segmentation,

and understanding digital images. Optimisation algorithms are often considered as

black-box optimisation methods, where the user is interested only in the final solution

provided by the optimisation algorithm. All the data generated by the Optimisation

algorithms is used by the Optimisation algorithms only, and is discarded during or

at the end the optimisation. With this approach, it is difficult, if not impossible, to

improve or finely tune the Optimisation algorithms.

In this thesis, we focus on some large nature-inspired optimisation problems

related to image reconstruction and image analysis. We aim to demonstrate how

interactive visualisation can help to understand the behaviour of the algorithm
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(e.g. to improve it), and help choose a “good” solution. We rely on the Fly

Algorithm [82] for three-dimensional (3-D) reconstructions in nuclear medicine

(see Chapter 5) where, interactive visualisation method is deployed to understand

the behaviour of the algorithm. In another application, we use a multi-objective

Fly Algorithm (FA) and interactive visualisation to segment Magnetic Resonance

Imaging (MRI) images (see Chapter 6). We also use interactive visualisation and

high performance capturing to test Convolutional Neural Network (CNN) models

and select hyper-parameters (see Chapter 7). Finally, we use a multi-objective

optimisation as a classifier to detect specific objects in a medical images (MRI) (see

Chapter 8).

1.2 Hypothesis

In black-box optimisation, people trust the algorithm to provide a good solution.

The user does not monitor the data between the beginning and the end of the

optimisation process (the data in each generation). Still, the algorithm will run until

it reaches a stopping criteria. In this case, and for Evolutionary Computing, the data

between each generation will be discarded. However, black-box optimisation is not

(always) a panacea. Traditional algorithms may fail in some cases, or may require

an unreasonable amount of resources (CPU time, or amount of main memory). In

this context, our hypothesis is as follows:

For complex and large problems where traditional algorithms are

not suitable, ad-hoc interactive visualisation can be deployed to

considerably improve either i) an optimisation algorithm, or ii) the

selection of the problem solution on the “Pareto” front to use as a

solution.

1.3 Aim and objectives

We aim to validate or invalidate our hypothesis. Therefore, the objectives of the

study are as follows:
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1. To identify a problem or class of problems where traditional black-box

optimisation approaches are not suitable (Chapter 3 and Chapter 4). The

study will illustrate how the FA compare in terms of efficiency and effectiveness

to a few other traditional optimisation approaches.

2. To select two case studies to validate or invalidate our hypothesis, i)

reconstruction in nuclear medicine (Positron emission tomography (PET)),

and ii) segmentation of small regions in another type of medical images (here

MRI).

3. To use interactive visualisation to analyse the internal data of FA to extract

the best possible solution of the reconstructed PET image (Chapter 5).

4. To modify the FA to speed-up the reconstruction process without loss of

accuracy (Chapter 5). The two most common stopping criteria in EAs are

i) the total number of generations, and ii) stagnation (no further significant

improvement in terms of fitness value). Learning from the previous analysis,

we could introduce an alternative stopping criterion specific to the application.

5. To analyse the content of the stomach from MRI using multi-objective FA to

find small regions on this image (Chapter 6).

6. To demonstrate that it is possible to train a CNN despite a very limited and

imbalanced database of cases and, using an interactive visualisation to find

the best suitable combinations of hyper-parameters (Chapter 7).

7. To use multi-objective optimisation (NSGA-II) as a classifier and compare it

with common classifiers (Chapter 8).

1.4 List of publications

A list of published articles that present most parts of the work can be seen below in

reverse chronological order:
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1.5 Contributions

Given the previous sections, this thesis investigates the problems involved in EAs

and ML, and the use of Information Visualisation (InfoVis). It will focus on the major

contribution of this work which include:

Open-source implementation of optimisation algorithms: We implement

global optimisation methods (Pure Random Search (PRS), Simulated

Annealing (SA), FA, and Particle Swarm Optimization (PSO)) as open-source.

The Python implementation of all these algorithms and the test data are

provided on GitHub 1. We use some of these algorithms to investigate the

ability of FA by comparing it with PSO and PRS (see Chapter 3). Mr. Tianci

Wen (PhD student in SCSEE at Bangor University) which is studying the

registration of 3D triangular models onto 2D X-ray projections uses three of

these optimisation methods (PRS, SA, and FA) to address his problem. The

registration framework is successful when using a suitable optimisation

algorithm. This work can be found in publications no. [154].

Make Particle Swarm Optimisation cooperate: PSO is based on social

interactions. The emerging collective behaviour results from a balance

between following a leader and following an individual focus, thanks to

inter-individual communications. This mechanism is different from EAs that

rely on genetic transmission and natural selection analogies (birth, death and

inheritance within a population). Important differences between them are how

they manage diversity and how they communicate, making them best fitted to

different optimisation tasks. The focus of contribution is fine-grained

cooperation. By analogy with an evolutionary scheme that has long proved

effective, the FAs, we design a cooperative PSO (coPSO), and a

PSO-flavoured fly algorithm. Experiments run on a benchmark, the Lamp

problem, show that fine-grained cooperation based on marginal fitness

evaluations and steady-state schemes outperforms classical techniques

when the dimension of the problem increases.

1https://github.com/Shatha1978/Optimisation-algorithm-examples
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The importance of the data visualisation: We recommend the use InfoVis and

data exploration to understand some of the behaviours of an FA to extract early

best solution and find early stopping. Also, InfoVis helps to understand the

output of an FA implementation and enhancement these output to extract the

optimal solution. This work can be found in publications no. [58], [114]–[116].

Finding food inside the human stomach: This contribution is part of a large

project focused on the understanding of the influence of food structure on

digestion. The long-term objective of this study is to help to model food

interaction with the human digestive system. Advanced imaging techniques

allow observation the digestion process at different scales. We use MRI that

provides in vivo information at the large scale (stomach and duodenum of

healthy human volunteers). We propose a framework to analyse the content of

stomach (frozen green peas and pasta) from MRI: i) We use a “Fly Algorithm”

to detect peas in these MRI images. The Fly Algorithm has been turned into

a multi-objective cooperative-coevolution algorithm, and expert knowledge

has been integrated through simple InfoVis techniques. ii) We consider a

binary classification task to recognise a small region (in this case the peas)

in MRI images. We use CNN as a feature classifier. These studies help the

researchers who work in studying food structure to track and follow any type

of food. This work can be found in publications no. [53], [114]–[116]

1.6 Outline

This thesis is organised into nine chapters. The first chapter gives outlines about

this research, including motivations; it highlights the main contributions of this study

and gives a list of published papers. Chapter 2 presents the scientific context related

to this work and the main applications that have been used in this thesis. Chapter 3

gives a a brief overview for Fly algorithm (FA) and traditional nature-inspired

optimisation approaches (Genetic Algorithm (GA)) and Particle Swarm Optimisation

(PSO). Also it shows the main differences between them. Chapter 4 shows

the comparison between the efficiency of FA and traditional nature-inspired

optimisation approaches GA, PSO and Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) by using two problems (Lamp problem and PET reconstruction).
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The next chapter (Chapter 5) is a collaborative work. Our contribution relates to the

use of a special type of Cooperative Co-evolution Algorithm (CCEA), which is the

Parisian approach (specifically the Fly algorithm) in PET reconstruction, and Mr.

Gray 2 contribution focuses on implementing the InfoVis components based on our

specifications. We exploited her tool to explore the data and understand some of the

behaviours of theFA. Chapter 6 proposes the first multi-objective implementation of

the FA to segment small regions (peas) on the MRI. Our collaborators (Dr. Évelyne

Lutton 3 and Prof. François Boué 4) provide the MRI data. The outcomes of the

algorithm show that FA is suitable for the segmentation if the problem cannot be

identified by a single equation. After obtaining more data and labelled data, it

became possible to train Machine Learning (ML) algorithms, and this is presented

in the Chapter 7. This Chapter was another collaborative work. Mr. Gardner 5

prepared the data to train a CNN, and conducted some preliminary experiments with

ML algorithms. With the help of our expert collaborators, these experiments were

successful and developed further in this thesis. The output from the FA contains

some undesirable points, due to the accuracy of the images used, so we used

multi-objective optimisation problem to filter the outputs and this is explained in

Chapter 8 explains. The last chapter discusses the work carried out and provides

some possible directions for future work.

2PhD student in Computer Science at Bangor University at the time of this study
3Research director at the French National Institute of Agricultural Research (INRAe)
4Professor at the French National Centre for Scientific Research (CNRS) and French Alternative

Energies and Atomic Energy Commission (CEA)
5BSc student in Computer Science at Bangor University at the time of this study
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Chapter 2

Background

2.1 Context

The long-term objective of this collaborative study is to aid the modelling of

food interactions with the human digestive system. More precisely, exploring,

understanding and modelling the influence of food structure on the nutrients

release kinetics during digestion. The digestion process is not just simply food

decomposition and the absorption of macronutrients, e.g. carbohydrates, proteins

and lipids, as well as micronutrients, e.g. vitamins, minerals, and other food

components. Two relevant views are advanced, the kinetics of digestion and

food structure. Hence work on food under various structures being assessed for

differences of their behaviour, under the action of gastric and intestinal enzymes,

has been initiated [1], [43], [45], [51], [163].

On the one hand, our international collaborators have developed observation of

in vitro digestion at low scales (1 mm down to 10 nm) using microscopy (1 mm

down to 10 mu [43], [51]) and radiation scattering (1 mu down to 10 nm [43], [86],

[100]). Simple proteins were chosen because they form gels which display a huge

variety of structure at those scales, and are a crucial food component for health [7].

On the other hand, they have conducted in vivo digestion experiments using MRI

imaging [52] to study, in relation to the measurement of satiation, gastric emptying.

In particular, the food appearing in image of the stomachs of volunteers contained an

easy to digest food (cooked pasta or bread), as well as a few raw peas, introduced

the meal as flow tracers (around 20 peas in one stomach for the current experimental

data. The peas can reveal the motion of the stomach, which generates a stirring

8



and gentle “trituration” of the food. This trituration induces in turn the motion of the

pasta, which is the food bolus (or “chime”), to facilitate the action of the gastric juice.

Being able to follow the peas in these images is important as it reveals how the

food bolus is stirred inside the stomach. More generally understanding the food

flow is very important since it influences the regions where food is located, and

the duration of such localisation, and therefore the kinetics of food digestion. Put

simply, the thesis is about image analysis used to detect such peas in medical

image processing and advanced Computer Vision (CV) methods.

Formerly, in early 2018 [114], a first image analysis was conducted using the “Fly

Algorithm”, an evolutionary optimisation algorithm [115], [134]. The Fly Algorithm,

contrary to classical image processing techniques, computes from a model of the

object or the surface chosen by the user, an image produced by "flies" located on

these model objects or surfaces. This allows for the "fit" of a large variety of various

features. Here the peas were considered as circular areas with a rather uniform

grey colour surrounded by contrasting, irregular areas. Since we need to detect

more than one pea, we used a multi-modal extension of the fly algorithm. Moreover,

to decide whether a point was the centre of a pea required several criteria to be

fulfilled, which was difficult to embed in a single fitness function. A solution was

multi-objective EAs converging toward the Pareto front, through the widely used

method, NSGA-II [115].

This chapter presents the general application context related to this thesis, beginning

with a brief introduction of medical imaging and in Section 2.2, including a definition

of the main type of the medical images used in this thesis PET and MRI. Section 2.3

gives a brief explanation for the visualisation off an Evolutionary Algorithm, and

how it helps to understand the behaviour of its implementation. Furthermore, this

section presents the data visualisation styles used in this study (scatterplots, parallel

coordinate plots, and radar charts).

2.2 Medical Imaging

Medical imaging not only helps with the diagnosis of some diseases, but it also

provides help with the planning and monitoring of treatments. The development
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of medical imaging has continuously improved over the past four decades. For

computer scientists, what is perhaps the most obvious about this progress in

medical imaging is how it keeps challenging us to provide significant innovation in

computational techniques for nearly all aspects of image processing. There are

many different types of medical images, e.g. X-ray radiographs and ultrasound.

These types are called modalities. The utilisation of multiple imaging modalities on

a single patient, for example, MRI and PET requires intelligent algorithms for image

registration and pattern recognition [15]. In this thesis, we make use of PET and

MRI images.

2.2.1 Emission tomography in nuclear medicine

In nuclear medicine, a radio-pharmaceutical (i.e. radioactive substance) is

administered to the patient. The radioisotope is fixed on a given molecule that is

going to be absorbed by the body in relation to a targeted physiological process,

such as tumour growth, bone fracture, or reduced blood flow in the heart. Imaging

in this context is a type of molecular and functional imaging. In other words, a

physiological function is targeted by the radioactive molecule. In Oncology, the

molecule will be fixed by tumours because of the growth of cancerous cells. This

is why tumours are highlighted in Figure 2.1. The radioactive concentration is

much higher in tumours than in healthy tissues, which leads to more emission from

the tumours. For this reason tomography in nuclear medicine is called emission

tomography (ET): The source of radiation is within the patient. There are two main

techniques: Single-Photon Emission Computed Tomography (SPECT) and PET.

They both produce a stack of 2-D cross-sections through the human body, which

corresponds to a 3-D map of the radioactive concentration within the patient (see

Figure 2.1b). In this study, we use PET (Chapter 5) as an application example to

initially investigate how data can be explored using interactive visualisation to better

understand the outcome of the evolutionary optimisation.

Figure 2.2 shows the principle of the PET data acquisition chain. Images produced

in ET have a relatively low resolution (typically 128×128 pixels) and signal-to-noise

ratio (SNR). Well-known tomography techniques used in radiology departments,

such as Computed Tomography (CT) and MRI generate images with a much higher
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(a) CT data. (b) PET data. (c) PET-CT data.

Figure 2.1: PET-CT examination of a “head and neck” patient in Oncology. In this case
tumours were not visible on the anatomic images from CT, but were on the physiological
images from PET. Top row: axial plane; middle row: coronal plane; and bottom row: sagittal
plane. Source: the Cancer Imaging Archive (http://www.cancerimagingarchive.
net/) [34].

resolution (typically 512×512 pixels) and SNR (see Figure 2.1a). They are used to

visualise anatomical structures. Modern medical scanners now combine PET with

either CT or MRI to provide collocated physiological and anatomical image datasets

(see Figure 2.1c).

In PET, the positron (often shortened as e+ or β+) is the type of ionising radiation that

is used. When a positron collides with an electron (e−), an annihilation reaction may

occur. In this case, two photons (γ) are emitted at almost 180° of each other with a

kinetic energy of 512 kiloelectron volts (keV). Note that photons are the elementary

particle of light. Pairs of annihilation photons are detected in coincidence, i.e. at

almost the same time, by a dedicated scanner. The line joining the two detectors

(see red parallelepipeds in Figure 2.2) that caught the photons of the same pair is

called the line of response (LOR) (see red line in Figure 2.2). Each detector of the

PET scanner has a unique identifier. All the pairs of detectors corresponding to the

LORs are recorded by the system. However, the exact locations of the annihilation

reaction are unknown. LOR data can also be converted into sinograms as this is a

common data representation [49] that stores a set of 1-D projections at successive

angles in a 2-D image (see Figure 2.3).
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Figure 2.2: PET data acquisition: 1 e− combines with 1 e+; it may results in an annihilation
reaction, which generates 2 γ of 512 keV emitted at about 180°; the line joining the pair of
detectors activated by this pair of γ is called LOR; the system records many LORs [58].
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Figure 2.3: Conversion of LOR data into a sinogram [58].
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To convert a LOR into a point into the sinogram, the angle between the LOR and the

horizontal axis is computed (see α in Figure 2.3). The shortest distance between

the LOR and the origin of the system is also computed (see r in Figure 2.3). The

intensity of pixel(r, α) in the sinogram is derived from the number of corresponding

LOR events detected by the PET scanner. Noise is actually a major concern in ET.

2.2.2 Magnetic Resonance Imaging (MRI)

The second application example relies on Magnetic Resonance Imaging (see

Chapters 6). We further rely on the visualisation of the output data produced by the

evolutionary algorithm to extract the best solution(s).

Contrary to emission tomography techniques, Magnetic Resonance Imaging can

show small anatomical details. For example it is the most relevant imaging modality

for diagnosis and classification of early axial spondyloarthritis as it highlights smalls

defects in tissues [113]. Each MRI dataset is made of one or more cross-sectional

images (called slices) through the human body [138] (see Figure 2.4).

The principle of the magnetic resonance mechanism is the measurement of

radio-frequency radiation-produced from transitions induced between nuclear spin

states of tissue hydrogen atoms (protons) in the existence of a robust external

magnetic field. Whilst CT relies on X-ray reduction by tissues, which are a function

of electron density and atomic number, relative pixel intensities in MRI are tissue

relaxation times and function of proton densities [74].

2.3 Visualisation in Evolutionary algorithms

Optimisation, including Evolutionary Computing (EC), is often used in engineering

as a black box optimisation where the final solution provided by the optimisation

algorithm is used as the solution to the optimisation problem. A lot of data is

generated during the evolution process, in particular data based on error metrics

and correlation measurements. Traditionally all this data is discarded at the

end of the evolutionary process, as only the final population is considered. It

is however, possible to retain this information for future processing and analysis.

The combination of visualisation and evolutionary computing is still a relatively
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Figure 2.4: Example of a typical slice from our MRI dataset #2.
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overlooked field. The emergence of information visualisation and data analytics is

opening new doors for its use in the evolutionary computing domain. Two different

approaches can be distinguished:

• visualisation to understand an Evolutionary Algorithm behaviour [73], [103],

[157], [158], or outputs [26];

• interactive artificial evolution to improve the visualisation [12], [59], [85].

First attempts were reported at the end of the 90s. Early visualisations used

relatively basic techniques that mostly relied on plotting with limited or no interactivity.

Visualisations are most effective when they not only show information but allow a

user to answer their own questions by interacting with the data [79].

To assist in tuning the Evolutionary Algorithm, the complex interplay of each metric

needs to be understood. Examining the raw data in numeric form is often error-prone

and limited by the exact process employed by the researcher. There are other

methods, such as writing bespoke analysis programs or the use of summary

statistics in a spreadsheet application. These methods are then limited by the

capability of the tools, and results are still provided in text form which can be harder

to reason with. The field of Visual Analytics provides another alternative, exploiting

the visual processing and reasoning abilities of the human being [62]. Systems

built for visual analytics can be expanded to use multiple views [112] of the same

data set highlighting deeper relationships and patterns. Therefore, the exact metric

value substituted with a graphical and/or spatial surrogate. In this form, relation of

metrics becomes an easier task requiring less mathematical and domain-specific

knowledge.

Off-the-shelf computer programs, such as Tableau [132] or Grapheur [22], [30], can

be readily used to perform the visualisation of Comma-Separated Values (CSV) files

using Parallel Coordinate Plots and scatterplots. However, off-the-shelf computer

programs are generalist and obviously not dedicated to a given problem. In which

case, a dedicated data visualisation program customised to perform a given task

may be required.
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2.4 Data visualisation

Data visualisation concerns the processing of sampled and computed data for

comprehensive display. The aim of the visualisation is to provide to the user a

deeper understanding of the data, in addition, to understand relationship within the

data. Also, it is important to make the visualisation more interactive by allowing the

user to rapidly discard useless information, focus on necessary information, and

comprehend the science behind the data [14].

The use of InfoVis in evolutionary computing is rising. Jean-Daniel Fekete, leader of

the Visual Analitics project (AVIZ) at Inria, gave a keynote talk on data visualisation

at the Artificial Evolution 2017 conference to promote the use of these technology in

evolutionary computing [135]. Also, Genetic Programming and Evolvable Machines

(journal published by Springer Nature Switzerland AG) published a special issue in

2018 on “Genetic Programming, Evolutionary Computation and Visualization” [25].

These two examples have partly motivated our research.

There are different methods of data visualisation, here the study focuses on the

methods that will help us to understand the performance and the behaviour of the

EA, as well to find the link between the hyper-parameters in ML. Firstly, we aimed

to find small regions in a medical image by locating points on it. For that purpose,

using scatterplots was suitable. Also, to understand the implementation of the Fly

algorithm we proposed a simple visualisation method relying on parallel coordinate

plots. Parallel coordinate plots were useful to determine the best solution and early

stopping criteria. In addition, we display different values for each group (peas and

non-peas) that result from the multi-objective optimisation and we need to know the

connection between them to find an appropriate threshold for cleaning the outputs

to reach the best solution. Parallel Coordinate Plots gave us a simple and efficiency

method to analyse the outputs from optimisation algorithm we used. Finally, we

implemented ML as a classifier and for that we used various image sizes and number

of epochs in training and testing. It was difficult to determine which combination of

image sizes and number of epochs provides the best classification result. Radar

chart provided an interactive visualisation to identify which combination of number

of pixels/number of epochs gives the best possible solution. Below are brief of the
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methods used in this research, namely scatterplots, parallel coordinate plots, and

radar charts.

To implement these components we used two different implementation technologies.

The first method is produced using a browser-based library, D3.js [24], which

produces Structured Vector Graphics (SVG) images. The library is written in

JavaScript, with the visualisation code also written in JavaScript. D3 includes

multiple methods for loading and processing data. This system processes the

CSV log files produced by the evolutionary process into JavaScript arrays. This

system used to visualise the implementation of the FA only in chapter(Chapter 5).

The second technology is depended on Python libraries Panda, Matplotlib and

plotly, due to our code was written in Python. Python language has become one of

the fastest-growing languages, because it is easy to learn, and flexible. Python’s

evolving libraries make it a good choice for data analysis [97].

2.4.1 Scatterplots

Scatterplots are one of the most widely used and most powerful techniques for data

visualisation. They use a group of points located using Cartesian Coordinates to

present values from two variables [94]. By showing a variable in each axis, the user

can recognise if a relationship or correlation between the two variables exists. They

are perfect for paired numerical data, when the user wants to know if one variable

impacts the other [153]. An example of scatterplots can be seen in Figure 2.5.

Moreover, we used scatterplots on the image to visualise the best solution from the

implementation of the FA (see Figure 2.6).

2.4.2 Parallel Coordinate Plots

Parallel Coordinate Plots [66], first popularised in computerised form by Alfred

Inselberg, visualise high-dimensional geometry and analyse data in the form of

multiple linked axes on one graph. These axes are scaled such that each domain is

represented in the same length. These axes represent different measurements, or

facets, of the objects in the dataset. Objects, known as instances, are plotted as a

traditional straight line graph on these co-measurable axes. These plots are used

to identify clusters [162] and identify properties of those clusters/subsets [11]. The
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Figure 2.5: Example for scatterplots. Plot the points around the x-axes and y-axes for the
value in rang (0-135) and (0-75).

Figure 2.6: Example for scatterplots on MRI showing the final results for Fly algorithm
implementation presented in Chapter 6.

Background 18



tool uses different colour space, this results in the perceived difference in plot colour

being proportional to the Euclidean distance of the colouring metric, i.e. items close

to each other in the metric space will be similarly coloured in the plot. An example

of this version can be seen in Figure 2.7.

Figure 2.7: Example for Parallel coordinate plot that we used to analyse the output
generated by NSGA-II for pea classification in MRI images (see Chapter 6).

Parallel Coordinate Plots most often deal with ranges rather than individuals. When

selecting ranges of data, interactivity using the Brushing technique [89]. This allows

the user to select multiple items in one stroke as if they were being painted with a

brush. This implementation fades un-brushed lines to grey and leaving those of

interest in their original colour. An example of this version can be seen in Figure 2.8.

Figure 2.8: Same Parallel coordinate plot as in Figure 2.7 when data filtering has been
applied using brushing (some of the data has been selected and remained in the same
colour as previously, the excluded data is shown in grey to make it less visible).

2.4.3 Radar Chart

The radar chart, also known as a Spider chart, Web Chart, Polar Chart and Star

Plots, is a data visualisation approach to visualise the multidimensional data in

the two-dimensional scale Fig. 2.9 is an example of radar chart. This makes them

helpful for understanding which variables have similar values or if there are any

outliers amongst each variable [161]. Each variable is represented with an axis

that starts originally from the centre point. All axes are spread out radially, with

equivalent distances between each other, while keeping the same scale between all

axes. To connect from axis-to-axis grid line served which are also used as a guide.
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The variable values from the dataset are plotted, each value along its individual

axis, and they are linked together to form a polygon [95]. Below is an example using

a radar chart in this research:

 

Polygon 

Data Point 

Axis and Scale 

Figure 2.9: Example for Radar chart. The axises represent some statistics on the images
we used in the ML in Chapter 7.
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Chapter 3

Parisian evolution and Fly algorithm:

A review

3.1 Introduction

This chapter presents an optimisation approach called Fly Algorithm (FA), which

embeds the searched solution into the whole population, only assigning a small part

of the solution to each individual, compared with a few other traditional optimisation

approaches that encode a solution into a single individual in a population. The

Fly Algorithm was originally designed for a CV task (stereovision) based on 2-D

or 3-D geometrical features. Its efficiency has been explained as being due to a

parsimonious use of the evolutionary components “The collective search ability of a

population”. Contrary to classical optimisation approaches (genetic algorithms for

optimisation) that encode a solution into a single individual in a population.

This work introduces the co-evolutionary paradigm that can be in general classified

into two main classes namely, competitive co-evolution and cooperative co-evolution.

For competitive co-evolution, the different groups of individuals will always fight to

get an advantage over the others. However, for the cooperative co-evolution, groups

of individuals will replace information within each other through the evolutionary

process [56]. This thesis focuses on the cooperative co-evolution algorithms. The

Fly Algorithm –and more generally Parisian approaches / cooperative co-evolution–

adopt a distributed approach involving several individuals to collectively represent

the searched solution [36].

21



In the last few years, the heuristic and meta-heuristic optimisation communities have

started an in-depth cost-benefit analysis on the proliferation of new techniques [129].

This chapter is highlighting its significant differences with popular techniques that

might seem similar at a first glance, such as PSO and Real-Coded Genetic Algorithm

(RCGA), and showcasing a few selected case studies on which the Fly Algorithm is

able to outperform PSO and RCGA as well as the state-of-the-art CMA-ES.

The Fly Algorithm is implemented directly on top of a RCGA on which a ‘global’

fitness function was added to assess the performance of the population as a whole.

To some extent, the FA also shares common features with Swarm Intelligence

approaches, in particular with PSO as it relies on collective animal-like behaviour.

However the study will see in the sequel that there are some major algorithmic

differences, besides the fact that FA uses generational mechanisms while PSO

uses swarm communication. Also will show several examples of Fly Algorithm

implementations and systematic comparisons with other algorithms (including

PSO-types and RCGA), to give some clues about the fundamental mechanisms

involved, and recommendations for an efficient implementation. The Python

implementation of all these algorithms and the test data provide on GitHub

(https://github.com/Shatha1978/Optimisation-algorithm-examples).

The next section introduce the EC, highlights EA approach and reviews in detail

how EAs can be built. Section 3.6 describes PSO and its algorithm. Section 3.7

introduces Cooperative co-evolution and Parisian Evolution, the two classes of

optimisation schemes on which the Fly Algorithm is based. Section 3.7.1 provides

details about the Fly Algorithm, including a brief history of its development.

Section 3.7.2 discusses the Fly Algorithm’s initial application, stereovision. To

highlight the different between the three algorithms see Section 3.8. The conclusion

of this work can see in Section 3.9.

3.2 Evolutionary Computing (EC)

EC is a large class of stochastic search algorithms. It is widely used in diverse

application domains. Fig. 3.1 shows a possible classification for the main search

paradigm and highlights EAs [13]. They heavily rely on the theory of biological
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Figure 3.1: Different classes of search methods. The branch corresponding to evolutionary
computing is highlighted in grey.

evolution proposed by Charles Darwin published in 1859 [39]. EAs can find an

optimum solution from set solutions generated from the search space problem.

EAs are considered as metaheuristic optimisation algorithms. Metaheuristics are

the higher-level procedures purposed to find, produce, or select a lower-level

procedures or heuristics which may perform a partial search. They are suitable

for various optimisation problems with limited computation capability and having

insufficient or imperfect information. In such situations, it provides an adequately

good solution. An EA works on a generic population of individuals. Evolution

strategies, genetic algorithms, evolutionary programming, all these techniques

have essential commonality: generation, random variation, competition and

selection [144].

The principles of EAs emerged in the mid-1950s, when researchers were following

various approaches to mimic different concepts in natural evolution, but all of them

relied on the principles of natural behaviors from Darwin’s theory of evolution initially

published in 1859 [47]. Due to the lack of computing power the field of EAs has

been pioneered later in the 60s and 70s. Lawrence J.Fogel introduced Evolutionary

Programming (EP) in the 60s [32], while John Henry Holland called his method

GA [63] and Ingo Rechenberg and Hans-Paul Schwefel [107], [121] proposed

Evolution Strategies (ES).

