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ABSTRACT

Search processes guided by objectives are ubiquitous in machine learning. They iteratively reward

artifacts based on their proximity to an optimization target, and terminate upon solution space con-

vergence. Some recent studies take a different approach, capitalizing on the disconnect between

mainstream methods in artificial intelligence and the field’s biological inspirations. Natural evo-

lution has an unparalleled propensity for generating well-adapted artifacts, but these artifacts are

decidedly non-convergent. This new class of non-objective algorithms induce a divergent search

by rewarding solutions according to their novelty with respect to prior discoveries. While the diver-

sity of resulting innovations exhibit marked parallels to natural evolution, the methods by which

search is driven remain unnatural. In particular, nature has no need to characterize and enforce

novelty; rather, it is guided by a single, simple constraint: survive long enough to reproduce. The

key insight is that such a constraint, called the minimal criterion, can be harnessed in a coevo-

lutionary context where two populations interact, finding novel ways to satisfy their reproductive

constraint with respect to each other. Among the contributions of this dissertation, this approach,

called minimal criterion coevolution (MCC), is the primary (1). MCC is initially demonstrated in

a maze domain (2) where it evolves increasingly complex mazes and solutions. An enhancement

to the initial domain (3) is then introduced, allowing mazes to expand unboundedly and validat-

ing MCC’s propensity for open-ended discovery. A more natural method of diversity preservation

through resource limitation (4) is introduced and shown to maintain population diversity without

comparing genetic distance. Finally, MCC is demonstrated in an evolutionary robotics domain

(5) where it coevolves increasingly complex bodies with brain controllers to achieve principled

locomotion. The overall benefit of these contributions is a novel, general, algorithmic framework

for the continual production of open-ended dynamics without the need for a characterization of

behavioral novelty.
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CHAPTER 1: INTRODUCTION

A delicate tension has persisted historically between the practically oriented pursuits of evolu-

tionary computation (EC) and the more abstract questions of artificial life (alife) that in recent

years may be starting to fade. EC has traditionally been leveraged as merely another optimization

method, focused on pragmatic problem solving in real-world domains, and often ignoring more

philosophical issues in alife like the pursuit of open-endedness (i.e. investigating and decompos-

ing the processes that continue to generate interesting artifacts indefinitely) [150, 151, 155, 162].

Historically, open-ended evolution like that seen in nature has been studied in the context of Earth-

like domains with organism-like occupants and ecosystems [113, 124], a pursuit far removed from

evolving targeted solutions to problems like walking or maze-navigation. However, this dichotomy

has begun to close with the recent rise of non-objective algorithms that began with the introduction

of novelty search [76, 78] and later extended to include aspects of interestingness [88], impressive-

ness [81], surprise [58–60] and curiosity [156, 157].

Instead of converging on a synthetic objective, this new class of EC algorithms focuses on diver-

gence, i.e. pushing search outward from previously-visited locations, a dynamic that aligns more

closely with the seemingly unbounded process of open-ended discovery in nature. A key insight

is that these algorithms can be implemented in a more general purpose framework, outside the

restrictive and abstract confines of alife. Recently, non-objective algorithms have been extended to

incorporate a more objective fitness-like component, balancing divergence with adaptive pressure

to induce a process termed quality diversity (QD) [123], which simultaneously produces artifacts

that are both diverse and of objectively high quality, all within a single run. QD algorithms such as

novelty search with local competition (NSLC) [23, 52, 79], and the Multi-dimensional Archive of

Phenotypic Elites (MAP-Elites) [14, 24, 37, 46, 111] have started to bridge the gap between prac-

tical, general purpose methods and theoretical alife research into the nature of open-endedness.

1



However, despite the progress in applying non-objective algorithms to more concrete problems,

there remains a disconnect between QD algorithms as implemented, and open-ended processes

observed in nature. In particular, most QD algorithms published to date require defining a be-

havior characterization (BC), which is a descriptor of the phenotypic behavior or physical traits

of individuals in the search space. The BC is often used as a drop-in replacement for an objec-

tive function, rewarding individuals to the degree that they exhibit novel behaviors, and inducing

a divergent search dynamic through behavior space [36]. Nature lacks any such formalism for

describing and comparing individual behaviors, yet remains unencumbered in its ability to contin-

ually produce novel artifacts. Moreover, while the descriptor space of the BC may be vast, it is

of a fixed dimensionality and therefore intrinsically finite. For example, if an individual’s behav-

ior is characterized in terms of its size and average velocity, then once the full spectrum of sizes

and velocities have been sampled, novelty is subsequently diminished and pressure toward contin-

ued divergence is by necessity reduced. While recent work has suggested that BCs may be able

to expand over time [88, 99], facilitating an unbounded process of expansion remains a notable

challenge. Finally, most QD algorithms require a behavioral archive that persists descriptions of

past behaviors and provides a reference point for the comparison of new behaviors. In the origi-

nal novelty search algorithm as well as in NSLC and its variants, the archive chronicles points in

the behavior space that have been previously visited, while MAP-Elites embeds previously visited

points directly into the behavior space map. Nature requires no such archival mechanism, yet still

manages to avoid evolutionary regression [11, 56].

Nature is therefore a source of inspiration and a benchmark against which to compare processes of

open-ended discovery that lack such artificially imposed constructs. QD algorithms to date rely on

quantifying and rewarding novelty as a mechanism to facilitate divergent search, which leads to the

need for BCs and behavioral archives; however, a key insight in this dissertation is that divergence

could alternatively be achieved through a process of genetic drift [82, 86], subject to a minimal
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criterion (MC) as the sole constraint for reproduction. While there is some precedent of the MC

being used to facilitate an evolutionary process [51, 77, 92, 93, 95], it is difficult to determine how

to craft the MC a priori, and even more unclear how to dynamically vary the MC to induce an

open-ended process that continually produces novel artifacts. The hypothesis of the present work

is that coevolution may help to prevent evolutionary stagnation by forcing the two populations to

satisfy their MC with respect to each other, while both continue to drift within the confines of their

fixed reproductive criterion.

In this dissertation, these ideas are incorporated into an algorithm called minimal criterion coevo-

lution (MCC), and are first evaluated in a maze navigation domain where a population of mazes are

coevolved with maze-navigating agents (controlled by artificial neural networks). The MC for this

domain requires that each maze be solved by at least one agent and each agent is able to solve at

least one maze; any maze or agent that meets their respective constraint is permitted to reproduce.

The results demonstrate that MCC is able to produce many different solutions (agent trajectories)

to a range of different mazes within a single run, even in the absence of a behavioral descriptor or

an archive.

While these results are encouraging and hint at the open-ended capacity of MCC, they stop short

of revealing the full extent of its capabilities. In the initial maze domain, MCC rapidly exhausts

the representational capacity of the mazes, driving them to maximum density and complexity long

before the end of any given run. This raises the interesting question of what maze and agent

pairings MCC would be able to discover if mazes were not fixed in size, but were allowed to

expand unboundedly throughout evolution, creating increasingly difficult challenges.

Thus we introduce such an enhanced maze domain to provide insight into what happens when both

populations in MCC are allowed to evolve and complexify without bound. An important facet of

this experiment is that there are few simple benchmarks that enable evaluating methods like MCC

3



aimed at open-ended discovery, and accordingly also no baselines with which to compare any

future such approach. By introducing an enhanced maze encoding that allows realistic mazes to

increase in size and complexity indefinitely, and by quantifying how MCC behaves in such an

unbounded domain, a new benchmark is established that can serve as a foundation for inspiring

and measuring future progress in the field. It also offers a window into one of the first experiments

of its type, where open-endedness is pursued in an unbounded domain that is not an alife world.

The results show MCC exploiting the unbounded domain to produce larger and more complex

mazes throughout each run, while maintaining a breadth of maze sizes and path configurations,

each with effective solutions.

The maze navigation experiments provide compelling evidence of MCC’s ability to produce open-

ended, coevolutionary divergence by imposing a simple reproductive criterion. The intuitive appeal

of MCC is rooted in its simplicity as compared to other QD algorithms; however, MCC’s origi-

nal method of diversity preservation remains ad-hoc and without natural precedent. Like many

other evolutionary algorithms (EAs), MCC as described so far uses speciation to group individu-

als based on genetic similarity [28, 94, 118, 152]. A compatibility function is used to determine

whether individuals belong in the same species, thereby requiring the algorithm designer to specify

the dimensions by which to characterize genetic distance. Though speciation is a well-established

ecological phenomena, its implementation in MCC is contrived and determining how to mean-

ingfully encode and compare similarity imposes a priori structure on a system that is intended to

discover novel and unanticipated artifacts with minimal evolutionary bias.

Nature, however, does not explicitly measure and compare genetic similarity to maintain biodiver-

sity; instead, diversity is a byproduct of finite, yet essential resources that constrain niche carrying

capacities and induce an adaptive radiation [138, 163, 164] that encourages divergence to new

environmental niches. Based on this insight, an alternative (and much simpler) form of diversity

preservation through resource limitation is evaluated. As with prior MCC experiments, the maze
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domain is used to demonstrate a coevolutionary complexification between mazes and agents; how-

ever, rather than segregating the two populations by genetic similarity, a resource limit is imposed

on mazes such that a given maze can only be used (i.e. successfully navigated) a finite number

of times for satisfying an agent’s MC. The results demonstrate that enforcing resource limitation

boosts population diversity by producing mazes with highly variable solution paths, while also ac-

celerating evolution by exposing agents to a broader array of new and challenging environments.

Resource limitation ensures that evolution remains unencumbered by potentially biased, a priori

assumptions by alleviating the need to explicitly characterize and compare solution structure, while

also facilitating the application of MCC to new domains for which such characterizations may be

non-trivial or computationally-expensive.

While the maze domain is a simple and convenient experimental test bed, MCC has a far wider

range of more compelling and potentially real-world applications. To evaluate the extensibility of

MCC beyond that of benchmark domains, it is applied to an evolutionary robotics (ER) domain

wherein morphology (body) and control (brain) are coevolved. In most ER research, body de-

signs are crafted by hand and controllers are evolved to effectively ambulate a fixed morphology

[24, 47, 87]. Recent non-objective search research demonstrated the ability to discover a diversity

of voxel-based morphologies, but with simple, static control mechanisms based on a fixed pattern

of per-voxel, volumetric actuation [61, 98]. In a notable exception to the aforementioned one-sided

optimization methods, Cheney et al. [17] introduced a fitness-based approach for co-optimizing

morphology with control in a voxel body locomotion domain. This work provides original inspira-

tion for the body-brain coevolution domain introduced in this dissertation, and the results of MCC

are compared to that of co-optimization, demonstrating that MCC can be an effective choice for

complex coevolutionary tasks.

In the body-brain coevolution domain, three-dimensional voxel-based robot bodies that consist

of active (i.e. muscle) and passive elements are coevolved with artificial neural networks (NNs)
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that control expansion and contraction of each active voxel. To meet their MC, NN controllers

must ambulate the body a minimum distance within a fixed simulation time, while bodies must be

successfully ambulated by at least one NN. The composition of voxel bodies can vary with regard

to voxel placement (i.e. the voxel lattice may be only partially full) and active vs. passive voxel

ratios. Like the enhanced maze domain where mazes expand to complicate navigation, bodies can

grow along all three dimensions, forcing controllers to account for altered physical dynamics.

The results show that MCC discovers a diversity of morphologies that vary in both size and voxel

composition, along with NN controllers that produce successful ambulation. Voxel bodies continue

to expand throughout evolution, signifying an ongoing coevolutionary adaptation to increasingly

complex challenges. These experiments constitute the first application of an open-ended coevolu-

tionary search process to a non-trivial task of practical interest, thereby suggesting the generality

and extensibility of MCC to a variety of interesting new problems and domains.

MCC constitutes the first method of producing an open-ended coevolutionary search dynamic

within a broadly-applicable algorithmic framework. In its final incarnation, MCC requires no

measure of fitness, no ranking and no measure of genetic, phenotypic or behavioral diversity, mak-

ing it one of the simplest algorithms in EC, yet one that is able to continually produce unbounded

diversity and complexity – a trait exhibited by no other algorithm to date. At the same time, the

intent of the maze domain is to offer an experimental test-bed to the EC and alife communities that

can be harnessed for scientific inquiry into the nature of open-endedness and the conditions that

enable unbounded discovery, while also providing a practical method for approaching open-ended

design problems that extend on the MCC framework. The body-brain coevolution domain demon-

strates that MCC is capable of scaling beyond simple benchmarks and tackling difficult, real-world

tasks at the forefront of research and development.

In summary, the hypothesis of this dissertation is that genetic drift can be harnessed to facilitate
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divergence in two coevolving populations, while an MC on reproduction channels drift along desir-

able and non-trivial evolutionary trajectories as both populations interact and increase in complex-

ity to satisfy a continuously shifting challenge to maintain viability. This hypothesis is supported

by the following key contributions:

1. A new algorithm called minimal criterion coevolution (MCC) is introduced. MCC coe-

volves two populations, each subject to an MC of reproductive viability. Both populations

are driven to continually diverge and complexify as they simultaneously satisfy a mutual

minimal criterion (MC) of reproductive viability.

2. MCC is validated in an evolving maze domain, where maze solution paths are made more

difficult by adding and shifting walls, and agents controlled by artificial neural networks are

evolved to solve increasingly more difficult mazes.

3. An enhanced maze domain is introduced, where maze boundaries are expanded and the

solution path is directly-evolved, producing more challenging navigation environments with

larger mazes and convoluted solution paths, and effective agent solutions.

4. Resource limitation is introduced as an alternative form of diversity preservation in MCC,

thereby avoiding speciation-induced bias that results from characterizing and comparing an

a priori formalization of genetic distance.

5. MCC is demonstrated in a difficult body-brain coevolution task, where it discovers multiple

diverse morphologies along with artificial neural networks capable of controlling each

The next chapter of this dissertation introduces the field of EC along with common diversity preser-

vation techniques, and provides historical context around the pursuit of open-endedness. Two evo-

lutionary methods on which MCC relies, coevolution and neuroevolution, are discussed, followed
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by an overview of compositional pattern producing networks (which are used in the body-brain co-

evolution experiments) and concluding with a brief survey of quality diversity algorithms, and their

connection to non-objective and open-ended search. Chapter 3 then details the main contribution

of this dissertation, the MCC algorithm, and describes its implementation.

The initial maze domain encoding along with experiments and results is described in chapter 4,

while chapter 5 describes the enhanced maze domain and demonstrates MCC’s ability to exploit

larger and more complex mazes. Chapter 6 outlines how population diversity can be maintained

through resource limitation, comparing the results to speciation in the enhanced maze domain.

MCC is applied to a challenging body-brain coevolution task in chapter 7 where it discovers novel

morphologies and complex control strategies. Chapter 8 then discusses the contributions of MCC

and the experimental domains, along with future research directions, and finally chapter 9 con-

cludes with the implications of the work presented in this dissertation.
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CHAPTER 2: BACKGROUND

This chapter provides a brief overview of the field of evolutionary computation (EC) and some

common diversity preservation methods used within EC, followed by an introduction to the concept

of open-endedness and the pursuit of open-ended evolution within the artificial life community.

Two EC methods that are of particular relevance to MCC, coevolution and the NEAT algorithm,

are then reviewed, followed by an overview of compositional pattern producing networks (CPPNs),

which are used to generate regular body morphologies and controllers in the experiments in chapter

7. The chapter concludes with an introduction to non-objective search algorithms followed by

a discussion of an emerging field inspired by both EC, open-ended evolution and non-objective

search known as quality diversity.

2.1 Evolutionary Computation

Evolutionary biologists have long employed computational frameworks to model and investigate

various theories of natural evolution [43, 63, 115]. In 1958, however, Richard Friedberg proposed a

novel approach for harnessing computational abstractions of evolution to automatically develop, or

evolve computer programs [44]. This idea was validated in 1962 when Hans-Joachim Bremermann

demonstrated how a simulated evolutionary process could be applied to numerical optimization

problems [9, 10]. The latter half of the 1960s and early 1970s heralded the birth of the field of EC,

with three foundational EAs: evolution strategies (ES) [125, 140], evolutionary programming (EP)

[40, 41] and genetic algorithms (GAs) [9, 66] being introduced within a decade of each other.

As both the name and the history of the field suggest, EC draws inspiration from natural evolu-

tion. It is well-suited to problems that exhibit large search spaces and require efficient methods of
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exploration and exploitation. EAs maintain a population of candidate solutions that are encoded

as genotypes (usually represented as a string of bits or real numbers) and subjected to a series of

variational operations, including mutation and crossover. Mutation randomly perturbs one or more

genes in the genotype, while crossover combines genes from two parent genotypes. Genotypes

are decoded into phenotypes, which are domain-specific functional representations that can be

evaluated with respect to some objective measure of performance, known as the fitness function.

Individuals undergo a pruning process called selection (analogous to natural selection in Darwinian

evolution) wherein only the highest performers with respect to the fitness function are permitted to

survive and produce offspring, which are modified and evaluated in like manner [168].

This process of reproduction, variation and selection is intended to iteratively converge on a glob-

ally optimal solution; however, such an expectation is often overly optimistic in search spaces that

are multi-modal or exhibit deceptive characteristics (i.e. fitness gradients that appear promising but

ultimately dead-end in sub-optimal areas of the search space) [31]. A fundamental shortcoming of

objective-driven optimization is that the stepping stones toward a globally optimal solution tend to

elude the fitness function in deceptive domains because they may lead search through areas that

initially appear sub-optimal [80, 83].

2.2 Diversity Preservation

Most evolutionary algorithms (EAs) model search as a convergent process that selects only the

most fit individuals for reproduction, iteratively honing-in on high-fitness areas of the search space

[132]. As a population-based search heuristic, however, EAs rely on maintaining a diverse sample

of candidate solutions to avoid convergence to areas of the search space that are only locally op-

timal. Diversity preservation techniques are loosely based on niching in natural evolution, where

organisms are segregated into distinct species and competition occurs primarily within the assigned
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niche rather than at a population level [134, 167]. In EC, such methods are employed to manage the

conflicting goals of exploration and exploitation, ensuring that multiple evolutionary lineages are

maintained to avoid naively committing to a single evolutionary path without adequately vetting

the alternatives [94].