All the evolution techniques mentioned above depend on the natural evolution of

a population through generations. Fig. 3.2 illustrates the general loop of these
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algorithms. Basically, it manipulates a population, which involves a number of

individuals, the parents. It means that parents are going to breed to produce

children. In turn the children would become parents and reproduce, and so on.

Figure 3.2: Classical EAs for optimisation: a solutions is encoded into an individual of the
population. The population evolves a series of potential solutions and concentrates on the
“best” areas of the search space (here a maximisation example).

There are three essential procedures for all EAs. The first procedure is to create

an initial population of individuals, which is randomly generated. Each individual is

defined by a sequence of genes (see Section 3.3). The way genes are encoded is

problem-dependant. A quality function, which is called “fitness function” in EC, is

used to evaluate every individual of the population. This is the second procedure. It

implies that EAs are written as maximisation problems. The best individuals have

a higher fitness value than the weakest individuals. Candidates for reproduction

will be selected based on the fitness values (see Section 3.4). It means that the

strongest individuals have more chance to survive and produce the offspring, whilst,

the weakest individuals will died out, and it used for the purpose of selection. The

third procedure is developing the population toward an optimum solution. It is

done by repeatedly applying a set of genetic operators to each individual of the

population at each generation to produce a new population (see Section 3.5). The

evolutionary loop will stop when a stopping criterion is met. It can be static or

dynamic. Commonly used static criteria are the total number of new generations

created or the total number of times the fitness function was computed. Computation
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time is another popular static criterion. Stagnation, on the other hand, is a dynamic

criterion. Stagnation occurs when there is no chance to achieve important changes

in fitness value in the next generations [117].

The algorithm presented in (see Alg. 1) is a generational implementation, which

corresponds to the scheme of the Simple Genetic Algorithm. This algorithm uses

non-overlapping populations and an optional elitism mechanism. The population is

replaced at each generation with new individuals. Another way to implement an EA

is the steady-state Genetic Algorithm, which uses an overlapping population. In this

implementation, a portion of parents should be replaced by new individuals (bad

parents replaced by good offspring) [148].

3.3 Solution encoding

The population usually starts with random individuals. There are various ways to

represent the solution depending on the problem to be solved [105]. Fig. 3.3 shows

examples of encoding schemes for EAs.

Binary String: A typical representation of the individuals is as an array of bits.

This representation uses a sequence of 0s and 1s to represent each individual

(chromosome). This encoding can be found in the traditional “Genetic Algorithm”.

Permutation or Integer Encoding: To symbolise the individuals in these encoding

model, a sequence of integer numbers is used. It is useful for ordering problems

such as the Travelling Salesman Problem (TSP).

Real (floating-point) Encoding: Each individual is a sequence of real value, e.g.,

0.05, 2.5, 0.9, . . . , etc. This model is called “real-valued Genetic Algorithm” in EAs.

Value Encoding: Each individual is represented as a combination of various values

such as integer, real, string and object, which depend on the search space of the

problem to solve [130].

Tree encoding: The individual is encoded as a tree of objects. It is commonly used

with problems that involve genetic programming [57], [87].
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Individual 1 0 1 1 0 0 1

(a) Binary encoding

Individual 1 4 2 7 4 12 100

(b) Integer encoding

Individual 5.1 4.5 7.02 1.7 4.9 1.2 3.8

(c) Real encoding

Individual1 6 10 5 12 2
Individual2 4.5 6.02 1.4 1.72 8.22
Individual3 HDS FRO QUO CJD KDA
Individual4 (Red) (Black) (White) (Blue) (Yellow)

(d) Value encoding

g1

g2

g4 g5

g3

g6

(e) Tree encoding

Figure 3.3: Schemes of Genetic Encoding.

3.4 Selection operator

The selection operator statistically selects good solutions for building the next

generation, with a bias toward better solutions. Population size is usually kept

constant. The selection operator chooses the individuals (parents) in the population

with highest probability to survive and generate the new offspring for the next

generation [99]. The selection operator uses the fitness of each individual [118], to

provide a probability distribution. If maximisation is considered, then individuals with

the highest fitness will be more likely to be selected. There are five main traditional

selection methods.

Tournament selection In this selection operator, some individuals are randomly

picked up from the current population. The best individual (based on the fitness

values) wins the competition and will be selected. The number of individuals

involved in each selection iteration is called the “tournament size” [106].

Proportional selection or roulette wheel selection This selection operator is

considered as one of the most popular and easiest techniques to implement. The

individuals with the highest fitness values have the greatest chance to survive and
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to be selected as parent. Each individual i in current population has a probability

P(i) of being selected relative to its fitness f itness(i). This probability is given by:

P(i) =
f itness(i)∑N

j=1 f itness( j)
(3.1)

where N is the population size [67].

Rank-based selection In this technique the individuals are sorted into a list base

on their fitness value. The rank N represents the best individual and the worst

individual gets rank 1. The selection probability of an individual is given by:

P(i) =
rank(i)

N × (N −1)
(3.2)

where N is the population size [67].

Threshold selection This method is widely used for image processing. It can

be categorised as bi-level threshold and multilevel threshold. Bi-level threshold

classifies the pixels into two groups. Multilevel threshold divides the pixels into

several groups [160].

Elitist strategy the best individuals should always be part of the reproduction.

However, there is no guaranty that it will be the case, and if it occurs, these

individuals may be destroyed by the crossover or mutation operators. To address

this deficiency, elitism makes sure that few of the best individuals are copied into the

new population [123]. Firstly, the individuals are arranged in decreasing order. After

that apply the selection with each two individuals in arrange set. In this method

selection is between strong individuals or weak individuals. This means there

is no need to apply GA between week and strong individuals, because the best

individuals can pass to next generation directly [99].

3.5 Genetic Engine

Genetic operators are used to produce a new individuals in each generation, such

as crossover (also called recombination), mutation, possibly elitism and a diversity
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Figure 3.4: Genetic Operators for Evolutionary Algorithm.

mechanism (new blood) [130]. Fig. 3.4 shows some of the most common basic

operators used in EA.

3.5.1 Crossover operator (Recombination)

This is an important and random operator in EAs. The occupation of the crossover

operator is to produce new “child” individual from two “parent” individuals by merging

the information extracted from the parents [152]. Its probability of occurring (Pc)

usually ranges between 0 to the maximum height of the task. Pairs of individuals

are randomly selected to produce two new individuals. The two parents swap some

of their genes depending on crossover points [64]. To determine these points, there

are several possible mechanisms. Fig. 3.5 demonstrates the different crossover

strategies.

Single-point crossover (1x) In this operator, one integer position k is randomly

chosen from the parents and it is between 1 and the parent length l. Then, all genes
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values between k+ 1 and l position are swapped to produce a new individuals.

The selected position k can be among any gene position from the first through the

last gene. This strategy is very fast, but it has the problem of reducing diversity

especially when some individuals are already similar in the population.

Two-points crossover (2x) In this strategy, two cut-points are randomly chosen

k1 and k2 instead of one. Then the sequence of genes values between them are

switched to produce a new individual.

Uniform crossover (Ux) In uniform crossover, a gene value from the parents is

assigned to the first a new individual and the second individual with a probability

value (Pc). That means randomly mix the genes of the parents by probability value

(Pc) to produce two new individuals [88].

Tree-encoding crossover In this technique the two parent tree are combined to

produce two new individuals trees. In theory take subtree from random position in

one parent tree and exchange it with the random subtree from the other parent tree.

There are no constraints on the subtrees selection. It can choose any node from

the tree even the whole tree can be chosen as a crossover point [54].

3.5.2 Mutation operator

Mutation operators are used as a mechanism for keeping variety in the population

and helps ensure that no point in the search space has a zero probability. It

can be considered as an occasional (with a small probability Pm typically 0.001)

random variation on the value of one or more gene values for one individual at a

time [19]. Basically, mutation impacts the whole population because it is increasing

the diversity within it. Therefore, it inhibits stagnation in the convergence of the

optimisation technique. The general form of mutation can be written as:

x′ = x+M (3.3)

where x is the parent vector, M is a random variable (mutation rate) and x′ is the

offspring vector.
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Figure 3.5: Different strategies for crossover operator.
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There are different type of mutation operators [6]:

Flip Bit (Single-point) mutation A single gene value in the individual at a selected

mutation point is changed into other value in the range of this gene. When the gene

has a binary encoding, the value is flipped from “1” to “0” and vice versa.

Uniform mutation This is a classic technique in which each gene of an individual

has an equal likelihood to be mutated by any value in the solution space [44].

Boundary mutation This is a special case of uniform mutation. It is used with

integer or floating-point number encoding. The newly generated allele zi is either

the upper bound (UB) or the lower bound (LB) of the domain, with equal probability:

zi =


UB if x > 0.5

LB otherwise
(3.4)

where x is a random number between 0 and 1.

Tree encoding mutation This mutates selected nodes of the tree, with a new sub

tree, to create new offspring.

Gaussian mutation This strategy uses a mutation operator to change an

individual value using a random number drawn from a Gaussian distribution. The

selected individual changes using the function:

x′ = x(1+Gaussian(σ)) (3.5)

where Gaussian(σ) returns a random number brought form a Gaussian distribution

with a standard deviation of σ [10].
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3.6 Particle Swarm Optimization

PSO was originally proposed by J. Kennedy and R. Eberhart in 1995 [72] and was

very popular for simulating social behaviour and movements of groups of organisms

(flocks of birds, shoal of fish) [125]. This approach, as well as Ant Colony Algorithms,

Artificial Bee Colony Algorithms and Bacterial Foragings [69], are examples of the

so-called swarm intelligence. The swarm as a whole collectively accomplishes a

task, like a flock of birds searching for food. It is possible to turn this model into an

optimisation algorithm (i.e., search for an optimum over a search space).

PSO is similar to EAs in that it iteratively manipulates a population, starting from

a population of random solutions [46]. But its evolution occurs at a different scale,

in terms of interpretation: It relies on a simulation of the movements of the swarm

instead of a death and birth cycle as in EAs. Each possible solution of a PSO, called

particle, has a position in space xi and a velocity vi that determines a randomised

movement till the next iteration. At each iteration velocity and position are updated

using some rules, keeping in memory the best-so-far local and collective solutions,

respectively pbest and gbest, continuously updated along iterations. The swarm

stabilises on optimal areas of the search space [127]. An estimation of the optimum

is given by the best particle of the evolved swarm [72]. PSO’s main steps are as

follows:

1. Initialise each particle with a random position in the problem search space

limits and a random velocity.

2. For each time step (t), record gbest(t) for the swarm and for each Particle i

record pbesti(t).

3. Update position xi and velocity vi of each particle i using:

vi(t+1) = ωvi(t)+ϕprp(pbesti(t)− xi)+ϕgrg(gbest(t)− xi) (3.6)

xi(t+1) = xi(t)+ vi(t) (3.7)
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where rp and rg are random values, uniformly distributed in [0,1], pbesti(t)

is the best known position for Particle i, gbest(t) best known position for the

whole swarm [126]. The first term of Equation 3.6 only depends on the

particle’s current velocity. ω is a parameter that corresponds to the inertia

weight. The second term depends on the distance between the current

position of the particle and its own optimal position (pbesti(t)). ϕp is the

cognitive learning factor. The third term is the social contribution, which takes

into account information from the swarm. It depends on the distance between

the current position of the particle and the current best position of the swarm

(gbest(t)). ϕg is the social learning factor.

4. Repeat from Step (2) until a stopping criterion is reached (e.g., a given level

of fitness or a maximum number of iterations).

For a given function and search space, the performance of PSO depends on the

parameter setting: ω, ϕp and ϕg [150]. This scheme, called gbest strategy, is

the most common one. Particles are “fully informed" as they are aware of the

state of the whole population. There also exist various so-called lbest strategies

where each particle only have access to local information [104]. The update rule in

Equation 3.6)is the same except that lbesti(t), a best local position, is used instead

of gbest(t). These schemes rely on the definition of a neighbourhood distance in

the space of the particles. A balance should be found between the benefits of such

a refined local approach with respect to the additional computations it requires.

Algorithms 2 displays the PSO algorithm.

3.7 Cooperative co-evolution and Parisian Evolution

Instead of representing a solution as a single individual, it is possible to distribute

the potential solution over several individuals in the population. In this case the

individuals have to co-operate to build a solution to the problem. The quality (or

fitness) of an individual then relies on its relationship with rest of the population.

This strategy is known as “co-evolution”. Apart from its use for theoretical and

empirical studies about population behaviour, early examples of this technique are

the famous classifier systems, or “Michigan approach” [156]. The original idea,
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ALGORITHM 1: Generational real-coded
Genetic Algorithm. We consider here a
problem with a k-D search space.

// Read problem specific data
// Set the algorithm

Initialization

// Create the initial population
of n individuals

repeat n times
Create an individual with k random

genes;

Add the individual to the population;
end

repeat // Optimization loop
foreach individual i ∈ population do

Compute fitness function;

end
Initialize empty list of offspring;
for i = 0 to n−1 do

Select parents from population;
child← Crossover between

selected parents;
Mutate child;
Add child to list of offspring;

end
population← offspring;

until Convergence;

Extract best individual;

ALGORITHM 2: PSO. We consider here
a problem with a k-D search space.

// Read problem specific data
// Set the algorithm

Initialization

// Create the initial swarm of n
particle

repeat n times
Create a particle i at a random

position xi = (xi,1, . . . , xi,k);
Initialize the particle’s velocity

vi = (vi,1, . . . ,vi,k);
Initialize the particle’s best known

position pbesti;
Add the particle to the swarm;

end

repeat // Optimization loop
foreach Particle pi ∈ Swarm do

f (pi)← pi’s fitness value;
if f (pi) > f (gbest) then

gbest← pi

end
if f (pi) > f (pbesti) then

pbesti← pi

end
end

foreach Particle pi ∈ Swarm do

Update pi’s velocity;
xi← xi+ vi // Update pi’s
position

end

until Convergence;

Extract best particle;
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applied to rule based machine learning, was to evolve a set of individuals, each

being a rule, that collectively achieve a given task.

Since this pioneering work, the way co-evolution is structured and exploited in

optimisation varied widely in literature. A first distinction can be made according to

the interacting behaviour, competitive versus cooperative, depending on the nature

of the reward (positive or negative) when individuals interact. Competitive models

have been widely studied, but in the last two decades, one can notice an increased

interest in cooperation to tackle difficult optimisation problems by means of problem

decomposition [18], [23], [36], [41], [143], [155].

Cooperative strategies can also be divided into approaches using a single population

of interbreeding individuals, or maintaining multiple interacting populations [98].

The Parisian approach (see Fig. 3.6) is a representative of the

Single-Population-Cooperative-Co-evolution category. The idea is to exploit the

evolution mechanism in a more parsimonious way: where a traditional EA only

keeps the best individual as an optimum solution at the end of the evolution

(forgetting all precious information gathered by the population during its exploration

of the search space). A Parisian approach tries to capitalise the full potential of an

evolved population. In this model, the population is thus considered as a collective

in which individuals collaborate with a common goal. This is implemented using a

classical EA with all the usual features (e.g., mutation, crossover, and selection),

but with two possible levels of fitness:

A local fitness to assess the performance of a single individual (partial evaluation).

It is used during the selection process. For an individual, improving its local

fitness means increasing its chances of breeding.

A global fitness to assess the collective performance of the whole population.

Improving (maximising or minimising) the global fitness is the goal of the

population.
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Figure 3.6: Cooperative Co-evolution scheme or Parisian EAs: several individuals
(sometimes the whole population) represent a solution to the problem. The loop is similar
to classical optimisation applications but embeds an additional step in the main loop that
aggregates individuals to build a solution, evaluate it and distribute reward to individuals.

In addition, a diversity mechanism is required to avoid degenerate solutions, where

individuals gather in only a few areas of the search space. A further difference

between classical EA and Parisian Evolution resides in the extraction of the solution

once the evolutionary loop terminates. All the individuals (or individuals of a

sub-group of the population) are collated to build the problem solution. The way

the fitness functions are constructed and the way the solution is extracted, are

problem-dependent.

Parisian Evolution has been successfully applied to various optimisation problems,

such as text-mining [77], hand gesture recognition [71], complex interaction

modelling in industrial agrifood processes [16], [17], and imaging problems [35]

such as computer stereo vision in robotics [82] and tomography reconstruction in

medical physics [8].

3.7.1 A special case of Parisian Evolution: The Fly Algorithm

The Fly Algorithm is a good example of Parisian Evolution [27]. It was initially

proposed in computer stereo vision (see more details in Section 3.7.2) to extract

3-D information from pairs of digital images. The algorithm is a fast evolutionary
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algorithm that can be used to detect the location of obstacles [82], [83]. It is used in

autonomous robot navigation to avoid collision with objects and walls.

The Fly Algorithm evolves a population of flies. Each fly is defined as a 3-D point

with coordinates (x, y, z) in the solution space. A set of 3-D points is often called

point cloud in the literature. Flies are projected to compute the local fitness function.

This projection operator is problem-specific. In stereo vision applications, each fly

is projected twice: once on the image taken from the left camera and once on the

image taken from the right camera [84]. When a fly is located on the surface of an

object, the pixel neighbourhood of its two projections will match; when a fly is not

located on the surface of an object, the pixel neighbourhood of its two projections

will be significantly different. The fitness function is designed to take advantage of

this fact: The fitness of a fly measures the consistency between its two projections.

The algorithm will optimise the 3-D position of the flies so that their projections on

the left-hand side and right-hand side 2-D images are similar.

The Fly Algorithm is implemented as any other EA. It starts with a population of

randomly generated individuals. They are the parents. Then, depending on the

genetic operators (selection, mutation, new blood, etc.) that are applied to the

parents, a population of new individuals, the offspring, is produced. Selection is

used to pick up candidate parents for breeding. Mutation is used to randomly

alter the genes of an individual. New blood corresponds to creating a randomly

generated individual. This simple, but yet effective, operator preserves diversity

in the population. Note that crossover is not generally used in the Fly Algorithm

because if there are two good flies on different objects, creating a new one in

between is likely to produce a bad fly. The fitness function determines the validity

of a fly’s position and it is calculated during the selection process. The new

generation of offspring eventually becomes parents. The same operations are

repeated until a stopping criterion is reached. This approach is called ‘Generational

Fly Algorithm’ [120].

A Steady-State approach is also possible. Algorithm 3 provides the pseudo code

of the steady state Fly algorithm using i) a marginal fitness for the selection of

individuals, ii) immigration, and iii) mutation. Using this approach, a bad fly is
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selected at each iteration and replaced by a new one. The rationale is that the new

one is likely to be better and there is no reason to delay using it [120].

ALGORITHM 3: Steady state Fly algorithm using i) a marginal fitness for the selection
of individuals, ii) immigration, and iii) mutation.

Initialization // e.g., read problem specific data, and
// set the algorithm’s parameters

// Create the initial population of n individuals
for i = 0 to n−1 do

Create a fly at a random position in the search space;
Add the fly to the population;
Add the fly’s contribution to the population’s; // optional

end

Compute the global fitness; // optional

repeat // Optimization loop
repeat // Select a bad fly

i← Random(0,n−1);
MF(i)← Marginal fitness of Fly i;

until MF(i) ≤ 0;
Remove Fly(i)’s contribution from the population’s; // optional

Compute the global fitness; // optional

Select genetic operator;
if Genetic operator is immigration then

Replace Fly(i) with a fly at a random position in the search space;
else // Mutation is used

repeat // Select a good fly
j← Random(0,n−1);
MF( j)← Marginal fitness of Fly j;

until MF( j) > 0;

Copy Fly( j)’s genes into Fly(i)’s;
Randomly alter Fly(i)’s genes by mutation;

end
Add Fly(i)’s contribution to the population’s; // optional

Compute the global fitness; // optional

until Convergence;

Iteratively eliminate bad flies from the population; // optional

Convert the population of flies into problem specific answer;

A decade after the initial developments of the Fly Algorithm in robotics, it was

adapted to SPECT reconstruction [28], then to PET [3], [8], [139]–[142]. It has also

be used in filtering to generate artistic effects on images [2], [4], [5].
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3.7.2 Fly Algorithm for Stereovision

Conventional approaches to stereovision use extensive calculation in the 2-D image

space to perform primitive extraction, followed by matching and calculation of

disparities in order to get 3-D information. The original Fly Algorithm uses an

“inverse problem” approach that directly evolves a population of individuals, the

“flies”, in the 3-D space [82], [83], in a way similar to the “prediction-verification

paradigm”. The population of flies is initialised randomly in the field of view common

to at least two cameras (Fig. 3.7). An evolution strategy is used to evolve the

population of flies so that they will concentrate on the visible surfaces of the objects

present in the scene.

Figure 3.7: The flies are initialised randomly within the intersection of the cameras’ 3-D
fields of view [84].

Evolution is guided by the flies’ fitness values. Each fly is projected onto the image

planes as defined by the cameras (see Fig. 3.8). If the fly lies on the surface of

an object, then the pixel values of its projections are usually similar; otherwise,

if the fly is not on an object’s surface, the pixels corresponding to its projections

will not represent the radiance and colour of the same physical point in the scene,

and therefore will be likely different (Fig. 3.8). The fitness of a fly will reflect the

degree of similarity of its projections into the images given by the cameras: flies

on visible objects surfaces will thus get higher fitness values. About any camera

configuration can be used; however, if the distance from the cameras to the object

is large enough compared to the distance between cameras, a correlation or a

texture comparison can be introduced into the fitness function.

Parisian evolution and Fly algorithm: A review 39



B

A
Left camera

Right camera

a1

b1

plane
Image′

1s

a2

b2

plan
eImage
′
2
s

Figure 3.8: Projections b1 and b2 of fly B which lies on the surface of an object, will have
identical gray levels, unlike pixels a1 and a2. This holds true independently of camera
geometry.

3.8 Comparison

A key difference between genetic algorithms/Fly Algorithms and PSO lies in the

evolution mechanism: Death and birth of individuals versus movements of particles

and intra-swarm information transmission. In algorithmic terms, a parallel can

be found between mutations and movements, but this actually leads to a different

balance between diversification and intensification [68]. In particular, selection is not

used in canonical PSO, which participates explicitly to intensification. Additionally,

diversity preservation mechanisms are more explicit and tunable in Fly Algorithms

thanks to the “immigration” operator (which explicitly maintains a random – or

“novelty” – part into the population). This feature of the Fly Algorithm is important

and efficient, as experimentally proven on a variety of inverse problems. Indeed,

if the initial population does not cover all the objects that need to be found (e.g.,

in stereovision or PET reconstruction), bad flies will be destroyed and replaced by

new flies in the vicinity of existing good flies. In this case it is likely that some of the

small objects will be missed. The introduction of a suitable diversity preservation

mechanism, such as immigration, addresses this problem.

Table 3.1 highlights the salient features, similarities, differences and the test case of

the three algorithms, when considering a problem with a k-D search space.

Table 3.1: The similar features of Real-Coded GA, PSO, and FA. Consider here a problem
with a k-D search space.

Algorithm’s features RCGA PSO Fly
SIMILARITIES

Initialisation Random population. Random particles. Random flies.
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Iterations Repeat genetic loop until
a stopping criterion is
reached.

Update positions and
velocity until a stopping
criterion is reached.

Mutate flies until a stopping
criterion is reached.

Algorithm’s features RCGA PSO Fly
DIFFERENCES

Size of an individual or a
particle

k 2k s = k/M

Representation of the
problem

An individual is a sequence
of k genes.

A particle i has a position
xi = (xi,1, . . . , xi,k) and a
velocity vi = (vi,1, . . . ,vi,k).

A fly i has a position xi =

(xi,1, . . . , xi,s) with s much
smaller than k.

Population size Free Free Constrained: At least M
flies in the population, with
M× s = k.

Information sharing
mechanism

Generational inheritance. Information communication
inside the swarm trough
Eq. 3.6.

Generational inheritance +
global fitness.

Solutions are ranked
according to fitness
values. Recombination of
2 selected parents plus
mutation for producing
offspring.

Particles follow the swarm’s
best one by updating their
velocity and position.

The marginal fitness
determines the flies that
survive. Offspring are
produced by mutation.

Intensification Selection and crossover. Use of pbesti and gbest,
tuned by cognitive and
social learning factors.

Selection, e.g.,
thresholding.

Diversification Achieved mainly by the
mutation operator (but also
by the use of random
generators in selection and
crossover).

Random terms in the
update of velocities for
each particle.

Mutation and immigration
operators.

Problem solution One single individual, the
best one.

One single particle, the
best one.

Aggregation of a set of
individuals.

Algorithm’s features RCGA PSO Fly
TEST CASES

Lamp problem with N
lamps

Each individual is made of
3×N values (x, y and on/off
for each lamp, the radius
being fixed).

Each particle is defined
with 2×3×N values.

Each individual is made of
3 values only and there
are N individuals in the
population.

2-D PET reconstruction
with P emission points

Each individual is made of
2 × P values (x and y for
each emission point).

Each particle is made of 2×
2×P values.

Each individual is made of
2 values only and there
are P individuals in the
population.

3.9 Conclusion

This chapter presented an overview of a cooperative-coevolution algorithm, the

Fly Algorithm. At first glance, it may seem similar to popular techniques such as

Real-Coded Genetic Algorithm and Particle Swarm Optimization. The Fly Algorithm

is built on the top of a Real-Coded Genetic Algorithm, but uses two levels of fitness

functions: A global one to assess the quality of the population as a whole and a

local one to gauge the quality of individuals during the selection process. We also

highlighted Fly Algorithm’s common features and differences with swarm intelligence

approaches: Despite their similar biological inspiration (behaviour of populations of

insects), the mechanisms are rather different. FA uses generational mechanisms

while PSO uses swarm communication.
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Chapter 4

Comparison between the efficiency of

FA, GA and PSO

4.1 Introduction

Cooperative co-evolution approaches have been successfully used to solve complex

problems in various domains. They are based on a representation of the problem to

be solved as a cooperative task, where individuals interact (cooperate or compete) to

build a solution. Many strategies have been built depending on the way co-evolution

occurs: How a solution to the problem is split between individuals, and how

individual and global evaluations are balanced. The Fly Algorithm is a particular

case of cooperative co-evolution, with added geometrical features. It is suitable for

a range of problems where solutions can be represented by a collection of 2-D or

3-D points, or even points in higher dimensions.

Here we compare the performance of FA with traditional non-cooperative

optimisation schemes, such as RCGA, PSO and CMA-ES, where a solution is

represented by a single individual of the population. The comparison of these

algorithms on two test cases: A toy problem, the Lamps; and a complex inverse

problem, PET reconstruction. This choice is based on three facts: FA has been built

on top of RCGA, the comparison yield an assessment of the cooperative component

that has been added, PSO has been sometimes opposed to FA, and CMA-ES is

considered as the state-of-the-art for continuous optimisation.

One of the purposes of this study is also to highlight the properties of cooperative

schemes in comparison to classical ones. This is why it chooses to restrain the
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study benchmarks to algorithms belonging to similar classes of complexities. There

exist of course various more complex versions of the different algorithms tested

below, able to better deal with large size problems, for instance for CMA-ES [137]

or Fly Algorithm [9], [84].

The next Section 4.2, explains the two test cases used to evaluate the relative

performance of a traditional PSO and a RCGA against the Fly Algorithm. They are

used to illustrate the inappropriateness of some of the traditional operators and how

new operators were designed (see Section 4.3). Quantitative results on the two test

cases are provided in Section 4.4. Finally, Section 4.5 presents the conclusion of

this study.

4.2 Two test cases for the Fly Algorithm

Cooperative co-evolution approaches have been successfully used to solve complex

problems in various domains. They are based on a representation of the problem to

be solved as a cooperative task, where individuals interact (cooperate or compete) to

build a solution. Many strategies have been built depending on the way co-evolution

occurs: How a solution to the problem is split between individuals, and how

individual and global evaluations are balanced. This collaboration considered

two test cases in experimental analysis (Section 4.4). The idea is to illustrate how a

few implementation choices (e.g., generational vs. steady state, selection methods

and genetic operators) can be made to take advantage of the Parisian Evolution

paradigm. The first test case is called the “Lamps problem”, which is a toy problem.

It is used to demonstrate how to implement the FA from the implementation of

the Real-Coded Genetic Algorithm. The second test case is Positron emission

tomography reconstruction, which is an example of real application in medical

physics.

4.2.1 Lamps problem

The Lamps problem is an optimisation benchmark originally designed for

cooperative co-evolution algorithms [136]. The basic idea of the benchmark is

to cover a square area, representing a field, with optimally placed circles of same

fixed radius, representing lamps. The evaluation function provides a reward to
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each lamp, and a global reward that depends on the relative placement of all

lamps. Interestingly, while each single lamp can be placed optimally, sometimes it

might be better to accept an individual sub-optimal placement to improve the global

reward. Fig. 4.1 shows an example where four lamps completely cover a square

(see Fig. 4.1a), but part of their area is outside of the square itself; and a second

situation (see Fig. 4.1b) where one of the lamps is completely inside the square,

but the global solution is unable to completely cover the square [119].

The benchmark problem depends on only one parameter, the ratio between the

radius of a lamp and a side of the square [136], or equivalently the ratio between

the surface of a light versus the surface of the room:

problem_size =
area_room
area_lamp

(4.1)

As this ratio becomes smaller, more lamps are required to cover the squared surface,

the number of possible relative placements increase, and the problem becomes

harder to solve for optimisation algorithms. The fitness of a candidate solution is

directly related to the total area enlightened with a penalty for overlap, making the

problem even harder to solve. A weight (W) tunes the relative importance of the

two terms:

f itness =
area_enlightened

total_area
−W.

area_overlap
total_area

=
area_enlightened−W.area_overlap

total_area

(4.2)

Best solutions maximise the illuminated area whilst minimising the number of lamps

to cover the whole area. Tonda et al showed that traditional approaches based on

genetic operators are competitive when the search space is relatively small, i.e., for

Lamps problem size less than 10 (see Eq. 4.1) [136]. For more complex problems,

cooperative-coevolution (or Parisian approach) outperformed the other algorithms

they tested.

4.2.2 PET Tomography Reconstruction

Positron emission tomography is a nuclear medicine imaging technique. A

radioactive tracer, which can be injected, inhaled or digested, is inserted into the
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(a) The four lamps completely cover the
square but part of their own area is
outside of the square itself.

(b) One of the lamps is completely inside
the square, but the global solution is
unable to completely cover the square.

Figure 4.1: Arrangement of a set of 4 lamps to enlighten a square.

body of a patient. PET is a functional imaging technique that allows the visualisation

and measurements of various physiological processes (metabolism, blood flow,

tumor growth, bone fracture, chemical composition and absorption), depending

on the tracer that is used. The radioactive concentration is proportional to the

physiological process of interest.

The tracer’s decomposition emits positrons. Gamma rays, resulting from the

combination of positrons and neighbouring electrons, are then detected on a ring of

detectors placed around the area to be observed (e.g., brain, stomach, full body,

etc.). From this set of projections, a 3D image of the tracer distribution can then be

computed as an inverse process using “tomography reconstruction”. It is a complex

inverse problem that is often ill-posed due to missing data and/or noise. The answer

to the inverse problem is not unique, and in case of extreme noise level it may not

even exist. The data acquisition in tomography can be modelled as:

Y = P[ f ]+ ε (4.3)

where P is the system matrix or projection operator and ε corresponds to some

Poisson noise. In this case the reconstruction corresponds to the inversion of the

data acquisition model:

f = P−1[Y] (4.4)

Y is measured by the imaging system. It corresponds to projections at successive

angles. In real applications, f is an unknown distribution of radioactive concentration.
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Iterative tomography reconstruction aims to generate an estimate f̂ of f from the

known projectionsY. Fig. 4.2 shows the test case data that used.

(a) Ground truth (unknown f )
without noise.

(b) Ground truth with
additive Poisson noise (also
unknown).

(c) Known projections (Y) of
Fig. 4.2b

Figure 4.2: Test case data: Known projections (c) are provided by the imaging system. The
tomography reconstruction provides an estimate of the unknown radioactive concentration
(a).

Note that P−1 in reconstruction algorithms can account for noise, acquisition

geometry, etc. Reconstruction methods used in clinical routine, namely

Maximum-Likelihood Expectation-Maximization (MLEM) and Ordered Subset

Expectation-Maximization (OSEM), are iterative correction algorithms [65], [124].

Iterative methods in tomographic reconstruction are relatively easy to model:

f̂ = argminE(Y, Ŷ) (4.5)

where f̂ is an estimate of f that minimise an error metrics E between Y and Ŷ. Note

that a regularisation term can be introduced to prevent over-fitting and to smooth

noise whilst preserving edges. In the Fly Algorithm f̂ corresponds the concentration

of flies, and Ŷ to the image created when the flies are projected. Iterative methods

are often implemented as follows:

1. The reconstruction starts using an initial estimate of the image (generally a

constant image);

2. Projection data is computed from this image;

3. The estimated projections are compared with the measured projections;

4. Corrections are made to modify the estimated image; and
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5. The algorithm iterates until convergence of the estimated and measured

projection sets.

The Fly Algorithm strictly follows the iterative reconstruction paradigm:

1. The reconstruction starts with a population of flies ( f̂ ) uniformly distributed in

the search space (here the flies are located within the space that corresponds

to the imaging scanner);

2. Each fly is projected:

• Each fly keeps track of its own projections;

• The projections of all the flies are aggregated to produce the estimated

projections Ŷ;

3. The estimated projections are compared with the measured projections using

the global fitness E
(
Y, Ŷ

)
, such as:

E(Y, Ŷ) = ||Y − Ŷ ||22 (4.6)

4. The genetic operators are repetitively applied to minimise E(Y, Ŷ) by adjusting

the flies’ position:

• Selection of bad flies to kill (their projection data is removed from the

population data);

• Selection of good flies to create new flies that replace the killed ones;

• The new flies are mutated;

• The projections of the new flies are added to the population data;

5. The algorithm iterates until a stopping criterion is met, e.g., a maximum

number of iterations is reached or convergence of the estimated and
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measured projection sets (i.e., when E stops decreasing between successive

iterations).

In the case study below, we propose to reconstruct the synthetic data (Fig. 4.2c)

based on the Derenzo phantom which is one of the most popular quality monitoring

phantoms for nuclear medicine imaging. It is typically built by using two reservoirs of

positron-emitting isotopes in a solution related by channels making up the Derenzo

design [37] from Fig. 4.2b, which corresponds to the known projections of the

ground truth image after Poisson noise was added to Fig. 4.2a. In this test case,

there are 25 projections of 91 pixels. The algorithm aims to optimize the 2-D position

of 1,840 emission points to minimise an error metric between Y and Ŷ. The fitness

function used here is Sum of Squared Error (SSE) (Eq. 4.6), also known as `2-norm,

but other error metrics could be used.

4.3 Fly algorithm implementation features

It has been experienced that cooperative co-evolution schemes often provide very

efficient and scalable algorithms, but at the cost of a more complex design phase.

Splitting a problem into a set of interdependent sub-problems, able to co-evolve

within a single population, is not necessarily simple. This section details the

specific features of the Fly Algorithm: A specific fitness function, a careful choice of

appropriate operators and strategies.

4.3.1 Fitness Metrics

In Parisian evolution two level of fitness functions can be used: (i) a local fitness for

evaluating each individual, and (ii) a global fitness for the whole population, which is

re-distributed on individual. Some problems may not need this specificity, in which

case only the local fitness is used.

As in any other EA, the local fitness is used in the selection process to choose good

individuals to breed. In the steady state implementation, it is also used to kill bad

individuals. It tends to optimize this local fitness. In the same time, the algorithm is

designed so that the population tends to improve its global fitness, which usually

represents the searched solution. The choice of local and global fitness functions is
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(b) Put together, these projections produce the estimated projections
(Ŷ) used to compute the global fitness.

Figure 4.3: From a population of flies ( f̂ ) to estimated projections (Ŷ).
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thus crucial and finding the right balance between local and global fitness may be

delicate.

Bousquet et al. proposed a Fly Algorithm to reconstruct SPECT images1 [28]. They

initially used a simple local fitness function called “Bonus fitness”: If the projection of

a fly is on a point of the detector that received some radiation, the fly gets a positive

bonus (+1), else it receives a mauls (-1). Their experiments showed however that

small objects of low intensity were not picked up by the algorithm and did not

show up in the reconstructed images. To address this deficiency they proposed a

“marginal” fitness, which relies on the leave-one-out cross-validation principle where

the local fitness is computed from the global fitness. The marginal fitness MF(i) of

Fly i is the difference of the global fitness with and without i:

MF(i) = GF(pop \ {i})−GF(pop) for a minimisation (4.7)

MF(i) = GF(pop)−GF(pop \ {i}) for a maximisation (4.8)

where GF(pop) is the global fitness of the whole population and GF(pop\ {i}) is the

global fitness of the population without Fly i.

One of the consequences is that if MF(i) is negative, then Fly i is a “bad fly” that

negatively contributes to the population. It can be killed. If it is positive, then it is a

“good fly”. It can be selected to produce new children.

Another consequence is that the local fitness of an individual relies on its own

contribution to the population as well as the contribution of other individuals. Each

time an individual is killed and its contribution removed from the population, the

global fitness changes. Therefore the local fitness of all the remaining individuals

change too. This is also true when a new individual is created.

4.3.2 Steady state vs Generational

The example in Fig. 4.4 explains how the local fitness and global fitness depend

on each other: Suppose there are two flies in the population (X and +). Both flies

correspond to a point that emits photons (see Section 4.2.2).

1SPECT uses a similar principle as PET but with gamma-emitting radioisotopes.
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Figure 4.4: Example of projections created by the population of flies. For illustration
purposes only two projections and two flies are considered.

In this example, they are purposely placed at the same location (on the same pixel,

see Fig. 4.4-a). In this case they have the same fitness value. If consider the SSE

(also known `2-norm) as global fitness (see Eq. 4.6), it is:

GF(pop) = (0−1)2+ (2−1)2+ (0−1)2+ (0−1)2+ (2−1)2

+ (0−1)2 = 6
(4.9)

GF(pop \ {X}) = (0−1)2+ (1−1)2+ (0−1)2+ (0−1)2+ (1−1)2

+ (0−1)2 = 4
(4.10)

GF(pop \ {+}) is also 4. As a minimise the global fitness (Eq. 4.7), the marginal

fitness of X becomes MF(X) = 4− 6 = −2. MF(+) is also -2. In a generational

scheme, both are considered as bad flies and should be removed from the next

generation. In a steady state context, if one of the flies, for instance +, is killed, the

global fitness has to be re-evaluated, and the fitness of X also changes:

GF(pop) = (0−1)2+ (1−1)2+ (0−1)2+ (0−1)2+ (1−1)2

+ (0−1)2 = 4
(4.11)

GF(pop \ {X}) = (0−1)2+ (0−1)2+ (0−1)2+ (0−1)2+ (0−1)2

+ (0−1)2 = 6
(4.12)

MF(X) is now equal to 2, which is a positive contribution.

Comparison between the efficiency of FA, GA and PSO 51



This example highlights that the leave-one-out cross-validation principle used in

the marginal fitness is better exploited by a steady state scheme. This assumption

is confirmed by experiments of Section 4.4: Steady state and generational Fly

Algorithms are compared on the two test cases presented in Section 4.2.

4.3.3 Threshold Selection

The selection operator chooses a random fly, which is duplicated and mutated to

create a new fly. It is biased towards reproducing good flies and eliminating bad

flies. Common selection operators in EA are tournament, roulette wheel, rank and

elitism. Roulette wheel, rank selection and elitism have actually a relatively high

maintenance cost: The local fitness value of all the individuals must be known at

any time, which is not suitable for a steady state implementation.

Vidal et al. showed that it is possible to take advantage of the marginal fitness to

provide a “threshold selection operator” [142]. The marginal fitness values quantify

how much each fly improves or degrades the population’s performance (global

fitness). They also showed that it provided an effective stopping criterion as it is

able to characterise stagnation. The algorithm does not maintain the fitness value of

the flies, which is compatible with a steady state implementation. It only computes

the fitness of a fly when it is randomly picked up. When there are not enough bad

flies left in the population, the threshold selection struggles to find flies to kill. As a

consequence the optimisation either ends or triggers a new operator, such as the

mitosis defined in Section 4.3.4.

In the experiments presented in Section 4.4, a simple, yet effective, early stopping

criterion has been implemented as follows: The early stopping criterion is triggered

if the number of good flies at iteration t is lower than at iteration t − 1 (i.e., the

algorithm failed to increase the number of good flies).

4.3.4 Mitosis

Due to the distributed nature of the Fly Algorithm, it is straightforward to implement

a varying population size. To get a high image resolution in the PET reconstruction

problem, it is essential to use a large population of flies. This is because the
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Fly population estimates a radioactive concentration. However it will affect the

processing time, which is quasi proportional to the number of flies. To avoid this

effect, the algorithm starts with a small population. Then, when stagnation is

detected, a mitosis2 process is initiated: Each fly is duplicated to double the size

of the population, then each new fly is mutated. It has been experimentally shown

that it increases the probability to find flies with positive fitness [141]. When the

population stops improving the global fitness despite mitosis being triggered, the

evolution stops as adding new flies is no longer beneficial.

Section 4.4 will also investigates how the population size (fixed vs. varying) affects

the performance of the Fly Algorithm for the PET reconstruction problem.

4.3.5 Mutation

The Fly Algorithm maintains diversity in its populations thanks to the immigration

and mutation operators. Usually in Evolutionary Algorithms, mutation operators

are made more effective thanks to a variation of the mutation radius. It is large at

the beginning of the evolution to ensure a good exploration of the search space.

It then gradually decreases to concentrate the search. However, when a varying

population size is used, the final population size might be unknown at the start of

the algorithm. If the Fly Algorithm is implemented as a continuous steady state

process, the number of generations might also be unknown. As a consequence,

adaptive mutation operators with low maintenance cost are preferred. Ali Abbood

and Vidal already showed that such dedicated mutation operators can significantly

improve the performance of the Fly Algorithm in terms of both accuracy of the

results and computational requirements [9]. In particular they proposed a “directed

mutation” where each mutated fly keeps track of the performance of its ancestors.

This operator is biased towards the position of good ancestors, and away from

the position of bad ancestors. This research will rely on Gaussian mutation in the

experiments presented in Section 4.4.

2Named by analogy with cell biology. Mitosis corresponds to a cell division process that gives
rise to genetically identical cells.
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4.3.6 Crossover

The crossover (also known as recombination, where two parents exchange part of

their information to create new offspring) is not fundamental in the Fly Algorithm. It

can actually be detrimental for some reconstruction problems such as stereovision

and PET reconstruction. The crossover operator in the Fly Algorithm creates a new

fly located in the space between the two selected parents. If consider two good

flies on the surface of two different objects in stereovision or within two different

radioactive regions in PET, creating a new fly in between is not justified. It is actually

likely to lead to a bad fly. As a consequence, in the experiments of Section 4.4, if

crossover is used in the RCGA, it is not used in FA.

4.4 Experimental analysis

4.4.1 Fair Comparison of the Algorithms

Comparing optimisation algorithms in a fair manner is not trivial. Benchmarking

is often used for this purpose. Its aim is often to help researchers compare the

performance of a (new) algorithm against established algorithms, or to help users

select the most suitable optimisation method for their problems. This section

below follow the ‘Best practices for comparing optimisation algorithms’ provided

by Beiranvand et al [20]. For example they highlighted the need to consider more

than one problem, and the importance of having easy problems and hard ones.

Some problems must include known solutions. For tests that include starting

points, new starting points can be randomly generated. It is also known that

specific parameters required by the algorithms, such as stopping criteria and genetic

operator probabilities, can dramatically influence the outcome of an algorithm. For

this reason this collaboration will use evolutionary algorithms with various selection

mechanisms. For algorithms with a fixed population or swarm size, several sizes

are considered.

A fix number of fitness evaluations is often used as stopping criteria in benchmarking.

This methodology is, however, not necessarily suited for the Parisian approach for

two reasons. For example, in PET reconstruction, computing the fitness function is

not the computational bottleneck. Adding a new emission point and computing its
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projections at different angles is the real bottleneck. With PSO, RCGA, and CMA-ES,

there is a single fitness function evaluation even for a large number of points. With

FA, there is a fitness function evaluation per point. In this case, considering the

number of emission points that have been created is more appropriate than the

number of evaluations of the fitness function. This is why the following subsections

used the number of lamps, or emitting points, created as timeline in graphs.

Also, looking only at the total number of fitness function evaluations does not take

into account the maintenance cost of the various algorithms, e.g. in terms of time

requirements or memory usage. For example see in section on Quantitative analysis

of the results on the Lamps problem, Page 59. This is why we choose to restrain

our benchmarks to algorithms belonging to similar classes of complexities. There

exist of course various more complex versions of the different algorithms tested

below, able to better deal with large size problems, for instance for CMA-ES [137]

or Fly Algorithm [9], [84].

As all the algorithms considered here are iterative, the lack of improvement over

the last N iterations is our main stopping criterion. To compare the algorithms’

performance, the quality of the problem answer as well as the total number of

lamps or emission points created will be accessed to allow a fairer comparison (as

opposed to using the number of fitness evaluations in most benchmarking tools).

In benchmarking, the different algorithms will be ran on each problem and the

benchmark will generate performance metrics for each algorithm for each problem.

For each stochastic algorithm, for each problem, the test must be executed several

times to gather statistically meaningful data. This is important as all the algorithms

considered in our research are stochastic. In general, performance metrics are

divided into three categories: i) efficiency (including scalability), ii) reliability, and

iii) quality of algorithmic output. Due to the nature of the problems considered

here, for the efficiency the collaboration rely on the number of lamps or emission

points evaluated by the different algorithms to reach the stopping criterion. For

the quality of algorithmic output, the average global fitness over N runs is used

for both the Lamps and PET. In addition, the study relies on the zero-normalised

cross-correlation (ZNCC) of the reconstructed image for PET. For the reliability, use
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the standard deviation of the global fitness and ZNCC if applicable. The benchmark

then provides a report on the results to ease the comparison. It can be in a tabular

format or/and a visual format. This comparison used both.

For the visual comparison, it is possible to present actual images of the

reconstructed data for both the Lamps and PET reconstruction problems. For

each algorithm an odd number of runs were performed, 101 runs for the Lamps

and 15 for PET. Each run for the same algorithm will provide a different image and

a different final global fitness value. The performance measure is to select which

image to present for each algorithm. Presenting the image reconstructed by the

best run is unacceptable as cannot guaranty that the corresponding image is a

representative outcome of the algorithm: It is possible the algorithm was just very

‘lucky’ for that run, in which case the image will correspond to an outlier. In statistical

analysis, the mean (or average) is a popular metrics to show the central tendency

of a statistical data set. It is possible to average the images of all the runs. However,

such average images i) will be largely influenced by extreme (i.e., lucky and unlucky

runs compared to the rest of runs), and ii) will not be the actual output of a run.

Also, the distribution of final global fitness values for the runs corresponding to a

given algorithm is unknown and cannot assume that it follows a normal distribution.

In this case the median is more robust than the mean to derive the central tendency

of a possibly skewed distribution. For these reasons, the images presented below

correspond to the median result for each algorithm in terms of global fitness for the

101 runs for the Lamps or the 15 runs for PET.

4.4.2 Quantitative analysis of the results on the Lamps problem

The Lamps problem is a convenient benchmark aimed at better understanding a few

features of the Fly Algorithm by comparison with more traditional approaches. Tonda

et al, observed that it is not beneficial to use the cooperative co-evolution approach

for problems with a search space of small size [136]. This collaboration aim to

reproduce their observations. Here, two versions of the Fly Algorithm – steady state

and generational FA, with tournament (duel here) and threshold selection – have

been compared with RCGA with ranking, roulette wheel and tournament selection.

The assumption is that in a steady state loop, the level of cooperation between
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individuals is somehow much higher because the contribution of individuals toward

the solution (i.e., global fitness) is constantly changing as individuals die and new

ones are created. In other words, for every death or birth in the population, the

fitness of all the individuals change.

Note that the RCGA and FA implementations use exactly the same Python class.

The main differences are: (i) The Fly Algorithm includes the global fitness, the

RCGA does not; (ii) The way the problem solution is extracted is different, as RCGA

returns the individual with the highest fitness, while the Fly Algorithm returns all

individuals in its final population. A varying population size is used in FA. Every

time stagnation is detected, alternate slaughtering and mitosis. In the slaughtering

step, bad flies are iteratively eliminated. In addition this comparison used PSO and

CMA-ES.

The PSO, RCGA, CMA-ES and FA are all minimising Eq. 4.2 with W = 1. In PSO,

this equation is the objective function used to evaluate particles. In RCGA and

CMA-ES, Eq. 4.2 is the fitness used to evaluate individuals. In the Fly Algorithm,

Eq. 4.2 is the global fitness used to evaluate the population as a whole. The marginal

fitness is used in the Fly Algorithm to compute the fitness value of every individual

(local fitness). Note that the real-coded genetic algorithm is tested with duel, ranking

and roulette wheel selection. The Fly Algorithm is used as a generational algorithm

and in steady state with duel and threshold selection. For PSO and RCGA, two sizes

of swarm or population were used, 20 and 100. In total 15 different optimisation

strategies were compared.

Seven problems of increasing complexity (3, 5, 10, 20, 100, 500 and 1,000) have

been used to assess the performance and scalability of the different optimisation

algorithms. Table 4.1 shows the search space dimension of the corresponding

optimisation problems. Here consider search spaces from 27 D up to 9,000 D.

Following Tonda et al’s recommendations, there are 3× problem size lamps per
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individual [136]. Each individual is made of 3 floating point numbers, x and y for the

lamp position, and an on/off status so that:

0 ≤ x ≤ w−1 (4.13)

0 ≤ y ≤ h−1 (4.14)

0 ≤ on/o f f ≤ 1 (4.15)

with w and h the room size along the x and y axis respectively. If on/o f f ≥ 0.5 then

the lamp is on, else it is off.

Table 4.1: Search space dimension for PSO and real-coded GA for each problem size.
There are 3 values (x, y and on/off) per lamp. 3×problem size is the number of lamps per
individual recommended in the original Lamps problem article [136].

Problem size Dimension of search space
3 3×3×3 = 27
5 3×3×5 = 45
10 3×3×10 = 90
20 3×3×20 = 180
100 3×3×100 = 900
500 3×3×500 = 4,500

1,000 3×3×1,000 = 9,000

Each optimisation has been repeated 101 times, except for problem size 1000

where only 21 runs were performed due to computational constraints, to gather

statistically meaningful results. In total 15×6×101+15×1×21= 9,405 optimisations

were performed on the supercomputer environment.

The source code and Bash scripts are provided in a GitHub repository3. It enables

readers to reproduce the results. In addition, it gives an example of how to turn

a RCGA into a Fly Algorithm. Tables 4.2 to 4.5 give a summary of the main

parameters of all the algorithms that have been evaluated in this section. Note that

the stopping criterion is stagnation: No improvement over the last 5 generations for

the Fly Algorithms, and 50 generations/iterations for the other algorithms. When

using a traditional approach, a much larger number was empirically defined to avoid

prematurely exits of the optimisation loop.

3https://github.com/Shatha1978/Optimisation-algorithm-examples
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Table 4.2: Parameters used in all Lamps problems.

Lamp radius: 8 pixels
Stopping criterion: 500 generations max

Table 4.3: Additional parameters used in the Lamps problems with the Fly Algorithm.

Initial population size: 3× problem_size flies
Crossover probability: 0%
Immigration probability: 30%
Gaussian mutation probability: 70%
Initial mutation factor: 16 pixels
Decrease of mutation factor: 0.016 pixel per generation
Additional stopping criterion: No improvement over the last 5 generations
Solution extraction: Whole population after iterative elimination of

bad flies

When the tournament selection operator is used, the tournament size is equal to 2;
when the threshold selection operator is used, the threshold is equal to 0.0.

Table 4.6 summarises the performance of all algorithms for various problem sizes:

3, 5, 10, 20, 100, 500, and 1,000. When the problem size is relatively small (3 and

5), all the approaches, except the generational Fly Algorithms, are successful in

minimising the global fitness. Traditional approaches actually lead to better results

than the Fly Algorithms. When the problem size reaches 10, the real-coded Genetic

Algorithms start to fail, whereas PSO, CMA-ES and the steady state Fly Algorithms

maintain their ability to deal with the global fitness. When the problem size is

higher (20, 100, 500 and 1,000), real-coded Genetic Algorithms fail whereas the

steady state Fly Algorithms remain successful. These results are consistent with

Tonda’s [136]. In this experiments, PSO is able to cope with problem sizes up

to 10. CMA-ES is able to cope larger problem sizes, but at the expense of both

extremely large memory requirements and computing times. In the supercomputing

environment that used, jobs are killed after 3 days, which was not enough to

complete the optimisation for CMA-ES with problem sizes 500 and 1,000. The

amount of main memory used to compute the covariance matrix exceeded what is

available on a desktop computer.

Comparison between the efficiency of FA, GA and PSO 59



Table 4.4: Additional parameters used in the Lamps problems with a real-coded GA.

Population size: 20 & 100 individuals
Elitism probability: 9%
Crossover probability: 18%
Gaussian mutation probability: 73%
Additional stopping criterion: No improvement over the last 50 generations
Solution extraction: Best individual

When the tournament selection operator is used, the tournament size is equal to 2.
Other selection operators tested are: roulette wheel and rank selection.

Table 4.5: Additional parameters used in the Lamps problems with PSO.

Swarm size: 20 & 100 particles
Additional stopping criterion: No improvement over the last 50 generations
Solution extraction: Best particle

Table 4.6: Performance of the different algorithms on the Lamps problem with 7 different
problem sizes (3, 5, 10, 20, 100, 500 and 1000). Numerical values correspond to average
values and standard deviations over 101 runs, except for problem size 1000 where only
21 runs were performed due to computational constraints. The global fitness is given in %.
This is a value that is maximised. Values for algorithms marked in bold are significantly
better (p < 0.01) than the others for the same problem size.