Conventionally, similarity is assessed at the genotype-level where individuals are grouped based

on age [67, 139], fitness [68] or structural similarity [50, 94]. Hornby [67] introduced a method

called Age-Layered Population Structure (ALPS) which characterizes genotypes by the age of

their genetic material. Randomly-generated individuals are injected into the population at regular

intervals to boost population diversity, but only compete with genomes of a similar age. The

intuition is that younger genomes may be more promising in the long run but have had less time

to adapt than older individuals, putting them at a selective disadvantage. By preventing direct

competition, ALPS maintains higher population diversity throughout the course of a run, thereby

reducing the probability of early convergence.

Hutter and Legg [68] proposed a diversity preservation approach called fitness uniform selection

scheme (FUSS) that increases selection pressure in sparsely populated fitness regions. FUSS pref-

erentially selects for individuals that exhibit a minority fitness score over those that have a higher,

but over-represented fitness, thereby encouraging genetic diversity by maintaining a range of per-

formance profiles.

The Neuroevolution of Augmenting Topologies (NEAT) method [152] (introduced in section 2.5)

measures structural similarity, speciating genotypes by quantifying shared evolutionary lineage

between each topological component (nodes and connections) – a form of explicit fitness sharing

[50]. As with ALPS, the intent of speciation in NEAT is to protect recent innovations by restrict-

ing competition to occur only between those of similar evolutionary descent, giving less mature

individuals time to adapt within their niche before competing against the population at large.
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Speciation and other niching methods encourage diversity in the genotype space, but without regard

for whether genetic disparity translates into meaningful phenotypic differences. However, recent

QD research has found that multiple distinct genotypes may collapse into the same phenotypic

expression, suggesting that augmenting genetic speciation with an explicit search for behavioral

novelty may be more effective at preserving functional diversity in deceptive or ambitious domains

[78].

Nature, however, does not explicitly measure genotypic or behavioral similarity. Instead, diver-

sity is a byproduct of finite, yet essential resources [85, 134], an insight motivates the present

investigation of diversity preservation through resource limitation.

2.3 Open-endedness

The concept of open-endedness has its roots in alife – a discipline concerned with analyzing and

understanding natural systems and the process by which individuals within those systems inter-

act and evolve [6, 124, 161]. Natural evolution is often viewed as an unguided process, yet one

that continually produces novel and increasingly complex artifacts, a characteristic referred to as

open-ended evolution [91, 133, 146]. Just as artificial general intelligence (AGI) is considered the

pinnacle of AI [2, 18], formalizing and reproducing (in a simulation) the dynamics that quantifiably

lead to an open-ended evolutionary process is a significant objective of alife [146, 155].

While there is a distinct lack of consensus regarding precise methodologies for defining and mea-

suring the characteristics of an open-ended evolutionary process, it is generally agreed that such a

process produces novel, functional and increasingly complex forms in perpetuity [1, 86]. Artificial

life researchers often develop alife worlds [13, 57, 100, 101, 113, 122, 124, 143, 172] as a con-

venient, visually-oriented method for exploring the effects of various conditions and constraints
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imposed upon simulated evolutionary processes. The intent of these artificial worlds is to bet-

ter understand and inform hypotheses about the ingredients required to generate and sustain life,

often leveraging diversity of life on earth (which is generally considered an open-ended system

[97, 136]) as inspiration.

Soros and Stanley [144] recently proposed a set of such ingredients hypothesized to be neces-

sary for the generation of an open-ended evolutionary process, and created an alife world, dubbed

Chromaria, to test them. Central among these conditions is the enforcement of a minimal criterion

that places a lower bound on individual complexity and prevents the population from falling into

a degenerate state of uninteresting and trivial behaviors. Additionally, individuals must interact

to satisfy the MC, which allows its difficulty to vary organically over time. On Earth, the MC is

self-replication, which requires the development and persistence of a reproductive apparatus and

the ability to survive long enough to employ it. These are non-trivial capabilities that require a

similarly advanced level of developmental sophistication. Unlike prior alife worlds, Chromaria

does not attempt to preferentially select for individuals exhibiting higher fitness or merit scores;

rather, everyone who satisfies the MC is allowed to reproduce. Interestingly, constraining evolution

through the MC rather than a fitness score helps prevent evolutionary convergence, maintains popu-

lation complexity (through an interaction requirement) and promotes an open-ended dynamic. The

present work demonstrates how such an open-ended process can be encapsulated into a general-

purpose algorithm and applied outside of an alife domain.

2.4 Coevolution

In traditional EC, the fitness function is typically defined as a global, extrinsic measure of per-

formance; however, in some domains such an absolute performance metric may be prohibitively

expensive to compute or impossible to formalize. The field of coevolution addresses these short-
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comings by defining fitness as a relative measure based on interaction between individuals within

a single population, or between two separate populations [12, 117]. Coevolution is traditionally

divided into two methodologies: competitive coevolution and cooperative coevolution. Compet-

itive coevolution pits self-interested individuals against each other, and meets out reward based

on the extent to which one individual outcompetes the other (i.e. the fitness scores for competing

individuals are inversely related) [131]. A canonical example of competitive coevolution is the

predator-prey scenario in which a predator attempts to capture and devour their prey while the prey

attempts to escape from the predator – two conflicting objectives where one individual is rewarded

at the expense of the other [109]. By contrast, in cooperative coevolution, individuals work to-

gether to achieve an overarching objective. The problem space is divided into subcomponents with

individuals, or “species”, specializing in each and working collaboratively to achieve a larger goal

[119, 169, 170].

An interesting property of coevolution is its theoretical ability to produce a never-ending arms

race wherein subjective notions of performance and competitive or cooperative interactions allow

individuals leeway to evolve increasingly diverse and complex behaviors [38, 109, 154], a property

that is itself similar to the dynamics that would be observed in an open-ended system. In practice,

however, this dynamic has proven difficult to sustain. Instead of producing creative interactions or

diverse behaviors in perpetuity, coevolutionary algorithms eventually converge to mediocre stable

states, wherein sub-optimal strategies are discovered and individuals lack a fitness-based incentive

to further evolve [38].

Moran and Pollack [102] recently showed that mixing cooperative and competitive interactions

can help drive complexity growth and avoid simple equilibria; however, solution quality is com-

puted based on a historical record of actions (referred to as “strategies”) and subsequent results,

which limits unbounded growth in much the same way as the computational expense imposed by

comparing new discoveries to a behavioral archive. De Jong [30] also proposed a method that
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maintains an archive of non-dominated (i.e. pareto-optimal) solutions, but the scalability limita-

tions imposed by comparison against an ever-expanding archive still hold. Moreover, both of the

aforementioned methods explicitly measure and reward solution quality, incentivizing both pop-

ulations to converge on narrow, high-performing regions of the space, thereby pruning diversity

rather than encouraging it. Additionally, recent work in applying novelty to search to coevolution

has suggested that replacing fitness with a novelty metric may help minimize coevolutionary stag-

nation in both a competitive and cooperative context by maintaining healthier levels of diversity

[53, 54]; however, these methods still require that behavioral novelty is explicitly characterized

and compared to promote coevolutionary divergence.

Coevolutionary interactions play a fundamental role in the present work; however, such interac-

tions are neither competitive nor cooperative. Instead, individuals are permitted to interact freely

within the confines of their MC, thus promoting a divergent search dynamic that is intrinsically

immune to evolutionary stasis.

2.5 Neuroevolution of Augmenting Topologies

Complexity and the perpetual increase thereof is a hallmark feature of open-ended systems [4,

144, 146]. Algorithms that are developed with the intent of producing an open-ended dynamic

must therefore possess an extensible representational capacity that scales as evolution progresses

and discovers increasingly complex artifacts. Experiments in this dissertation involve agents that

are controlled by evolved neural networks; specifically, using the Neuroevolution of Augmenting

Topologies (NEAT) algorithm [152].

Neuroevolution is a subfield of artificial intelligence that uses evolutionary algorithms to evolve the

weights, and often the topology, of a population of artificial neural networks [39, 149, 173]. NEAT
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is a neuroevolution method that incrementally adds structure (connections and nodes) to a NN – a

process known as complexification. Evolution starts with a population of single layer NNs, each

with an input layer that is fully connected to the output layer (i.e. no hidden layer). Each structural

component is encoded as a gene in the NEAT genome and assigned a unique historical marking.

This marking simplifies comparison of genetic similarity between networks, thereby mitigating

the destructive potential of crossover (a pervasive problem in neuroevolution prior to NEAT) and

facilitating the subdivision of networks into groups or species. Speciation is a method of protecting

networks that have undergone structural modification so that they have adequate time to become

well-adapted, thereby reducing initial competition and promoting increased population diversity.

The complexification operations in NEAT are especially relevant to its use in open-ended search

because adding network structure increases the network’s free parameters (i.e. connection weights),

which is akin to increasing its representational capacity. In a robot control domain, the level of

representational capacity is proportional to the complexity of behaviors and control strategies that

the network is capable of learning. Given that an open-ended search method should be capable

of discovering artifacts of unbounded complexity, the ability to dynamically and principally add

structure to meet representational demands is required to avoid evolutionary stagnation.

2.6 Compositional Pattern Producing Networks

Most neuroevolution methods, including NEAT, employ a direct encoding [152], meaning that

each gene in the genotype maps to a single structural component in the phenotype. Despite their

ubiquity in the neuroevolution literature, it is well-accepted within the field of developmental bi-

ology that the human brain and other natural structures are the byproduct of a highly-compressed

indirect mapping that exploits gene reuse, producing geometric regularities, such as symmetry and

repetition, to enable encoding-efficiency [33]. For example, the human brain contains 100 trillion
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connections, but is fully-described by a genome with only 30,000 genes [34, 177].

Artificial developmental encodings are a type of indirect encoding rooted in developmental bi-

ology, where the phenotype is gradually assembled from a lower-dimensional genotype through

an embryonic development process called embryogenesis [3, 171]. During embryogenesis, local

chemical interactions produce morphogen concentration gradients that differentiate tissue cells,

describing general body plans and situating high-level organismal components. For example, in

many animals, the dorsal-ventral and anterior-posterior axes are established by initial morphogen

gradients [166, 171], and further elaborations operate within this frame-of-reference, thereby gen-

erating arbitrarily complex spatial patterns.

Various artificial abstractions of development have been proposed [26, 147, 153], many of which

attempt to directly simulate low-level chemical dynamics that occur during growth [25, 174, 175].

Stanley [148] offered a unique perspective on development that preserves the essential charac-

teristics of developmental encodings while skipping the costly and time-consuming development

process. This approach, called compositional pattern producing networks (CPPNs), can encode

regular patterns in substrates of arbitrary dimensions. In chapter 7, a CPPN encodes material prop-

erties at each location in a three-dimensional voxel substrate, while also a separate CPPN specifies

the weights of a distinct NN controller that dictates actuation characteristics of each voxel.

The key insight is that development can be described by composing functions that generate geo-

metric patterns that are similar to gradient patterns observed in developing embryos. For example,

a Gaussian function is symmetric about its center, thereby describing the concept of bilateral sym-

metry when positioned along an anterior-posterior axis. Similarly, periodic functions, such as sine

and cosine, generate repeating patterns which can encode concepts like body segmentation.

A CPPN, which is a directed graph, composes a set of canonical functions through weighted con-

nections that control the degree of influence exerted by each transformation. Conveniently, CPPNs
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are structurally similar to NNs, meaning that neuroevolution algorithms intended to evolve NNs

can be used to evolve CPPNs with few modifications. CPPN-NEAT is one such method that uses

the NEAT algorithm to evolve CPPNs by extending it to encode hidden-layer nodes with varying

activation functions (conventionally, only a single activation function is used). When adding a

new node, an activation function is randomly selected from a predefined set of canonical functions

(which typically includes Gaussian, sigmoid, sine, cosine and other symmetric, periodic or linear

functions).

Conventionally, CPPNs are applied over a spatial substrate, taking as input the coordinates for

each location along with a radial distance from the center and a bias, and producing a phenotypic

representation of that location. Given their propensity for creating regular spatial patterns, CPPNs

are often demonstrated in creative visual domains, such as genetic art [141, 176], where CPPNs

can effectively encode images. Pixels coordinates on an artificial canvas are queried and the output

is interpreted as a pixel shade or color value.

2.7 Non-objective Search

The field of EC has traditionally focused on fitness-driven optimization, where the quality of can-

didate solutions are assessed based on their distance to an objective. An iterative process of repro-

duction, evaluation and selection is intended to drive the population to convergence on the optimal

solution as defined by the objective function. This approach is inspired by the process of natural

selection, where individuals survive and propagate their lineage based on their degree of environ-

mental adaptation. However, while framing biological evolution as an optimization process is a

convenient way to reason about local adaptations, the whole of evolution has significantly more

profound implications. Instead of converging on a single, globally optimal solution, natural evo-

lution has produced a multitude of diverse species, each well-adapted to their respective niche. It

18



was this insight that gave rise to a new class of non-objective algorithms that explore the search

space without the guidance of fitness.

Non-objective search methods promote divergence, discovering diverse solutions to a given prob-

lem rather than converging on the globally-optimal according to a narrow definition of fitness. One

of the first methods that proposed such an alternative approach to search was an algorithm called

viability evolution (ViE) [92, 95]. ViE imposes a set of thresholds, or viability boundaries, that

individuals have to meet to survive and reproduce. At the beginning of evolution, viability bound-

aries encompass the entire population, but are incrementally tightened as evolution progresses,

spurring the removal of individuals who no longer satisfy the more stringent constraints. This pro-

cess repeats until the algorithm has converged on a set of individuals who satisfy all of the viability

constraints. A convenient property of ViE is that it requires no explicit objective function, which is

particularly advantageous for multiobjective problems where objective weighting has a significant

impact on solution characteristics. Moreover, the loose criterion of viability allows ViE to main-

tain more diversity and sample a broader range of the search space. While MCC draws original

inspiration from ViE, non-objective algorithms are fundamentally different in that they have no

drive toward convergence.

Novelty search [76, 78, 80] was the first of such non-objective algorithms and represented a radical

departure from prior methods. Rather than navigating a search space based on the path of increas-

ing fitness, novelty search rewards solutions that are behaviorally different than what it has seen in

the past (as compared to an archive of novel behaviors), without regard to objective performance.

While such an approach may initially seem inefficient, it turns out to be effective for ambitious

objectives in which the search space exhibits deceptive characteristics. In these domains, follow-

ing the gradient of fitness often leads search into inescapable traps that fall short of the overall

objective. Fitness-based search fails because the stepping stones that lead to the global optimum

may initially pass through low fitness regions of the search space, and therefore be unreachable by
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a fitness-driven trajectory. The key insight is that searching for novelty without regard to fitness

induces a divergent search process that “pushes outward,” allowing more stepping stones to be

sampled and illuminating trajectories that were previously shrouded in deception.

A common criticism of non-objective search methods is their susceptibility to expending resources

in uninteresting areas of potentially vast behavior spaces [22, 72]. To address this concern and

to better align novelty search with selection processes observed in natural evolution, an extension

called minimal criteria novelty search (MCNS) was introduced [77]. MCNS imposes boundaries

on the behavior space which define the minimal criteria for reproduction. Individuals who traverse

beyond those boundaries fail to meet the MC and are therefore ineligible to reproduce. This avoids

propagating a lineage of individuals who would explore areas of the search space orthogonal to

those of interest. While the present work preserves the notion of an MC, it demonstrates how the

MC alone is capable of producing open-ended evolutionary artifacts. Moreover, in contrast to prior

non-objective algorithms, MCC functions without the added overhead of viability boundaries and

without the need for a novelty archive, or even a behavior characterization.

2.8 Quality Diversity

While non-objective search methods, like novelty search, are effective at avoiding deception by

ignoring uninformative fitness gradients, the outcome of search is still interpreted with regard to

a global performance criterion, and the stepping stones discovered along the way are discarded.

A new class of algorithms have emerged that build on the novelty paradigm, but recognize the

intrinsic value of intermediate discoveries, optimizing within each diverse niche in much the same

way as nature discovered a diversity of locally-adapted organisms. The goal of these algorithms

is to collect quality diversity (QD): a set of diverse solutions that are each as high-performing as

possible with respect to a measure of performance [123].
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Lehman and Stanley [79] introduced the first QD algorithm, called novelty search with local com-

petition (NSLC), which combines a novelty objective with a local competition of objective that

rewards phenotypically-similar individuals based on their comparative performance. NSLC was

originally demonstrated in a virtual creature evolution domain where it evolved a diverse array of

morphologies along with effective walking gaits for each distinct body plan. It has also excelled

in other robot locomotion domains, discovering diverse and performant walking gaits for hexa-

pod robots [23] as well as bipedal gaits for humanoid locomotion [19]. NSLC has also shown

compelling application outside of robot locomotion, finding novel methods of resource sharing in

swarm coordination tasks [52] and discovering diverse but informative features for image classifi-

cation [159].

Mouret and Clune [106] later demonstrated an alternative method of QD, dubbed the Multi-

dimensional Archive of Phenotypic Elites (MAP-Elites), where the behavior space is discretized

along each specified dimension of variation, creating a map in which every cell contains the

highest-performing individuals for that behavioral intersection. Unlike NSLC, which uncovers be-

havioral niches during search, MAP-Elites imposes an explicit structure over the behavior space,

which may be beneficial in scenarios where an experimenter has a preconceived idea of the relevant

aspects of behavior. Like NSLC, MAP-Elites has shown promising application to robot locomo-

tion [37, 106, 111], including the ability to effect resilient control in a novel damage-recovery task

[24] where the behavior map stores a diversity of pre-evolved walking gaits which are used to

guide a trial-and-error search to rapidly evolve compensatory strategies that function in spite of

the damage. MAP-Elites has also been applied to generative design tasks, discovering diverse and

efficient aerodynamic designs [45, 46], generating novel and aesthetically-pleasing images [108]

and producing textured, three-dimensional printable structures [84].