Problem Selection Population/Swarm Global Number of Lamps created

size Evolution operator Size fitness lamps before acceptance

3 PSO-20 20 91.85 % ± 4.44 3.82 ± 0.38 9.30e+03 ± 4.00e+03

3 PSO-100 100 93.80 % ± 1.58 3.94 ± 0.24 3.29e+04 ± 1.31e+04

3 RCGA-20 generational roulette 20 76.82 % ± 3.35 4.67 ± 0.68 6.13e+03 ± 5.35e+03

3 RCGA-20 generational ranking 20 75.85 % ± 2.89 4.86 ± 0.72 7.00e+03 ± 5.30e+03

3 RCGA-20 generational tournament 20 76.22 % ± 3.28 4.74 ± 0.76 5.38e+03 ± 4.14e+03

3 RCGA-100 generational roulette 100 79.88 % ± 2.55 4.71 ± 0.68 3.47e+04 ± 2.63e+04

3 RCGA-100 generational ranking 100 79.41 % ± 2.26 4.70 ± 0.69 3.05e+04 ± 2.71e+04

3 RCGA-100 generational tournament 100 79.96 % ± 2.16 4.56 ± 0.70 2.72e+04 ± 2.28e+04

3 CMAES 13 86.06 % ± 8.51 3.82 ± 0.54 9.72e+03 ± 4.39e+03

3 FA generational tournament 5 61.86 % ± 7.10 3.47 ± 0.83 6.41e+01 ± 5.61e+01

3 FA generational threshold 5 59.57 % ± 6.82 3.55 ± 1.01 6.58e+01 ± 7.02e+01

3 FA steady state tournament 9 71.10 % ± 5.59 4.29 ± 0.80 2.47e+02 ± 2.43e+02

3 FA steady state threshold 7 75.81 % ± 4.22 4.53 ± 0.72 1.32e+02 ± 1.01e+02

5 PSO-20 20 84.46 % ± 3.57 5.23 ± 0.89 2.29e+04 ± 7.84e+03

5 PSO-100 100 87.29 % ± 3.24 5.52 ± 0.81 1.02e+05 ± 4.73e+04

5 RCGA-20 generational roulette 20 70.17 % ± 2.90 7.41 ± 1.27 9.84e+03 ± 8.28e+03

5 RCGA-20 generational ranking 20 70.04 % ± 2.81 7.50 ± 1.11 1.16e+04 ± 8.65e+03

5 RCGA-20 generational tournament 20 69.87 % ± 2.87 7.69 ± 1.14 1.07e+04 ± 8.14e+03

5 RCGA-100 generational roulette 100 73.03 % ± 2.40 7.61 ± 1.03 5.53e+04 ± 4.94e+04

5 RCGA-100 generational ranking 100 73.85 % ± 2.85 7.42 ± 1.00 6.53e+04 ± 5.15e+04

5 RCGA-100 generational tournament 100 73.07 % ± 2.32 7.57 ± 0.85 5.05e+04 ± 3.64e+04

5 CMAES 15 80.17 % ± 4.90 5.84 ± 0.72 3.01e+04 ± 1.25e+04

5 FA generational tournament 8 55.00 % ± 5.84 5.38 ± 1.38 1.08e+02 ± 9.23e+01

5 FA generational threshold 9 53.53 % ± 5.97 5.50 ± 1.26 9.82e+01 ± 8.46e+01

5 FA steady state tournament 14 68.11 % ± 5.97 6.55 ± 1.12 3.84e+02 ± 3.34e+02

5 FA steady state threshold 10 72.71 % ± 3.51 7.01 ± 1.06 2.49e+02 ± 1.38e+02

10 PSO-20 20 82.09 % ± 2.89 9.88 ± 0.99 6.56e+04 ± 1.68e+04

10 PSO-100 100 86.30 % ± 2.08 10.20 ± 0.92 3.28e+05 ± 9.60e+04

10 RCGA-20 generational roulette 20 61.00 % ± 2.39 14.12 ± 1.97 2.32e+04 ± 1.73e+04

10 RCGA-20 generational ranking 20 60.76 % ± 2.53 14.11 ± 2.17 2.05e+04 ± 1.92e+04

10 RCGA-20 generational tournament 20 61.61 % ± 2.07 14.13 ± 1.84 2.61e+04 ± 1.90e+04

10 RCGA-100 generational roulette 100 63.77 % ± 1.87 14.20 ± 2.02 9.74e+04 ± 8.19e+04
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Continuation of Table 4.6

10 RCGA-100 generational ranking 100 63.93 % ± 1.65 14.23 ± 1.83 1.22e+05 ± 9.55e+04

10 RCGA-100 generational tournament 100 64.15 % ± 2.43 14.21 ± 1.89 1.08e+05 ± 9.25e+04

10 CMAES 17 78.15 % ± 4.34 10.78 ± 1.06 1.24e+05 ± 3.47e+04

10 FA generational tournament 16 47.23 % ± 5.25 9.61 ± 2.57 2.00e+02 ± 1.38e+02

10 FA generational threshold 16 47.16 % ± 5.22 9.66 ± 2.59 1.82e+02 ± 1.30e+02

10 FA steady state tournament 31 65.17 % ± 4.99 11.44 ± 1.65 9.98e+02 ± 5.83e+02

10 FA steady state threshold 18 69.11 % ± 3.28 12.26 ± 1.52 5.15e+02 ± 3.02e+02

20 PSO-20 20 77.00 % ± 2.83 18.63 ± 1.70 1.72e+05 ± 5.10e+04

20 PSO-100 100 82.47 % ± 2.36 19.27 ± 1.42 9.66e+05 ± 2.65e+05

20 RCGA-20 generational roulette 20 54.26 % ± 1.75 28.37 ± 2.80 3.85e+04 ± 2.61e+04

20 RCGA-20 generational ranking 20 54.15 % ± 1.87 27.66 ± 2.95 4.74e+04 ± 3.68e+04

20 RCGA-20 generational tournament 20 54.04 % ± 1.73 27.66 ± 3.12 4.33e+04 ± 3.28e+04

20 RCGA-100 generational roulette 100 56.67 % ± 1.73 27.75 ± 2.79 2.26e+05 ± 1.73e+05

20 RCGA-100 generational ranking 100 56.20 % ± 1.34 27.28 ± 3.31 2.26e+05 ± 1.90e+05

20 RCGA-100 generational tournament 100 56.09 % ± 1.59 27.16 ± 2.78 2.38e+05 ± 2.13e+05

20 CMAES 19 77.90 % ± 2.21 20.39 ± 1.26 5.58e+05 ± 1.17e+05

20 FA generational tournament 33 43.29 % ± 5.83 17.92 ± 4.92 4.03e+02 ± 2.04e+02

20 FA generational threshold 34 42.65 % ± 6.70 18.97 ± 5.72 3.84e+02 ± 2.22e+02

20 FA steady state tournament 61 63.90 % ± 3.52 20.74 ± 2.14 2.10e+03 ± 1.03e+03

20 FA steady state threshold 32 66.39 % ± 2.56 20.93 ± 1.90 9.97e+02 ± 5.36e+02

100 PSO-20 20 60.87 % ± 2.04 93.25 ± 8.20 1.46e+06 ± 3.04e+05

100 PSO-100 100 68.31 % ± 1.68 94.05 ± 7.31 9.83e+06 ± 2.42e+06

100 RCGA-20 generational roulette 20 43.46 % ± 0.93 141.56 ± 8.02 2.34e+05 ± 1.64e+05

100 RCGA-20 generational ranking 20 43.14 % ± 0.78 142.33 ± 7.07 2.18e+05 ± 1.72e+05

100 RCGA-20 generational tournament 20 43.32 % ± 0.72 141.95 ± 7.57 2.39e+05 ± 1.75e+05

100 RCGA-100 generational roulette 100 44.23 % ± 0.68 142.24 ± 7.90 1.22e+06 ± 8.89e+05

100 RCGA-100 generational ranking 100 44.07 % ± 0.84 140.33 ± 7.80 1.03e+06 ± 7.77e+05

100 RCGA-100 generational tournament 100 44.33 % ± 0.75 140.49 ± 7.51 1.13e+06 ± 7.91e+05

100 CMAES 24 77.86 % ± 1.62 101.20 ± 2.62 2.58e+07 ± 2.86e+06

100 FA generational tournament 171 36.82 % ± 9.66 88.78 ± 30.33 1.87e+03 ± 8.38e+02

100 FA generational threshold 169 36.04 % ± 9.95 88.66 ± 31.28 1.83e+03 ± 9.32e+02

100 FA steady state tournament 277 62.39 % ± 5.61 90.04 ± 8.96 9.36e+03 ± 3.51e+03

100 FA steady state threshold 144 64.47 % ± 1.11 92.42 ± 3.00 4.33e+03 ± 1.66e+03

500 PSO-20 20 48.66 % ± 1.94 463.77 ± 32.22 1.15e+07 ± 2.87e+06

500 PSO-100 100 54.00 % ± 1.09 461.00 ± 23.41 7.10e+07 ± 7.81e+06

500 RCGA-20 generational roulette 20 38.21 % ± 0.33 731.64 ± 17.22 1.18e+06 ± 8.62e+05

500 RCGA-20 generational ranking 20 38.10 % ± 0.41 728.02 ± 17.50 1.15e+06 ± 8.43e+05

500 RCGA-20 generational tournament 20 38.23 % ± 0.37 725.99 ± 18.29 1.16e+06 ± 8.56e+05

500 RCGA-100 generational roulette 100 38.71 % ± 0.36 726.33 ± 17.05 5.34e+06 ± 3.98e+06

500 RCGA-100 generational ranking 100 38.51 % ± 0.37 727.73 ± 17.77 6.15e+06 ± 4.54e+06

500 RCGA-100 generational tournament 100 38.76 % ± 0.38 725.94 ± 20.32 5.89e+06 ± 4.06e+06

500 FA generational tournament 885 34.06 % ± 11.31 443.79 ± 154.97 9.23e+03 ± 4.70e+03

500 FA generational threshold 854 33.72 % ± 11.27 439.50 ± 163.33 9.02e+03 ± 4.77e+03

500 FA steady state tournament 1369 62.63 % ± 0.64 427.67 ± 6.09 4.28e+04 ± 8.00e+03

500 FA steady state threshold 687 63.73 % ± 0.56 433.84 ± 5.82 2.22e+04 ± 7.00e+03

1,000 PSO-20 20 45.72 % ± 1.08 940.22 ± 35.69 2.61e+07 ± 4.08e+06

1,000 PSO-100 100 48.82 % ± 2.43 917.14 ± 51.12 1.43e+08 ± 2.82e+07

1,000 RCGA-20 generational roulette 20 36.98 % ± 0.21 1456.10 ± 27.00 2.80e+06 ± 2.05e+06

1,000 RCGA-20 generational ranking 20 37.08 % ± 0.33 1468.83 ± 22.15 2.92e+06 ± 1.81e+06

1,000 RCGA-20 generational tournament 20 36.99 % ± 0.26 1466.95 ± 27.56 1.68e+06 ± 1.66e+06

1,000 RCGA-100 generational roulette 100 37.35 % ± 0.27 1462.33 ± 32.25 1.46e+07 ± 1.16e+07

1,000 RCGA-100 generational ranking 100 37.27 % ± 0.34 1465.56 ± 31.45 1.22e+07 ± 1.09e+07

1,000 RCGA-100 generational tournament 100 37.46 % ± 0.10 1464.30 ± 26.76 1.03e+07 ± 5.14e+06

1,000 FA generational tournament 1,716 32.54 % ± 13.22 857.10 ± 355.15 1.70e+04 ± 1.06e+04

1,000 FA generational threshold 2,000 37.21 % ± 0.44 1002.62 ± 21.57 2.07e+04 ± 1.02e+04

1,000 FA steady state tournament 2,729 62.44 % ± 0.45 840.79 ± 9.25 8.54e+04 ± 1.64e+04

1,000 FA steady state threshold 1,346 63.74 % ± 0.29 854.71 ± 7.93 4.33e+04 ± 1.31e+04

To visually compare the relative performance of the algorithms in terms of

maximisation of the objective function, the collaborative plotted the average global
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Figure 4.5: Mean global fitness for the Lamps problem for the different algorithms
for different problem sizes. For problem sizes 500 and 1000, jobs were killed on the
supercomputer as they did not complete within 3 days (the maximum limit allowed).

fitness for each algorithm for each problem size in Fig. 4.5. Table 4.6 shows that the

choice of selection operator in the RCGA does not impact the performance of the

algorithm. To improve the readability of the graph, the three corresponding curves

(i.e., RCGA with duel, ranking, and roulette selection) replaced with a single one that

averages their values. For the same reason the same is done with the generational

Fly Algorithm. Fig. 4.5 clearly shows that traditional approaches are competitive

until the problem size reaches 10, i.e., a 90-D search space (see Table 4.1). When

the size of the search space increases further, the curves decline rapidly. The

graph also shows that the steady state Fly Algorithm retains its ability to maximise

the global fitness: The curves reach a plateau rather than decline. In addition,

Figure 4.6 shows the lamp configurations for each algorithm for each problem size.

The image for each optimisation algorithm corresponded to the median result in

terms of global fitness over 101 runs, except for problem size 1,000 where only 21

runs were used. In this study used the median result rather than the best result for

each algorithm to allow a fair comparison. It clearly shows that PSO and RCGA are

successful in limiting the overlaps for Problem sizes 3 and 5. Problem size 10 is a

transition where these algorithms are still competitive. For larger problem size, only

the steady state Fly Algorithm is successful in both maximising the illumination (i.e,

homogeneous gray images) and minimising overlaps whereas other algorithms fail

on both counts (i.e, patchy images with both black and white areas). These results

indicate that the steady state Fly Algorithm scales well when the problem size

increases. The same is true with CMA-ES. However, memory usage and computing

times may make its use prohibitive with the largest problem. In this respect the

steady state Fly Algorithm remained competitive.
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Figure 4.6: Simulated lamp configuration for each algorithm for each problem size. For
PSO and RCGA, 100 particles or individuals were used. Good images should be gray and
homogeneous. Black and white pixels correspond to a lack of illumination and to an overlap
respectively. The image for each optimisation algorithm corresponds to the median result in
terms of global fitness over 101 runs, except for problem size 1,000 where only 21 runs
were used. We use the median result rather than the best result for each algorithm to allow
a fair comparison.
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Figure 4.7: Efficiency and effectiveness comparison of all the algorithmic approaches for
the different problem sizes. The horizontal axis of the scatter plots represents the number
of lamps created before acceptance of the solution; the vertical axis the average global
fitness. Numerical values were averaged over 101 runs. The best algorithms are in the top
left corners of the plots (left for smallest computational requirements, i.e., efficiency, and
top for highest global fitness values, i.e., effectiveness).
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Figure 4.8: Fitness value for Problem size 100 as a function of the number of lamps created
before acceptance of the solution, which is linearly related to computational requirements.
For each optimisation algorithm, the curve corresponds to the median result in terms of
final global fitness over 101 runs.

To study the trade-off between effectiveness (ability to find the best possible solution)

and efficiency (minimal amount of time spent to find the best solution), scatter plots

are used (see Fig. 4.7). The horizontal axis represents the number of lamps created

before acceptance of the solution. The vertical axis represents the average global

fitness over 101 runs. The most effective algorithms are shown at the top of the

plots. The most efficient algorithms are shown at the left-hand side of the plots.

Fig. 4.7 shows that PSO and CMA-ES are effective in finding solutions for problem

sizes 3, 5, 10 and 20.

However, it is not very efficient compared to the steady state Fly Algorithms. When

the problem size is greater than 20, steady state Fly Algorithms starts to outperform

other algorithms. These results show that the cooperative co-evolution principles of

the Parisian evolution is scalable.

As stagnation was used as a stopping criterion (5 successive iterations for the Fly

Algorithms and 50 iterations for the traditional algorithms), it is important to assess
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how the best global solution improves as more lamps are created by the algorithms.

This is to make sure the assessment of the efficiency provided above was fair for all

the algorithms. Fig. 4.8, compares the median solution in terms of global fitness

over 101 runs when the problem size is 100. The plot clearly shows that the steady

state Fly Algorithm is able to reach a global maximum extremely quickly compared

to other algorithms. In fact, the global fitness is already high even before CMA-ES,

PSO and RCGA start their optimisation loop because these algorithms need to

create a large pool of solutions, each solution including 300 lamps (3×problem size).

Hence again, it validates our assumption of the scalability of the steady state Fly

Algorithm. This observation validate the hypothesis about the unsuitability, in this

case, of the number of fitness function evaluations (or lamp creations in this case)

as stopping criteria in benchmarking. Similar patterns were observed for other

problem sizes.

A sharp spike can be seen at the end of the evolution for the steady state Fly

Algorithm. This is because bad flies are iteratively killed from the population so that

the population is made of good flies only. To further refine the results, it is possible

to restart the evolution.

In the next section, it will use a more realistic test case, Positron emission

tomography reconstruction, where the number of unknown values to estimate

is much higher and cannot be easily predicted. For the Lamps problem with a

problem size of 100, only about 90 lamps were needed, with 2 coordinates per lamp.

That is about 180 unknown values to estimate. In PET reconstruction, thousands or

millions of unknowns need to be estimated.

4.4.3 Quantitative analysis of the results on PET

Reconstruction

The reconstruction aims at estimating the position of 1,840 emitting points. This

number is proportional to the sum of pixel values in the phantom (see Fig. 4.2b),

hence proportional to the radioactive concentration.

Once again, a traditional Real-coded genetic algorithm, a traditional PSO and a

state-of-the-art CMA-ES are compared again with the steady state and generational
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Fly Algorithms. In RCGA, CMA-ES and PSO each individual/particle is made

of 1,840× 2 real values (1,840 is the number of emitting points, and there are 2

coordinates, x and y, per point). In the Fly Algorithm individuals are made of 2 real

values only. All the algorithms minimise Eq. 4.6.

• In the real-coded genetic algorithm and in CMA-ES, Eq. 4.6 is the fitness

used to evaluate individuals. The final solution is a single individual, the best

one. Note that the real-coded genetic algorithm is tested with duel, ranking

and roulette wheel selection.

• In PSO, Eq. 4.6 is the objective function used to evaluate particles. The final

solution is a single particle, the best one.

• In the Fly Algorithm, Eq. 4.6 is the global fitness used to evaluate the

population as a whole. The marginal fitness is used in the Fly Algorithm

to compute the fitness value of every individual (local fitness).

The experimental analysis aims at evaluating the added value of:

1. The Fly Algorithm to optimize the position of 1,840 individuals made of 2

genes over a real-coded genetic algorithm, PSO and CMA-ES to optimize N

individuals/particles made of 2×1,840 genes;

2. The steady state implementation of the Fly Algorithm over its generational

equivalent;

3. The Threshold selection operator over a traditional tournament (here duel)

selection operator;

4. An early stopping criterion based on the threshold selection operator (see

Section 4.3.3); and

5. An increasing population size using mitosis over a constant population size.
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Table 4.7: Parameters used in all PET reconstructions.

Phantom size: 64×64 pixels
Projection width: 91 pixels
Number of projections: 25
Final number of emission points: 1,840
Image comparison metrics: SSE (also called `2-norm)
Stopping criterion: No improvement over the last 5 generations

Table 4.8: Additional parameters used in the PET reconstructions with the Fly Algorithm.

Final population size: 1,840 flies
Crossover probability: 0%
Initial immigration probability: 25%
Decrease of mutation probability: 0.08% per generation
Initial Gaussian mutation probability: 75%
Increase of Gaussian mutation probability: 0.08% per generation
Initial mutation factor: 5 pixels
Decrease of mutation factor: 0.012 pixel per generation
Additional stopping criterion: 250 generations max
Solution extraction: Whole population
Additional solution extraction: Whole population after iterative

slaughtering of bad flies

When the tournament selection operator is used, the tournament size is equal to 2;
when the threshold selection operator is used, the threshold is equal to 0.0.
When a fixed population size is used, the initial population size is equal to 1,840 flies;
when a variable population size (here mitosis) is used, it is equal to 115 flies.

Table 4.9: Additional parameters in the PET reconstructions with PSO.

Swarm size: 142 particles
Additional stopping criterion: 500 iterations max
Solution extraction: Best particle
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Again, for reproducibility, the source code and data used in our reconstructions

are provided in a GitHub repository4. In addition, Tables 4.7 to 4.9 give a

summary of the main parameters of all the algorithms that have been evaluated.

In total 17 optimisation algorithm configurations were run (see Table 4.10). Each

configuration was tested 15 times to gather statistically meaningful results. In

total 255 evolutionary reconstructions were performed on the supercomputer

environment. Note that the numbers of individuals/particles in the Real-coded

genetic algorithm and PSO tests are calibrated based on the average number

of newly created individuals in the best Fly Algorithm configuration identified in

Table 4.10, that is to say round
(√

20,240
)
= 142 individuals and particles in the

populations and swarms respectively. The main stopping criteria is no improvement

over the last 5 generations (or equivalent in steady state). Additionally, a maximum

number of generations is considered, 250 for the Fly Algorithm and 500 for PSO

and RCGA. As the population size is automatically computed for CMA-ES, the

maximum number of generations is calibrated so that as many emitting points as in

PSO and RCGA are generated.

Global fitness

For each test, the final value of E(Y, Ŷ) and the ZNCC between f and f̂ (see

Eq. 4.16) are recorded [29]. The ZNCC is used to quantify how similar the

reconstruction is from the ground truth. 1 corresponds to a perfect correlation

between the two images, -1 an anti-correlation (also known as negative correlation),

and 0 a non-correlation (the two images are unrelated to each other).

ZNCC
(

f , f̂
)
=

1
M×N

M∑
i=0

N∑
j=0

(
f (i, j)− f̄

)
×

(
f̂ (i, j)− ¯̂f

)
σ fσ f̂

(4.16)

where M and N are the image width and height respectively, f̄ and ¯̂f are the

average pixel value in Images f and f̂ respectively, and σ f and σ f̂ are the standard

deviation of the pixel values in images f and f̂ respectively.

For the Fly Algorithm, the number of individual created is recorded as it provides a

good estimate of the computing time. The solution extraction is performed twice:

4https://github.com/Shatha1978/Optimisation-algorithm-examples
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With both bad and good flies: The radioactive concentration is the concentration

of flies at the end of the evolution process.

With good flies only: Bad flies are iteratively eliminated after the evolution

process (after a bad fly is removed, the global fitness is updated, and the

whole population is reprocess until there is no bad fly left in the population).

The radioactive concentration is then the concentration of the remaining flies.

However, to provide a fair comparison, Table 4.10 displays the concentration of flies

including bad flies for the Fly Algorithm. Good reconstruction methods should:

Be consistent: Always provide comparable results;

Minimise the global fitness: SSE between the estimated projections and the real

projections;

Maximise the correlation of the reconstructed image with the ground truth;

Limit its computational requirements: Create as few emitting points as possible

whilst still verifying the three characteristics above.

Table 4.10 shows that the traditional RCGA and PSO algorithms fail on these four

fronts. CMA-ES is slightly better but still fails to deliver a good reconstruction. In fact

RCGA, PSO and CMA-ES all fail to converge in the allocated computation time. The

generational Fly Algorithm converges quickly enough, but fails to provide results of

quality. The steady state Fly Algorithm, with threshold selection in particular, is the

best option.

To visually analyse the results, Fig. 4.9 displays the scatter plot of the final values

for the 15 runs of E(Y, Ŷ) (global fitness) on the vertical axis against the total number

of emitting points created by the optimisation algorithm (horizontal axis), which is

proportional to the computational requirement. Good algorithms will therefore

concentrate at the bottom (small error) left (small computing time) corner of

the plot.
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Table 4.10: Performance of the different optimisation algorithm configurations. Numerical
values correspond to average values and standard deviations over 15 runs. The best
algorithms for SSE projections and Reconstruction ZNCC are highlighted as follows: i)
Values for algorithms marked in bold are significantly better (p < 0.01) than the others, and
ii) Values with ∗ show cases where the best performance is equally achieved by two or more
algorithms (non separable, with p > 0.05). Note that the problem answer considered here
for the Fly Algorithm is the concentration of flies, i.e., including bad flies.

Initial number Genes per Number of
Optimization Selection of individuals/ individual/ Early SSE projections Reconstruction emitting points

Algorithm operator particles particle termination (global fitness) ZNCC (in %) created before
acceptance of the solution

PSO N/A 142 2×1,840 N/A 2.23e+08±7.59e+06 33.7±1.7 1.31e+08±0.00e+00
Real-coded GA ranking 142 2×1,840 N/A 2.78e+08±8.28e+06 17.3±1.6 1.30e+08±0.00e+00
Real-coded GA roulette 142 2×1,840 N/A 2.24e+08±7.55e+06 21.8±1.0 1.30e+08±0.00e+00
Real-coded GA tournament 142 2×1,840 N/A 2.18e+08±7.79e+06 21.4±0.9 1.30e+08±0.00e+00

CMA-ES N/A 28 2×1,840 N/A 1.37e+08±8.81e+06 60.9±1.8 1.31e+08±0.00e+00
Fly Algorithm (generational) tournament 115 2 no 2.79e+08±1.05e+07 11.9±2.0 3.91e+04±7.09e+03
Fly Algorithm (generational) tournament 1,840 2 no 2.87e+08±1.01e+07 10.6±1.4 2.55e+04±7.51e+03
Fly Algorithm (generational) threshold 115 2 no 3.47e+08±3.18e+07 10.7±1.5 3.80e+04±8.30e+03
Fly Algorithm (generational) threshold 1,840 2 no 3.21e+08±1.92e+07 10.8±1.6 1.70e+04±1.63e+03
Fly Algorithm (generational) threshold 115 2 yes 3.19e+08±2.53e+07 11.1±1.9 1.29e+04±1.54e+03
Fly Algorithm (generational) threshold 1,840 2 yes 2.87e+08±1.64e+07 12.1±1.8 7.48e+03±4.75e+02
Fly Algorithm (steady state) tournament 115 2 no 9.79e+07±4.96e+06 52.7±1.3 5.49e+04±1.13e+04
Fly Algorithm (steady state) tournament 1,840 2 no 1.04e+08±3.34e+06 51.3±1.1 3.48e+04±7.76e+03
Fly Algorithm (steady state) threshold 115 2 no 1.75e+07±8.66e+05 82.2∗±0.8 6.26e+04±1.12e+04
Fly Algorithm (steady state) threshold 1,840 2 no 1.87e+07±7.56e+05 81.8∗±0.6 4.10e+04±8.00e+03
Fly Algorithm (steady state) threshold 115 2 yes 1.85e+07±9.22e+05 81.8∗±0.6 2.53e+04±3.10e+03
Fly Algorithm (steady state) threshold 1,840 2 yes 1.90e+07±9.52e+05 82.2∗±0.6 2.02e+04±2.60e+03
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Figure 4.9: `2-norm (global fitness) between Y (known projections) and Ŷ (projections
estimated by the optimisation algorithm). Each marker represents a run for a given algorithm.
There are 15 runs per algorithm. Best algorithms are located at the bottom-left corner
of the plot. Note that the problem answer considered here for the Fly Algorithm is the
concentration of flies, i.e., including bad flies.
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It is possible to identify four clusters in the plot:

1. Traditional algorithms (PSO, RCGA and CMA-ES) (see the ellipse in purple);

2. Generational Fly Algorithm (ellipse in red);

3. Steady state Fly Algorithm with tournament selection (ellipse in green); and

4. Steady state Fly Algorithm with threshold selection (ellipse in blue).

Any steady state configuration provides better results than any of the generational

configurations. Obviously conclude that the steady state implementation is better at

minimising the error between Y and Ŷ. This can be explained by the fact that when

using marginal fitness, the fitness of every fly is depending on all the population;

selection based on marginal fitness only makes sense if the fly killed is immediately

barred and the replacement fly re-incorporated into the population before the

selection process goes on. Also, it is clear from the scatter plot that the steady state

Fly Algorithm provides results of consistent quality (small spread in terms of SSE),

which is not the case of the generational Fly Algorithm, CMA-ES, RCGA and PSO.

In addition, there is a clear difference can see between tournament and threshold

selection operators in steady state when using a marginal fitness to select flies:

Threshold selection is always better than tournament selection. This is because the

tournament selection may choose i) to reproduce a bad fly, or ii) to kill a good fly.

This behaviour is just impossible with the threshold selection (see Sections 4.3.2

and 4.3.3). The plot also shows that the early stopping criterion implemented using

the threshold selection’s internal data (see Section 4.3.3) considerably decreases

computation time without affecting the quality of the output.

Correlation between the Ground Truth and the reconstruction

The quality of reconstruction is measured by the ZNCC, which quantifies the

similarity between reconstructed and ground truth data. When ZNCC is high

(100%), the reconstructed image is close to the noise-free ground truth (see

Fig 4.2a). As mentioned in Section 4.4.1, for each algorithm displayed the median

result over 15 runs rather than the best run. This is to allow a fair comparison.
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Figures 4.10 and 4.12 show such results with images that correspond to the median

result in terms of `2-norm between Y and Ŷ (global fitness). It is clear from this

visual inspection that the traditional optimisation methods are highly ineffective in

reconstructing tomographic images: The reconstructed images are far from the

ground truth.

Real-coded GA
ranking

ZNCC: 18%

Real-coded GA
roulette

ZNCC: 22%

Real-coded GA
tournament
ZNCC: 20%

CMA-ES
ZNCC: 59%

PSO
ZNCC: 33%

Figure 4.10: Reconstructed images using Particle Swarm Optimisation and real-coded
genetic algorithm with three different selection operators. The image for each optimisation
algorithm corresponds to the median result in terms of `2-norm between Y and Ŷ (global
fitness) over 15 runs.

ge
ne

rat
ion

al

tou
rna

men
t

mito
sis

ge
ne

rat
ion

al

tou
rna

men
t

no
 m

ito
sis

ge
ne

rat
ion

al

thr
esh

old

mito
sis

ge
ne

rat
ion

al

thr
esh

old

no
 m

ito
sis

ge
ne

rat
ion

al

thr
esh

old

mito
sis

ea
rly

 st
op ge

ne
rat

ion
al

thr
esh

old

no
 m

ito
sis

ea
rly

 st
op ste

ad
y s

tat
e

tou
rna

men
t

mito
sis

ste
ad

y s
tat

e

tou
rna

men
t

no
 m

ito
sis

ste
ad

y s
tat

e

thr
esh

old

mito
sis

ste
ad

y s
tat

e

thr
esh

old

no
 m

ito
sis

ste
ad

y s
tat

e

thr
esh

old

mito
sis

ea
rly

 st
op ste

ad
y s

tat
e

thr
esh

old

no
 m

ito
sis

ea
rly

 st
op

10

20

30

40

50

60

70

80

ZNCC reconstruction (in %)

Figure 4.11: Box plots of ZNCC (or similarities) between f (noise-free ground truth) and f̂
(tomographic reconstruction corresponding to the concentration of flies) before elimination
of bad flies, for 15 runs of Fly Algorithm with various operators setups.