While QD algorithms represent the state-of-the-art in divergent search, any analogy to nature’s

propensity for uncovering functional novelty remains limited. Like novelty search, all QD al-
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gorithms introduced to date require a behavior characterization (BC), which is used to quantify

behavioral attributes of the phenotype so that divergence can be promoted by rewarding behavioral

novelty. Moreover, defining a BC requires an algorithm designer to specify the relevant dimen-

sions of behavioral novelty a priori, which may fundamentally limit evolutionary discovery. For

example, MAP-Elites is restricted to behaviors that can be encoded in the behavior map; once all

cells in the map are full, MAP-Elites can only improve upon existing solutions, but can’t discover

novel individuals along undefined behavioral axes. MCC does not attempt to compare or structure

behaviors, and is therefore immune to such artificial scalability constraints.
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CHAPTER 3: APPROACH: MINIMAL CRITERION COEVOLUTION

While the artifacts of evolution on earth are clearly not the result of a convergent process, there is

also no evidence that natural systems exhibit an explicit preference for behavioral novelty. Instead,

biological evolution enforces a criterion of reproductive viability, but organisms or species may

discover a multitude of ways in which to meet that constraint and have the potential to evolve their

own unique route to the MC. For example, the developmental path toward reproductive viability

for bacteria tends to be much shorter and less complex than for mammals. Furthermore, if pop-

ulations were evolving in isolation, their MC may remain static; however, in nature, organisms

are influenced by their environment and other populations with which they are coevolving. These

coevolutionary interactions result in an on-going flux of species’ path toward the MC.

Inspired by this perspective of evolution, Minimal Criterion Coevolution (MCC) [7] is introduced

as a dual-population coevolutionary algorithm, wherein each population is evaluated in accor-

dance with a domain-specific MC. Importantly, MCC does not align with either of the traditional

categories of competitive [131] or cooperative [169] coevolution. It does not evaluate and rank

individuals based on one’s ability to outcompete the other, nor does it grade according to the ex-

tent individuals cooperate to achieve an objective. Instead, individuals are permitted to reproduce

based solely on their ability to satisfy the MC. A notable characteristic of this binary evaluation

criteria is that it imposes no ranking among individuals from either population (they either satisfy

the MC or not), thereby necessitating a method of selection that is free of bias. One such approach

that has proven effective in alife domains is storing each population in a fixed-size queue, similar

to the “parent queue” in the alife world of Chromaria [144]. The parent queue is a circular queue

in which operations are performed in a “first in, first out” (FIFO) manner. It stores individuals who

satisfy the MC in the order of insertion, and maintains a queue pointer that points to the location

of the next individual in line for reproduction. If the pointer reaches the end of the queue, it will
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simply loop back around to the beginning. Additionally, if insertion of a new individual were to

exceed the queue’s capacity, the oldest individual is removed from the queue to make room. This

process ensures that every individual who satisfies the MC gets at least one chance to reproduce.

In MCC, each population has its own queue, thus the parent queue is rebranded as the population

queue. A key feature of the queue data structure is that it maintains a flat, unranked representation

of the population, and therefore introduces no selection bias (apart from MC satisfaction), thereby

allowing evolution to maintain many divergent paths within the confines of the MC.

It is common practice for evolutionary algorithms to begin evolution with a randomly initialized

population; however, the requirement that each population queue contains only individuals who

have satisfied the MC necessitates special consideration for the MCC initialization process. In

particular, it is unlikely that randomly generated individuals will be capable of of satisfying a

non-trivial MC, meaning they would be denied admittance to any of the population queues and

the evolution process would be a non-starter (i.e. the population queues would be empty). To

avoid this causality dilemma, MCC must undergo a bootstrap process wherein the requisite number

of individuals are pre-evolved and used to seed the respective population queues. In principle,

any evolutionary algorithm (including fitness-based algorithms) could be used to pre-evolve the

requisite seed genomes; however, the present implementation of MCC uses novelty search due

to its propensity for discovering diverse solutions and therefore producing a more diverse seed

population with which to begin evolution.

The selection process employed by MCC closely resembles that of a steady-state evolutionary al-

gorithm; however, while steady state algorithms typically evolve the population in a serial manner

(i.e. only one offspring is produced and evaluated on each iteration), MCC is easily paralleliz-

able because there is no fitness score to evaluate and compare. More concretely, MCC’s absolute

measure of performance (i.e. the MC) allows large chunks of the population to be batched and

evaluated in parallel. This design feature facilitates a distributed execution paradigm wherein eval-
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uations are spread across multiple nodes, allowing MCC to scale when simulating evolutionary

processes. Algorithm 1 formalizes the MCC selection, evaluation and removal process in detail.

Algorithm 1 MCC Evaluation Process
Require:
batchSize - # of individuals to evaluate simultaneously
numSeeds - # of seed genomes to evolve that satisfy the MC

. Evolve seed genomes that satisfy MC
randPop← GenerateRandomPopulation()
viablePop← EvolveSeedGenomes(randPop, numSeeds)

loop
. Reproduce children and add parents back into queue
parents← viablePop.Dequeue(batchSize)
children← Reproduce(parents)
viablePop.Enqueue(parents)

for all child ∈ children do
. MC involves interaction with the other coevolving pop.
mcSatisfied← EvaluateMC(child)
if mcSatisfied then

viablePop.Enqueue(child)
end if

end for

. Remove oldest if queue capacity exceeded
if viablePop.Size > viablePop.Capacity then

numRemovals← viablePop.Size− viablePop.Capacity
RemoveOldest(viablePop, numRemovals)

end if
end loop

While MCC has no explicit objective or mechanism that biases selection toward behavioral nov-

elty, it is still likely, only if by random chance, that some individuals will be better at producing

competent offspring than others. Over time, this reproductive disparity could implicitly bias selec-

tion toward lineages that demonstrate a higher level of competency, resulting in a coevolutionary

convergence. In nature, organisms are segregated into species, each of which occupy a particular

25



ecological niche [134, 167]. Every niche has a finite carrying capacity, which imposes a form of

local regulation on the population size of the occupying species, thereby encouraging species to

diverge and found a wide array of diverse niches. Genetics-based speciation is a long-standing,

popular method for diversity preservation in EAs [32, 94].

In addition to the base MCC algorithm, speciation can be optionally implemented as a method of

diversity preservation within the population queues. While individuals within a given population

remain physically stored together in their respective queue, they are clustered into separate logical

groups, or species, based on a measure of their genetic similarity. At the beginning of evolution,

the seed genomes of each population constitute the initial centroids of their respective clusters,

and new additions to the queues are speciated based on genetic distance to the seed genomes.

Additionally, the queue capacity is evenly distributed among species such that each species has a

maximum size given by:

capacity(i) =
n

s
, (3.1)

where i is the species under consideration, n is the number of individuals in the population and s

is the number of species.

The speciated variant also effects a slight modification to the selection process. Rather than select-

ing the next batch of individuals according to their queue order, an equivalent number of individuals

are selected from each species for reproduction (though queue insertion order still dictates order

of selection within the species). Following evaluation, the offspring who satisfy the MC are added

to their respective population queue and assigned to the species with whom they share the greatest

genetic similarity (i.e. they are respeciated). If any of the species exceed their capacity as a result

of speciating the offspring, the oldest individuals assigned to those species (rather than the oldest
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in the queue) are removed, thus ensuring that the queue remains at or below capacity. Algorithm 2

formalizes the speciated MCC selection, evaluation and removal process. This method of specia-

tion is conveniently lightweight because distances are computed only at the genotype level, which

avoids the more expensive process of decoding to the phenotype or characterizing and comparing

behaviors.

While the next few chapters will investigate the variants of MCC introduced in this chapter, later

in chapter 6 an additional variant based on resource limitation will be introduced as an alternative

to the speciated variant.

The intent is for MCC to induce divergence in both populations through a process of genetic drift,

but the MC is utilized to guide drift in directions of desirable or non-trivial interactions, yielding a

continuous, virtually open-ended process.
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Algorithm 2 MCC Evaluation Process with Speciation
Require:
batchSize - # of individuals to evaluate simultaneously
numSpecies - # of species

. Evolve seed genomes that satisfy MC
randPop← GenerateRandomPopulation()
viablePop← EvolveSeedGenomes(randPop, numSpecies)
. Seed species with each viable individual as centroid
speciesPop← SeedSpecies(viablePop)

loop
. Reproduce children from each species and add parents back into queue
for all species ∈ Species do

. Produce offspring from selected parents in current species
parents← speciesPop.Dequeue(batchSize)
children← Reproduce(parents)
. Reinsert parents into queue
speciesPop.Enqueue(parents)

for all child ∈ children do
. MC involves interaction with the other coevolving pop.
mcSatisfied← EvaluateMC(child)
if mcSatisfied then

viablePop.Enqueue(child)
end if

end for
end for

. Respeciate based on addition of viable children
viablePop.Respeciate()

. Remove oldest if species capacity exceeded
for all species ∈ Species do

. Remove oldest from species if species capacity exceeded
if speciesPop.Size > speciesPop.Capacity then

numRemovals← speciesPop.Size− speciesPop.Capacity
RemoveOldest(speciesPop, numRemovals)

end if
end for

end loop
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CHAPTER 4: INITIAL MAZE DOMAIN

Mazes are a common and easily-understood domain where deception and overall task difficulty

are asily visualized. This chapter presents an initial maze navigation task (which will be enhanced

in future chapters) where MCC evolves increasingly difficult mazes along with maze-navigating

agents capable of solving those mazes. The aim of this is to show that MCC is capable of discov-

ering incrementally complex artifacts in both populations, limited only by the evaluation domain,

thereby offering hints of a truly open-ended process.

4.1 Experiment

An ideal domain for initially investigating the capability of MCC is one in which non-trivial adap-

tations and complexity level are explicitly visualized. One such domain that has been used ex-

tensively to evaluate non-objective search algorithms are mazes [77, 78, 99, 105, 107, 123]. In

particular, maze domains yield an interpretable sense of complexity through the number and con-

figuration of interior walls. They also make search space deception and non-optimal trajectories

through the solution space visually explicit in the form of dead-ends and wandering or looping

paths, thereby facilitating the identification of principled, non-trivial evolved strategies.

Mazes are also well-suited to depicting the diversity and complexity of navigational strategies

evolved by MCC; however, they take on a unique significance in the following experiments. In

particular, rather than demonstrating a diversity of solutions to a single maze, MCC produces

several different solutions to many different mazes of varying complexity. That is, MCC evolves

both maze navigating agents along with maze environments. Maze generation is itself an instance

of procedural content generation, which is reviewed in [165]. It is important to note, however, that
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MCC is able to produce this level of diversity in both populations within the scope of a single run

and in the absence of any kind of behavior characterization (BC) or method to compare that BC.

Maze navigating agents are simulated, wheeled robots controlled by evolved artificial neural net-

works (NNs). The intent is for these agents to learn how to efficiently navigate from the start

location of a maze to its ending location. The NeuroEvolution of Augmenting Topologies (NEAT)

method (introduced in section 2.5) has a proven track-record in complex control tasks, and robot

control in particular. Importantly, NEAT’s method of incremental complexification is ideal for

demonstrating an open-ended process because it can lead to increasingly complex behaviors as

more free parameters are added to the evolved NNs. The architecture of the agent’s NN controller

is identical to [76], with six rangefinder sensors (positioned at heading offsets of −90◦, −45◦,

0◦, 45◦, 90◦ and 180◦) that measure distance to line-of-sight obstructions, and four pie-slice radar

sensors that cover the full circumference of the agent and activate when the target falls within the

sensors’ arc. Two effectors apply forces that turn and propel the agent. Figure 4.1 depicts the agent

sensor array and NN topology.
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(a) Neural Network Architecture (b) Agent Sensor Array

Figure 4.1: Neural network architecture and sensor array of the maze navigating agent. The
NN that controls the maze navigating agent is shown in (a). The first six inputs receive signal
from the agent’s laser range finding sensors, which measure distance to an obstruction, while the
next four are fed from the agent’s pie slice sensors, which fire when the goal is within the sensor’s
arc. Two output nodes turn and propel the agent respectively. The agent’s sensor configuration is
shown in (b). The first five laser range finder sensors are placed at 45◦ offsets between −90◦ and
90◦, while the sixth is looking behind the agent at 180◦. Additionally, four equally-sized pie slice
sensors span the circumference of the agent. The arrow to the right of the sensor array indicates
the agent’s heading.

The mazes used in this experiment are square grids with a start location in the upper-left corner

and target location in the lower-right corner; both points remained fixed throughout evolution. An

agent, controlled by a NEAT-evolved NN, begins a trial at the start location and is evaluated based

on its ability to reach the target location within a fixed simulation time. The maze consists of

multiple internal obstructions (i.e. walls) that impede a direct path from start to finish, thereby

necessitating the development of complex, nontrivial navigation strategies.
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4.1.1 Maze Evolution

MCC requires two coevolving populations: one consists of the maze-navigating agents while the

other is the mazes. Evolving mazes requires that the maze structure be reduced to a genetic en-

coding on which standard evolutionary operators can be applied. In this experiment, mazes are a

collection of walls that are arranged in a manner that permits one possible trajectory from start to

finish. The exterior walls bound the maze space while interior walls introduce obstructions, which

prohibit a straight-line trajectory and increase the difficulty of solving the maze. Given that the

difficulty of navigating the maze is generally proportional to the number of interior walls that it

contains, interior wall count is used as an estimate of maze complexity. Additionally, mazes main-

tain a fixed size throughout evolution, thereby imposing an upper bound on maze complexity that

ensures tractability of this initial investigation (though the maze domain enhancements discussed

in chapter 5 removes this constraint).

Each wall is encoded as a gene in the maze genome, and is described by its relative position in the

maze and the relative position of an opening, or “passage”, within that wall (these are two separate

values that combine to form a single gene). A randomly generated, non-evolved orientation seed

is also tagged on to each gene to facilitate exact reproduction of each interior wall. Like the

NEAT connection gene weights, maze genomes adopt a real-valued encoding in the interval [0, 1]

to dictate the placement of both the wall and the passage. Maze genome reproduction is asexual

(i.e. crossover is not implemented) and is controlled by three separate mutation parameters: wall

mutation probability, passage mutation probability and add wall probability. The wall mutation

probability adjusts the position of the wall within the maze, while the passage mutation probability

shifts the position of the passage within a wall. The add wall probability is a complexification

operation that lengthens the affected maze genome by adding a new wall gene. When the genome

reaches maximum complexity, the add wall mutation is disabled. Just as with NEAT, mazes start
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with minimal structure (i.e. interior walls) and gradually complexify as evolution progresses.

Maze genotypes are decoded into their equivalent phenotypic representation by iteratively bisect-

ing the maze and scaling the relative wall and passage position to the dimensions of the affected

sub-space. The first gene in the genome bisects the entire maze space, creating two sub-spaces

with a passage through which the agent can move from one to the other. If the bisection is vertical,

the second gene will bisect the leftmost sub-space, creating two additional sub-spaces. Similarly,

if the initial bisection is horizontal, the second gene will bisect the uppermost sub-space. The

orientation of each wall is dictated by the dimensions of the sub-space that it bisects such that the

wall is placed perpendicular to the dimension of greatest magnitude. For example, if the sub-space

is taller than it is wide, the wall that bisects that space will be assigned a horizontal orientation.

Conversely, if the sub-space is wider than it is tall, the wall will be assigned a vertical orientation.

In the event that the sub-space is square, a randomly assigned orientation attached to the applicable

gene will dictate wall orientation.

This process of iterative bisection continues until all of the genes have been decoded. The maze

generation implementation is inspired by the recursive division algorithm [42, 73], but it uses a

breadth-first variant to avoid unbalanced wall placement within mazes that have not yet reached

maximum complexity. Figure 4.2 depicts the maze complexification process.
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Figure 4.2: Maze genotype (top) and phenotype (bottom). An example of the maze complex-
ification process is shown. The table above each maze enumerates the genes within the genome
that decode to the phenotype immediately below them. Each gene contains a wall position and
passage position, both real numbers in the interval [0, 1]. The wall position describes the relative
position of a wall within its subspace while the passage position describes the relative position of a
passage within that wall. Each gene maps to one wall in the phenotype. The wall that corresponds
to the rightmost gene in its genotype is emboldened in the phenotype depiction. The starting posi-
tion and target position are fixed and are shown in the phenotype at the upper left and lower right
respectively.

4.1.2 Maze Domain Minimal Criterion

Soros and Stanley recently proposed that a nontrivial MC is a necessary condition for open-ended

evolution because it prevents the population from falling into degeneracy [144, 145]. Successfully

navigating a maze requires automatically learning an association between sensory inputs and ap-

propriate course-of-action given those inputs. Given the indirect and often sparse error signal, it

is reasonable to consider maze navigation a nontrivial capability. Each agent in the population

is evaluated on potentially many different mazes from the population queue, and the agent must

solve at least one of those mazes to meet the MC. Conversely, the maze population MC is to be

successfully navigated by at least one agent, thereby preventing the persistence of mazes that are

unnavigable by the extant population.
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Recall that for evolution to begin, the individuals in the two population queues must themselves

meet the MC. To ensure that this condition is met, the maze queue is seeded with mazes that have

eight interior walls and the requisite number of agents are evolved, as part of a “bootstrap” phase,

to solve at least one of these mazes. This ensures that mazes remain nontrivial, in that there are

some obstructions that prevent a straight-line trajectory, while also not requiring significant agent

complexification during the bootstrap stage. Agents are pre-evolved using novelty search due to its

ability to quickly discover highly diverse solutions (specific novelty search parameters are detailed

in section 4.1.4).