The steady state and generational FAs are compared with various combinations of

selection operators, initial population sizes (1,840 individuals for fixed population

size, and 115 for varying population size), and an early stopping criteria (based

on the threshold selection’s internal data). Fig. 4.11 compares the final ZNCC of

15 runs of the Fly Algorithms. This figure highlights that:

1. The steady state implementation is always superior to its generational

counterpart,
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2. For steady state, threshold selection is always superior to the tournament

selection, and

3. For steady state with threshold selection, there is no major difference in terms

of ZNCC between fixed and varying population sizes strategies.

These conclusions are confirmed by a visual examination of the reconstructed

images in Fig. 4.12. The top row shows the final results with the whole population

(i.e., including both good and bad flies). The bottom row shows the final results

after iterative slaughtering of bad flies: Images without bad flies look much clearer

and ZNCCs are also much higher.

As a conclusion:

• Only the steady state Fly Algorithm was always successful in reconstructing

PET images (PSO, RCGA, generational FA consistently failed);

• Threshold selection always outperformed the tournament selection in the

steady state Fly Algorithm;

• Iterative slaughtering of bad flies at the end of the evolution helps to further

improve the quality of the reconstruction.

.

Fixed vs Varying Population Size

The main difficulty with the fixed population size is to determine how many

individuals are required. It may actually be impossible to achieve in a deterministic

way. A trial and error approach can of course be used, but this is unrealistic for a

clinical setting. This is why a varying population size is favoured, but the final number

of point needs itself to be optimised. This section focuses on the steady state Fly

Algorithm with threshold selection and early stopping criterion as it provided the

best performance in both efficiency and effectiveness.
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Figure 4.13: `2-norm (global fitness) between Y (known projections) and Ŷ (projections
simulated by the fly population) before elimination of bad flies. More flies have been used
to further evaluate the mitosis.
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Figure 4.14: TV-norm of the reconstructed slices ( f̂ ) before elimination of bad flies. More
flies have been used to further evaluate the mitosis.

When increased the final number of flies up to 7,360, and monitor the global fitness

in function of time (i.e., number of flies created), see Fig. 4.13. Having multiple

mitosis occurring in quick succession at the beginning of the evolutionary process

helped to lower the global fitness very quickly. It was 9.09E+8 at the beginning. It

is 3.18E+07 when the number of created flies is 10,925. By the time the varying

population size scheme has created as many flies as there are in the fixed population

size (i.e., 7,360 flies), its global fitness is already much lower (1.70E+08 for the

varying population size compared to 4.22E+08 for the fixed population size). The

fixed population size scheme caught up with the varying population size scheme at

about 45,000 created flies.

For each mitosis triggered after 10,925 new flies, the decrease of global fitness

relative to the previous mitosis is not as significant as it previously was. The mitosis

operator actually implements a multi-resolution tomography reconstruction. It can

be used to let the algorithm determine the optimal number of flies. When the global

fitness at two successive mitosis points is relatively similar, it means that adding
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more flies does not help improving the global fitness anymore. It could stop adding

new flies and extract the solution.

However, other image metrics calculated on f̂ rather than Ŷ may provide additional

information. Gray et al. used visualisation to better understand the behaviour of the

Fly Algorithm in PET reconstruction [58]. They showed in particular that a relatively

good reconstruction is achieved quickly in terms of global fitness between Y and

Ŷ but that other image metrics on f̂ , e.g., smoothness, may be more relevant to

decide when to stop adding more flies and actually stop the reconstruction. This

study will rely here on the smoothness of the reconstructed images as defined by

the following total variation (TV) norm:

TV
(

f̂
)
=

1
M×N

M∑
i=0

N∑
j=0

| f̂ (i−1, j)− f̂ (i+1, j)|+ | f̂ (i, j−1)− f̂ (i, j+1)| (4.17)

where f̂ is the reconstructed image, M and N are its width and height in number

of pixels respectively. Noisy images have a large TV-norm whilst homogeneous

images have a TV-norm close to 0. This metrics is used to assess the quality of the

reconstructed image. Fig. 4.14 shows how the TV-norm of the reconstructed slices

evolves over time. It was chosen as the mitosis acts as a low-pass filter: When

a mitosis occurs, every fly is duplicated and every new fly undergoes a mutation,

hence blurring the reconstructed image. This is why the TV-norm decreases after

each mitosis, then increases and finally reaches a plateau. With the varying

population size, the reconstruction starts with a relatively small number of flies

that are scattered in the image space: The image is quite noisy. The TV-norm is

therefore high. With the fixed population size, the reconstruction starts with a much

higher number of flies that are scattered in the image space: The image is more

homogeneous. The TV-norm is therefore low. Again, the fixed population size takes

a lot more time to stabilise compared to the varying population size. Also, if the

global fitness for the fixed population size stopped significantly decreasing after

45,000 new flies, the TV-norm has not reached its final value. If the TV-norm of

the reconstructed tomographic slice does not decrease, it means that adding more

flies does not help improving the image quality anymore. For the varying population

size, as both the global fitness and TV-norm do not significantly vary between their

values at 22, 885 and 57,845 new flies, we could have stopped the evolution with
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a population of 3,680 flies rather than 7,360, which was the strategy proposed by

Gray et al to implement a more effective stopping criteria that limits the number of

mitosis.

4.5 Conclusion

The study experimentally explored the scalability of FA compared to the classical

gbest PSO strategy and RCGA, as well as one of today’s most popular evolutionary

algorithms for global optimisation, CMA-ES. For this purpose we used two problems,

a toy problem (the Lamps) and an actual problem (Positron emission tomography

reconstruction). PSO provided better results for the Lamps with problems of a low

number of dimensions (up to 180-D). When the number of dimensions increased

further, its performance collapsed rapidly. CMA-ES delivered more consistent

results, but failed to converge in an acceptable time. For instances of CMA-ES

dealing with problems with 4,500 and 9,000 dimensions, the optimisation was

stopped before the end, as they reached the maximum duration allocated by the

supercomputer. In other words, 3 full days of computations were not sufficient

to complete the task. In addition to a high computational demand, CMA-ES also

required a much larger amount of main memory because of the estimation of

the distribution step, which increases considerably with the dimensionality of the

problem. The Fly Algorithm was, however, successful in preserving its ability to

find suitable solutions in an acceptable time, with no decrease of quality when the

number of dimensions increased. In PET reconstruction, only the Fly Algorithm was

successful in finding good solutions. PSO, RCGA and CMA-ES failed by a large

margin. This study experiments highlighted that, while PSO, RCGA and CMA-ES

are better at finding good solutions for problems with a low dimensionality, the Fly

Algorithm scales better in higher dimensionality.

Its efficiency and remarkable scalability is a counterpart of its rather delicate design

phase. The study provided some guidelines for future usage of the Fly Algorithm

on other applications. Its scope of application is larger than expected. Initially

designed for geometrical inverse problems (reconstruction from projections), it can

be extended to other problems involving a large number of similar items. The Lamps

benchmark is a typical example of such problems.
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In conclusion, there is no free lunch in optimisation: Each algorithm is adapted to a

range of problems. The study experiments demonstrated that the Fly Algorithm was

better on large scale problems made of small interconnected subproblems of the

same nature. As computer systems see a significant increase in both computational

power and memory availability, trends in optimisation, as well as machine learning

in general, show an increase in the scale of the problem they have to solve, e.g.,

big data is arguably its most visible phenomenon. In this respect, the importance of

the optimisation algorithm scalability is likely to increase as well.
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Chapter 5

Visualisation in evolutionary

reconstruction of PET images

5.1 Introduction

This chapter is based on another collaborative study [58] that investigates the use

of InfoVis and data exploration to understand some of the behaviours of an FA. It is

related to the use of evolutionary computing in nuclear medicine, more particularly

PET reconstruction. In particular, it wants to assess if the algorithm could have been

stopped earlier to get a reasonable solution instead of waiting until the algorithm

ends and using the final solution as the problem answer. During the evolutionary

PET reconstruction, multiple time series are recorded hundreds of thousands of

times. Comparing these time series by hand using typical scatterplots and line

charts with no interactivity is not practically feasible:

• The order of magnitude of each time series is different. They would need to

be independently normalised before plotting.

• Trial and error would be needed to choose the axis of interest because it is

not necessarily straightforward to do so without a deep a priori understanding

of the data.

• Adjusting the data range visualised in the scatterplots would also need to be

performed with trial and error.

• Displaying selected images would need to be done manually.
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The use of Parallel Coordinate Plot (PCP) is very popular to visualise

high-dimensional geometry and analyse multivariate data [66], which is the type

of data considered here. Interactivity using the brushing technique [89] makes it

feasible to easily explore parts of this high-dimensional space and visually analyse

this complex multivariate dataset.

The contribution of this study demonstrates how simple interactive

visualisation techniques such as Parallel Coordinate Plots, scatterplot and

image display can be used to analyse complex datasets generated using the

temporal internal data of the evolutionary algorithm. Visual observations can

then be used to improve the performance of the algorithm. The study illustrates

how can be used to analyse the behaviour of the algorithm over time. This task

would be extremely difficult without interactive visualisation. Well-designed user

interaction and effective visualisation make it relatively easy. They can be used to

analyse the performance of the population over time. When using stagnation as

the stopping criterion, the final population is not necessarily the best one due to

oscillations around the minimal fitness value.

A simple, but yet effective, visualisation framework has been purposely developed

to explore data embedded in the log file and display the intermediate results based

upon user interactions. It is used to assess the behaviour of the evolution process

over time. The relationship between different properties of the reconstruction

can also be examined. Using a case study, it helped to ascertain that allocating

more computation time to the reconstruction algorithm did not lead to a significant

improvement in accuracy. The research proposed an alternative early stopping

criterion that looks at both the global fitness of the population and the smoothness

of the reconstructed image over the last 500 iterations.

Section 5.2 describes the application to tomography reconstruction PET used in Fly

Algorithm. The next Section 5.3 develops the information visualisation techniques

that used to explore the internal data generated by successive iterations of the Fly

Algorithm. Section 5.4 deals with PET reconstruction using the Fly algorithm. The

purpose is to understand the behaviour of the algorithm, looking at three metrics,

the global fitness (the minimisation of the Euclidean distance between the input
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projections Y, and the projections Ŷ estimated with the Fly algorithm), the ZNCC

between the ground truth f and the reconstructed PET image f̂ corresponding to

the concentration of flies, and the TV norm of f̂ . It was exploited to extract which

occurrence of f̂ that minimises both the Euclidean distance and the TV norm. It

was then used to implement a much more effective stopping criteria that takes into

account both the global fitness and the TV norm. It is followed by a conclusion that

summarises the contributions.

5.2 Evolutionary reconstruction in PET

This is the approach adopted here to develop an integrated visualisation framework

dedicated to evolutionary PET reconstruction algorithm. In typical evolutionary

algorithms, the best individual of the final population is the solution of the

optimisation problem. This algorithm relies on the Parisian approach where the

solution to the problem is a group of individuals, e.g. the whole population or a

subset of the population. The population size progressively increases to improve the

resolution of the output image. The algorithm is launched with input parameters such

as the initial number of individuals, the final number of individuals, the probability of

operators, etc., the final solution is extracted at the end of the optimisation process

then converted into a problem-specific answer.

In past implementations [3], [8], [139]–[142], the final result given by the last

iteration is considered as the reconstructed image. But, when using stagnation

as the stopping criterion, the final population is not necessarily the best one due

to oscillations around the minimal fitness value. In such a case, past generations

will have to be accessible. Also, reaching the targeted number of individuals may

not be necessary if the reconstructed image stops improving. Offline analysis

of intermediate results makes it possible to look at quality metrics other than the

fitness value, e.g. smoothness of the reconstructed image. The initial goal is to

extract the best possible solution in terms of fitness function and smoothness of the

reconstructed image. The aim is to identify the smallest population that could be

used as the solution instead of the final population to reduce the computing time

as much as possible without compromising the quality of the reconstructed PET

image.
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The data acquisition in PET can be described as:

Y = P f (5.1)

where f is the radioactive concentration, which is unknown; Y the observations

(known data as measured by the scanner); and P the system matrix or projection

operator. The initial guess is a population f̂ of flies randomly located within the

object space. Projections Ŷ are computed from the population and are compared

with the data Y from the medical scanner. To that effect, an error metric between

the two images is measured (see Eq. 5.2), this is the global fitness.

∥∥∥Y − Ŷ
∥∥∥2

2 =

√√√√y<h∑
y=0

x<w∑
x=0

[
Y(x,y)− Ŷ(x,y)

]2
(5.2)

It is the numerical value that the optimisation algorithm will minimise. Errors are

corrected using the application of genetic operators (mainly selection, mutation,

new blood, and mitosis). The aim is to optimise the position of each fly so that

the projection data of the whole population closely matches the one from the real

radioactive concentration. The process is repeated until a stopping criterion is

met. After convergence, the point cloud made by the flies is an estimate of the

real radioactive concentration. The point cloud is then sampled to produce voxel

data [8].

The study implemented a steady-state FA where, at each iteration, a bad fly is

selected for death and replaced using a genetic operator (mutation or new blood).

To evaluate the performance of a single individual (Fly i), it used the marginal fitness

(Fm(i)) [28]. It relies on the global fitness with the leave-one-out cross-validation

principle.

Fm(i) =
∥∥∥∥Y −

(
Ŷ \ {i}

)∥∥∥∥2

2
−

∥∥∥Y − Ŷ
∥∥∥2

2 (5.3)
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where Ŷ \ {i} is the estimated projections without the photons simulated by Fly i.

The idea behind the leave-one-out cross-validation is to assess the error metric

twice: once with Fly i in the population, and once without it. By comparing the two

values (the subtraction in Eq. 5.3) it can determine if having Fly i is beneficial or

not for the population. If Fm is positive, the error is smaller when the fly is included:

the fly has a positive impact on the population’s performance. It is a good fly, i.e. a

good candidate for reproduction. If Fm is negative, the error is larger when the fly

is included: the fly has a negative impact on the population’s performance. It is a

bad fly, i.e. a good candidate for death. Fm is, therefore, a measure maximised

by the algorithm. The study used this principle to define the ‘threshold-selection’

operator [141], [142]: to choose a fly to kill, find a fly with Fm ≤ 0; and to choose

a fly to reproduce, find a fly with Fm > 0. When the number of bad flies is low,

the threshold-selection will struggle to find flies to kill. It provides a good stopping

criterion.

The implementation start with a low number of flies (e.g. 25). When convergence is

detected, each fly is duplicated to double the population size (see mitosis operator

in [141], [142]). Each new fly is then mutated using mutation operators are available

in [3]. Then the evolutionary process carries on until convergence is detected again.

When the number of flies reaches a limit set by the user, and when convergence is

detected, the reconstruction process ends. In the test cases presented below, it

will use the new blood, basic mutation, and adaptive mutation operators. Also, note

that the implementation is fully adaptive: operator probabilities are encoded by flies

and undergo mutations.

Several stopping criteria can be used. Stagnation can be detected if the threshold

selection operator struggles to find a bad fly several times in a row. The goal

of the population is to minimise the global fitness as it is an error measurement.

Stagnation can also be detected if the global fitness stops decreasing over a given

number of iterations.
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5.3 Data exploration

The Fly implementation produces a multivariate output, which may or may not be

interrelated. In order to achieve the goal of inferring those relationships, our design

choices are limited to multivariate relationship techniques. The common options in

this situation are Heatmaps, Parallel Coordinate Plots, Scatterplots, Radar Charts,

and Venn diagrams [111]. As Heatmaps is limited in the number of variables it can

display [153], and Venn diagrams become difficult to read beyond three variables;

these options must discount. Radar Charts are able to handle a larger number of

variables, limited by the sweep angle between each axis. In theory without needing

actual scale values, the chart could support 360 different axes; however, in practice

the limit is substantially lower. An additional factor is that individuals (results in

this case) are plotted over each other. Even with opacity effects it becomes more

difficult to visually separate the individuals or extract patterns.

This requirements analysis leaves PCPs as the logical choice [159]. PCPs will

suffer from over-plotting where results share equal/similar values. The tool allows

the axes to be re-positioned and re-ordered to make any relationships more clear.

This tool allows as many brushed ranges as there are axes, allowing users to

precisely select items of interest, removing or fading unrelated data from the view.

The system processes the CSV log files produced by the evolutionary process into

JavaScript arrays. Time series were recorded over the evolution process. Each

row of the file contains the data as follows: time stamp, population size, global

fitness, corresponding images saved flag, common error/similarity metrics between

Y and Ŷ as well as between f and f̂ (namely mean absolute error (MAE), mean

squared error (MSE), Euclidean distance, root mean squared error (RMSE), ZNCC,

SNR, peak signal-to-noise ratio (PSNR), structural similarity (SSIM), structural

dissimilarity (DSSIM)), smoothness of Ŷ and f̂ using total variation, and internal

states of the evolutionary algorithm (e.g. probability of the various genetic operators).

The visualisation code selects user-specified columns (metrics) to make available

as axes in the Parallel Coordinate Plot. Users are also offered the option to colour

the lines produced according to another column (whether plotted or not). The values

of that column are converted into a linear range between two user-specified colours.

The tool uses the LAB colour space and HCL interpolation [60]. This results in
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the perceived difference in plot colour being proportional to the Euclidean distance

of the colouring metric, i.e. items close to each other in the metric space will be

similarly coloured in the plot. An example of this version can be seen in Figure 5.1.

A subsequent version added Brushing capability to the system. An example of this

version can be seen in Figure 5.2.

Figure 5.1: Initial prototype Parallel Coordinate Plot showing an initial run of the evolutionary
process. Objects are coloured according to their iteration number, included as the first axis.
This is a screen-shot captured from the tool itself, the labels are clearer in the tool.

Figure 5.2: The same dataset as in Figure 5.1, with Brushing active on axes 3 and 5
(dEuclid_sinogram and TV_reconstruction). The ranges selected are shown by the tinted
rectangle overlaid on those axes. This is a screen-shot captured from the tool itself, the
labels are clearer in the tool.

When (exactly) two axes are brushed, the coordinated scatterplot is also drawn.

The scatterplot uses the range of the two brushed axes and only plots selected

data. The Y-axis represents the lowest numbered (leftmost) axis. The colouring

Visualisation in evolutionary reconstruction of PET images 85



from the main plot is also maintained. As columns may not be in the desired order,

the Parallel Coordinate Plot allows axes to be dragged left and right into the order

required. The corresponding scatterplot to Figure 5.2 is shown in Figure 5.3.

Figure 5.3: The coordinated scatterplot for Figure 5.2. Items are coloured as in the original
figure, a smaller circle represents denotes that no image is available for that point and a
larger square does. This is a screen-shot captured from the tool itself, the points and labels
are clearer in the tool.

Combining these techniques, produced a powerful exploratory tool. It allows

researchers and practitioners to gain insight into the performance of their algorithms

in an intuitive visual way. The Parallel Coordinate Plots unveil potentially masked

correlations and relationships within a dataset, and the scatterplot allows reasoning

about efficiency and potential tuning options. A demonstration can be seen with a

modern web-browser at http://fly4pet.fpvidal.net/visualisation/.

5.4 Results

The Fly Algorithm implementation consider the final result given by the end of

the optimisation process. It provides a simple way to extract the answer of

the optimisation problem, but it is not certain that it is the best answer that the

evolutionary process provided. The initial goal of this study with the visualisation

tool was to gain an understanding of what happens during the evolutionary process.

A subsequent goal was to identify a ‘good’ reconstruction as quickly as possible.

The ultimate goal was to develop stopping criterion dedicated to the Fly Algorithm

in tomography reconstruction to automatically limit the reconstruction duration
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to its minimum level whilst still preserving the accuracy of the results. A good

reconstruction is when the error between the simulated projection data (Ŷ) and

the input data (Y) is extremely low and when the noise levels in the reconstructed

volume ( f̂ ) are low.

The initial assertion was that the huge amount of data generated by the evolutionary

loop should not be discarded as it has the potential to actually be extremely useful

to understand the reconstruction algorithm. The initial goals were to extract the

best possible solution rather than simply take the final one and to determine if

any other comparable solution could have been extracted earlier on to speed-up

the reconstruction time. For this purpose, we performed a reconstruction using a

controlled test case and analyse the results using this visualisation. The observation

data (i.e. known data) is presented in Figure 5.4a. The ground-truth (i.e. unknown

data) is presented in Figure 5.5a.

(a) Y: input data (known). (b) Ŷ113401: sinogram of
the reconstruction manually
selected in Figure 5.10b (see
green circle).

(c) Ŷ f inal: sinogram of the final
reconstruction at the end of
the evolution.

Figure 5.4: Sinograms.

(a) f : ground-truth
(unknown).

(b) f̂113401: reconstruction
manually selected in
Figure 5.10b (see green
circle).

(c) f̂ f inal: final reconstruction
at the end of the evolution.

Figure 5.5: Reconstructed images.

Visualisation in evolutionary reconstruction of PET images 87



Table 5.1: Initial parameters of the Evolutionary Algorithm.

Global fitness function: `2-norm
Initial population size: 25
Final population size: 25,600

Initial new blood probability: 1/3
Initial basic mutation probability: 1/3

Initial adaptive mutation probability: 1/3
Selection threshold struggle: 5 times in a row

Global fitness stagnation: 5 times in a row (ε = 1E-2)

Table 5.1 shows the initial parameters of the Fly Algorithm for this test case.

To measure the level of similarity between two images, whether they are f and

f̂ or Y and Ŷ, used the ZNCC. The ZNCC is equal to 1 if the two images are

perfectly correlated, 0 if they are totally uncorrelated, and -1 if they are perfectly

anticorrelated (one is the negative of the other). The ZNCC is often expressed as a

percentage. This image metric is very popular in image-processing and computer

vision. To measure the smoothness level of the reconstructed image f̂ , used the TV

(also known as TV-norm). Noisy images will have a higher TV-norm than smoother

images. It can be used to compute a level of quality.

Defining what is the ‘best solution’ is not trivial:

• Traditionally it is the final population after convergence (#284,250).

• A good candidate solution is also the one that provides the lowest global

fitness (||Y − Ŷ ||22). In this test case, it is #269,301.

• It can also be the population that gives the lowest discrete TV seminorm of

the reconstructed image (|| f̂ ||TV ). Its first occurrence is #199,101 and its last

is #274,101.

• Ideally, the best solution should provide the highest ZNCC with the

ground-truth ( f ) (ZNCC( f , f̂ )), but it cannot be assessed in the reconstruction

as it is not available in real cases because f is unknown. However, it can be

used with test cases to analyse the behaviour of this algorithm.
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• Also, a good iteration should, if possible, have a relatively small cumulative

computation time up to that iteration.

Table 5.2 summaries the performance of reconstruction at different iterations.

Table 5.2: Performance of reconstructions at different iterations. The best result for each
metrics is in red, the second best in green, and the third best in blue. Iteration #113,401
has been selected by hand using the visualisation tool; #269,301 corresponds to the lowest
global fitness; #199,101 corresponds to the first occurrence of the lowest TV; #274,101
corresponds to the last occurrence of the lowest TV; #284,250 corresponds to the last
iteration.

Iteration # 113,401 199,101 269,301 274,101 284,250
Duration (in min) 7:32 13:15 17:55 18:14 18:55
# of individuals 12,800 25,600 25,600 25,600 25,600
||Y − Ŷ ||22 10.69E-4 9.49E-4 8.99E-4 9.03E-4 9.06E-4

ZNCC(Y, Ŷ) 99.92% 99.94% 99.95% 99.95% 99.94%
|| f̂ ||TV 1.55E-5 1.32E-5 1.33E-5 1.32E-5 1.34E-5

ZNCC( f , f̂ ) 93.20% 93.38% 93.19% 93.22% 93.16%

It presents the reconstruction cumulative computation time, the global fitness, the

ZNCC between the input projections and simulated projections (ZNCC(Y, Ŷ)), the

TV of the reconstructed image and the ZNCC between the ground-truth and the

reconstructed image. In terms of global fitness and TV, the results of the 4 iterations

we selected seem to be equivalent. To assess if this is the case, we look at

ZNCC( f , f̂ ). The values are within 0.22%. In addition, a plot combining the global

fitness and ZNCC( f , f̂ ) is also presented (see Figure 5.6).

The figure shows barely any improvement, whether it is for the global fitness or

ZNCC, when mitosis occurred (see pics in the graph). It can conclude that the

results of the 4 iterations it selected are relatively equivalent. As it cannot distinguish

between the results of the 4 iterations when looking at the global fitness and TV, it

can consider the cumulative computation time (see Figure 5.7).

It can conclude that #199,101 is the ‘best’ iteration among #199,101, #269,301,

#274,101, and #284,250 because its duration is the smallest: it lead to one of

the best results in the smallest length of time. Spending an extra 6 minutes only

marginally improved the results.
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Figure 5.6: Combined evolution of the global fitness and the ZNCC between the
ground-truth and the reconstructed image.
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Figure 5.7: Combined evolution of the global fitness and the TV of the reconstructed image.
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With the visualisation tool, it expected that the reconstruction time can be further

reduced. The initial step is to look at how the global fitness evolves. The same

dataset as Figure 5.1 is a plot with Brushing active on ‘iteration_number’ and

‘dEuclid_sinogram’ (see Figure 5.8a). Note that we swapped the axes in the figure

to ensure that the number of iterations corresponds to the horizontal axis, and

dEuclid_sinogram to the vertical axis in the scatterplot (Figure 5.8b). The study

observed a rapid decrease of dEuclid_sinogram with upticks when mitosis occurs.

It means that the global fitness approaches its minimum at an early stage of the

reconstruction process. In other words, a relatively good reconstruction is achieved

quickly in terms of data fidelity between Ŷ and Y but that other image metrics on f̂

may be more relevant to decide when to stop the reconstruction or to pick a better

reconstructed volume.

The same experiment is performed using TV_reconstruction rather than

dEuclid_sinogram. Figure 5.9 shows that || f̂ ||TV rapidly decreased, but a lot slower

than dEuclid_sinogram. This is because the more mitosis happens, the more flies

there are, resulting in less noise. However, it observed a plateau, beyond which the

TV ceases to decrease significantly. This means that increasing the population size

by mitosis would increase the duration without improving much the reconstruction.

In this case, further investigation is needed as it indicates that the reconstruction

process could have been stopped much earlier, with a lower number of flies.

It refined the brushed region to allow to zoom-in on a low || f̂ ||TV (see Figure 5.10a).

The goal is to ascertain that ||Y− Ŷ ||22 is still low and minimise the duration. Ideally, the

best possible candidate solution will be in the lower left corner of the scatterplot (see

Figure 5.10b). The study selected a candidate solution that is a good compromise

between time and noise levels (as more iterations do not reduce || f̂ ||TV much) (see

green circle in Figure 5.10b). It was obtained at 7:32 with 12,800 flies whereas

the final candidate was obtained in 18:55 with 25,600 flies (see Table 5.2). It

corresponds to a speedup of 2.5X.

To further validate the claim that #113,401 is a good candidate, comparable to the

final one (#284,250),it now looks at image data (see Figures 5.4, 5.5 and 5.11). The

difference, in terms of ZNCC, for Ŷ between #113,401 and #284,250 is 0.02% (see
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(a) Brushing on ||Y − Ŷ ||22 and number of iterations.

(b) Corresponding scatterplot.

Figure 5.8: Evolution of the global fitness. For each iteration plot the value of ||Y − Ŷ ||22.
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(a) Brushing on || f̂ ||TV and number of iterations.

(b) Corresponding scatterplot.

Figure 5.9: Evolution of the total variation seminorm.
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(a) Brushing on || f̂ ||TV and number of iterations.

(b) Corresponding scatterplot. A ‘good’ candidate solution is circled in green.

Figure 5.10: Manual selection of a good candidate solution based total variation seminorm
and duration.
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Figure 5.4 for the image data). This is negligible. The ZNCC of f̂ is actually slightly

smaller (by 0.04%) for #113,401 than #284,250 (see Figure 5.5 for the image data).

To visually assess the noise levels in #113,401 and #284,250, intensity profiles of

interest are extracted. An intensity profile plots the intensity values along a line

segment between to points of an image. They are shown in Figure 5.11. The noise

levels in #113,401 and #284,250 are very similar. Therefore, conclude that the extra

11:23, after iteration #113,401, did not significantly improve the reconstruction.
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(a) Intensity profiles corresponding to the red lines in Figure 5.5.
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(b) Intensity profiles corresponding to the green lines in Figure 5.5.

Figure 5.11: Intensity profiles int the ground-truth and in the reconstructions presented in
Figure 5.5.

The study further exploited these results by introducing a new stopping criterion that

looks at both the global fitness and TV. The global fitness is analysed over the last

500 iterations. Using simple linear regression, the fitness values are reduced to a
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Table 5.3: Performance comparison between the algorithm with and without the new
stopping criterion using 3 test cases. Each reconstruction has been performed 10 times.