4.1.3 Experimental Configurations

The evolutionary process of MCC and the implications of its discoveries represent a significant

departure from both objective-driven and, to a lesser extent, non-objective search algorithms pub-

lished to date. While an objective-driven search algorithm may be evaluated based on its resulting

fitness score or some other well-defined performance metric, casting an objective interpretation

on a divergent or open-ended search method is fundamentally flawed because it bounds what is,

in principle, an unbounded process of discovery. Non-objective and QD algorithms are similar to

MCC in their rejection of an overarching objective function as a guiding force, but differ in terms

of the artifacts that they produce. In particular, while QD algorithms may evolve multiple agent

controllers that demonstrate a diverse array of navigation strategies for a single maze, MCC would

coevolve similarly diverse controllers in tandem with multiple mazes, yielding a diverse array of

nontrivial solutions in both populations within the scope of a single run. Such a disparity in both

method and outcome render a direct quantitative comparison between MCC and other existing al-

gorithms unfeasible and potentially misleading. Instead, the purpose of this initial evaluation is to

survey the results of a search process that is almost entirely undirected and potentially open-ended,

so as to better understand its evolutionary dynamics and identify opportunities for enhancement.
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In the first experiment, agents and mazes are admitted to their respective queues based on satisfac-

tion of their respective MC (described in section 4.1.2). On each iteration, a batch of mazes and

agents are selected and evaluated asynchronously. Specifically, the mazes are evaluated against the

existing contents of the agent queue and the agents are evaluated on the contents of the maze queue.

When either queue reaches its capacity, excess individuals are removed based on their compara-

tive age (i.e. the oldest are removed first) to make room for new offspring who have satisfied the

MC. This configuration provides a simple baseline of MCC that acts as a control for the speciated

variant and other possible extensions.

The second experiment imposes an aspect of local regulation by speciating both the agent queue

and the maze queue. Given that agents are evolved using the NEAT algorithm, the agent queue

is speciated based on NEAT’s built-in speciation mechanism [152]. Recall that mazes are repre-

sented as a collection of internal walls, with each wall having an assigned position and passage

location; therefore, maze similarity should be computed as a function of wall and passage prox-

imity. Accordingly, the maze queue is speciated based on a cantor pairing of each gene’s relative

wall position and relative passage position. More concretely, both gene components (wall position

and passage position) are combined to yield a scalar value for each gene mi in maze genome m:

mi =
1

2
(wi + pi)(wi + pi + 1) + pi, (4.1)

where wi and pi are the relative wall and passage positions encoded by gene i, respectively. Ge-

netic similarity between two mazes is then determined based on computing the Euclidean distance

between two maze position vectors. Maze vectors may vary in magnitude based on the number of

interior walls they contain. If two maze vectors of differing length are being compared, the missing

genes in the shorter vector are assigned position zero. Individuals in both the agent queue and the

maze queue are logically grouped with genetically similar agents or mazes respectively (this is a
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logical grouping because they still occupy their single, respective queue). Selection and removal

are subsequently carried out on a per-species basis (detailed in section 3). Importantly, speciation

in both populations is performed at the genotype level, thus avoiding the additional overhead of

characterizing behavior or maintaining an archive [76, 78, 130] or map [46, 106], a property of

MCC that sets it apart from all other divergent search algorithms proposed to date.

4.1.4 Experimental Parameters

The novelty search bootstrap process begins with 250 randomly generated agents and uses NEAT

parameters identical to those given in [78]. Agents are evaluated on 10 mazes, each with 8 walls

having randomly generated maze and passage positions. Bootstrap execution halts when 20 distinct

agents are evolved that can solve one or mazes, and each of the 10 mazes is solved by at least one

agent. The 20 agents and 10 mazes are used as the seed population of their respective queues. In

the speciated variant, the seed genomes form the initial centroids of their respective species cluster.

Both the baseline and the speciated variant are executed for 20 runs of 2,000 batches each. The

agent queue begins evolution with 20 seed genomes and has a maximum capacity of 250 genomes.

NEAT is parameterized with a 0.7 probability of mutating a connection weight, 0.1 probability

of adding a connection, 0.01 probability of adding a node and a 0.0001 probability of deleting a

connection. The maze queue begins evolution with 10 seed genomes and has a maximum capacity

of 50 genomes. The maze-specific evolutionary algorithm is parameterized with a 0.05 probability

of mutating a wall location, a 0.05 probability of mutating a passage location and a 0.7 probability

of adding a new wall gene. An initial parameter sweep revealed that the aforementioned values

yielded reasonably diverse and complex solutions.

Agents have a terminal velocity of 3 units per time step and are allotted a maximum of 600 time

steps to successfuly navigate (i.e. from start to finish) a 320x320 unit maze. SharpNEAT 3.0 [62] is
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used as the neuroevolution framework, and was extended to implement MCC and novelty search,

and to support encoding, decoding and evolving maze genomes.

4.2 Results

One of the primary hypothesized features of MCC is its ability to evolve a broad array of di-

verse and increasingly complex artifacts in both populations within the same run. To validate that

assertion, the results here focus on a qualitative assessment of population diversity as well as a

quantitative analysis of complexification trends. Control (i.e. non-speciated) and speciated experi-

mental variants are also compared to gauge the extent to which speciation aids in maintaining more

diversity in both the agent and the maze population.

Figure 4.3 depicts a sample of mazes and agent trajectories evolved by a typical single run of

MCC. Several of the mazes shown have reached maximum complexity and agents have developed

similarly complex navigation strategies to solve them (as indicated by the solid line trajectory).

This indicates a healthy process of coevolutionary complexification; however, many of the solution

trajectories permitted by the mazes are similar. Separate runs of the control experiment also result

in a high degree of structural similarity between mazes, but they typically converge to different such

structures. This suggests that certain structural themes and navigation patterns may be becoming

canalized. Figure 4.4 depicts a sample of mazes and agent trajectories evolved by a typical single

run of the speciated variant. Maze structures and the resulting agent trajectories are visibly more

diverse, suggesting that enforcing genetic diversity through maze and agent queue speciation may

be a viable approach for maintaining adequate phenotypic diversity in MCC.
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Figure 4.3: Agent Trajectories from the MCC Control Experiment. A sample of eight agent
trajectories through different mazes evolved by the MCC control experiments during the same run
are shown. These exemplify how solved mazes from a run of the control tend to look similar.
While mazes are still getting more complex, their topological similarity suggests that diversity
preservation may be a missing ingredient.
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Figure 4.4: Agent Trajectories from the MCC Speciated Variant. A sample of eight agent
trajectories through different solved mazes evolved by the MCC speciated variant during the same
run are shown. Mazes maintain a healthy diversity, both in terms of complexity and arrangement
of walls, while remaining nontrivial. This result is perhaps one of the first signs of open-ended
divergence.

In addition to a sample-based assessment of the phenotypic and behavioral artifacts of MCC, a

quantitative study is performed to provide a more holistic view of global diversity and complexity

trends over the entirety of a run. Population diversity is computed by measuring the Euclidean

distance between each point on a given agent’s trajectory and the corresponding point at the same

time step on the trajectory of all other viable agents. Formally, trajectory diversity is given by:

div(a) =
1

n

n∑
i=1

(
1

m

m∑
t=1

dist(at, µi,t)), (4.2)

where a is the agent whose trajectory is being measured, at is the position of the agent at time
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step t, µi,t corresponds to the position of the agent i against which a is compared at time step

t, m is the number of time steps in the simulation, n corresponds to the number of agents who

also successfully navigated a maze in the current maze population, and dist is the function that

computes the distance between any two agent’s trajectories (any distance metric could be plugged

in, but in this case, the Euclidean distance is used). The global diversity score is computed by

simply averaging the agent trajectory diversity scores. This approach has been used in prior work

[75, 107, 135] and shown to be effective for measuring phenotypic and behavioral diversity.

A key feature of open-ended systems is the continuous accumulation of diverse and high-functioning

artifacts throughout a single run. Figure 4.5 compares the diversity of agent trajectories (produced

by maze-navigating agents throughout entire runs) from both the control and the speciated exper-

iments. The results demonstrate that speciating the agent and maze queues lead to a significantly

more diverse pool of maze solutions (p < 0.001; Welch’s t-test), thus affirming the merit of a di-

versity preservation mechanism. This dynamic is also evidenced in figure 4.6, which compares the

proportion of mazes navigable by agents at various points during evolution. In particular, mazes

in the control experiment are navigable by a significantly higher proportion of agents throughout

evolution than those evolved by the speciated variant (p < 0.001; Welch’s t-test); a side-effect of

speciation maintaining more diverse maze structures and navigation strategies. In addition to being

more diverse, the mazes are also nontrivial to solve because there is no single navigation strategy

that can navigate more than a small fraction of them.
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Figure 4.5: Diversity of Agent Trajectories collected over Full Run (averaged over 20 runs of
both variants). The speciated variant configurations produce significantly more diverse solutions
over the entirety of a given run, an indication that speciation is aiding in the preservation of diverse
and nontrivial mazes, which in turn require specialized control strategies in the agent population.
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Figure 4.6: Average Proportion of Mazes Solved per Agent over Evolution (over 20 runs of
both variants). The agents in the control population demonstrate the ability to solve a higher
proportion of mazes as a result of convergence in the maze population to similar structures, as well
as over-training of agents. Conversely, speciated agents solve a lower proportion because their
population maintains greater heterogeneity.

While MCC demonstrated the ability to evolve artifacts that are both functional and diverse, per-

haps its most notable capability is the evolution of increasingly complex artifacts. Figure 4.7 de-

picts rapid complexification in the maze population, leveling off only when the maze complexity

ceiling is reached, and implying a similarly brisk developmental process in the agent population,

which must be evolving progressively more advanced control policies to solve those mazes. This

result hints at a genuinely open-ended process, and motivates the maze domain enhancements that

follow.
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Figure 4.7: Speciated Maze Complexity Trend. The average minimum, mean, and maximum
maze complexity over evolution is shown for the speciated variant. Note the rapid increase in
complexity throughout the entire population while also maintaining a healthy range of complex-
ities throughout the run. The leveling off of the maximum and mean maze complexities is a side
effect of the fixed-sized maze domain, an artificial constraint that was imposed only for the initial
investigation (and is removed in chapter 5).

4.3 Implications

The initial experiments demonstrate the ability of MCC to induce a reciprocating increase in com-

plexity between both populations, ultimately reaching the maze domain complexity ceiling. This

phenomenon persisted across all runs, even without explicitly promoting divergence through char-

acterizing and archiving behavioral novelty. While both experimental variants produced a co-

evolutionary divergence, speciation enabled MCC to explore divergent lineages simultaneously,

discovering and elaborating on multiple unique pairings in a single run.

MCC demonstrated surprising efficiency at evolving agents capable of solving mazes at their max-
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imum complexity (i.e. with the maximum number of walls supported by mazes of the given di-

mensions) well before the end of each run. The complexity ceiling was imposed to ensure com-

putational tractability during initial experiments, wherein the dynamics of MCC were unknown.

However, as an algorithm designed to facilitate open-ended discovery, even beyond the reach of

conventional QD methods, MCC should be evaluated in a domain that is unbounded to the ex-

tent that complexity can continually be added in both populations. The next chapter demonstrates

such a domain, where mazes can expand, add structure and diversify without limit, producing an

unending series of navigation challenges.
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CHAPTER 5: ENHANCED MAZE DOMAIN

The initial maze domain demonstrated MCC’s ability to coevolve principled navigation strategies

in maze navigating agents along with increasingly difficult maze environments; however, a limi-

tation in these experiments (which were bounded to maintain tractability for initial investigation)

was that mazes were static in size and had a complexity ceiling based on the number of walls that

fit within the maze boundaries. A notable result of the initial experiments was that MCC rapidly

exhausted maze domain complexity, raising the compelling question of whether MCC would be

able to continue to discover novel and more complex pairings if this artificial constraint were re-

moved. The aim of the enhanced maze domain [8] is to address that question by allowing mazes to

expand, creating more room for complicated solution paths and deceptive offshoots, and producing

an unending curriculum of challenging tasks for agents. Additionally, the maze domain itself is

offered as a lightweight benchmark for testing and comparing open-ended coevolutionary methods

in the future.

5.1 Maze Encoding

As in the initial maze experiments, evolved mazes are square grids with a start location in the

upper-left corner and target location in the lower-right, both of which remain fixed throughout evo-

lution. Maze-navigating agents are simulated, wheeled robots that are controlled by evolved NNs;

their architecture is identical to the initial experiments described in chapter 4, with six rangefinder

sensors (positioned at heading offsets of −90◦, −45◦, 0◦, 45◦, 90◦ and 180◦) that measure distance

to line-of-sight obstructions, and four pie-slice radar sensors that are positioned along the agent’s

circumference and activate when the target is within the sensors’ arc.
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Agents begin a trial at the start location and are evaluated on their ability to reach the target location

within a given simulation time; however, because mazes will be allowed to expand, the simulation

time is scaled linearly to the length and complexity of the solution path. The mazes consist of

internal walls that impede trivial, straight-line trajectories, well as winding and deceptive traps

that are introduced by explicitly evolving and convoluting the solution path (detailed in 5.1.2),

presenting opportunities for an agent to wander into a dead-end corridor and expend the allotted

time. Both of these features are intended to encourage the development of complex and principled

behaviors.

5.1.1 Maze Expansion

The MCC bootstrap process remains unchanged from the initial experiments: seed agent genomes

are evolved to solve a set of randomly-generated mazes with fixed boundaries and uniform size.

Following completion of the bootstrap, the MCC maze reproduction process includes an expand

maze mutation probability controls the proportion of mutations that result in a maze expansion.

When an expand maze mutation is applied, the outer boundaries of the selected maze are each

lengthened by one unit, maintaining a square geometry. Maze boundaries expand down and to the

right, thereby moving the target location further away from the starting location. Interior walls are

each lengthened proportionally to fill the additional space.

Once MCC has run for several iterations, the maze population includes mazes that not only vary in

structure, but also in size, with larger mazes accommodating the addition of more interior walls and

allowing the formation of more complex and convoluted solution paths. Figure 5.1 (right column)

shows a larger maze generated by the new maze encoding. The hope is that the continual process

of maze expansion and elaboration will elicit incremental development of increasingly advanced

navigation strategies in the agent population, producing a reciprocating complexity explosion in
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both populations and promoting continual discovery of unimagined problems, each paired with

novel and effective solutions.

Figure 5.1: Comparing the original (published in [7] and described in chapter 4) and new
maze encodings. Mazes generated in the initial MCC experiments (left) are shown next to mazes
of a similar size generated by the new encoding (middle), and a larger (expanded) maze, also pro-
duced by the enhanced encoding (right). While the initial maze encoding prevents trivial strategies
by obstructing straight line navigation, the solution path lacks a distinct shape, and wall placement
is often unbalanced and overly segmented, filling up some corridors with short stubs while oth-
ers are left largely empty. In contrast, the new maze encoding produces winding and non-trivial
solution paths with balanced wall placement, and maintains these properties as mazes expand.

5.1.2 Path Evolution

In the initial MCC experiments, walls were placed so as to permit only one route from start to

finish. Effectively, the solution path was an artifact of wall placement, which exhibited two dis-

tinct shortcomings: (1) small changes in wall placement (resulting from a mutation operation that

shifted or added a new wall) could substantially modify the path, potentially inducing a highly

rugged search landscape, and (2) as mazes expand and more walls are added, the path is further

subdivided into short directional segments with similarly shallow corridors, yielding a degenerate
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and unconvincing aesthetic to the mazes (figure 5.1, left column). While adding walls may make

the maze as a whole may appear imposing, more detailed investigation occasionally reveals that a

trivial navigation strategy may be able to succeed through repeated application of a simple policy

(e.g. move up, move down, repeat).

In the new encoding is, rather than relying upon wall placement to mold the path, the path itself

is evolved, specified by a series of “waypoints,” that are joined by a simple set of rules that derive

a single valid solution trajectory. The solution path carves out sub-sections of the maze that open

onto the path and are complexified by distributing and arranging wall genes, creating multiple

opportunities for an agent to get stuck by veering into long and winding corridors, producing an

aesthetic that is simlar in appearance to conventional mazes (figure 5.1, middle and right columns).

Waypoint coordinates, called path genes, are directly encoded in the maze genome and augmented

with an “intersection orientation,” which specifies the direction of the path segment (i.e. verti-

cal or horizontal) as it intersects the waypoint. A mutate waypoint probability shifts an existing

waypoint by one unit in one of four directions (up, down, left or right) while an add waypoint

probability controls the frequency at which new waypoints are added to the maze. The intersec-

tion orientation informs how the solution path is structured when connecting two waypoints; it is

randomly-assigned and fixed (i.e. not mutated). Waypoints are connected in the order that they are

added to the maze genome, and the direction of the solution path respects waypoint intersection

orientations.

Figure 5.2 visually depicts the effect of the path, wall and maze expansion mutation operators. The

leftmost maze consists of one waypoint and with a horizontal intersection orientation at coordinate

(6, 4). The solution path is laid down vertically from the start location, then turns at (1, 4) to

horizontally intersect the waypoint, after which it descends to the bottom of the maze and reorients

again to form a horizontal intersection with the target. Note that the only waypoint in the first
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column is the one at coordinate (6, 4); the other path segments, including locations where the

path changes direction (known as “junctures”), are generated by the path generation procedure.

The bottom row depicts the final maze product, with walls positioned around the path. In the

first column, there is only one wall gene with a vertical orientation, and it is repeated so that all

sub-spaces are filled to capacity.
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Figure 5.2: The maze evolution process. Maze genotypes (top), respective trajectories (middle),
and respective phenotypes (bottom) are shown. The table above each maze enumerates the path
(waypoint) and wall genes, while the visualization directly below depicts the solution path that
is generated by connecting each waypoint. In the maze phenotypes at bottom, dots are shown
to depict the solution path. Each path gene specifies the coordinates of a waypoint, and each wall
gene contains a wall position and passage position, both real numbers in the interval [0, 1]. The wall
position (W) describes the relatives position of a wall within a sub-space induced by the solution
path, while the passage position (P) describes the relative position of a passage (opening) within
that wall. The initial genome (first column) consists of one path gene and one wall gene; the single
wall gene is repeated to fill out all sub-spaces surrounding the solution path. The second column
depicts an add wall mutation, where the two walls repeat to fill out each subspace, adding variation
to the resulting corridors. In the third column, an add waypoint mutation and the resulting solution
path modification is depicted. A mutate waypoint operation is carried out in the fourth column, and
the solution path is modified to intersect the new waypoint location without substantially changing
the shape of the solution path. Finally, the fifth column depicts an expand maze mutation, extending
the outer boundaries down and to the right, and resulting in a corresponding extension of the
solution path that modifies only the last vertical segment while leaving the rest intact.