Phantom 1 Phantom 2 Phantom 3

W
ith

ou
t # of iterations 282590±989 276320±18230 282820±987

||Y − Ŷ ||22 1.09E-03± 5.69E-05 1.46E-03±6.83E-05 8.94E-04±6.88E-05
|| f̂ ||TV 1.34E-05±1.43E-07 1.07E-05±1.45E-07 1.60E-05±1.62E-07

ZNCC( f , f̂ ) 93.23%±0.05% 94.34%±0.04% 92.59%±0.04%

W
ith

# of iterations 89190±5880 90370±14331 117450±58705
||Y − Ŷ ||22 1.32E-03±5.95E-05 1.81E-03±1.30E-04 1.04E-03±9.98E-05
|| f̂ ||TV 1.38E-05±1.11E-07 1.13E-05±2.06E-07 1.65E-05±1.79E-07

ZNCC( f , f̂ ) 93.47%±0.05% 94.66%±0.07% 92.68%±0.06%

single line, and the equation for it is extracted. When the slope is close to zero, the

line is almost horizontal. It means that the global fitness has not changed much over

the last 500 iterations. This process is repeated using the TV metric, again over the

last 500 iterations. If the slope of both lines is below a given threshold, it deems

the global fitness and TV to be stagnant. When stagnation occurs, the stopping

criterion is met. To provide statistically meaningful results and due to the stochastic

nature of the evolutionary algorithm, it performed 10 evolutionary reconstructions

with and without the new stopping criterion. It tested this approach using three

controlled test cases (see Phantoms 1, 2, and 3 in Figure 5.12), therefore running 60

reconstructions in all. Figure 5.12 shows the reconstructed images corresponding

to the median value of the total number of iterations needed for each test case.

The performance, in terms of the total number of iterations needed, global fitness,

TV, and ZNCC between the reconstruction and ground-truth, is summarised in

Table 5.3. The total number of iterations have been reduced by 68%, 67%, and

58% on average for Phantom 1, 2 and 3 respectively. It did not lead to any loss

of accuracy as the ZNCC between the reconstructions and the ground-truth has

marginally improved (by less than 0.5% for the three test cases). The TV metrics

of the images reconstructed with and without the new stopping criterion are also

consistent. The study can conclude that the data exploration using visualisation

has lead to a new stopping criterion that significantly reduces the computing time

without any loss of accuracy.
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(a) Phantom 1 without. (b) Phantom 1 with.

(c) Phantom 2 without. (d) Phantom 2 with.

(e) Phantom 3 without. (f) Phantom 3 with.

Figure 5.12: Reconstruction of Phantoms 1, 2, and 3 without and with the new stopping
criterion.
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5.5 Conclusion

The research presented here relies heavily on a fully adaptive implementation of a

Cooperative Co-evolution Algorithm based on the Fly Algorithm. The purpose of this

algorithm is to optimise the location of 3-D points. The final set of points corresponds

to the solution of the optimisation problem. The study used this algorithm to solve a

complex ill-posed inverse problem: tomography reconstruction in nuclear medicine.

To date, the solution to the optimisation problem was extracted at the end of the

evolutionary loop.

This chapter investigated the use of a simple but effective visualisation. It relies on

Parallel Coordinate Plot, scatterplot and image display. The visualisation is used to

explore the huge quantity of time series data generated by the algorithm during the

optimisation loop. It focused, in particular, on metrics related to image accuracy,

smoothness, and reconstruction time. It demonstrated that the final population may

not be the most suitable solution and that preceding candidate solutions have to

be considered to ensure that the reconstruction is accurate and not too noisy. This

was not trivial as smooth images may not be accurate. This investigation allowed to

demonstrate that increasing the population size, and hence the computation time,

did not necessarily lead to a significant increase in quality of the reconstruction.

This approach can be easily deployed to any evolutionary algorithm (not only

Parisian Evolution) where the quality of the solution cannot be measured by a

single value (usually the fitness function). It is particularly suited to multi-objective

optimisation where several concurrent fitness functions are used to assess the

quality of an individual. All the objectives are equally important. Multi-objective

optimisation algorithms often output a set of candidate solutions (the Pareto front).

Choosing which solution is the best one may not be trivial. The decision maker with

expert knowledge may be able to express preferences. An interactive visualisation

similar to the one in this research has the potential to help the decision maker

decide which solution(s) to pick amongst the candidates proposed by the algorithm.

The study used these results to propose a new stopping criterion. It analyses the

local variation in terms of global fitness and smoothness of the reconstructed image
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over the last 500 iterations. It allowed us to reduce the total number of iterations by

almost 60% or more without any loss of accuracy.
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Chapter 6

Using a multi-objective optimisation

algorithm in interactive analysis of

MRI gastric images

6.1 Introduction

The work presented here has been published in national and international

conferences [114]–[116] and it is a contribution to a large project focused on

the understanding of the influence of food structure on digestion. The approach

is based on advanced imaging techniques to observe phenomena at different

scales. It relies on MRI of the gastrointestinal tract (GIT) for capturing in vitro large

scale information, while smaller scale measurements are performed in vitro on

large facilities (small-angle neutron scattering (SANS), small-angle X-ray scattering

(SAXS), and X-ray imaging) [51], [86]. The observation of in vivo digestion using

MRI is a recent challenge. Here the focus is on the content of the GIT and not on

the GIT itself as in clinical routine [91], [110], [122].

The work is part of a larger multi-disciplinary collaboration where recently acquired

experimental MRI data of the stomach and duodenum area of healthy human

volunteers. The aim is to analyse the content of the stomach and its evolution. The

study focus here on the kinetics of gastric emptying for two species of ingested food:

i) progressively and partially digested cooked pasta, and ii) frozen garden peas,

which keep their shape in early gastric stages on the kinetics of gastric emptying for

two species of ingested food: i) progressively and partially digested cooked pasta,

and ii) frozen garden peas, which keep their shape in early gastric stages.

100



Manually processing this large amount of MRI data sets is not practically feasible.

Processing it in a fully-automatic manner is not trivial as appropriate information

need first to be collected and analysed to provide suitable models. Here the study

showed how a “Fly Algorithm” [140] can be efficiently adapted to analyse these

MRI images. The Fly Algorithm, on the contrary to classical image processing

techniques, is able to provide a map of various features (e.g. the location of

components of the food bolus). This work presented early results on the tracking

of peas (around 20 peas in one stomach for the current experimental data), which

reveals the motion of the stomach (the food bolus is stirred and gently “triturated”

for better action of the gastric juice). For this purpose, the Fly Algorithm has

been turned into a multi-objective cooperative-coevolution algorithm, and expert

knowledge has been integrated through an interaction/visualisation interface.

Section 6.2 will describe the problem and give a definition for each objective will

use in this work. In particular, the multi-objective scheme provides complex time

series of Pareto front data, which needs to be understood and explored, Section 6.3

will explain that and produce the multi-objective algorithm (NSGA-II). Section 6.4

shows how simple, but yet effective, InfoVis techniques can be used to display the

output of an evolutionary algorithm. Finally, the conclusion will conclude the work.

6.2 Problem definition

The experts selected a typical MRI image containing the stomach full of pasta

and peas (see Fig. 6.1a). The MRI slice is manually cropped to only focus on the

stomach and its content (see Fig. 6.1b). The study aimed to look for the peas by

using FA that is need to describe what a pea looks like (See Figure 6.1c) and how

to mathematically model it:

• Peas keep their shape and size in early gastric stages. A pea appear as a

circle of a fixed radius of about 4mm, which is equivalent to R = 8 pixels.

• The interior of a pea is homogeneous; the outside is not.

• The interior of a pea is darker than the outside.
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Table 6.1: Summary of the objectives. All these objectives are numerical values that need
to be minimised.

Objective # Properties Figure
1 Local pixel intensity homogeneity within a darker

circular ROI
Figure 6.2b

2 Heterogeneity outside a circular ROI compared to
the homogeneity within the same circular ROI.

Figure 6.2c

3 Heterogeneity and homogeneity within a darker
circular ROI and outside a circular ROI

Figure 6.2d

4 The isotropy for the circular ROI in objective 1. Figure 6.2e
5 The isotropy for the circular ROI in objective 2. Figure 6.2f
6 The isotropy for the circular ROI in objective 3. Figure 6.2g
7 A circular ROI is darker than its background. Figure 6.2h

Table 6.1 provides a summary the different objectives we used, alongside what they

actually measure and their visual representation.

This study proposes to implement this knowledge into 7 objectives to minimise as

a multi-objective optimisation problem. The size of the circular region of interest

(ROI) depending on the pea radius is calculated as:

diameter of ROIC(I, x,y,R) = d = 2R+1 (6.1)

where ROIC(I, x,y,R) is a circular region of interest in Image I. It is centred on Pixel

(x,y), and its radius is R in number of pixels. The circular ROI can be defined as

a Convolution kernel (see Fig. 6.3). We use a circular ROI, i.e. not squared one,

because peas a spherical. For example, as peas are darker than their background,

it enhances the differences between darker and brighter regions in Objective 1. For

each pixel (x,y) of the MRI image, Objective 1 measures the local pixel intensity

homogeneity within a circular ROI.

ob j1(I, x,y,R) =
1

d×d

√√ n∑
i=0

ROIC(I, x,y,R)2 (6.2)

d is the diameter of ROIC(I, x,y,R), n is the size of ROIC(I, x,y,R). Fig. 6.2b is an

image representation of Objective 1.
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Pasta Peas

Stomach

(a) MRI slice of a human stomach containing peas and pasta.

(b) Stomach selected ROI . (c) The pea. Mean pixel value inside
pea = 0.202, outside pea = 0.441.

Figure 6.1: MRI slice of a human body, the selected region of interest (Stomach), and the
selected pea.
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(a) Manual
segmentation in
colour.

(b) Objective 1. (c) Objective 2. (d) Objective 3.

(e) Objective 4. (f) Objective 5. (g) Objective 6. (h) Objective 7.

Figure 6.2: Objectives. For visibility objective functions are displayed in negative (low
intensities appear bright; high intensities appear dark).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
2 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
14 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
15 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
16 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
17 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

Figure 6.3: Convolution kernel ROIC(I, x,y,R).
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Objective 2 measures how homogeneous the interior of the circle is and how

heterogeneous the outside is (see Fig. 6.2c). It compares Objective 1 with the local

pixel intensity standard deviation within a ring region of interest (ROIR) whose inner

radius is R and outer radius R+5:

ob j2(I, x,y,R) = ob j1(I, x,y,R)−ob j1(I, x,y,R+5) (6.3)

Objective 3 combines Objectives 1 and 2 (see Fig. 6.2d):

ob j3(I, x,y,R) = ob j1(I, x,y,R)×ob j2(I, x,y,R) (6.4)

When a pea is considered in Objectives 1, 2 and 3, the corresponding pattern in

Figures 6.2b, 6.2c and 6.2d is isotropic. Each pea corresponds to a small bright dot

onto a dark background in these images. Objectives 4, 5 and 6 exploit this property.

The study modelled an intensity profile (de f P) of 30 pixels using a triangular function.

It mimics an intensity profile perfectly centred on a pea:

de f P(i) =

 1− |i−(2R−1)|
R−1 , ∀i ∈

[
30
2 −R, 30

2 +R
]

0, otherwise
(6.5)

For each pixel in Figures 6.2b, 6.2c and 6.2d, The study extracted 89 intensity

profiles (pro fk) every 2◦ around that pixel:

ob jiso(x,y, I) = −max

i<30∑
i=0

(de f P(i)− pro fk(I, x,y, i))2


∀k ∈ [0,89) (6.6)

where pro fk(I, x,y, i) is i-th value of the intensity profile in Image I, centred of Pixel

x,y at the k-th angle.
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ob j4(x,y) = ob jiso(x,y,ob j1) (6.7)

ob j5(x,y) = ob jiso(x,y,ob j2) (6.8)

ob j6(x,y) = ob jiso(x,y,ob j3) (6.9)

Objective 7 assesses that the interior of the circle is darker than the ring around it:

f (x,y) = ROIC(I, x,y,R−1)−ROIR(I, x,y,R−1,R+5)

ob j7(x,y) =

 f (x,y), ∀ f (x,y) ≤ T

0, otherwise
(6.10)

where ROIC is the average pixel value of a given circular ROI, ROIR is the average

pixel value of a given ring ROI, and T is a user defined threshold. ob j7(x,y) is

expected to be negative or null, which is suitable for a minimisation algorithm. T

is also negative. It restricts non-null values in ob j7 to areas where the difference

in pixel intensities of the two corresponding ROIs are significantly different, which

correspond to the location of peas and stomach wall.

6.3 Multi-objective optimisation problem

Multi-objective optimisation is an approach to make a multiple criteria decision. It

can be defined as mathematical optimisation problems concerning a set of the

objective functions to be optimised at the same time. It has been utilised in many

domains of science, including engineering, economics and logistics where need

to make optimal decisions [70]. It provides a set of trade-off between objectives,

the Pareto front. The Pareto front is the set of non-dominated solutions, i.e. points

of the search space for which one objective function cannot be improved in value

without degrading some of the other objectives (see Figure 6.4) [93].

Evolutionary optimisation methods can be adapted to deal with multiple-objectives,

and various efficient algorithms are now available. Non-dominated Sorting

Genetic Algorithm (NSGA-II) [42] is a very popular implementation, that is able to
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Figure 6.4: Example of a Pareto frontier (in red), the set of Pareto optimal solutions (those
that are not dominated by any other feasible solutions). The boxed points represent feasible
choices, and smaller values are preferred to larger ones. Point C is not on the Pareto
frontier because it is dominated by both point A and point B. Points A and B are not strictly
dominated by any other, and hence do lie on the frontier. Credit: image and caption by
Johann Dréo, distributed under a CC BY-SA 3.0 license.

produce an efficient sampling of the Pareto front in a single run of the algorithm. All

individuals are assigned front number 1 that not dominated by any other individuals.

All individuals are assigned front number 2 that only dominated by individuals in

front number 1, and so on [96]. NSGA-II is an improved version of NSGA [131].

The main steps for NSGA-II are:

1. Initially, create a random population P0.

2. Sort the population based on non-dominated f .

3. Calculate the average distance of two points on all sides of this point along

each of the objectives, called the crowding distance.

4. Genetic operators (selection, crossover and mutation) are used to create a

offspring population Q0 of size N.

5. The elitism is found by comparing the current population with the best

non-dominated solutions found previously, and the procedure is different

after the initial generation.
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Figure 6.5: The main loop for NSGA-II algorithm. Where Pt is the population of parents,
Qt is the population of offspring, Rt is the combination of parent and offspring population
and F = (F1,F2, . . . ) all non-dominated front Rt [42].

Figure 6.5 shows that the step-by-step procedure in NSGA-II algorithm is simple

and straightforward. NSGA-II has the properties of a fast non-dominated sorting

procedure an elitist strategy, a parameterless approach and a simple yet efficient

constraint-handling method.

Peas detection is actually a non-trivial optimisation problem, as it involves multiple

objectives that cannot be merged into a single one using simple rules (example:

a circular uniform area, a defined colour, and an irregular background ...) and/or

subjective preference weights. Multi-objective optimisation considers all objectives

as equally important and non comparable.

Here, we implement a multi-objective version of the Fly Algorithm based on NSGA-II

so that the population of flies stabilises onto a Pareto front. 1000 individuals are

used over 25 generations. These parameters were obtained empirically. Once a

Pareto front (i.e, a set of possible best solutions) is produced, the decision may be

put in the hand of an expert. For this purpose an interactive visualisation tool was

developed to enable the expert explore the data produced by NSGA-II.
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6.4 Visualisation

The output is a dataset of 1000×25 samples, i.e. (x,y) positions with 7 associated

fitness values. In typical multi-objective EAs, one of the individuals on the Pareto

front is a possible answer to the optimisation problem. The Fly Algorithm approach

provides a set of points as a solution, each point corresponding not only to a

possible pea location, but also to a different objective priority assessment. Several

flies of the population may co-exist on the same pea with different objective weights.

Automatically extracting the points that really correspond to peas is not trivial.

Extracting only one point per pea, the point the closest to the centre of the

corresponding pea, is even more complicated. This can be done efficiently through

an interactive visualisation interface.

Each generation is displayed twice at a time. A scatterplot is used to display the

position of the individuals over the MRI image (see left-hand side column of Fig. 6.6).

A parallel coordinate plot is used to display the values of the multiple objective

functions corresponding to each individual (see right-hand side column of Fig. 6.6).

This plot represents a point in a n-dimensional space as a broken line with n−1

segments, joining its n coordinates located on n vertical axes. The user can easily

and interactively select areas of points in the scatterplot that correspond to peas.

Each new manually selected area is assigned a new unique colour, which is the

same in both plots. With this tool, the behaviour of individuals toward a global

optimal solution in each generation can be visually detected. It also helped to

understand the relationship between positions in peas and objective functions.

The result is used to define 7 validity ranges (two thresholds per objective) that

filter out the 25,000 individuals generated during the evolutionary process. Only the

individuals meeting all 7 validity ranges are considered in the following steps, others

are discarded. After that, groups of points in the 2-D space are identified using

clustering based on a Gaussian Mixture Model (GMM) (see Fig. 6.7a). Clustering

aims to group a collection of points into subsets such that those within each cluster

are more closely related to one another than points assigned to different clusters.

The model GMM is the most widely used in practice. its perspective, each cluster

can be mathematically represented by a parametric distribution [61]. Clusters
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(a) Scatterplot of the iInitial population. (b) Parallel coordinate plot
corresponding to (a).

(c) Scatterplot of the 6th generation. (d) Parallel coordinate plot
corresponding to (c).

(e) Scatterplot of the best solution (16th

generation).
(f) Parallel coordinate plot
corresponding to (e).

Figure 6.6: Scatterplots and parallel coordinates plots of successive generations. All
solutions (flies) are plotted in red by default. When the user selects an area in the scatterplot,
a specific colour is assigned to this area and linked to the corresponding lines in the parallel
coordinate plot.
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(a) Clusters. (b) Cluster centres.

(c) Parallel coordinate plot.

Figure 6.7: Candidate solution clusters.

that are close to each other (e.g, within a pea diameter) are then merged into a

single cluster. All the cluster centres are extracted and presented to the user (see

Fig. 6.7b). By using another parallel coordinate plot a new set of thresholds is

extracted (see Fig. 6.7c). It is used to further refine the results and limit the number

of false positive (i.e, points that do not actually correspond to peas).

The last set of thresholds is used so that stronger candidates are highlighted using

a purple dot in Fig. 6.8; weaker candidates using a red dot. In total, 19 points were

selected. Note that the selection depends on personal preferences and that experts

debated whether some of the points near the wall of the stomach correspond to

peas or not. It includes 9 points located on peas, and 10 wrongly selected. From

the 9 points selected by the experts, 7 peas were highlighted in purple represent

right position and 2 peas highlighted in red.

6.5 Conclusion

This study combines computer vision and visualisation/data exploration to analyse

and understanding the kinetics of gastric emptying using MRI images of the stomach

of healthy volunteers, and detect garden peas inside the human stomach by using

Fly Algorithm. Also, it presented some preliminary results of the semi-automatic
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Figure 6.8: Final result. The purple colour represent the points in the right location, and
the red colour represent the wrong location,

evolutionary segmentation of garden peas in MRI images. This work proposed

multi-objective implementation of the Fly Algorithm where several concurrent fitness

functions are used to assess the quality of an individual. Choosing which solution is

the best one may not be trivial.

An interactive visualisation, combining image display, scatter plot and parallel

coordinate plot and clustering, are used to analyse the output of the evolutionary

algorithm. It helps understanding the complex relationship between the objectives

and extracting individuals of the Pareto front that correspond to peas. In addition, to

segment MRI using NSGA-II, only possible if using an interactive visualisation to

exploit the enormous amount of data generated during the search.

This research demonstrated that manual thresholding on the data generated by

NSGA-II using interactive visualisation can be used to semi-automatically detect

peas in MRI images. In the following chapter, we will aim at deploying state-of-the-art

Machine Learning learning techniques (namely deep learning implemented using

Convolutional Neural Networks) to replace the manual thresholding. The Machine
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Learning was not initially feasible due to the lack of labelled training data

when this research was performed.
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Chapter 7

Recognising specific foods in MRI

scans using CNN and visualisation

7.1 Introduction

This chapter presents a collaborative study [53]. The usual focus of GIT medical

imaging techniques is on the organs, while in this study we aim at following in vivo

digestion, thus the evolution of the content of the organs (i.e. food deconstruction).

The kinetics of gastric emptying were observed for two combinations of ingested

food mixed together: progressively and partially digested cooked pasta (resp. white

bread), and frozen garden peas (resp. “petits pois", smaller), which keep their

shape in early gastric stages. New acquisition protocols were thus developed. But

adapted image processing are also needed.

As usual for such in vitro studies, the size of the cohort is rather small (here

10 volunteers), the development of adapted image recognition algorithms is thus

difficult due to the availability of only rather small learning sets. Supervised learning

algorithms, in particular CNNs, are known to work best with a huge database of

training data. Also, the execution of CNNs, as most Deep Neural Networks (DNNs),

is controlled by hyper-parameters. Poor choice of hyper-parameters can inhibit the

potential of the model and lead to under fitting or over fitting.

Instead of the optimisation method we used in the previous chapter, we aimed

to perform the segmentation as a binary classification task: given a point in the

image, is there a pea or not? The previous study was based on a single dataset

(named Dataset 1 in this thesis) from a single volunteer. The pixel resolution was
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high, but so did the image acquisition time. To shorten this acquisition time when

many volunteers contributed to the study, our collaborators had to considerably

decrease the pixel resolution (from 0.5× 0.5× 2.0mm between two successive

voxel to 0.98×0.98×2.0mm). In addition, due to miscommunication amongst the

experimentalists, petit-pois were used in this next experimental campaign. They

are much smaller than the garden peas used in Dataset #1. Instead of cooked

pasta, white bread was used, making it harder to distinguish petit-pois from their

background. Due to these three factors, independent from us, our previous method

based on NSGA-II is no longer applicable.

In this study, the database of cases contains 10 volunteer datasets from which

45 MRI slices were manually labelled by domain experts. They extracted 401 peas

in total. 2,250 non-peas were automatically extracted. We aimed to demonstrate

that it is possible i) to train a deep CNN to recognise peas despite a very limited

and imbalanced database of cases, ii) to rely on a leave-one-out cross-validation

over the dataset for training and testing, which emulates a more realistic scenario

once the approach is deployed, iii) to use an interactive visualisation to find the best

suitable combinations of hyper-parameters (here image size and number of epochs)

to train the CNN, and iv) to obtain a relatively acceptable binary classification

despite the constraints concealed in the database of cases over which we have no

control.

The next sections introduce object recognition and how machine learning (including

deep learning techniques such as CNN) can be used to detect features in objects.

Section 7.5 describes the data used in this study and how it was prepared with

object recognition in mind. Section 7.6 details how the approach was implemented

and how to evaluate the result of the classification. After training and testing the

CNN with various combinations of input parameters, the classification results are

difficult to analyse in a tabular format. We show in Section 7.7 how interactive

visualisation (a parallel coordinate plot and two radar charts) helped us identify the

most promising combination of parameters. We conclude the work in Section 7.8.
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7.2 Object recognition

Object recognition aims to identify objects in images or videos. It is a computational

challenge, producing an entire research field in computer vision alone. Object

recognition traditionally works by the use of a sliding window [55] such as the

famous template matching technique [31].

Other traditional techniques include using machine learning algorithms,

e.g. classifiers, to detect trends in features extracted in images using image

processing techniques. For example Histogram of oriented gradients (HOG) aims

to identify people from their shape in the image [92], whereas the Viola-Jones

algorithm focuses on detecting specific facial features [146]. However, these two

techniques are not always applicable to recognise other objects. CNN, pioneered

by Yann LeCun, solves this problem [78]. By training a Neural Network (NN) on

a dataset of training images, it can learn to detect, classify and recognise many

different object types without making any assumption on the type of features to

use. The major drawback is that for the best and most accurate CNN detectors

there is often a requirement for large amounts of training data. This training data

would have to be hand labelled and can be possibly hard to get, if not impossible.

For example training CNNs on medical images, such as the ones available in this

project, is often prohibited due to the lack of availability of sufficiently labelled data

in sufficient quantity.

7.3 Machine Learning approach

In machine learning, computational statistics and computer vision techniques are

used to algorithmically detect features and objects through statistical comparisons

at the pixel level, based either on the pixel intensity or on other statistical data.

The Viola Jones object detection framework detects objects by using simple

features [146] based on Haar functions [145]. These are very similar to kernels

used in computer vision techniques like line detection, filtering, and CNNs. These

functions act like a sliding window, going over regions of the image and doing

some form of comparison or calculation. In facial recognition, this is done to detect
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features such as eyebrows by comparing the estimated region of the eyebrows

to the skin around it. It is typically done in grey scale. The eyebrow intensity is

lower, or darker in colour terms, than the surrounding skin, which would be whiter

(i.e. higher intensity). The same method can be applied to detecting the eyes from

the cheeks, and the bridge of the nose. All these features must be detected for the

algorithm to determine that the image contains a face.

Histogram of oriented gradients (HOG) differs from the Viola-Jones algorithm and

many deep learning methods of object detection: it does not try to detect or

determine objects based on specific features or learned weights. HOG encodes a

global feature, e.g. the whole shape of a person or car. It relies on the fact than an

object’s shape is determined by the distribution of intensity gradients. HOG works

similarly to edge detection and will detect humans silhouettes from its contours. The

image is divided into small uniform regions. A histogram of gradient directions is

compiled for each region using the sliding window method going over these regions.

A descriptor is formed from a combination of histograms [38]. This technique is

best suited for human detection where people are upright and mostly visible.

7.4 Deep Learning

Deep learning techniques for object recognition require training a CNN to detect

or recognise specific classes in images. This requires collecting a set of data and

typically manually classifying the images. For the best and most accurate results, a

large dataset of a good ratio of easy and hard examples are required, it is advisable

to include lots of negative examples (note that the database of cases used in this

project is very limited and imbalanced). There are many open source datasets that

exist for training networks such as Common Objects in Context (COCO), which

contains a vast amount of pre-classified images [80]. COCO and other datasets

such as the PASCAL Visual Object Classes Challenge (VOC), are often used

as testing sets to compare object detection frameworks mean Average Precision

(mAP). However, COCO and many other datasets are often broad and would not

be useful for more specific tasks such as pea recognition in MRI images.
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With the popularisation of CNNs in recent years, many research projects are

being produced in this field and they often grant public access to their object

detection frameworks. The CNN can be controlled its capacity by varying its

depth and breadth, and they also make robust and mostly right assumptions

about the nature of images (in other words, stationarity of statistics and locality of

pixel dependencies) [76]. This gives the work a wide range of trainable networks

optimised for object detection, that are constantly being improved upon and bested

by other network models. A current popular approach is the use of Google’s

TensorFlow 2.0, a specialised numerical computation library for deep learning, in

Python via Keras, a high-level application programming interface (API) capable

of running on top of TensorFlow [21]. A popular alternative is PyTorch, which

was initially developed by Facebook [101]. Both approaches support graphics

processing units (GPUs) to speed up computations.

Many algorithms rely on parameters, known as hyper-parameters, to control their

execution. Neural Networks are not an exception, because CNNs have enormously

fewer connections and parameters, and so they are easier to train compared

to standard feed forward neural networks with similarly sized layers. Setting

the values of hyper-parameters may significantly influence the outcome of the

classification e.g. due to under fitting or over fitting. Tuning hyper-parameters is then

recommended, but it is complex and is computationally expensive in our case [50].

7.5 Data repository

We saw that supervised learning algorithms, particularly Neural Networks, require

a large amount of training data. The data used to train and test the CNN in this

study is collected from MRI scans (see Figure 7.2a for an example of MRI slice).

Table 7.1 shows a summary of the data selected from all the volunteers. This work

build a repository of anonymised medical images that is organised in a very formal

way (e.g. where files are and how directories and files are named) to enable batch

processing.

Due to the nature of the study, the amount of data that is available is extremely

limited (10 datasets only, with 45 slices in total, see Table 7.1) and unbalanced
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Table 7.1: Data extracted from all the datasets.

Dataset # # of slices Pixel spacing Pea diameter # of peas # of non peas
(in mm) (in mm)

1 2 [0.5, 0.5, 2.0] ∼ 8 11 50
2 1 [0.98, 0.98, 2.0] ∼ 5 0 50
3 7 [0.9, 0.9, 2.0] ∼ 5 102 50
4 8 [0.9, 0.9, 2.0] ∼ 5 83 50
5 8 [0.9, 0.9, 2.0] ∼ 5 87 50
6 5 [0.9, 0.9, 2.0] ∼ 5 63 50
7 1 [0.9, 0.9, 2.0] ∼ 5 5 50
8 3 [0.83, 0.83, 3.0] ∼ 5 20 50
9 4 [0.83, 0.83, 3.0] ∼ 5 14 50
10 6 [0.83, 0.83, 3.0] ∼ 5 16 50

Total
10 45 N/A N/A 401 2250

(401 peas vs 2,250 non-peas). The initial MRI scan use a fine voxel resolution, with

garden peas and small Italian pasta. However the scanning time was too long to

process the whole cohort of volunteers. Several lower resolutions were then used

to shorten the scanning time, but in the case of petits pois, which have a much

smaller radius than garden peas, combined with bread whose shape is not clearly

visible, some of the data which also had a larger voxel spacing was too challenging

to manually segment. Hence the number of slices manually segmented per dataset

varied widely.

Fig 7.1 shows the main steps. For each new volunteer dataset, a set of ‘interesting’

slices is manually selected by experts (see Step 5 and Figure 7.2a for an example

of MRI slice). They selected slices, where peas were clearly visible and separable

from the background (i.e, pasta or bread depending on the scan), and some where

they were not. They selected slices with many peas, some with just a few. They

also included a dataset with no pea at all as they wanted us to demonstrate the

ability of our approach to process MRI slices with no pea as they are likely to occur,

e.g, when the digestion is in an advanced stage. For each slice, the expert manually

extracts a ROI that contains the stomach (Step 6) and (see Figure 7.2b for an

example of ROI). This is done using a Python script. Using the same program

the expert then clicks on each pea that he/she can identify (Step 7). For each

pea, the expert rates his/her level of confidence from 0 (not sure if it is a pea) to

3 (definitely a pea). Figure 7.3 shows two selected peas, but with a different level

of confidence. Once peas are manually segmented, 50 samples are randomly
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(a) MRI slice #45 of Dataset #4.
0 20 40 60 80 100
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Pea
Not a pea

(b) The human stomach extracted from slice #45
of Dataset #4 . A circle depicts a sample labelled
as a pea, a cross depicts ‘not a pea’. ROIs
highlighted with square are shown in Figures 7.3
and 7.4..

Figure 7.2: MRI slice of a human stomach and the manual segmentation for the peas.

chosen in the ROI (Step 8). These samples are located outside peas (see crosses

in Figure 7.2b and Figure 7.4 for two examples). The manual segmentation of peas

and automatic segmentation of non-peas is eventually saved in the database a CSV

with its associated ROI image.

7.6 Recognising Peas in MRI scans of the stomach

The study relied on a deep Convolutional Neural Network implemented in Python

using the Keras deep learning API [33] that runs on the top of TensorFlow [90].

Our implementation is actually based on Keras’ deep CNN example provided on

GitHub at https://github.com/keras-team/keras/blob/master/examples/

cifar10_cnn.py.

The data is prepared as mentioned in Section 7.5. The data is stored in a CSV file,

where each row corresponds to the pixel location of the sample in the given MRI

slice in a volunteer dataset. For each sample, the label ‘1’ corresponds to a pea; ‘0’

to not a pea. The combination ‘Dataset #’ and ‘Slice #’ corresponds to the location

of an image file in the repository.

For suitability with supervised learning, the data is then split into training and testing

sets (see Steps 1a and 1b in Figure 7.5). It is often performed randomly. However,
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(a) Pea with a high level of confidence
(2.94). See black square in Figure 7.2b.

(b) Pea with a low level of confidence
(1.02). See cyan square in Figure 7.2b.

Figure 7.3: Examples of peas with different levels of confidence (confidence between 0-3)
in the selected ROI.

(a) See yellow square in Figure 7.2b. (b) See purple square in Figure 7.2b.

Figure 7.4: Automatic selection of non-pea samples in the ROI.

to provide more realistic predictions when the tool is deployed, the work opted

for a leave-one-out cross-validation where each volunteer dataset will be tested

independently. It means that when the CNN is tested on Dataset #1, the CNN is

trained on Datasets #2 to 10; when the CNN is tested on Dataset #2, the CNN is

trained on Dataset #1 and Datasets #3 to 10; and so on. It prevents training and

testing the CNN with slices from the same dataset, which has the potential to bias

results. This way, when a new dataset is added to the repository, we will also know

how the CNN should cope. However, built-in hyper-parameter tuning frameworks

are not applicable with this leave-one-out cross-validation strategy, which is why we

favoured an interactive visualisation. This way, the end-user has a fine control on

which of the metrics (accuracy, precision, recall and F1 score) to put an emphasis.

The CNN is trained using the training data (Step 2). The images used during all the

training and testing must have the same size in number of pixels. It is also important

that they also cover the same area in mm2, which must be large enough to include

a pea. However, the voxel spacing in the medical data is different depending on

the volunteer. As a consequence the input images are resampled so that the voxel

Recognising specific foods in MRI scans using CNN and visualisation 122



spacing is consistent over all the volunteer datasets. The number of pixels used in

each image used during the training and testing is a parameter that the user can

set.

Training CNNs is an iterative process where an iteration is called an epoch. The

total number of epochs used to train the CNN is also a parameter that is set by the

user. The trained model (Step 3) is used on the test data to provide predictions

(Step 4). Predictions in our case are binary, is a sample a pea or not? The outcome

for a sample can be:

T P: The sample was manually segmented as a pea by the domain expert, and the

CNN predicted that it is a pea: this is a true positive;

FN: It is manually segmented as a pea, and the CNN predicted that it is not a pea:

this is a false negative;

FP: It is manually segmented as not a pea, and the CNN predicted that it is a pea:

this is a false positive;

T N: It is manually segmented as not a pea, and the CNN predicted that it is not a

pea: this is a true negative.

For each test, the number of true positive (T P), false negative (FN), false positive

(FP), and true negative (T N) are recorded. To evaluate the performance of

supervised learning algorithms, metrics such as accuracy, prediction, recall, and F1

score are often used. They all provide values between 0 and 1, 0 being the worst

possible results, and 1 the best.

Accuracy =
T P+T N

T P+FP+FN +T N
(7.1)

The number of correctly classified data instances over the total number of data

instances. It is 1 when both FP and FN are equal to zero. This metrics is very
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popular when the class distribution is similar. However, the class distribution is

extremely imbalanced in this study case.

Precision =
T P

T P+FP
(7.2)

is 1 when FP is equal to zero. This metric is important when the cost of false

positive is high, which is not necessarily the case in our application.

Recall =
T P

T P+FN
(7.3)

is 1 when FN is equal to zero. This metric is important when the cost of false

negative is high, which is this study case in this application.

Precision and recall are complementary. Ideally a good classifier will have FP and

FN close to zero. F1 score takes into account both Precision and Recall, which is

why it considered to be a more robust metric than Accuracy.

F1 score = 2×
Recall×Precision
Recall+Precision

(7.4)

It also makes F1 score a better metric to use when the class distribution is

imbalanced.

If TP is null, recall and precision are null too and F1 score is equal to infinite. When

both TP and FP are null, precision is equal to infinite; when both TP and FN are

null, recall is equal to infinite. When both precision and recall are equal to infinite,

F1 score is not a number (NaN).

7.7 Filtering the results using interactive

visualisation

The CNN is tested for each volunteer dataset using the leave-one-out cross

validation methodology. This work evaluated the CNN using various image sizes

(16×16, 32×32, 64×64 and 128×128 pixels) and number of epochs (32, 64, 256,

1024, and 2048). In total 200 (10 datasets×4 image sizes×5 number of epochs)

trainings and testings were performed. The aim is to determine which combination
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Table 7.2: Performance evaluation of the CNN for various image sizes and number of
epochs.

image size epochs Accuracy Precision Recall F1 Score
16×16 32 0.961 0.900 0.833 0.865
16×16 64 0.960 0.860 0.875 0.868
16×16 256 0.967 0.913 0.863 0.887
16×16 1024 0.952 0.931 0.736 0.822
16×16 2048 0.896 0.931 0.334 0.492
32×32 32 0.966 0.912 0.855 0.883
32×32 64 0.963 0.909 0.843 0.875
32×32 256 0.962 0.877 0.873 0.875
32×32 1024 0.959 0.888 0.830 0.858
32×32 2048 0.961 0.896 0.838 0.866
64×64 32 0.961 0.894 0.840 0.866
64×64 64 0.960 0.894 0.838 0.865
64×64 256 0.955 0.851 0.853 0.852
64×64 1024 – – – –
64×64 2048 – – – –

128×128 32 0.954 0.841 0.855 0.848
128×128 64 0.956 0.851 0.858 0.855
128×128 256 – – – –
128×128 1024 – – – –
128×128 2048 – – – –

of ‘image size’ and ‘number of epochs’ provides the best possible classification

outcome. This is not feasible on a desktop computer because weeks of

computations would be required. This is why the training and testing were performed

on Supercomputing Wales’ supercomputer.

Table 7.2 shows the corresponding classification results in terms of accuracy,

precision, recall, and F1 score. The best two results for each column are highlighted

in bold characters. The number of counts corresponds to the number of MRI slices

that were tested. In 5 cases, when the image size and the number of epochs are

both relatively large, it was not possible to perform the training due to the amount of

computations that was required, even on a supercomputer. Increasing the image

size, which significantly increases the training time, does not improve performance.

Increasing the number of epochs does not seem to often improve the performance

either, which indicates a possible over fitting.
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Table 7.3: Classification results when using 16×16 images with a CNN trained over 256
epochs. The last row provides the accuracy, precision, recall and F1 score when all the
datasets are considered as a whole, i.e. these are not average values over the ten datasets,
i.e. applying Eqs 7.1 to 7.4 with 346, 2217, 33 and 55.

Dataset # TP TN FP FN Accuracy Precision Recall F1 Score
1 0 96 4 11 0.86 0.00 0.00 ∞

2 0 50 0 0 1.00 ∞ ∞ NaN
3 88 347 3 14 0.96 0.97 0.86 0.91
4 80 397 3 3 0.99 0.96 0.96 0.96
5 86 394 6 1 0.99 0.93 0.99 0.96
6 61 245 5 2 0.98 0.92 0.97 0.95
7 5 47 3 0 0.95 0.62 1.00 0.77
8 7 150 0 13 0.92 1.00 0.35 0.52
9 10 194 6 4 0.95 0.62 0.71 0.67

10 9 297 3 7 0.97 0.75 0.56 0.64
Overall 346 2217 33 55 0.97 0.91 0.86 0.89

From the table, it is hard to identify a combination of ‘image size’ and ‘number of

epochs’ that perform, the others. To address this issue, we plot each row using a

parallel coordinate plot (see Figure 7.6). Figure 7.7 shows the same data, but as

a radar chart using a linear scale and a logarithmic scale. However, it is still not

possible to identify the best parameters using these three images.

It is possible to select a subset of the data with an input device (mouse) in the

parallel coordinate plot by using brushing technique. It is used to interactively filter

the data. The purple marks in Figure 7.8 on the ‘Accuracy’ and ‘F1’ score axis

show the value ranges of interest. The radar charts are updated accordingly (see

Figure 7.9). Three parameter combinations were selected, i) 16× 16 pixels and

256 epochs, ii) 32×32 pixels and 32 epochs, and iii) 32×32 pixels and 64 epochs.

Again, with the updated radar chart in linear scale, it is not possible to distinguish

which parameter combination provides the best results. However, in the logarithmic

scale it is clear that 32×32 pixels and 64 epochs is outperformed by the other two

parameter combinations, particularly in terms of recall and F1 score, and to a lesser

extent accuracy and precision. The logarithmic scale radar chart also shows that

16×16 pixels and 256 epochs outperforms 32×32 pixels and 32 epochs for both

recall and F1 score, which are the two most important metrics to consider in this

application. The two configurations provide similar accuracy and precision. Using

this interactive visualisation enabled the study to identify that 16×16 pixels and 256

epochs should be used over the other 19 possible configurations.
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Figure 7.6: Parallel coordinate plots of the CNN performance metrics for various image
sizes and number of epochs.

(a) Using a linear scale.

(b) Using a logarithmic scale.

Figure 7.7: Radar charts of the CNN performance metrics for various image sizes and
number of epochs.
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Figure 7.8: Same as Figure 7.6, but with brushing to filter the data.

(a) Using a linear scale.

(b) Using a logarithmic scale.

Figure 7.9: Same as Figure 7.7, but with the data filtered using brushing in Figure 7.8.
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The corresponding results for each volunteer dataset are shown in Table 7.3.

Dataset #1 was the first volume acquisition of the study. The pixel spacing is the

smallest in this dataset (0.5×0.5 mm). However, the data acquisition was too long

and the pixel spacing was therefore almost doubled. The pixel spacing in other

datasets are 0.98×0.98, 0.9×0.9, or 0.83×0.83 mm. Despite that all the images

used by the CNN are resampled to have the same number of pixels and the same

pixel spacing, results for Dataset #1 are not consistent with others: None of the peas

were detected in Dataset #1. The image selected in Dataset #2 did not contain any

pea. The classification was perfect as there is no false positive. For other datasets,

the proportion of false positives is very low: High precision. The proportion of false

negatives is higher: smaller value of recall. Recall is actually relatively low for

Datasets #8 and 10, and to some extent Dataset #9.

The similarity amongst Datasets #1, 8, 9, and 10 is that they have a higher MRI

image resolution (i.e. smaller pixel spacing) than other datasets. These results

could be due to a difference in image quality once resized to the same resolution,

which makes the training dataset even more imbalanced. There are 2 MRI slices at

pixel resolutions of 0.5×0.5 mm, 13 at 0.83×0.83 mm, 29 at 0.9×0.9 mm, and 1 at

0.98×0.98 mm. Figure 7.10 shows two peas after resampling of slices at different

image resolutions. For the MRI scan protocol used during the data acquisition,

when the resolution is lower, the data is grainier (see Figure 7.10a); and when the

resolution is higher, the data is blurrier (see Figure 7.10b).

(a) A pea from Slice #17 of Dataset #5.
Pixel spacing: 0.9×0.9 mm

(b) A pea from Slice #55 of Dataset #8.
Pixel spacing: 0.83×0.83 mm

Figure 7.10: Peas after resampling of slices at different image resolutions (see
corresponding images in Figure 7.11).

Overall, the CNN exhibits very good classification results, with high value of

accuracy, precision, recall and F1 score. Figures 7.11a and 7.11b show the

Recognising specific foods in MRI scans using CNN and visualisation 130



0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

(a) Samples from Slice #17 of Dataset #5. There
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(b) Samples from Slice #55 of
Dataset #8.

Figure 7.11: Visual representation of the classification results. Circles in magenta depict
TPs, crosses in magenta TNs, blue circles depict FPs, and blue crosses FNs.

classification for MRI datasets at different pixel resolutions and with the two most

extreme F1 scores (0.96 and 0.52 respectively).

7.8 Conclusions

This feasibility study demonstrated i) how state-of-art techniques in machine

learning (supervised learning and binary classification) and computer vision (object

recognition) can be used despite the inherent limitations of the ad hoc database

of images that used, and ii) how visual analytics complements them to achieve a

suitable level of performance. This approach is directly applicable to other limited

and imbalanced databases of images or to compare the performance of various

classifiers (e.g. evaluate the performance change due to different combinations of

hyper-parameters).

A deep CNN was evaluated with a limited (2,651 images only) and fairly unbalanced

dataset (401 peas vs 2,250 non-peas) to determine if it is possible to recognise

peas in MRI scans. The study relied on two popular Python packages, namely

TensorFlow and Keras, for deep learning on GPUs. Here, the database of cases

contain 10 volunteers datasets from which 45 MRI slices in total were manually

labelled by domain experts. This task is highly time consuming, which explains why

only 45 slices were manually labelled. To provide a meaningful evaluation of the
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approach when the tool is deployed, a leave-one-out cross-validation strategy was

favoured to train and test the CNN.

The two input hyper-parameters (number of pixels per image, and number of

epochs to train the CNN) were exhaustively evaluated thanks to the computational

power delivered by a supercomputer. The results were analysed using interactive

visualisation to identify which combination of number of pixels/number of epochs

provides the best possible outcome. With 16× 16 pixels and 256 epochs, the

accuracy is 0.97, precision 0.91, recall 0.86 and F1 score 0.89. There were 346

T P, 2217 T N, 33 FP, and 55 FN, which is very promising considering the inherent

limitations of the data we had to use.

These results highlighted that the initial image resolution of the MRI scan may play

a role in the quality of the classification, which needs to be investigated further.

In the next chapter, the keypoint selector used in previous chapter (evolutionary

analysis of MRI gastric images using a multi-objective cooperative-coevolution [115],

is integrated to automatically locate points of interest in new MRI datasets. It then

feeds the data to the trained CNN model.
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Chapter 8

Fully-automated Segmentation of

peas using Multi-objective

Optimisation and Machine learning

8.1 Introduction

In this chapter we compare the ability of several machine learning classifiers to

predict the pea positions. We also develop our own classifier based on NSGA-II.

We rely on the same training and testing data as in the previous chapter. In many

ways we rely on the same methodology, but use different algorithms with the aim to

automatically identify keypoints to label in the image. Our pipeline is as follows:

1. Manual segmentation (training dataset) (see Section 7.5).

2. Extraction of features from the training dataset (local image statistics on ROIs

and objective functions) (see Section 8.2).

3. Training classifiers (list all the features) on the data:

• Support Vector (SVC or SVM), AdaBoost, Decision tree, Gaussian Naive

Bayes (GaussianNB), Gaussian process, Nearest neighbours, Quadratic

discriminant analysis and Random forest (see Section 8.3),

• a Deep Residual Network called Resnet-50 (see Section 8.4),
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• our own classifier based on a multi-objective evolutionary algorithm,

NSGA-II (see Section 8.5).

4. Automatically selecting keypoints in MRI images and final classification (see

Section 8.6):

• Identifying the ‘best’ suitable classifier to predict the labels,

• Applying the best NSGA-II-based model as classifier to generate binary

images from features of new MRI images,

• Deploying computer vision techniques on these binary images to extract

keypoints that need to be labelled,

• Running the selected classifier on these keypoints to refine the output

provided by our NSGA2-based model,

• Visualisation to present the results to the end-used (see Section 8.7).

8.2 Image data statistics

The data used in this research is the same data that collected from MRI scan in

the previous chapter (see Chapter 7). In this study we propose to describe the

problem using local image statistics and different objective functions “called features”

for each selected point (peas and non-peas). Figure 8.1 shows the value of the

features for all the points (peas and non-peas) in all the datasets using a parallel

coordinate plot. The statistics such as; average, minimum, maximum, median,

standard deviation and entropy rely on very few theoretical assumptions, whilst

they provide good information to detailed quantitative predictions [128]. We also

consider statistical moments (including skewness and kurtosis), which are often

used to describe the shape of a distribution, here the distribution of pixel intensities.

Figure 8.2 shows the local image statistics and objective functions for the pixels of

Slice #17 of Dataset #5 (see Fig. 8.2a). The measurements (local image statistics

and objective functions) are computed once on the input MRI, and once on its
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gradient magnitude (see Figure 8.2b) (computed with the Sobel operator). Below,

ROI(I, x,y,n) is a small squared ROI from Image I, centred on the pixel x,y and the

sides of the square have a length of n pixels. n is slightly larger than the diameter

of a pea.

Average (µ): Gives the contribution for each pixel intensity (see Fig. 8.2c and

Fig. 8.2d). The average is defined as:

µ =

∑n
i=0

∑n
j=0 ROI(I, x,y,n)(i, j)

n×n
(8.1)

Minimum (min): Updates each pixel based on the minimum pixel surrounding

“includes retaining the darker” (see Fig. 8.2e and see Fig. 8.2f). The minimum

is defined as:

min(ROI(I, x,y,n)) (8.2)

Maximum (max): Updates each pixel based on the maximum pixel surrounding

“includes retaining the lighter” (see Fig. 8.2g and Fig. 8.2h). The maximum is

defined as:

max(ROI(I, x,y,n)) (8.3)

Median (med): Selects the middle-ranked value from a neighbourhood (see

Fig. 8.2i and Fig. 8.2j). The median is defined as:

med(ROI(I, x,y,n)) =


X[ n

2 ]+X[ n+1
2 ]

if n is even.

X[n+1
2 ] if n is odd.

(8.4)

where X is the sorted array of all the pixels of ROI(I, x,y,n).

Standard deviation (σ): Quantifies dispersion of the local pixel intensities (see

Fig. 8.2k and Fig. 8.2l). The standard deviation is defined as:

σ(I, x,y,n) =

√√√
1

n×n

n∑
i=0

n∑
j=0

(ROI(I, x,y,n)(i, j)−µ)2 (8.5)
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Entropy (H): Measures the image data content “the degree of confusion or doubt

in a system“ (see Fig. 8.2m and Fig. 8.2n). Let (X,Y) be a discrete random

variables from ROI(I, x,y,n) with alphabet (χ,Y) and probability mass function

P(x,y). The entropy is defined as [149]:

H(X,Y) = −
∑
x∈χ

∑
y∈Y

P(x,y) log2 P(x,y) (8.6)

Skewness (S ): Encodes the asymmetry of the distribution (see Fig. 8.2o and

Fig. 8.2p). It depends on the normalised k-th central moment mk, which is

defined as:

mk =

n∑
j

n∑
i

(ROI(I, x,y,n)(i, j)− c)k

n×n
(8.7)

with c a constant. If c = 0, Eq. 8.7 computes “raw moments”. If c = µ, then

it computes the central moments (i.e. moments centred on the mean). The

1st moment is then equal to the variance. The 3rd moments relates to the

Skewness:

S =
m3

σ3 (8.8)

Kurtosis K: encodes the the sharpness of the distribution (see Fig. 8.2q and

Fig. 8.2r). The 4rd moments relates to the Kurtosis:

K =
m4

σ4 (8.9)

In addition, we propose specifically defined “objective functions” to encode a

pea, a relatively homogeneous circular region that is much darker than its

surrounding. For example, in this objective functions we will now consider circular

regions of interest (ROIC(I, x,y,R)) rather than squared ones, where R is the radius.

The objective functions in this chapter are slightly different from the objective

functions that used in the chapter 6. The main difference with chapter 6 is that

Objective 1 was meant to be standard deviation, but there was a bug, which is now

corrected.

Fully-automated Segmentation of peas using Multi-objective Optimisation and Machine
learning 138



Objective 1: Measures the inverse local pixel intensity homogeneity within a

circular ROI ROIC(I, x,y,R). (see Fig. 8.2s and Fig. 8.2t).

ob j1(I, x,y,R) =
1

σ(I, x,y,R)
(8.10)

with σ(I, x,y,R) the standard deviation of the pixel intensities within

ROIC(I, x,y,R).

Objective 2: Compares Objective 1 with the inverse local pixel intensity standard

deviation within a ring region of interest (ROIR) whose inner radius is R and

outer radius R+ extra with a few extra pixels. (see Fig. 8.2u and Fig. 8.2v).

ob j2(I, x,y,R) = ob j1(ROIC(I, x,y,R))−ob j1(ROIR(I, x,y,R,R+ extra))

(8.11)

Objective 3: Measures the mean value for the circular region of interests

ROIC(I, x,y,R) with size n. (see Fig. 8.2w and Fig. 8.2x).

ob j3(I, x,y,R) =
∑n

i=0 ROIC(I, x,y,R)

πR2 (8.12)

Objective 4: Compares Objective 3 with mean value within a ring region of interest

(ROIR) whose inner radius is R and outer radius R+ extra with extra pixel out

of the radius. (see Fig. 8.2y and Fig. 8.2z).

ob j4(I, x,y,R) = ob j3(ROIC(I, x,y,R))−ob j3(ROIR(I, x,y,R,R+ extra))

(8.13)

Objective 5: Uses a threshold on mean value for the circular region of interests

ROIC(I, x,y,R) with size n. The threshold is depending on the mean value for

a ring region of interest (ROIR). (see Fig. 8.2aa and Fig. 8.2ab).

ob j5(I, x,y,R) =


0 if µ(ROIC(I, x,y,R)) ≥ µ(ROIR(I, x,y,R,R+ extra)).

1 Otherwise.
(8.14)
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Objective 6: Rotates the circular region of interests ROIC(I, x,y,R) three times and

then averages the ZNCC between the original circular ROI and the rotated

ones. This is used to know if the ROI is rotationally symmetric. (see Fig. 8.2ac

and Fig. 8.2ad).

ob j6(I, x,y,R) =
ZNCC(ROIC(I, x,y,R),ROIrot(I, x,y,R,90))

3
+

ZNCC(ROIC(I, x,y,R),ROIrot(I, x,y,R,180))
3

+

ZNCC(ROIC(I, x,y,R),ROIrot(I, x,y,R,270))
3

(8.15)

where ROIrot(I, x,y,R,α) is the circular ROI rotated by α degrees.

Objective 7: The same of Objective 6, but use of a product (see Fig. 8.2ae and

Fig. 8.2af).

ob j7(I, x,y,R) =ZNCC(ROIC(I, x,y,R),ROIrot(I, x,y,R,90))×

ZNCC(ROIC(I, x,y,R),ROIrot(I, x,y,R,180))×

ZNCC(ROIC(I, x,y,R),ROIrot(I, x,y,R,270))

(8.16)

The data is stored a CSV file, just as the same process in the chapter 7 We also

record the voxel spacing as it differs across the datasets we were asked to analyse.

For appropriateness with supervised learning, the data is then split into training

and testing sets. We selected again the leave-one-out cross-validation where each

volunteer dataset will be tested individually.

8.3 Training traditional classifiers

In this study, we investigate whether traditional classifiers are useful for

distinguishing between the samples corresponding to peas and non-peas. For this

purpose, we use some of the common classifiers implemented in SciPy [147] such

as; Support Vector (SVC or SVM), AdaBoost, Decision tree, Gaussian Naive Bayes

(GaussianNB), Gaussian process, Nearest neighbours, Quadratic discriminant

analysis and Random forest [102]. The classifiers are trained using the training

data. It is also important that they also cover the same area in mm2, which must

be large enough to include a pea. The trained model is used on the test data to
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provide predictions. Predictions in our case are binary, is a sample a pea or not?

The outcome for a sample can be: T P, FN, FP and T N. For each test, the number

of T Ps, FNs, FPs, and T Ns are recorded. To evaluate the performance of the

classifiers, metrics such as accuracy, prediction, recall, and F1 score are often used.

To visualise the results we plot all the outcomes (T P as magenta depict circles, FN

as blue crosses, FP as blue circles depict, and T N as magenta crosses) on the

MRI slice to compare it with the selected data. Here, we use slice #17 of Dataset #5

(see Fig. 8.3) as a sample to display the final results of each classifier (see Fig. 8.4).

Figure 8.3: The MRI image for slice #17 of Dataset #5.

Table 8.1 shows the corresponding classification results in terms of accuracy,

precision, recall, and F1 score. Each value represents the overall values from

all datasets for each classifier. The best evaluation result for each classifier is

highlighted in red colour. From the table, we can see the accuracy and F1 score

are related to each other where accuracy is high F1 score is high too. The SVC,

Gaussian process and Random forest classifiers are performing very well in term of

accuracy and F1 score. They provide the highest accuracy and F1 score, but the

Gaussian process took more time to train. Figures 8.4a, 8.4e and 8.4h overlay the

classification result on top of the original MRI slice. The AdaBoost, Decision tree,

Nearest neighbours and Quadratic discriminant analysis classifiers were performing

relatively well (see Figures 8.4b, 8.4c, 8.4f). and 8.4g). However, the GaussianNB

classifier was not performing very well (see Fig. 8.4d).
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(a) SVC classifier.
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(b) Ada boost classifier.
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(c) Decision tree classifier.
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(d) Gaussian nb classifier.
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(e) Gaussian process classifier.

0 20 40 60 80 100 120

0

20

40

60

80

100

TP
TN
FP
FN

(f) Nearest neighbours classifier.
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(g) Quadratic discriminant analysis classifier.
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(h) Random forest classifier.