The second column demonstrates an add wall mutation. The second wall has a horizontal orienta-

tion and it is alternated with the first to fill up all sub-spaces, leading to mazes that exhibit walls
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with varying lengths and orientation. In the third column, a second waypoint (path gene) is added

at (4, 7) with a horizontal intersection orientation. The path generation procedure accommodates

the new waypoint and its horizontal intersection orientation by inserting a juncture at (6, 7) such

that the path orientation is changed from vertical to horizontal. There are many different ways in

which the two waypoints could have been connected, but a governing principle of the path gener-

ation procedure is to apply the modification that results in the smallest possible path modification.

Additionally, waypoint additions are constrained such that they are added either below (as in the

present example) or to the right of all existing waypoints. Similarly, mutation cannot shift a way-

point both above and to the left of prior waypoints. These constraints prevent trajectory overlap in

mazes that have dense concentrations of waypoints, while still permitting solution paths that force

movement in all cardinal directions.

A mutate waypoint operation is shown in the fourth column, shifting the original waypoint from

(6, 4) to (7, 4) (recall that the intersection orientation remains fixed). Once again, the path genera-

tion procedure applies the smallest change possible, simply extending the first horizontal segment

of the solution path to intersect the waypoint at its new location. Finally, the fifth column demon-

strates an expand maze mutation, where each of the outer boundaries are extended by one unit

down and to the right. To intersect the target (which is now at (11, 11) instead of (10, 10)), the last

vertical path segment is extended by one unit while the rest of the path is unmodified. The maze

generation algorithms are described with detailed pseudocode in appendix A.

5.2 Experiment

The bootstrap process is executed in a manner identical to the initial maze domain experiments,

using the novelty search algorithm with parameters identical to those in Lehman and Stanley [78].

Agents are evaluated on ten simple, randomly-generated mazes, each of size 10x10 and consisting
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of two waypoints and two wall genes. Execution halts when 20 distinct agents are evolved that can

solve one or more mazes. Those 20 agents and 10 mazes seed their respective population queues

and constitute the initial centroids of each species cluster. During MCC execution, each agent

must solve at least one maze to satisfy their MC while each maze must be solved by at least one

agent. This relaxed constraint permits rapid complexity growth while ensuring that mazes remain

solvable by at least a portion of the extant population. Agents are evaluated on random mazes from

the current population and vice versa, and evaluation halts when an individual satisfies their MC

or when they have been evaluated on all members of the opposite population.

Each experiment is executed for 20 runs of 2,000 batches, each batch evaluating 40 agent genomes

and 10 maze genomes. The agent queue has a maximum capacity of 250 with a 0.6 probability of

mutating connection weights, 0.1 probability of adding a connection, 0.01 probability of adding a

node and a 0.005 probability of deleting a connection. The maze queue has a maximum capacity

of 50 with a 0.05 probability of mutating a wall, passage or waypoint location, 0.1 probability

of adding a wall, 0.005 probability of deleting a wall, 0.1 probability of adding a waypoint and

a 0.1 probability of maze expansion. These values produced complex mazes of variable size and

complexity during a parameter sweep.

Agents are restricted to a maximum velocity of 3 units per second and are allotted a simulation

time equivalent to two times the length of the solution path (where length is the sum of single-unit

path segments, as shown in figure 5.2). This limit grants a simulation time proportional to the

initial MCC experiments with fixed-size mazes, while scaling with the size of the maze and the

complexity of the solution path. That is, if two mazes are of the same size but one has a longer,

more winding solution path than the other, then it will be granted a longer simulation time.

SharpNEAT version 3.0 [62] is the neuroevolution platform, and was extended to implement the

MCC and novelty search algorithms, as well as to support encoding and evolving maze genomes.
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Note that a direct quantitative comparison of the present results with those presented in chapter 4

would not be feasible because these experiments enable unbounded domain expansion – a charac-

teristic that the original experiments lacked.

5.3 Results

Recall that a primary goal of MCC is to induce an open-ended search process through coevolu-

tionary interactions that result in increasingly complex and diverse discoveries. The results shown

below demonstrate MCC’s ability to exploit the enhanced maze domain, evolving agents that are

capable of solving larger, more complex mazes. The qualitative results showcase a diverse array of

mazes that were evolved in a single run, each with varying size and complexity, and solved by an

agent controller. Additionally, a quantitative analysis demonstrates a systematic increase in both

maze and navigator complexity.

Maze expansion creates space for additional waypoints, which can often further complicate the

solution path by morphing it in non-trivial ways and introducing additional opportunities for de-

ception through adjoining cul-de-sacs. Figure 5.3 depicts a sample of agent trajectories (from

evolved NN controllers) through mazes evolved by a single run of MCC, each varying in both size

and structure. These results show visually how mazes are expanding in size and complexity while

continuing to be solved.
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Figure 5.3: Agent trajectories discovered within a single run of MCC. A sample of four solution
trajectories through different mazes evolved within a single run of MCC are shown. Maze A is
similar to the bootstrap mazes in size and complexity, with outer walls that are 10 units in length
and containing 2 waypoints and 2 interior walls. Maze B is 15x15 with 4 waypoints and 3 walls,
while maze C is 22×22 with 7 waypoints and 12 walls. The largest maze (D) is 25x25 with 8
waypoints and 6 walls.

A key feature of the reconceived maze domain is the ability to dynamically expand, allowing addi-

tional space for longer, more convoluted trajectories, which can force agents to evolve increasingly

complex navigation strategies to remain viable (i.e. to satisfy their MC). Figure 5.4 demonstrates

that mazes indeed increase in size, linearly on average, without leveling off, while the number of

junctures (where turns are necessary in the main solution path) continues to increase at a similar

rate (figure 5.5). As both results also show, MCC, on average, maintains a healthy diversity of

maze sizes and configurations throughout each run. Regarding the agent NNs, figure 5.6 depicts

a linear increase in maximum and mean number of connections throughout evolution, demon-

strating, in part, the agents’ evolutionary response to increasingly difficult mazes. However, the

minimum complexity remains flat as less complex agents maintain viability by exploiting smaller,

less complex mazes. Moreover, the widening gap between minimum and maximum sizes suggests

a continued search space divergence that shows no sign of leveling off.
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Figure 5.4: Maze Expansion Trend. The average minimum, mean and maximum maze dimen-
sions over evolution are depicted. Mazes expand linearly throughout the course of a run with no
evidence of tapering off, suggesting MCC’s ability to induce a process of unbounded maze elabo-
ration.
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Figure 5.5: Solution Path Complexification Trend. The average minimum, mean and maximum
junctures over evolution are shown. As waypoints are added, the solution path is convoluted by
junctures–perpendicular intersections from waypoint connections which force agents to develop a
policy capable of principled-reorientation along the solution path.

57



Figure 5.6: Agent NN Size Trend. The average minimum, mean and maximum agent NN connec-
tions over evolution are shown. Maximum and mean NN size increases as agents evolve to solve
more difficult mazes, while some agents remain small (indicated by the minimum connections
trend), but refine their existing weights and satisfy their MC using smaller, less complex mazes.
As with the diversity of maze sizes, this result demonstrates MCC’s ability to maintain diversity in
both populations, keeping many distinct paths to reproductive viability open simultaneously.

Maze expansion and path complexification slice the maze space into quadrants that open on to

the solution path. Some of these openings may initially appear to provide a more direct route to

the target, introducing a deceptive characteristic that can lead agents astray and prevent timely

solution path traversal. The addition of these “deceptive entrances” is proportional to the rate of

maze growth and path complexification (figure 5.7), adding further evidence of increasingly robust

agent adaptation.
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Figure 5.7: Solution Path Deception Trend. The figure depicts the average minimum, mean and
maximum quadrant entrances throughout evolution. Entrances that face the solution path introduce
opportunities for deception by allowing an agent to wander into regions that may initially seem
promising, but that are ultimately dead-ends. The continued addition of path openings indicate
MCC’s ability to evolve navigation strategies that are robust to variable levels of domain deception.

A notable, yet intuitive distinction between the initial maze domain used in the original MCC

experiments and the enhanced, expanding maze domain is the trend in population viability over

the course of evolution. In particular, after batch 511, the percentage of maze offspring that are

viable in a run of fixed mazes (averaged over 20 runs) is significantly higher than for expanding

mazes (p < 0.05; Welch’s t-test) because the fixed mazes have reached their complexity limit and

therefore stop consistently posing new challenges to the agent population (figure 5.8. On average,

only between 10% and 15% of the agent offspring satisfy their MC on expanding mazes at any

point in evolution. This observation is further reinforced by examining the proportion of mazes

that a given agent is able to solve at any point during evolution, shown in figure 5.9. In the initial

maze domain, agents are able to apply similar strategies to solve a significantly higher proportion
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of fixed size mazes than expanding mazes (p < 0.05 after batch 650; Welch’s t-test) because while

maze walls are rearranged, the solution path remains comparatively trivial. Additionally, because

mazes are of a fixed size, there exists a finite number of ways in which the solution path can be

perturbed. In the enhanced maze domain, however, evolution extends and warps the solution path

of each maze in different and complex ways to which a single navigation strategy would unlikely

be able to generalize. By allowing mazes to expand unboundedly and modify their solution path,

MCC is able to consistently generate new challenges for the agent population.

Figure 5.8: Maze Population Viability Trend. The figure depicts the comparative percentage of
viable mazes over evolution for the fixed and expanding maze domains. In the fixed-size maze
experiments, mazes quickly reach their complexity ceiling, and further mutations yield minor wall
rearrangements that prove trivial for navigation, as an increasing proportion of the agent popula-
tion drifts toward a small set of strategies. When this complexity constraint is removed, domain
difficulty varies organically, leading to more difficult mazes that prove challenging (though not
impossible) to navigate.

60



Figure 5.9: Average Proportion of Mazes Solved per Agent over Evolution (over 20 runs of
both variants). The agents in the in the initial maze domain experiments demonstrate the ability
to solve a higher proportion of mazes because the fixed maze canvas size imposes a limit on the
number of solution path perturbations that can emerge from wall additions and rearrangements,
which allows agents to eventually hone in on a finite subset of successful navigation strategies.
The enhanced maze domain imposes no such limit; because mazes can expand, an effectively
infinite number solution path shapes can be discovered, thereby preventing agents from relying on
a small set of well-adapted policies.

5.4 Implications

The expandable maze encoding makes it possible to observe the MCC algorithm’s ability to exploit

a novel maze domain, relieved of complexity constraints and designed to grow unboundedly sub-

ject to the MC. Reciprocating increases in size are evident in both the maze and agent populations

(as measured by the number of NN connections), with no apparent stagnation. In all runs, agents

evolved solutions to a breadth of non-trivial mazes, inducing a population-wide drift toward in-

creasingly large and intricate mazes, each with complicated solution paths that exhibited multiple
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opportunities for deception. Both populations achieved an MC-constrained equilibrium with each

other, maintaining a sustainable rate of complexification and producing a diverse array of mazes

and associated solutions, even without relying on the guidance of fitness or the divergent pressure

of novelty.

Although these results are among the first to explore open-ended coevolutionary growth and com-

plexification, there remain several opportunities for further investigation. A close examination of

learned navigation strategies hints that, in some cases, agents may be relying on simpler heuristics

than their trajectories would suggest. For example, in figure 5.3 maze A, the agent is forced to

make five decisions regarding the direction to turn. However, for all but one of those decisions, the

agent only has one option that does not lead into a wall or backtrack on the solution path. This fact

is a potential hint of some degree of collusion in the maze and agent populations: mazes discover

the “path of least resistance” for adding complexity that is easily exploitable by agents. However,

the extent to which these system dynamics can be observed and addressed is vastly improved in

the enhanced maze encoding.

The next chapter presents a method that reduces such collusion, exploiting the enhanced maze

encoding to evaluate a new method of diversity preservation that uses resource limitation (instead

of specation) to induce divergence by limiting the number of agents that can use the same maze to

satisfy their MC.
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CHAPTER 6: RESOURCE LIMITATION

The expanding maze domain produced an array of novel results that demonstrate MCC’s capacity

for open-ended innovation and incremental complexification in multiple simultaneously evolving

lineages. However, while MCC’s evaluation process (i.e. evolution subject to an MC) is rooted in

nature’s loose reproductive viability criterion, its method of diversity preservation remains ad-hoc

and lacks natural precedent. Like many other EAs (including QD algorithms) MCC employs spe-

ciation to segregate members of both populations into one of a predetermined number of species

based on an explicit comparison of genetic similarity (chapter 2 section 2.2 reviews speciation in

EC). Though speciation is a well-established, ecological phenomena [114, 134], its implementation

is contrived and determining how to meaningfully compare similarity imposes a priori structure on

a system that is intended to produce novel and perhaps unanticipated artifacts. This chapter intro-

duces an alternative method of diversity preservation through resource limitation, and demonstrates

its application to the maze domain where a far greater diversity of maze sizes and solution path

motifs are discovered without the need to explicitly measure and compare genetic similarity.

6.1 Diversity Preservation through Limited Resources

In nature, species occupy niches whose carrying capacity is limited by environmental factors,

including the availability of natural resources (i.e. consumable material that is required for the

persistence of an organism, such as habitat and nutrients) and the frequency predation [134, 167],

both of which impose a form of local regulation on niche membership. A long-standing hypothesis

in population ecology is that competition for limited resources has played a critical role in adaptive

radiation and the formation of ecological communities [137, 163, 164]. In particular, as resources

become increasingly scarce, organisms are forced to diverge and found new niches in which to
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continue their lineage. Those organisms capable of exploiting underutilized resources will be

favored over those who cling to resource-depleted niches [138].

Using the Avida digital evolution platform [113], Cooper and Ofria [20] demonstrated that com-

petition for limited resources can have a stabilizing affect on simulated community structures.

Resource limitation was also shown to be an effective form of diversity preservation in EC [35,

48, 49], but it has primarily been leveraged in the context of objective-driven, convergent search

processes. Recent work in EC, however, has shown that genetic drift (a process on which MCC

heavily relies) can lead to the founding of new niches [29, 82], thereby creating novel and varied

opportunities for individuals to persist. This effect is especially true for organisms who exhibit

a high degree of evolvability because they are innately more adaptable to new niches, thereby

promulgating new lineages of similarly evolvable offspring.

Viewing speciation as a process that emerges from limited environmental resources and random

drift across the genotype space is well-aligned with MCC’s open-ended approach to search. Rather

than computing a genetic distance between individuals and grouping the most similar into one of a

predefined number of species, in this new version of MCC a limitation is placed on the number of

times an individual in one population can “use” an individual from the other population to satisfy

their MC. This approach is particularly intuitive when individuals in one population are framed as

evaluation environments and those in the other population as organisms whose MC is to interact

with an environment in some desirable manner.

This way, each member of the population on which a resource limit is imposed maintains a tally

of the number of times it has been utilized by a member of the opposite population for satisfying

their MC. When the usage tally reaches the predefined resource limit, it can no longer be used

for MC satisfaction. Algorithm 3 formalizes the MCC selection, evaluation and removal process

with the resource-limited population. Maintaining diversity through resource limitation negates
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the requirement for computing genetic distance, creating a dynamic, self-regulating system that

exploits MCC’s propensity for open-ended divergence to discover new and varied adaptations.

6.2 Experiment

The enhanced maze domain (which is described in chapter 5) is used to evaluate resource limitation

as a potential method of diversity preservation. Mazes consist of a solution path that is specified by

a series of evolved waypoints (path genes), along with walls that are placed in spaces carved out by

the path into which an agent can traverse and become lost in winding corridors. An agent begins

a trial at the top left of the maze and must navigate the solution path to reach the target (placed at

the bottom right) within the allotted simulation time.

While a differing arrangement of walls may increase or decrease the level of domain deception, it

may or may not necessitate modification of an agent policy for successful navigation. Conversely,

perturbing a path gene directly modifies the solution path, which is more likely to require explicit

adaptation. Path genes are the fundamental units of maze genomes, and were therefore used to as-

sess maze similarity for speciation in the original MCC experiments. Specifically, maze similarity

was computed as the manhattan distance between every pair of path waypoints. If mazes had an

unequal number of path genes, the last waypoint in the maze with fewer path genes was used for

remaining distance calculations. In the agent population, the standard NEAT method of specia-

tion was used [152] wherein similarity is determined by the number of connections with matching

historical markings.

While deriving an intuitive distance metric is fairly straightforward for simple structures such as

mazes, there may exist other domains for which quantifying distance is more difficult or less infor-

mative. For example, in a robot locomotion domain where MCC is used to coevolve morphology
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Algorithm 3 MCC Evaluation Process with Resource Limitation
Require:
batchSize - # of individuals to evaluate simultaneously
numSeeds - # of seed genomes to evolve that satisfy the MC
resourceLimit - max # of evaluations that count toward MC

. Evolve seed genomes that satisfy MC
randPop← GenerateRandomPopulation()
viablePop← EvolveSeedGenomes(randPop, numSeeds)

. This loop runs for both populations
loop

. Reproduce children and add parents back into queue
parents← viablePop.Dequeue(batchSize)
children← Reproduce(parents)
viablePop.Enqueue(parents)

for all childinchildren do
if popType(child) = agent then

for all env ∈ environments do
. Only select environments below resource limit
if env.Usage < resourceLimit then

evalIndiv ← env
break

end if
end for

else
. Agent population does not have resource limit
evalIndiv ← next(agents)

end if
mcSatisfied← EvaluateMC(child, evalIndiv)
if mcSatisfied then

viablePop.Enqueue(child)
end if

end for
. Removed oldest if queue capacity exceeded
if viablePop.Size > viablePop.Capacity then

numRemovals← viablePop.Size− viablePop.Capacity
RemoveOldest(viablePop, numRemovals)

end if
end loop
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and control, the dimensions by which to characterize morphology distance are perhaps less intu-

itive, and could also vary substantially based on the physical substrate (e.g. rigid joints and materi-

als vs. soft body structures with varying degrees of material compliance). More importantly, nature

requires no such ad-hoc means of explicitly measuring organism distance to encourage diversity.