Figure 8.4: Traditional classifiers. Sample from slice #17 of Dataset #5 for all classifiers.
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Table 8.1: Performance evaluation for all the traditional classifiers. Each value represents
the overall values from all the datasets for each classifier. In other words, TP, TN FP and
FN below include all the datasets. Accuracy, precision, recall and F1 score are computed
using these values. The best performance for each column is highlighted in red colour.

model runtime (CPU seconds) TP TN FP FN Accuracy Precision Recall F1 Score
SVC 82 338 2230 20 63 0.97 0.94 0.84 0.89

ada boost 86 347 2205 45 54 0.96 0.89 0.87 0.88
decision tree 83 337 2181 69 64 0.95 0.83 0.84 0.84
gaussian nb 82 348 1986 264 53 0.88 0.57 0.87 0.69

gaussian process 126 339 2227 23 62 0.97 0.94 0.85 0.89
nearest neighbors 58 335 2220 30 66 0.96 0.92 0.84 0.87

quadratic discriminant analysis 82 356 2157 93 45 0.95 0.79 0.89 0.84
random forest 87 340 2231 19 61 0.97 0.95 0.85 0.89

Max 0.97 0.95 0.89 0.89

8.4 Training CNN model ResNet-50

Over the years deep CNNs have produced series of development in the field of

image recognition and classification. However, training deeper CNNs may have

some problems due to vanishing when the learning goes deeper and deeper, that

will drive the top hidden layers into saturation and is becoming more severe [133].

Another network called “Residual learning” tries to fix this problems. The residual

learning model tries to learn some residual, instead of trying to learn features. That

means the input will add as a residue to the output of the weight layers and the

activation is carried out [108]. ResNet-50 is currently a popular 50 layer Residual

network. Our implementation is actually based on keras deep ResNet-50 [90].

We evaluated the ResNet-50 using various image sizes (32×32, 64×64, 128×128

and 256×256 pixels) and number of epochs (32, 64, 128, 256, 512 and 1024). In

total 240 (10 datasets×4 image sizes×6 number of epochs) trainings and testings

were performed to provide the best possible classification outcome. This is not

feasible on a desktop computer because weeks of computations would be required.

This is why the training and testing were performed on Supercomputing Wales’

supercomputer.

Table 8.2 shows the corresponding classification results in terms of accuracy,

precision, recall, and F1 score. The best results for each column are highlighted

in red colour. In 3 last cases, when the image size and the number of epochs

are both relatively large, it was not possible to perform the training due to the

amount of computations that was required, even on a supercomputer. Training
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time is significantly increases when the image size and the number of epochs are

increasing, do not improve performance.

Table 8.2: Performance evaluation for ResNet-50 classifier. The best evaluation result is
highlighted in red colour.

img size epochs runtime (CPU seconds) TP TN FP FN Accuracy Precision Recall F1 Score
32 32 190880 337 2214 36 64 0.96 0.90 0.84 0.87
32 64 367680 312 2206 44 89 0.95 0.88 0.78 0.82
32 128 726840 349 2182 68 52 0.95 0.84 0.87 0.85
32 256 1440640 343 2206 44 58 0.96 0.89 0.86 0.87
32 512 2867640 361 2213 37 40 0.97 0.91 0.90 0.90
32 1024 5750760 354 2220 30 47 0.97 0.92 0.88 0.90
64 32 275040 332 2101 149 69 0.92 0.69 0.83 0.75
64 64 540480 355 2196 54 46 0.96 0.87 0.89 0.88
64 128 1055600 273 2207 43 128 0.94 0.86 0.68 0.76
64 256 2078680 352 2209 41 49 0.97 0.90 0.88 0.89
64 512 3920560 344 2216 34 57 0.97 0.91 0.86 0.88
64 1024 8315360 356 2214 36 45 0.97 0.91 0.89 0.90
128 32 600920 353 2162 88 48 0.95 0.80 0.88 0.84
128 64 1193800 265 2216 34 136 0.94 0.89 0.66 0.76
128 128 2344480 361 2198 52 40 0.97 0.87 0.90 0.89
128 256 4632640 357 2220 30 44 0.97 0.92 0.89 0.91
128 512 9156400 357 2210 40 44 0.97 0.90 0.89 0.89
128 1024 18629240 357 2211 39 44 0.97 0.90 0.89 0.90
256 32 2650440 272 2105 145 129 0.90 0.65 0.68 0.67
256 64 5020680 357 2207 43 44 0.97 0.89 0.89 0.89
256 128 9831360 342 2219 31 59 0.97 0.92 0.85 0.88
256 256 N/A N/A N/A N/A N/A N/A N/A N/A N/A
256 512 N/A N/A N/A N/A N/A N/A N/A N/A N/A
256 1024 N/A N/A N/A N/A N/A N/A N/A N/A N/A
Max 0.97 0.92 0.90 0.91

From the table, we identify that 128×128 pixels and 256 epochs was performing

well. It had the highest accuracy and F1 score. Fig. 8.5 visualises the corresponding

classifier outcome on top of the MRI slice. Circles in green T Ps, crosses in green

T Ns, red circles depict FPs, and red crosses FNs.

8.5 Feature selection and classification using

NSGA-II

From the above, there are 30 features. In this chapter we use NSGA-II as a

classifier, that simultaneously minimises the classification error and the number of

selected features. In some ways, it also performs some kind of feature selection

as a weight will be applied on each feature. Feature selection ideally is found

the minimally sized feature subset that is substantial and suitable to the objective

concept. Feature selection can improve the classification accuracy and reduce

the computational complexity of classification because it will decrease the use of

non-effective features [40]. Many traditional feature selection approaches ignore
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Figure 8.5: Visual representation of the ResNet-50 classifier the best result (image size
128× 128 pixels and 256 epochs). Circles in green TPs, crosses in green TNs and red
circles depict FPs. Sample from slice #17 of Dataset #5.

that there exist multiple optimal solutions in feature selection. Feature selection in

evolutionary learning is a growing topic, with five dedicated presentations in the

recent Evo* 2021 conference [75], [81], [109], [151]. Multi-objective optimisation

for feature selection in classification is particularly relevant to our problem as there

can be multiple different optimal feature subsets that achieve the same or similar

classification performance, and this is the approach we adopted. Moreover, when

using evolutionary multi-objective optimisation for feature selection, a crowding

distance metric is typically used to play a role in environmental selection [151].

An individual I is made of 30 weights (between 0 and 1), and 30× 2 thresholds

that is to say 90 floating point numbers per individual. I[i ∗3] is the weight of the

ith feature, I[i∗3+1] is the lowest threshold of the ith feature, and I[i∗3+2] is the

highest threshold value. Below V is the feature vector corresponding to a point of

the image. For a given individual I, the weight and thresholds are applied as follows

to make a prediction (prediction(V,I)):
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prediction(V,I) =
i<30∑
i=0


+I[i∗3], if I[i∗3+1] ≤ V[i] ≤ I[i∗3+2]

−I[i∗3], otherwise
(8.17)

If prediction(V,I) is greater than or equal to 0, V is the feature vector of a point that

is considered as a pea. If prediction(V,I) is less then 0, then V is the feature vector

of a point that is considered as a non-pea.

For each individual, the predictions are computed for each sample of the training

data. Again, we sort the predictions into T Ps, T Ns, FPs, and FNs We derive them

into 8 objectives than NSGA-II can minimise:

1−
T P

T P+T N +FP+FN
(8.18)

1−
T N

T P+T N +FP+FN
(8.19)

1−
FP

T P+T N +FP+FN
(8.20)

1−
FN

T P+T N +FP+FN
(8.21)

1−Accuracy (8.22)

1−Precision (8.23)

1−Recall (8.24)
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1−F1S core (8.25)

Table 8.3 shows the corresponding classification results in terms of accuracy,

precision, recall, and F1 score. We can clearly identify, the classifier was performing

well when the generation number is increasing. Population size did not affect the

results that much. We select the result in generations: 64 and population size 1,024

as a best results in term of highest accuracy and F1 score. Fig. 8.6 visualises the

corresponding classifier outcome on top of the MRI slice. Circles in magenta T P,

crosses in magenta T N, and blue crosses FN.
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Figure 8.6: Visual representation of the best result of the NSGA-II based classifier (64
generations of a population made of 1,024 individuals). Circles in magenta TPs, crosses in
magenta TNs, and blue crosses FNs. Sample from slice #17 of Dataset #5.

8.6 Automatic Keypoint Selection

We extracted the best classifier from the previous three sections in Table 8.4,

namely Random forest, ResNet-50 (image size: 128, epochs: 256) and NSGA-II

(generations: 64, population size 1,024). They are all equivalent in term of accuracy.

NSGA-II is not as precise as the other two. It means that it generates more false
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Table 8.3: Performance evaluation for the NSGA2-based classifier. The best performance
for each column is highlighted in red colour

generations pop-size runtime (CPU seconds) TP TN FP FN Accuracy Precision Recall F1 Score
4 4 4275 360 855 1395 41 0.46 0.21 0.90 0.33
4 8 5715 233 1341 909 168 0.59 0.20 0.58 0.30
4 16 8235 278 1561 689 123 0.69 0.29 0.69 0.41
4 32 13275 275 1705 545 126 0.75 0.34 0.69 0.45
4 64 23355 217 1697 553 184 0.72 0.28 0.54 0.37
4 128 42120 284 1799 451 117 0.79 0.39 0.71 0.50
4 256 80910 315 1685 565 86 0.75 0.36 0.79 0.49
4 512 157590 219 1914 336 182 0.80 0.39 0.55 0.46
4 1024 310725 252 1958 292 149 0.83 0.46 0.63 0.53
4 2048 611325 272 1951 299 129 0.84 0.48 0.68 0.56
8 4 5490 229 1583 667 172 0.68 0.26 0.57 0.35
8 8 8505 295 1660 590 106 0.74 0.33 0.74 0.46
8 16 12915 315 1682 568 86 0.75 0.36 0.79 0.49
8 32 22455 288 1926 324 113 0.84 0.47 0.72 0.57
8 64 41670 266 1975 275 135 0.85 0.49 0.66 0.56
8 128 86670 300 1927 323 101 0.84 0.48 0.75 0.59
8 256 171045 291 2054 196 110 0.88 0.60 0.73 0.66
8 512 307665 276 2012 238 125 0.86 0.54 0.69 0.60
8 1024 688725 295 2075 175 106 0.89 0.63 0.74 0.68
8 2048 1399995 277 2110 140 124 0.90 0.66 0.69 0.68
16 4 8730 313 1414 836 88 0.65 0.27 0.78 0.40
16 8 13725 291 1872 378 110 0.82 0.43 0.73 0.54
16 16 24345 264 1987 263 137 0.85 0.50 0.66 0.57
16 32 42030 277 2056 194 124 0.88 0.59 0.69 0.64
16 64 81945 318 2122 128 83 0.92 0.71 0.79 0.75
16 128 172755 314 2090 160 87 0.91 0.66 0.78 0.72
16 256 345285 298 2161 89 103 0.93 0.77 0.74 0.76
16 512 598860 310 2138 112 91 0.92 0.73 0.77 0.75
16 1024 1260855 309 2144 106 92 0.93 0.74 0.77 0.76
16 2048 2774565 329 2139 111 72 0.93 0.75 0.82 0.78
32 4 13680 219 1909 341 182 0.80 0.39 0.55 0.46
32 8 24255 319 2053 197 82 0.89 0.62 0.80 0.70
32 16 39870 302 2083 167 99 0.90 0.64 0.75 0.69
32 32 87795 310 2193 57 91 0.94 0.84 0.77 0.81
32 64 149670 326 2194 56 75 0.95 0.85 0.81 0.83
32 128 299070 335 2188 62 66 0.95 0.84 0.84 0.84
32 256 687195 336 2193 57 65 0.95 0.85 0.84 0.85
32 512 1372815 325 2195 55 76 0.95 0.86 0.81 0.83
32 1024 2466990 336 2195 55 65 0.95 0.86 0.84 0.85
32 2048 2990990 331 2191 59 70 0.95 0.85 0.83 0.84
64 4 23220 313 1888 362 88 0.83 0.46 0.78 0.58
64 8 40410 280 2104 146 121 0.90 0.66 0.70 0.68
64 16 79200 314 2158 92 87 0.93 0.77 0.78 0.78
64 32 153225 336 2205 45 65 0.96 0.88 0.84 0.86
64 64 346815 338 2201 49 63 0.96 0.87 0.84 0.86
64 128 604755 332 2205 45 69 0.96 0.88 0.83 0.85
64 256 1213650 349 2209 41 52 0.96 0.89 0.87 0.88
64 512 2727045 341 2196 54 60 0.96 0.86 0.85 0.86
64 1024 2220775 350 2208 42 51 0.96 0.89 0.87 0.88
64 2048 173070 8 147 3 3 0.96 0.73 0.73 0.73
128 4 46755 295 2074 176 106 0.89 0.63 0.74 0.68
128 8 80910 314 2182 68 87 0.94 0.82 0.78 0.80
128 16 173610 327 2200 50 74 0.95 0.87 0.82 0.84
128 32 287010 342 2198 52 59 0.96 0.87 0.85 0.86
128 64 683460 333 2201 49 68 0.96 0.87 0.83 0.85
128 128 1247940 345 2210 40 56 0.96 0.90 0.86 0.88
128 256 1794085 343 2203 47 58 0.96 0.88 0.86 0.87
128 512 1146643 344 2214 36 57 0.96 0.91 0.86 0.88
128 1024 73390 8 97 3 3 0.95 0.73 0.73 0.73
256 4 88560 317 2181 69 84 0.94 0.82 0.79 0.81
256 8 174510 312 2182 68 89 0.94 0.82 0.78 0.80
256 16 314100 329 2198 52 72 0.95 0.86 0.82 0.84
256 32 625455 342 2212 38 59 0.96 0.90 0.85 0.88
256 64 490920 342 2211 39 59 0.96 0.90 0.85 0.87
256 128 533117 347 2207 43 54 0.96 0.89 0.87 0.88
256 256 1002348 349 2208 42 52 0.96 0.89 0.87 0.88
Max 0.96 0.91 0.90 0.88
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positives (FP), which is not necessarily a worry as they can be filtered out by the

end-user or as in this pipeline by another classifier. They are all equivalent in term

of recall and F1 score. The random forest is the fastest to train, by far, followed by

NSGA-II. ResNet-50 is the slowest, by far, but overall probably the best in term of

quality of the results.

Table 8.4: The best classifier from the traditional, ResNet-50 and NSGA-II classifiers

model runtime (CPU seconds) TP TN FP FN Accuracy Precision Recall F1 Score
random forest 87 340 2231 19 61 0.97 0.95 0.85 0.89

ResNet-50 (128, 256) 4632640 357 2220 30 44 0.97 0.92 0.89 0.91
NSGA2 (64, 1024) 2220775 350 2208 42 51 0.96 0.89 0.87 0.88

1. New

MRI image 

2.Appily 

Threshpld

(using NSGA-II)

4. Extract keypoints

(using CV)

5. Predict

(classifier model)
6. Labels 6. Visulisation

Figure 8.7: Overall flowchart of our steps to extract the keypoints.

Figure 8.7) explains the steps we followed to extract the keypoints. The advantage

of NSGA-II over Random forest and ResNet-50 is that we can exploit its output

(thresholds on selected features) to generate an image that can be filtered using

computer vision techniques. Figure 8.8 is such an image. A threshold is then apply

(see Figure 8.9) to extract the darkest regions in Figure 8.8. Islands are identified

in the image resulting from the threshold filter (see green lines in Figure 8.10).

The centroid of all these islands corresponds to keypoints (see red crosses in

Figure 8.10). These keypoints are then labelled using our selected ‘best’ classifier:

ResNet-50. Figure 8.11 shows the result of this fully-automatic pipeline on the

same image.

8.7 Discussion and Conclusion

We have presented a fully-automatic segmentation of the peas using a combination

of evolutionary computing, machine learning and computer vision techniques. The

final results (Figure 8.11 and Table 8.5) look disappointing at first sight. However it

is important to bear in mind some of the difficulties of this study:

• The problem can only be solved in 2D, not 3D, due to the image acquisition

protocol used.
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Figure 8.8: Samples from slice #17 of Dataset #5 for combining the features that selected
using computer vision techniques.

Figure 8.9: Samples from slice #17 of Dataset #5 after apply a threshold.

Table 8.5: Classification results.

Dataset # TP TN FP FN Accuracy Precision Recall F1 Score
1 4 236 13 5 0.93 0.24 0.44 0.31
2 0 81 6 0 0.93 0.0 inf nan
3 89 597 105 5 0.86 0.46 0.95 0.62
4 77 355 46 0 0.9 0.63 1.0 0.77
5 79 1001 69 5 0.94 0.53 0.94 0.68
6 46 187 6 13 0.92 0.88 0.78 0.83
7 4 100 5 2 0.94 0.44 0.67 0.53
8 2 156 3 7 0.94 0.4 0.22 0.29
9 9 270 19 4 0.92 0.32 0.69 0.44
10 1 323 16 8 0.93 0.06 0.11 0.08

Overall
10 311 3306 288 49 0.91 0.52 0.86 0.65
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Figure 8.10: Samples from slice #17 of Dataset #5 for the filtering the selection data by
NSGA-II.
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Figure 8.11: Samples for the final results from slice #17 of Dataset #5. Circles in magenta
TPs, crosses in magenta TNs, and blue circles FPs

Fully-automated Segmentation of peas using Multi-objective Optimisation and Machine
learning 151



• Petit-pois were used in the end instead of garden peas, i.e. much smaller

peas.

• Bread was used instead of pasta, making it harder to differentiate the peas

from their background, even for Human beings.

• Poorer image resolution, again, making it harder to differentiate the peas from

their background, even for Human beings.

• Limited amount of labelled data.

It is clear that our method produces a relatively high number of false positives. This

actually indicates that our framework was able to replicate the same dilemma as

what our collaborators experienced when they manually labelled the data: In many

cases, Dr Évelyne Lutton and Prof François Boué were not fully sure of how to

interpret the images. Some regions looked like peas, but they were not really sure.

Also, they were led to assume that the presence of a grey point could be assimilated

to statistical error Dr Lutton said:

The algorithm reproduces human evaluations quite well: T P

correspond to peas that are quite evident while FP occur on locations

where human judgement is not entirely sure due to the imprecision of

the image. This is particularly evident on the second part of the dataset

(DATASET 8 to DATASET 10) where resolution was poorer and peas

less easy to detect due to experimental setup. The algorithm proves

to be very useful in this case, as it highlights imprecise peas. In the

Figure 8.12, after a second review by the experts, some peas locations

proposed by the machine as FP were finally put in the set of peas

(circled in yellow). This algorithm could be also used in an interactive

manner to help a human expert in making decisions with uncertainty, in

correcting some errors due to user fatigue and in progressively providing

more and more precise learning sets.
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Figure 8.12: Final analysis from the experts. The visualisation shows the MRI image with
the final results circles in magenta TPs, crosses in magenta TNs, and blue circles FPs.
Yellow circles represent the experts confirmation
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Chapter 9

Discussion and Conclusions

9.1 Discussion

Chapter 1 provides an introduction and the outlines the hypothesis for this body of

thesis. The hypothesis was:

For complex and large problems where traditional algorithms are

not suitable, ad-hoc interactive visualisation can be deployed to

considerably improve either i) an optimisation algorithm, or ii) the

selection of the problem solution on the “Pareto” front to use as a

solution.

In order to investigate this hypothesis fully, the aims and objectives of the project

were:

1. Identify a problem or class of problems where traditional black-box

optimisation approaches are not suitable. The study will illustrate how the

FA compare in terms of efficiency and effectiveness to a few other traditional

optimisation approaches.

2. Select two case studies to validate or invalidate our hypothesis, i)

reconstruction in nuclear medicine (PET), and ii) segmentation of small

regions in another type of medical images (here MRI).

3. Use interactive visualisation to analyse the internal data of FA to extract the

best possible solution of the reconstructed PET image.
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4. Modify the FA to speed-up the reconstruction process without loss of accuracy.

The two most common stopping criteria in EAs are i) the total number of

generations, and ii) stagnation (no further significant improvement in terms of

fitness value).

5. Analyse the content of the stomach from MRI using multi-objective FA to find

small regions on this image.

6. Demonstrate that it is possible to train a CNN despite a very limited and

imbalanced database of cases and using an interactive visualisation to find

the best suitable combinations of hyper-parameters.

7. Use multi-objective optimisation (NSGA-II) as a classifier and compare it with

common classifiers.

Chapter 2 presented an overview of the main scientific principle used in this thesis

which are medical images and data visualisation. In order to identify gaps within

current knowledge, a literature review of optimisation algorithms was undertaken in

chapter 3. This explained the common traditional evolutionary algorithms (such as

RCGA and PSO) and compared them with parisian evolution which is FA. Chapter 4

identified that FA is superior to other traditional evolutionary algorithms for solving

some complex imaging problem (PET reconstruction and lamp problem).

From above, it has been demonstrated that the FA works well in some real-world

problems. Therefore, we developed the implementation of FA using interactive

visualisation. Chapter 5 relies on Parallel Coordinate Plot, scatterplot and image

display. The visualisation helped to extract the final result in a reconstruction

problem without need to wait to finish the optimisation loop while maintaining the

image accuracy, smoothness, and reconstruction time. That leaded to reduce

implementation time and extract a new stopping criterion. This work has been

published in journal Genetic Programming and Evolvable Machines.

Chapter 6 represented a contribution with a large project focused on the

understanding of the influence of food structure on digestion. We used MRI

for capturing peas in the human stomach. For this purpose, we turned the Fly
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Algorithm into a multi-objective cooperative-coevolution algorithm, and expert the

results through an interaction/visualisation interface. This helps understanding the

complex relationship between the objectives and extracting individuals of the Pareto

front that correspond to peas. This work has been published and presented in

conference on Parallel Problem Solving from Nature (PPSN XV) and conference on

Computer Graphics and Visual Computing (CGVC).

In chapter 7 the experts provided us with a new datasets (10 Datasets) with

different voxel spacing. We used supervised learning algorithms (CNNs) as a binary

classification task to define a point on the image as peas or non-peas. We split

the dataset into training and testing data and used leave-one-out cross-validation

to training and testing. Also, we implemented the classifier with different images

size and epochs as hyper-parameters. The results of this work show that the

performance of machine learning algorithms was good, but it was not possible

to distinguish which parameter combination provides the best results. Therefor,

we proposed an interactive visualisation (Radar Chart) to identify which is the

best combination should be used. This work has been published conference on

Computer Graphics and Visual Computing (CGVC) .

To make the work more robust, in chapter 8 we decided to implement several

machine learning classifiers to predict the pea positions (traditional classifiers and

ResNet-50 classifier). Also, developed the multi-objective optimisation as classifier.

We used the output of the multi-objective optimisation as an inputs to some computer

vision techniques to extract thresholds on selected features and find the keypoints.

Initially, we displayed the results to the experts and they confirmed it.

Throughout this thesis, we implemented global optimisation methods (PRS, SA, FA,

and PSO) as open-source. The Python implementation of all these algorithms

and the test data provide on GitHub (https://github.com/Shatha1978/

Optimisation-algorithm-examples). Also, we design a cooperative PSO

(coPSO), and a PSO-flavoured fly algorithm. We recommend the use InfoVis

and data exploration to understand some of the behaviours of an FA to extract early

best solution and find early stopping. Also, the use of InfoVis helps to understand

the output of an FA implementation and enhancement these output to extract
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the optimal solution. Finally, we proposed a framework to analyse the content of

stomach (frozen green peas and pasta). The long-term objective of this study is to

help to model food interaction with the human digestive system. This study helped

the researchers, who work in studying food structure, to track and follow any type of

food.

9.2 Limitations and future work

Some limitations exist in this study. The stomach is manually segmented in MRI

volumes, which is time consuming and can only be performed by someone able to

interpret MRI data. As with every supervised learning algorithm, the training and

testing data must be manually labelled. Again, it is time consuming and can only be

performed by the domain experts.

We proposed in this thesis a two-stage approach with 1) NSGA-II computer vision

techniques for the keypoints detection and feature selection, and 2) the CNN for the

classification. A more exhausted comparison with state-of-art algorithms such as

R-CNN and YO-LO can be performed.

At first glance, it seems that there are a lot of false positives, as illustrated by

Table 8.5 on Dataset#3 where 105 peas were detected. However, we know from the

experimental protocol that only 20 peas where ingested (see Page 101 of expert’s

PhD student thesis [52]). We also know that successive slices along the z-axis

of the Euclidean space were not acquired at the same time but with a significant

time delay due to atom relaxation. These time delays may have introduced the

possibilities for peas to slightly moved in the stomach, hence being detected several

times at different locations. In other words, some (if not most) of these false positives

may be true positives but at a different time. Future work needs to be carried out to

validate that assumption. A PhD student (Mr Conor Spann) is currently working on

the 4D analysis and visualisation of the detected peas.
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9.3 Conclusion

The project described in this thesis aimed to demonstrate how interactive

visualisation can help understand the behaviour of the algorithm (e.g. to improve it),

and help choose a “good” solution. The following results were achieved throughout

the duration of this project:

• Proved that the Fly Algorithm was better for solving complex problems. That

was through compare the performance of the Fly Algorithm with another

traditional optimisation methods.

• Validated our hypothesis through two case studies: i) reconstruction in nuclear

medicine (PET), and ii) segmentation of small regions in another type of

medical images (here MRI).

• Extracted the best possible solution of the reconstructed PET image by using

a simple but effective visualisation.

• Modified the FA to speed-up the reconstruction process without loss of

accuracy. The two most common stopping criteria in EAs are i) the total

number of generations, and ii) stagnation (no further significant improvement

in terms of fitness value).

• Segmented small regions (peas) on MRI by using multi-objective FA.

• Trained a CNN despite a very limited and imbalanced database of cases

and used an interactive visualisation to find the best suitable combinations of

hyper-parameters.

• Trained a NSGA-II as classifier and presented a fully-automatic segmentation

of the peas using a combination of evolutionary computing, machine learning

and computer vision techniques.

The results presented in chapters 3 to 6 demonstrated the performance of FA in

two cases reconstruction (using reconstructed PET image and lamp problem)
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and segmentation a small regions on MRI. The results presented in these

chapters highlighted the FA was performing good and was superior to other

traditional algorithms in construction problems. Also, the performance of FA as a

multi-objective cooperative-coevolution algorithm to segment small region (peas) in

MRI images. It extracted individuals of the Pareto front that correspond to peas.

Whilst, in chapters 7 and 8 started to change the direction from the optimisation

method to the machine learning due to the labelled data provided from the experts.

In chapters 7 we used CNN as a classifier with hyper-parameters (image sizes

(16×16, 32×32, 64×64 and 128×128 pixels) and number of epochs (32, 64, 256,

1024, and 2048)). We utilised a fine data visualisation which is radar chart to find

the suitable combination between the hyper-parameters to give the best solution.

Whilst, chapter 8 present another classifier relied on the multi-objective optimisation

algorithm namely NSGA-II and compared it with some traditional classifiers. The

chapters presented the best results to recognise as much as from the peas.
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Acronyms

FN false negative

FP false positive

T N true negative

T P true positive

3-D three-dimensional

API application programming interface

CCEA Cooperative Co-evolution Algorithm

CMA-ES Covariance Matrix Adaptation Evolution

Strategy

CNN Convolutional Neural Network

COCO Common Objects in Context

CSV Comma-Separated Values

CT Computed Tomography

CV Computer Vision

DNN Deep Neural Network

DSSIM structural dissimilarity

EA Evolutionary Algorithm

EC Evolutionary Computing

EM Expectation-Maximization

EP Evolutionary Programming

ES Evolution Strategies

ET emission tomography
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FA Fly Algorithm

GA Genetic Algorithm

GIT gastrointestinal tract

GMM Gaussian Mixture Model

GPU graphics processing unit

HOG Histogram of oriented gradients

InfoVis Information Visualisation

keV kiloelectron volt

LB lower bound

LOR line of response

MAE mean absolute error

mAP mean Average Precision

ML Machine Learning

MLEM Maximum-Likelihood Expectation-Maximization

MRI Magnetic Resonance Imaging

MSE mean squared error

NaN not a number

NN Neural Network

OSEM Ordered Subset Expectation-Maximization

PCP Parallel Coordinate Plot

PET Positron emission tomography

PRS Pure Random Search
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PSNR peak signal-to-noise ratio

PSO Particle Swarm Optimization

RCGA Real-Coded Genetic Algorithm

ResNet residual neural network

RMSE root mean squared error

ROI region of interest

SA Simulated Annealing

SANS small-angle neutron scattering

SAXS small-angle X-ray scattering

SCW Supercomputing Wales

SNR signal-to-noise ratio

SPECT Single-Photon Emission Computed

Tomography

SSE Sum of Squared Error

SSIM structural similarity

SVG Structured Vector Graphics

TSP Travelling Salesman Problem

TV total variation

UB upper bound

VOC PASCAL Visual Object Classes Challenge

ZNCC zero-normalised cross-correlation
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