Instead, evolutionary divergence is in part a byproduct of niche carrying capacities, or resource

limits.

To emulate such limitation, each maze is assigned a fixed resource limit, and only successful navi-

gations within that limit are counted toward satisfying an agent MC. For example, if a maze has a

resource limit of five, and five agents have already solved the maze, then it has reached its resource

limit and is no longer available for agent evaluation (because successful navigation would not count

toward satisfying an agent’s MC, and would thus be an inefficient use of computation). Note also

that resource limitation is applied asymmetrically in that it is only imposed on the maze population;

agents do not have an associated resource limit, so there is no restriction on the number of times

they can be used to satisfy a maze MC. In practice, implementing resource limitation in only one

direction is sufficient to promote diversity in both populations, because as individuals in one pop-

ulation maintain viability by using alternate, under-utilized individuals in the other, they naturally

evolve a wider range of adaptations that enable continued divergence in the opposite direction

as both populations interlock to satisfy a mutual MC. For example, in the maze domain, agents

must evolve diverse navigation strategies to solve mazes that have not reached their resource limit,

which, conversely, enables them to successfully navigate similarly diverse mazes, thus satisfying

the MC of those mazes.

To facilitate direct comparison and isolate the effects of the diversity preservation method, the

bootstrap parameters and MCC parameters are setup exactly as in chapter 5. The bootstrap pro-

cess is executed using the novelty search algorithm wherein agents are evaluated on ten simple,

randomly-generated mazes of identical size, each with two path genes and two wall genes. Twenty
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agents are evolved such that each agent is able to solve at least one maze, while respecting the

maze resource constraints (i.e. no more than five agents can solve a single maze). Mazes retain

the resource usage incurred during initialization, and seed the maze population queue while the

evolved agents seed the agent queue.

MCC experiments are executed in 20 runs of 2,000 batches, where 40 agents and 10 mazes are

evaluated within each batch. Agents have a maximum velocity of 3 units per second and are al-

lotted a simulation time of two times the maze solution path length. SharpNEAT version 3.0 [62]

is the neuroevolution platform, which was extended to implement novelty search and MCC with

speciation and resource limitation, and to support encoding and evolving maze genomes. Con-

figuration parameters (e.g. NEAT and maze genome mutation rates) for both the resource limited

version of MCC and the original speciated version (the control in this paper) are identical to those

used in chapter 5, thereby isolating effects to the selected diversity preservation method.

6.3 Results

Recall that the aim of these experiments is to investigate whether a simple resource limitation can

maintain similar levels of population diversity as speciation, and thus serve as a much simpler

and more natural method of diversity preservation. The results of both methods (i.e. resource

limitation and speciation) are evaluated by comparing the diversity of mazes both discovered and

solved during evolution. Diversity is calculated by measuring the Manhattan distance between

the solution paths of every pair of mazes in the population, and dividing by the number of path

segments to normalize by path length, thereby accounting for larger mazes that may have longer,

but not necessarily more diverse, solutions paths. Formally, the diversity score of a maze is given
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by

div(m) =
1

n

n∑
i=1

(
1

l

l∑
j=1

dist(mj, µi,j)) (6.1)

where m represents the maze whose diversity is being measured, mj is the j-th location in the

maze solution path, µi,j corresponds to the same solution path index in the maze against which m

is compared, l is the length of the solution path, n is the number of mazes in the population, and

dist represents the function that measures distance between two solution paths (in this case, the

Manhattan distance). The figures in this section compare speciation and resource limitation across

a range of metrics, depicting the significance of each measurement with a 95% confidence bound

(shown as an error bar) on the means.

Figure 6.1 depicts the average distance between solution paths in mazes discovered by the speci-

ation and resource limitation variants. Imposing a resource limit on mazes leads to significantly

more diverse solution paths (p < 0.001; Welch’s t-test) over the course of a run. Resource limita-

tion also accelerates the rate at which larger mazes are discovered and solved. Figure 6.2 depicts

a significantly more rapid maze expansion rate (p < 0.001 after batch 100; Welch’s t-test) that

culminates in mazes that are, on average, twice the size of mazes evolved by the speciated variant.

Resource limitation also evolves a much broader range of maze sizes (figure 6.3). Note that the

sharp decline in the number of mazes at the end of both experimental variants is caused by under-

representation of mazes in that size range; runs were terminated before evolution fully explored

the space of similarly-sized mazes.
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Figure 6.1: Solution Path Diversity by Experimental Variant. The average solution path dis-
tance between mazes for the speciation and resource limitation variants are compared. The re-
source limitation variant exhibits significantly higher solution path diversity.
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Figure 6.2: Maze Size Trend. The average maze size over evolution for the speciation and resource
limitation variants are compared. The resource limitation variant discovers larger mazes, with an
approximately linear rate of maze expansion throughout evolution.
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Figure 6.3: Maze Size Distribution. The count of mazes discovered over all runs for the speciation
and resource limitation variants are compared. Each column pair depicts a bin of 5 consecutive
maze sizes (e.g. the first contains sizes 10–14). Also, the y-axis is log-scaled so that the maze
counts at the tail-end of both variants are visible. The resource limitation variant evolved a much
wider range of maze sizes, some more than twice the size of the largest mazes discovered using
speciation.

Figure 6.4 depicts the rate at which new agent NN connections are incorporated successfully.

While agent controllers in the resource limitation variant consistently add structure throughout

evolution, they remain significantly more compact than those produced by the speciation variant

(p < 0.001; Welch’s t-test), despite learning advanced navigation policies for solving larger mazes.

This trend indicates that resource limitation may be reducing bloat by finding effective pairings be-

tween NNs and maze niches whereas speciation produces arbitrary boundaries for both populations

in isolation, and without regard to their interaction dynamics. Evidence for more advanced nav-

igation policies also includes a significant increase (p < 0.01 between batches 250 and 600 and

p < 0.001 thereafter; Welch’s t-test) in the average number of deceptive junctures (figure 6.5) in
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the resource limitation variant, where agents at a juncture (i.e. a turn in the maze solution path) are

forced to choose one of multiple possible routes with incomplete information of where the chosen

route may lead.

Figure 6.4: Agent NN Size Trend. The average agent NN connections over evolution for the
speciation and resource limitation variants are compared. The resource limitation variant continues
to add structure, but maintains significantly more compact NNs throughout evolution while solving
more complex mazes than the speciation variant. This result suggests that resource limitation may
reduce bloat by finding effective pairings between maze and agent.
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Figure 6.5: Maze Deceptive Junctures Trend. The average number of junctures (turns) in maze
solution paths with multiple possible routes for the speciation and resource limitation variants are
compared. A higher number of such junctures requires a more advanced navigation policy because
an agent must decide along which route to continue its trajectory with incomplete information as
to where that route may lead. The resource limitation variant discovers solution paths that are more
deceptive, along with agent NN controllers that overcome such deception.

Figure 6.6 showcases a sample of agent trajectories (from evolved NN controllers) through mazes

evolved by a single run of MCC, each varying in size and solution path complexity. All runs of

MCC with resource limitation discovered mazes larger than those produced with speciation, with

the largest mazes being more than three times the size and with effective agent solutions.
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(e) (f) (g) (h)

Figure 6.6: Mazes and agent trajectories discovered within a single run of MCC with resource
limitation. A sample of eight solution trajectories through different mazes evolved within a single
run of MCC are shown. Maze (a) is 11×11 (slightly larger than the 10×10 bootstrap mazes) with 2
waypoints and 2 walls (i.e. wall genes), maze (b) is 15×15 with 4 waypoints and 6 walls and maze
(c) is 22×22 with 6 waypoints and 8 walls. Maze (d) is the same size as the largest maze shown in
the chapter 5 enhanced maze domain experiments, at 25×25 with 7 waypoints and 8 walls. Mazes
(e) through (h) are larger and have more complex solution paths than any previously-demonstrated
results in the MCC maze domain. Maze (e) is 28×28 with 7 waypoints and 10 walls, maze (f) is
33×33 with 10 waypoints and 13 walls, and maze (g) is 36×36 with 11 waypoints and 13 walls.
The largest maze (h) is 40×40 with 10 waypoints and 22 walls.

6.4 Implications

By restricting the number of times a single maze can be used for satisfying an agent MC, agents

are forced to sample a wider variety of mazes that each vary in size and complexity. Those who
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are more evolvable are able to exploit underutilized resources, founding new niches and producing

offspring who exhibit a similar degree of adaptability. This exploration across niche space creates a

diverse curriculum of challenges that facilitate novel and complex agent adaptations, even without

directly enforcing diversity through conventional methods such as speciation.

Resource limitation discovers complex mazes with more diverse solution paths than speciation,

while also evolving agents capable of rapidly adapting their policies to new challenges. A notable

side-effect of resource limitation is an acceleration of the evolutionary process: larger mazes are

discovered while NN controller size remains modest, yielding compact encodings that reduce NN

bloat while encoding more advanced control policies. The results suggest that resource limitation

is a suitable, even superior, replacement for speciation. In addition to offering a more natural form

of diversity preservation, resource limitation also alleviates the need for ad-hoc decisions about

how to meaningfully measure distance between encodings, and the computational overhead of

exhaustively comparing similarity, facilitating the application of MCC to domains for which such

a measurement would be uninformative, non-trivial or computationally expensive to execute.

It is also notable that the resultant algorithm is among the simplest in EC. There is no measure of

fitness, no ranking, no proportional selection, and no measure of diversity or explicit speciation.

And yet it is still producing an open-ended phenomenon of increasing complexity and diversity

rarely observed in any other algorithm, hinting that the fundamental ingredients necessary for

open-ended evolution to flourish may be surprisingly minimal.

The experiments in the next chapter explore the application of MCC to a robot locomotion domain

where body and brain are coevolved. Robot morphologies (bodies) and neurocontrollers (brains)

are extremely complex structures, and a meaningful similarity metric for speciation would be both

difficult to craft and highly-expensive to compute. As MCC is applied to complex tasks, including

robotic control and other practical, “real-world” domains, it stands to benefit from the simplicity
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and efficiency afforded by resource limitation as the primary method of diversity preservation.
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CHAPTER 7: BODY-BRAIN COEVOLUTION

Maze navigation is a common domain for benchmarking QD algorithms because it is lightweight

and easily-interpretable, making it ideal for rapid experimentation and comparison of algorithm

variants. The maze domain presented in this dissertation is of particular value for open-endedness

research because of its ability to encode navigation tasks of varying difficulty at limitless scale. De-

spite its utility as a research tool, however, the maze domain has limited real-world significance. To

better understand the performance of MCC on a difficult problem of practical interest, this chapter

details experiments in a robot locomotion task where MCC coevolves morphology and control –

two components that must work in synchrony to ambulate the robot a minimum distance. These

experiments are the capstone of this dissertation, and demonstrate how MCC can be harnessed as

a powerful tool for open-ended coevolutionary design and optimization.

7.1 Evolutionary Robotics Domain

Evolutionary robotics (ER) is the application of selection and variation processes to the design

of robot controllers (brain), morphologies (body) or both [64, 110]. A key focus of the field of

robotics in general is designing controllers and body plans that exhibit fluid, robust and principled

patterns of movement like those seen in nature, yet this goal remains elusive [17, 70, 89, 90, 116].

ER has the potential to address this shortcoming because it employs computational abstractions of

the process that produced robotics benchmarks: natural evolution. However, ER has not enjoyed

widespread adoption in the broader robotics community, largely due to its failure to deliver designs

with the same robustness and adaptation of its biological equivalent. Solutions discovered by simu-

lated evolutionary processes are often just as brittle and uninspired as those created by mainstream

methods. This limitation is especially apparent when evolving both controller and morphology
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because a change in one will often deleteriously affect the other [121].

In natural evolution, body and brain are tightly coupled; control strategies persist as a function of

their ability to advantageously utilize a morphological trait (e.g. the ability to grasp in primates

[5, 120]), while morphology is rewarded to the extent that it permits formulation of novel con-

trol mechanisms (e.g. dexterous hands) and yields selective viability. While explicit separation

between body and brain is a false dichotomy when considered from a natural perspective, the com-

plex interplay between morphology and control nonetheless provide an opportunity for MCC to

discover novel pairings of both as each are evolved to satisfy a mutual MC. Just as agents evolve

increasingly complex NNs to discover novel trajectories through progressively more intricate maze

structures, controllers can be evolved to exploit ongoing morphological elaborations, and evaluated

to the extent that the combination of both meet the MC of continuing functionality in their environ-

ment. The intent is for this dynamic to lead to an open-ended, divergent exploration through the

space of controller and morphological innovations, where MCC evolves many different strategies

for a particular controller and corresponding morphology within a single run.

7.2 Experiment

Soft robotics is a biologically-inspired sub-field of robotics research that has received widespread

attention in recent years [71]. While “hard” robots contain rigid links and fixed joints, each with

their own actuator that produces a limited range-of-motion, soft robots are composed of compliant

materials that offer a theoretically infinite range-of-motion and a high degree of elasticity. This

compliance allows soft robots to perform deformation tasks that are impossible for rigid bodies,

such as conforming to uneven or rugged terrain [21, 74].

Voxel-based soft robots (VSR) are a particular category of soft robots that have garnered significant
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interest in the ER community [160]. They exhibit a modular body plan composed of cubic voxels,

which provides a flexible sandbox for morphological evolution. Voxels are positioned within a

three-dimensional Cartesian grid and each voxel exhibits a variable degree of elasticity, allowing

it to expand or contract as a result of forces applied from six neighboring voxels, environmental

stimulus or direct control. The synchronized actuation of voxels and the force that they exert

on neighboring voxels can produce complex behavioral patterns, including principled locomotion

behavior. The versatility of a voxel-based representation is especially advantageous for MCC

because voxels can be easily rearranged and the grid can be expanded, permitting a theoretically-

infinite range of voxel-based bodies that could be discovered.

The experiments in this chapter use a simulator called Voxelyze [65], which is a well-tested and

verified VSR simulation platform, and also includes a package for designing and visualizing voxel

body structures (called VoxCad). Voxelyze also has a substantiated history as a simulation engine

for ER research. Cheney et al. [15, 16] introduced a method for evolving voxel robot morpholo-

gies using CPPN-NEAT [148] (discussed in section 2.6), and demonstrated that CPPNs are able

to produce more natural-looking robots with distinct regularities that facilitate principled behavior,

attaining higher locomotion performance with regard to speed and distance traveled. While Ch-

eney’s work used a fitness-based EA, it was later shown that non-objective algorithms, including

novelty search [98] and surprise search [61], can discover even more diverse morphologies while

still maintaining similar functional characteristics.

The aforementioned work focused only on evolving morphology around a fixed control policy

(based on voxel expansion and contraction induced by cyclic environmental temperature fluctua-

tions); however, Cheney et al. [17] went a step further, demonstrating how morphology and control

can be co-optimized (albeit through a fitness-based process) to produce multiple morphologies,

each with a well-adapted controller capable of ambulating its respective body. While Cheney’s

work is not the first to simultaneously evolve morphology and control [55, 96, 112, 128], the ap-
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plication of co-optimization in a VSR domain is novel and makes it an ideal point-of-comparison

for MCC. Voxel bodies are particularly well-suited to demonstrating open-endedness because the

voxel grid can be continuously expanded, requiring the evolution of new control policies to exploit

the additional material. This process of morphological growth and elaboration is reminiscent of

the unbounded complexity increase characteristic of open-ended systems. The MCC experiments

in this chapter thus derive inspiration from Cheney’s co-optimization work and use a sample of his

results as a baseline for comparison; however, MCC’s method and implications are far different.

Instead of rewarding body and brain to the extent that they produce incrementally longer trajecto-

ries, MCC only requires that a brain-body pair satisfy a modest MC of ambulation distance, within

which there is no preference for a particular design or control strategy. Moreover, all prior research

in this domain has restricted body size, thus limiting the number of morphological variations that

evolution can discover. These experiments remove that constraint, opting instead for a voxel grid

that expands unboundedly throughout evolution, thereby creating a design space in which endless

body plans and configurations can be discovered and evaluated.

To facilitate comparison to co-optimization, bodies and brains in the body-brain coevolution do-

main adopt the structure and encoding introduced in Cheney et al. [17]. Bodies are represented

within a three-dimensional grid where a grid cell can be either empty or occupied by a voxel of a

given material type. Material is categorized as either active or passive, where active voxels expand

and contract per an input stimulus (e.g. a NN that dictates a contraction value) and passive voxels

deform to comply with intrusion from neighboring voxels, but do not initiate structural deforma-

tion. The body population consists of CPPNs evolved by CPPN-NEAT, each of which generate a

corresponding morphology by querying each cell in the voxel grid, accepting as input the three-

dimensional Cartesian coordinates of that cell and the Euclidean distance from the center of the

grid, and returning a binary value indicating the presence of a voxel (i.e. whether the cell is empty

or not) and, if present, the voxel’s material properties (i.e. active or passive). Figure 7.1 depicts

81



how the body CPPN produces the resulting morphology. CPPNs are directed graphs that output

a geometric pattern built up from a composition of activation functions (which, in these experi-

ments, includes linear, bipolar sigmoid, Gaussian and Sine). Functions that are positioned early in

the graph establish a spatial motif on which later functions elaborate to create increasingly com-

plex and regular patterns. This property of CPPNs leads to regular voxel placement with principled

groupings of active or passive material. Moreover, CPPNs are scale-invariant; consistent patterns

of arbitrary dimensionality can be generated simply by querying the spatial substrate at a higher

resolution. In this way, material for each cell within a 3-D voxel grid is generated by querying

the 3-D substrate at the resolution appropriate for the desired body dimensions. For example, a

CPPN that originally generated a 5×5×5 body (125 voxels) could also produce a 6×6×6 body

(216 voxels) simply by querying each of the 216 voxel coordinates, with no change to the CPPN

topology, effectively creating a dynamic and unbounded voxel substrate [127] while maintaining

thematically-consistent voxel configurations.
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Figure 7.1: Body CPPN Architecture. The architecture of a CPPN in the body population is
shown. The CPPN queries each location in a three-dimensional Cartesian grid of variable size,
taking as input the Cartesian coordinates of each cell along with the Euclidean distance from that
cell to the center of the grid, and returning a binary indicator of voxel material presence at the
given location and the material type if present (i.e. active or passive). If there is no material present
at the location, the material type output is ignored, resulting in an empty grid cell.

Brains, which are also based on Cheney et al. [17], are fixed-topology NNs with four inputs, two
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hidden-layer nodes, each with two recurrent connections (one to themselves the other to the op-

posite hidden-layer node), and one output node. A separate population of CPPNs are evolved to

produce NN controllers. A single CPPN generates a separate NN controller for every voxel in the

body on which it is being evaluated, encoding the presence and binary weight (-1 or 1) of every

possible connection between the input and hidden layer (including recurrent connections within

the hidden layer) and the weights of the two connections between the hidden and output layer (the

connections between hidden nodes and the output node are always present in the NN topology).

Brain CPPNs query each location in the voxel grid that contains active material, accepting the

three-dimensional Cartesian coordinates of the applicable grid cells and the Euclidean distance

from those cells and the grid center as input, and outputting the resulting NN controller connec-

tions and weights for each voxel. While evolving NNs for each voxel using a direct-encoding

[152] would impose a substantial computational expense (because every voxel in each body would

require a unique NN controller in the brain population), querying every location in the body with

a single evolved CPPN to generate an NN for each voxel is comparatively cheap, allows a single

CPPN to be evaluated on bodies of varying sizes (i.e. by simply querying each voxel to generate

a voxel-specific NN) and also exploits the CPPN’s intrinsic ability to capture regularity. Addi-

tionally, prior methods in generative multi-agent reinforcement learning [27] have demonstrated

how CPPNs learn a policy geometry that dictates how smaller components should behave based on

their position within a larger structure. Just as CPPNs generate spatial regularities through func-

tion composition and learn policy geometries from complex, interconnected formations, so too can

they generate NNs that effect regular and coordinated control policies for each voxel based on its

location within the morphology. Figure 7.2 depicts how the brain CPPN generates NN connection

weights.
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Figure 7.2: Brain CPPN and NN Architecture. The architecture of a CPPN in the brain popula-
tion is shown. The CPPN queries each location of a three-dimensional Cartesian grid that contains
active material, taking as input the Cartesian coordinates of the applicable cells along with the Eu-
clidean distance from those cells to the center of the grid, and returning a binary presence indicator
(0,1) and binary weight (-1,1) for each input-hidden and hidden layer connection, and weights for
hidden-output connections (which are always present). A fixed-topology NN is generated for each
active-material voxel. The NN is supplied with a binary value indicating ground contact, the output
of a 10 Hz CPG based on the simulator clock and the actuation of the current cell in the last time
step as well as an average deformation of the neighboring cells. The NN outputs the volumetric
actuation of the given cell at the current time step.
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The first NN input is driven from a touch sensor that registers 1 if the voxel is in contact with the

ground and 0 otherwise. A central pattern generator (CPG) supplies the second input, deriving

its initial value from the global simulator clock, and scaling it to the range [−1, 1] within a fixed

10 Hz cycle. CPGs have frequently been utilized for producing walking gaits [69, 103, 104, 126,

142] because they generate regular oscillatory patterns that can be harnessed for creating effective

locomotion strategies. The final two NN inputs accept the deformation value of the given voxel

in the previous time step and the average deformation of the six neighboring voxels in the current

time step. The output returns the volumetric actuation of the voxel at the current time step. All

actuation values are in the range [−1, 1], where negative values induce contraction and positive

values result in expansion.

In the body-brain experiments, novelty search evolves CPPNs that generate NN controllers capable

of ambulating compact bodies a minimum distance of 15 units (which is the MC for reproduction).

The initial voxel grid is of length 5 along all three dimensions, creating 125 possible locations

for voxels. Ten randomly-generated CPPNs generate morphologies with varying voxel placements

and material properties. Novelty search executes with a population of 100 CPPNs (a full list of

bootstrap parameters can be found in appendix B) and characterizes behavioral novelty based on

the endpoint of a trajectory. The bootstrap halts when 20 distinct CPPNs are evolved to generate

brains capable of ambulating one or more bodies the minimum distance. The 20 brain CPPNs and

10 body CPPNs are used to seed their respective MCC queue.

Experiments consist of 20 runs of 2,000 batches each. The brain queue begins evolution with 20

CPPN genomes and has a maximum capacity of 150, while the body queue starts with 10 CPPN

genomes and can grow to 30. These population size constraints were imposed to ensure exper-

iment tractability given the computational expense imposed by high-fidelity Voxelyze simulator.

Both populations employed identical parameters, with a 0.6 probability of mutating a CPPN con-

nection weight, 0.1 probability of adding a connection, 0.01 chance of adding a node and a 0.005
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probability of deleting a connection. Additionally, the body population has a 0.01 probability of

resizing the dimensions of the voxel grid. If a resize mutation is applied, it has a 0.8 probability of

increasing the grid size by one unit along all three dimensions, and a 0.2 probability of decreasing

the grid size by an equivalent amount.

Brains are allotted 2 simulated seconds to meet the locomotion MC of 15 units as measured from

the body’s center-of-mass. Similarly, the body MC is to be ambulated the same distance by at

least one brain in the population. Resource limitation (introduced in chapter 6) is used to preserve

diversity by allowing a single body to be used by no more than 5 brains for satisfying their MC.

7.3 Results

In the maze navigation domain, MCC evolved a broad diversity of large and complex maze envi-

ronments and effective solutions, all within the scope of a single run and without any indication

of convergence. While maze navigation is a simple benchmark, the results in this section demon-

strate the application of MCC to the much more difficult domain of robot locomotion. The results

demonstrate that MCC is able to discover a range of diverse and increasingly complex morpholo-

gies along with principled control policies, thereby suggesting the utility of MCC for problems of

practical interest. Error bars on all figures depict the significance of each measurement with a 95%

confidence bound on the means.

Figure 7.3 depicts the average minimum, mean and maximum body size over evolution. MCC dis-

covers increasingly complex morphologies while also maintaining a breadth of voxel body sizes

(the distribution of which is shown in figure 7.4) – a trend that is reminiscent of the open-ended

divergence observed in the maze domain. Moreover, expanding the voxel grid creates additional

cells in which material can be placed, thereby changing body dynamics through altering mass dis-
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tribution and potentially adding active (i.e. self-actuating) material that must work in tandem with

existing structure. The monotonically-increasing body size trend indicates that MCC is simultane-

ously evolving CPPNs that are resilient to large-scale disruptions by generating brains that exhibit

flexible control policies.

Figure 7.3: Body Size Trend (averaged over 20 runss). The average minimum, mean and maxi-
mum body size over evolution is shown. In all cases, MCC continually discovers more larger and
invariably more complex bodies, along with brains that effect successful locomotion.
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Figure 7.4: Distribution of Body Sizes. The count of bodies collected over all runs is shown. Note
that the y-axis is log-scaled so that body counts at the tail end of the range are visible. Expanding
the voxel grid not only adds additional material cells, but it can also alter mass distribution and
body dynamics depending on material type and placement. MCC discovers a range of body sizes,
indicating that it is evolving brains that adopt flexible control policies, enabling them to adapt to
new morphological configurations.

Measuring the distance that a body traverses within a trial is an intuitive method of evaluating

alignment between control policy and morphology, and one that is well-represented in QD and

ER literature [17, 79, 158]. To gauge the longer-term ability of controllers to effect principled

locomotion, those who ambulated bodies the minimum-required distance during evolution (where

trials were constrained to 2 seconds with an MC of 15 voxels traversed) are evaluated on the same

body for an extended duration of 15 seconds (23,416 time steps) and the total distance traveled

during each simulated trial is recorded.

Figure 7.5 compares total ambulation distance for MCC-evolved bodies to the distance ambu-

lated by the highest performing bodies from each of 30 evolutionary runs of co-optimization [17],

which explicitly optimizes for distance traversed. The body and brain genomes evolved by co-
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optimization are evaluated under identical conditions as the original experiments in [17], but with a

trial duration of 15 seconds to match the extended duration MCC evaluations. While MCC evolved

a range of body sizes, only those of size 10×10×10 (which is the body dimensions used in [17])

are used for comparison. Recall that beyond the locomotion MC of 15 voxels, MCC imposes no

additional requirements on performance, instead relying on resource-constrained drift to uncover

new elaborations on form and function. Yet even in the absence of a guided search process, MCC

evolves controllers and morphologies that significantly exceed those evolved by co-optimization in

their ability to effect sustained locomotion (p < 0.001 for all variants; Welch’s t-test). Moreover,

because body dimensions are variable, MCC is able to search multiple divergent morphological

lineages simultaneously. Figure 7.6 demonstrates that MCC evolves effective control for bodies

across of range of differing sizes, in some cases exceeding more than 140 voxel lengths traversed.

This behavior persists even in larger bodies, which have substantially more material that must be

controlled in such a way as to produce coordinated action.
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Figure 7.5: Ambulation Distance Comparison with Co-optimization [17] The average distance
traversed by bodies evolved by MCC is shown in comparison to those evolved by co-optimization.
To compare equivalent morphologies, MCC-evolved bodies, which covered a range of varying
sizes, from which only size 10×10×10 individuals were selected for this comparison. The primary
result is that MCC produces body-brain pairs that cover a greater total distance than those evolved
by co-optimization, which explicitly optimizes for distance traveled from the origin.
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Figure 7.6: Ambulation Distance by Body Size. The total distance traversed by MCC-evolved
bodies across a range of sizes is shown. A unique aspect of MCC is its ability to search multiple
divergent paths simultaneously. In this domain, that characteristic is demonstrated by MCC’s
ability to collect bodies of varying size and configuration, each with effective control that matches
a much narrower range of solutions produced by co-optimization.

MCC also discovers a diversity of viable control strategies that ambulate bodies along novel trajec-

tories. The following trajectory analysis computes the Euclidean distance between corresponding

pairs of points in two trajectories at equal time steps, and averages over the trajectory length and

also over the number of distinct trajectories (which are produced by a paired body and brain).

Formally, trajectory diversity is given by:

div(t) =
1

n

n∑
i=1

(
1

p

p∑
j=1

dist(tj − µi,j)), (7.1)

where t is the trajectory whose diversity is being measured, tj is the position of the body’s center-

of-mass at time step j, µi,t corresponds to the position along a comparison trajectory i at time step

j, p is the number of time steps in the trial, n corresponds to the number of trajectories, which was

92



produced by a unique body-brain pair that was also successful in meeting its ambulation MC, and

dist represents the Euclidean distance function applied to each point along the trajectories. This

approach has been used in the QD literature to characterize and compare behavior [129], but here

it is only used to analyze the results of a method that has no BC.

Figure 7.7 depicts the trajectory diversity for MCC compared to that of co-optimization. As in

the distance analysis, body sizes are limited to 10×10×10 to align with the dimensions used by

co-optimization experiments. MCC produces more diverse control policies than co-optimization

(p < 0.001; Welch’s t-test), effectively discovering multiple ways to satisfy the MC. MCC’s

propensity for discovering novel locomotion is further reinforced in figure 7.8, which depicts the

distribution of trajectory end-points for MCC and co-optimization. While control policies evolved

by co-optimization produce trajectories that remain primarily in the vicinity of the starting location

(which is the origin, (0, 0)), MCC evolves policies that more thoroughly explore the environment.
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Figure 7.7: Trajectory Diversity Comparison with Co-optimization. The average trajectory
diversity for MCC with body size 10×10×10 is shown in comparison to co-optimization. Diversity
is measured by computing the average Euclidean distance between all pairs of trajectories. MCC
produces significantly more diverse trajectories than co-optimization (p < 0.001; Welch’s t-test),
demonstrating its ability to evolve artifacts that are functionally-equivalent while also more diverse.
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(a) Co-optimization (b) MCC

Figure 7.8: End-Point Distribution Comparison. The distribution of trajectory end-points for
MCC and co-optimization are shown, along with histograms that depict the number of end-points
in various regions along each axis of the 2-D environment. While the end-points of trajectories
produced by co-optimization tend to remain near the origin (which is at (0, 0)), MCC-evolved
control policies produce trajectories that culminate in a noticeably more diverse set of end-points.

These results exhibit a particular strength of QD algorithms in general, that is, collecting func-

tional diversity in a single evolving population. However, MCC takes this paradigm a step further

by collecting diversity along two separate coevolving lineages within the same run. Figure 7.9

demonstrates that such novel trajectories were not limited to a particular body size, but persisted

across morphological dimensions.
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Figure 7.9: Trajectory Diversity by Body Size. The trajectory diversity for MCC across a range of
body sizes is shown. This result showcases MCC’s ability to collect a diversity of control policies
that successfuly ambulate a similarly-diverse array of morphologies.

In the body population, MCC produced novel morphological variations within each body size,

thereby presenting a unique set of ambulation challenges to brains. Diversity is measured by com-

paring the material at each location within the three-dimensional voxel grid to equivalent locations

of all other bodies in the population. Each mismatch counts as a unit difference. For example, if a

body contains active material at coordinate (1, 3, 2), and the body to which it is compared contains

passive material or no material (i.e. an empty grid cell) at the same location, the mismatch count

is incremented by one. Each body is compared cell-by-cell to every other body in the population,

averaging over the number of bodies to derive a material difference score. Formally, body diversity

is given by:
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div(b) =
1

n

n∑
i=1

l×w×h∑
x,y,z=1

V (bx,y,z, µ
i
x,y,z),

V (p, q) =


1, if p = q

0, otherwise
,

(7.2)

where b is the voxel body whose material diversity is being measured, n is the number of bodies

in the population, l, w and h are the length, width and height of the three-dimensional voxel grid,

bx,y,z specifies the coordinate of material in body b, µi
x,y,z corresponds to the same coordinate in

comparison body µi and V is a conditional that yields 1 if the material at the specified location is

the same in both bodies and 0 if not.

Figure 7.10 depicts the average minimum, mean and maximum material difference over evolution

(the y-axis is log-scaled so that the minimum material difference trend is visible). In all cases, there

is a noticeable upward trend in morphological diversity – an indication of sustained divergence

in the body population. A similar dynamic is observed in figure 7.11 where diversity increases

monotonically with body size. Figure 7.12 depicts the average material difference trend for a

selected body size (size 11), demonstrating how MCC pushes the search toward higher complexity

artifacts, and subsequently elaborates within the newfound design space.
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Figure 7.10: Morphological Diversity Trend. The average minimum, mean and maximum ma-
terial difference over evolution is shown. Morphological diversity is characterized by average,
per-voxel material difference. Enlarging the voxel grid leads to more positions in which to place
material. MCC exploits these opportunities for morphological variation, evidenced by a gradual
upward trend in diversity – a demonstration of continued divergence in the body population.
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Figure 7.11: Morphological Diversity by Body Size. The morphological diversity over a range
of body sizes is shown. Larger bodies tend to have more diverse structure because there are more
options for material placement.
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Figure 7.12: Morphological Diversity Trend for Body Size 11×11×11. The average morpho-
logical diversity over evolution for body size 11×11×11 is shown. Bodies of this size were first
discovered in batch 320 (recall evolution began with bodies of size 5×5×5), initially undergo a
sharp dip in diversity, then experience a gradual diversity increase as MCC discovers functional
elaborations within the space of similarly-sized body plans. A similar trend persists across most
body sizes discovered by MCC.

A sample of bodies that were evolved by MCC in a single run are shown in figure 7.13, demon-

strating MCC’s ability to produce a wide variety of body sizes and material configurations, each

with well-adapted controller that produce synchronized material deformations in such a way as to

locomote bodies a non-trivial distance.
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Figure 7.13: Sample of Evolved Bodies. A sample of 16 voxel bodies evolved by MCC in a
single run is shown. Bodies vary widely in size and configuration, yet each is paired with a set of
voxel-specific controllers that produces principled locomotion.
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7.4 Implications

The diversity of morphologies and high-performing control policies collected by MCC demon-

strate its effectiveness beyond simpler benchmark problems like maze navigation, thus reinforcing

the potential of MCC as a general-purpose open-ended search algorithm. MCC evolved NNs to

exploit ongoing morphological elaborations, producing novel morphologies with effective control,

even without the aid of a locomotion objective to directly reward distance traversed, or a behavior

characterization from which to encourage novel end-points and indirectly promote exploration of

a more distant expanse.

A particularly interesting result is MCC’s ability to match or outperform fitness-based search on

tasks that are conventionally thought to be the domain of objective-oriented optimization. An

intuitive measure of fitness for evolving locomotion ability might be to reward distance traveled,

and the same metric could also serves as a reasonable interpretation of morphological quality

given a fixed control policy (i.e. improvements in locomotion are attributable to a refined body

design). MCC incorporates neither construct, but is nonetheless unencumbered by its unilateral

rejection of conventional optimization practice, producing quality diversity that is reminiscent of

the algorithmic insights from which it is inspired. Yet the implications of MCC as a general

purpose algorithm are greater than those of its QD counterparts. In particular, while QD algorithms

might discover multiple diverse locomotion strategies for a fixed body or a collection of novel

morphologies for a static control policy, MCC discovers both simultaneously and with unbounded

size.

Additionally, the reliance of QD algorithms on an explicit description of behavior is fundamen-

tally limiting in a domain where a complete list of the dimensions of phenotypic and behavioral

variability either cannot be fully captured a priori or are intractably expensive to compute. For

example, if morphological novelty is characterized by two material types (i.e. active and passive),
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then once the full space of materials in a fixed-size grid is sampled, novelty pressure is reduced. If

the grid is expanded and larger body plans are evolved, behavior comparison can quickly become

a computational bottleneck. Conversely, if other properties of body dynamics, such as material

deformation characteristics, change during evolution but are not incorporated into the behavior

descriptor, then QD methods may overlook an important trait that would otherwise lay down a

path toward unanticipated elaboration. This behavioral agnosticism is one of MCC’s most distin-

guishing features, which when combined with an MC-constrained coevolutionary drift facilitates

unbounded discovery in a general context.
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CHAPTER 8: DISCUSSION

Formalizing and reproducing the dynamics that lead to continual, open-ended innovation has long

been an ambitious and elusive pursuit that, until recently, has been constrained to theoretical and

abstract inquiry, typically within the domain of alife worlds. The main contribution of this research

is a general algorithmic framework capable of facilitating the production of open-ended innovation

in a domain-independent manner and without artificial constructs, such as quantification of fitness

and behavior. A key insight of this framework is the extent to which coevolutionary interactions

can lead not only to a ratcheting effect in complexity, but also to novel elaborations that occur as

a result of genetic drift within both populations, interlocked by the satisfaction of the MC with

respect to one another.

Throughout this work a significant focus is placed on architecting novel and flexible domains that

are suitable for demonstrating open-ended search. A hallmark trait of open-endedness in nature is

the continual production of complex organisms that exploit an increasingly diverse collection of

environmental niches. Just as natural evolution grew a vast diversity of life from humble origins

and over a single evolutionary timeline, so should MCC generate abundantly diverse and non-

trivial artifacts from minimal structure and within the scope of a single run. The maze domain

provides a simple and intuitive method of visualizing this evolutionary dynamic. In the initial

maze experiments in chapter 4, coevolutionary progress was demonstrated by adding walls that

complicate navigation and encourage the emergence of complex navigation policies among agents.

While mazes in this initial experiment are constrained to a predetermined size, the extent to which

they are able to increase in complexity at all, in the absence of fitness and behavioral guidance, is

an initial hint of MCC’s ability to coevolve principled and non-trivial artifacts.

The initial maze domain experiments demonstrate MCC rapidly reaching the domain complexity
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ceiling (i.e. the maximum number walls that can be placed within a fixed-size enclosre), and while

compelling, these results leave a pressing question unanswered: what sort of maze and navigator

pairings would MCC discover if mazes could expand throughout evolution? The enhanced maze

domain experiments in chapter 5 address this question by allowing mazes to expand without limit.

Additionally, instead of merely adding walls to indirectly complicate navigation, the solution path

itself is evolved as a series of waypoints that create winding paths and deceptive corridors. Within

a single run, MCC discovers mazes of varying size and structure, each with effective solutions

resulting from increasingly advanced navigation policies evolved in the agent population. Impor-

tantly, this trend continues for the entirety of each evolutionary run, with no indication of leveling

off. While existing QD algorithms are capable of evolving functional diversity, they do so within

a single population (i.e. with no coevolution) and by relying on an explicit characterization of be-

havior to promote divergence [123]. These experiments are the first to illustrate a characteristically

open-ended process in a practical domain (i.e. outside of an alife world) where both populations

continually produce complex and novel forms, relying only on coevolution drift subject to an MC.

A foundational tenet of MCC is that open-ended divergence can be induced by coevolving two

populations subject to a mutual MC of baseline functionality. The maze experiments demon-

strate how this simple framework can discover surprising results that are both principled and di-

verse. However, while MCC’s primary selection apparatus is organic, its initial method of diversity

preservation, which explicitly groups individuals into a predetermined number of species based on

a measure of genetic distance, is ad hoc. In nature, diversity is encouraged through a competi-

tion for limited resources where each niche has a finite capacity and organisms must found new

niches to persist. In MCC, this concept is realized through imposing a resource constraint on the

maze population (chapter 6) such that only a finite number of agents can use a distinct maze to

satisfy their MC. The results demonstrate that resource limitation is an effective, even superior,

replacement for speciation, producing larger mazes with more diverse solution paths with viable
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navigation policies within the same evolutionary time frame as prior experiments. A convenient

property of this more organic approach to diversity preservation is that it avoids the computational

overhead of an exhaustive comparison of genetic similarity, while also mitigating the need for a

method by which to meaningfully assess similarity – a potentially difficult task for more complex

domains that exhibit multiple dimensions of variation. Resource limitation is thus recommended

as the primary method of diversity preservation in MCC and its future variants.

As a general framework for open-ended search, MCC should be expected to produce divergent

artifacts in any domain wherein two populations can be set up to coevolve in accordance with a

mutual MC. The maze domain provides an intuitive and light-weight benchmark, but still leaves

a question about its application in more complicated domains. This work culminates by applying

MCC to a difficult task in soft evolutionary robotics (chapter 7), where voxel-based bodies and

brains are coevolved to effect locomotion and meet an MC of distance traveled. Bodies are re-

warded to the extent that their morphology is amenable to ambulation, and brains are rewarded

in accordance with whether they are able to effect principled coordination in body components.

Moreover, bodies are permitted to expand along all three of their morphological axes, creating new

challenges for brains by adding material that requires principled control. As in the enhanced maze

domain, MCC demonstrated the ability to collect a range of diverse and increasingly complex

morphological structures, each of which met the MC of ambulation. Moreover, MCC discovered

control policies for all body sizes that were superior, in terms of resulting locomotion distance, to

those evolved by fitness, which explicitly rewarded for distance traveled on but one body size. The

evolutionary robotics locomotion task provides a relevant exemplar for applying open-endedness

to real-world problems, and empirically demonstrates that MCC is capable of coevolving effective

solutions for practical domains at the cutting-edge of science and engineering research.

Perhaps the most exciting implication of MCC is that of capturing a small glimmer of the creative

spark exhibited by natural evolution. While the creativity of nature remains unmatched by any
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algorithm to date, the hope is that this investigation leads to a deeper understanding of open-

endedness and the processes that lead to it, through a framework that is able to reproduce at least a

portion its dynamics.
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CHAPTER 9: CONCLUSION

The primary contribution of this dissertation is a novel algorithm called Minimal Criterion Coevo-

lution (MCC) (1), which demonstrates an approach to open-ended search that relies on a process of

coevolutionary drift subject to a minimal criterion. MCC overcomes representational limitations

of existing objective and non-objective algorithms by jettisoning any notion of a fitness function

or a behavior characterization, thereby scaling to produce an open-ended process of search space

exploration and discovery.

A novel maze domain (2) was introduced where mazes added walls to complicate navigation. MCC

coevolved a population of mazes with a population of maze-navigating agents, each subject to an

MC of successful navigation. The results demonstrated that MCC is capable of evolving complex

maze environments (i.e. with many walls) with effective navigation strategies.

To further evaluate the open-ended capacity of MCC, an enhanced maze domain (3) was intro-

duced where mazes are permitted to continually expand. Instead of relying on wall placement

to craft a solution path, this new domain directly evolves the path through a series of connected

waypoints, allowing evolution to morph the trajectory in non-trivial ways. The results reveal that

MCC exploits this unbounded domain to create increasingly large and complex mazes along with

effective solutions in the agent population, and with no indication of evolutionary stagnation.

During its initial evaluation, MCC used speciation, a common method of diversity preservation in

EC, to preserve genetic diversity in both populations. This mechanism is ad-hoc for an algorithm

that is otherwise inspired by the simplicity of reproductive viability in nature, which instead uses

the intrinsically-finite carrying capacity of niches to maintain diversity by promoting divergence.

Speciation in MCC is thus replaced by an alternate form of diversity preservation through resource

limitation (4). In the maze domain, mazes adopted a resource limit by constraining the number
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of times that successful navigation on a distinct maze could be used for satisfying an agent MC.

Resource limitation not only led to the evolution of more diverse mazes and agents, but also dis-

covered more efficient agent encodings (evidenced by smaller NNs) and evolved more complex

mazes during the same evolutionary time frame, effectively speeding up evolution.

Finally, MCC was demonstrated on a difficult, real-world evolutionary robotics task (5) where

voxel-based robot bodies were coevolved with brains that were required to ambulate bodies a min-

imum distance. Bodies could morph in arbitrary ways by rearranging material cells, and could

also grow in size by lengthening robot morphology along all three axes. MCC demonstrated the

ability to collect increasingly diverse and complex bodies with brains capable of ambulating each

the required distance. A surprising result was that MCC produced controllers that were equiva-

lent to those optimized by fitness-based search in terms of distance traveled. As a whole, these

results demonstrate the generality of MCC as an algorithmic and architectural framework for the

production and investigation of open-ended dynamics.
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APPENDIX A: MAZE GENERATION ALGORITHM
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This section provides detailed pseudocode for each stage of the enhanced maze generation process

(described in chapter 5). Algorithm 4 outlines the top-level maze generation routine, while algo-

rithm 5 describes the maze grid initialization steps. The solution path generation routine is shown

in algorithm 6, which calls subroutines to lay down vertical and horizontal path segments and

reroute the path in cases where those segments would create an overlap, each of which is shown in

algorithms 7, 8, 9 and 10 respectively. Algorithm 11 outlines the top-level wall placement process,

which calls algorithm 12 to enclose the solution path with walls around the outer boundaries of the

sub-spaces. The process for subdividing the maze into solution path-induced quadrants is outlined

in algorithm 13 while algorithm 14 determines the boundaries of such quadrants and algorithm 15

decides the placement of an opening from the solution path into each quadrant. Finally, algorithm

16 dictates the placement of walls within a given quadrant, iteratively bisecting the space until no

additional walls can be placed.

Algorithm 4 Maze Generation
1: function GENERATEMAZE(mazeGenome)
2: pathGenes← mazeGenome.PathGenes
3: wallGenes← mazeGenome.WallGenes
4: height← mazeGenome.Height
5: width← mazeGenome.Width
6: startLocation← (0, 0) . Initialize start location to top left
7: endLocation← (height− 1, width− 1) . Initialize target location to bottom right
8: grid← InitializeGrid(height, width) . Creates an empty grid for waypoints and walls
9: GeneratePath(grid, pathGenes, startLocation, endLocation)

10: GenerateWalls(grid, wallGenes)
11: return Maze(grid)
12: end function
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Algorithm 5 Maze Grid Initialization
1: function INITIALIZEGRID(height, width)
2: grid← Array[width, heigth] . Each cell in grid stores path and wall orientation (if any)
3: for y = 1 : height do
4: for x = 1 : width do
5: grid[x, y]← None . Denotes an empty cell
6: end for
7: end for
8: return grid
9: end function
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Algorithm 6 Maze Path Generation
1: function GENERATEPATH(grid, pathGenes, startPoint, endPoint)
2: pathIdx← 0
3: while pathIdx ≤ pathGenes.Count do
4: if pathIdx = 0 then
5: curPoint← startPoint . First waypoint is accessed from maze start point
6: else
7: curPoint← pathGenes[pathIdx− 1] . Previous waypoint is starting location
8: end if
9: if pathIdx = pathGenes.Count then

10: tgtPoint← endPoint . Last waypoint connects to maze end point
11: else
12: tgtPoint← pathGenes[pathIdx] . Current waypoint is the target destination
13: end if
14: orientation← tgtPoint.Orientation . Horizontal or vertical orientation
15: grid[tgtPoint.X, tgtPoint.Y ].IsWaypoint← true
16: if orientation = Horizontal then . Vertical followed by horizontal segment
17: HorizontalPathReroute(grid, curPoint, tgtPoint)
18: GenerateV erticalPathSegment(grid, curPoint, tgtPoint)
19: GenerateHorizontalPathSegment(grid, curPoint, tgtPoint)
20: if curPoint.X 6= tgtPoint.X & curPoint.Y 6= tgtPoint.Y then
21: grid[curPoint.X, tgtPoint.Y ].IsJuncture← true
22: end if
23: else . Horizontal followed by vertical segment
24: HandleV erticalOverlapCases(grid, curPoint, tgtPoint)
25: GenerateHorizontalPathSegment(grid, curPoint, tgtPoint)
26: GenerateV erticalPathSegment(grid, curPoint, tgtPoint)
27: if curPoint.X 6= tgtPoint.X & curPoint.Y 6= tgtPoint.Y then
28: grid[tgtPoint.X, curPoint.Y ].IsJuncture← true
29: end if
30: end if
31: end while
32: end function
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Algorithm 7 Vertical Path Segment Generation
1: function GENERATEVERTICALPATHSEGMENT(grid, curPoint, endPoint)
2: if curPoint.Y ≤ endPoint.Y then
3: while curPoint.Y ≤ endPoint.Y do
4: grid[curPoint.X, curPoint.Y ].PathDirection← South
5: curPoint.Y ← curPoint.Y + 1
6: end while
7: else
8: while curPoint.Y ≥ endPoint.Y do
9: grid[curPoint.X, curPoint.Y ].PathDirection← North

10: curPoint.Y ← curPoint.Y − 1
11: end while
12: end if
13: end function

Algorithm 8 Horizontal Path Segment Generation
1: function GENERATEHORIZONTALPATHSEGMENT(grid, curPoint, endPoint)
2: if curPoint.X ≤ endPoint.X then
3: while curPoint.X ≤ endPoint.X do
4: grid[curPoint.X, curPoint.Y ].PathDirection← East
5: curPoint.X ← curPoint.X + 1
6: end while
7: else
8: while curPoint.X ≥ endPoint.X do
9: grid[curPoint.X, curPoint.Y ].PathDirection← West

10: curPoint.X ← curPoint.X − 1
11: end while
12: end if
13: end function
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Algorithm 9 Horizontal Path Reroute
1: function HORIZONTALPATHREROUTE(grid, curPoint, endPoint)
2: if endPoint.Y < curPoint.Y & endPoint.X > curPoint.X then
3: if grid[curPoint.X + 1, curPoint.Y ].PathDirection 6= None then
4: grid[curPoint.X, curPoint.Y ].PathDirection← South
5: grid[curPoint.X, curPoint.Y + 1].IsJuncture← true
6: curPoint.Y ← curPoint.Y + 1
7: end if
8: for curPoint.X : rightmostWaypoint.X do . Avoids overlap
9: grid[curPoint.X, curPoint.Y ].PathDirection← East

10: end for
11: grid[curPoint.X, curPoint.Y ].IsJuncture← true
12: end if
13: end function

Algorithm 10 Vertical Path Reroute
1: function VERTICALPATHREROUTE(grid, curPoint, endPoint)
2: if endPoint.X < curPoint.X & endPoint.Y > curPoint.Y then
3: if grid[curPoint.X, curPoint.Y + 1].PathDirection 6= None then
4: grid[curPoint.X, curPoint.Y ].PathDirection← East
5: grid[curPoint.X + 1, curPoint.Y ].IsJuncture← true
6: curPoint.X ← curPoint.X + 1
7: end if
8: for curPoint.Y : lowestWaypoint.X do . Avoids overlap
9: grid[curPoint.X, curPoint.Y ].PathDirection← South

10: end for
11: grid[curPoint.X, curPoint.Y ].IsJuncture← true
12: end if
13: end function
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Algorithm 11 Maze Wall Generation
1: function GENERATEWALLS(grid, wallGenes)
2: wallGeneIdx← 0
3: loopIteration← 0
4: EncloseAdjacentPathSegments(grid,mazeHeight,mazeWidth) . Encapsulate path
5: partitions← SubdivideMaze(grid,mazeHeight,mazeWidth)
6: for all partition ∈ partitions do . Bisect each subdivision with wall genes
7: partitionQueue← Queue()
8: if partition.SupportsWalls() = true then . Walls supported if > 1 unit
9: loopIteration← loopIteration+ 1

10: wallGeneIdx← loopIteration%wallGenes.Count
11: MarkPartitionBoundaries(grid, partition)
12: InsertPartitionOpening(grid, partition, wallGenes[wallGeneIdx])
13: partitionQueue.Enqueue(partition)
14: while partitionQueue.Count > 0 do
15: curPartition← partitionQueue.Dequeue()
16: loopIteration← loopIteration+ 1
17: wallGeneIdx← loopIteration%wallGenes.Count
18: partitions← SubdividePartition(grid, partition, wallGenes[wallGeneIdx])
19: if partitions[0] 6= None then . Enqueue partition on top/left
20: partitionQueue.Enqueue(partitions[0])
21: end if
22: if partitions[1] 6= None then . Enqueue partition on bottom/right
23: partitionQueue.Enqueue(partitions[1])
24: end if
25: end while
26: else
27: MarkBoundaries(grid, partition) . Enclose partition and open onto path
28: end if
29: end for
30: end function
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Algorithm 12 Path Encapsulation
1: function ENCLOSEADJACENTPATHSEGMENTS(grid, height, width)
2: curCell← grid[0, 0] . Begin path traversal at start point
3: while curCell.X < width & curCell.Y < height do
4: pathOrientation← curCell.PathOrientation
5: pathDir ← curCell.PathDirection
6: x← curCell.X
7: y ← curCell.Y
8: if pathDir 6= North & grid[x, y − 1].PathDirection 6= None then
9: grid[x, y − 1].SouthWall← true . Block adjacent path above

10: end if
11: if pathDir 6= South & grid[x, y + 1].PathDirection 6= None then
12: grid[x, y].SouthWall← true . Block adjacent path below
13: end if
14: if pathDir 6= West & grid[x− 1, y].PathDirection 6= None then
15: grid[x− 1, y].EastWall← true . Block adjacent path to the left
16: end if
17: if pathDir 6= East & grid[x+ 1, y].PathDirection 6= None then
18: grid[x, y].EastWall← true . Block adjacent path to the right
19: end if
20: if pathOrientation = Horizontal then
21: if pathDir = West then
22: curCell← grid[x− 1, y] . Next path cell is to the left
23: else
24: curCell← grid[x+ 1, y] . Next path cell is to the right
25: end if
26: end if
27: if pathOrientation = V ertical then
28: if pathDir = North then
29: curCell← grid[x, y − 1] . Next path cell is above
30: else
31: curCell← grid[x, y + 1] . Next path cell is below
32: end if
33: end if
34: end while
35: end function
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Algorithm 13 Maze Subdivision
1: function SUBDIVIDEMAZE(grid, height, width)
2: subdivisions← List() . List of maze subdivisions
3: for y=0:height do
4: for x=0:width do
5: if !grid[x, y].PathDir & IsInSubdiv(grid[x, y]) = false then
6: startPnt← (x, y)
7: endPnt← startPnt
8: wallFound = false
9: while endPnt.X < width & !grid[endPnt.X, endPnt.Y ].PathDir do

10: endPnt.X ← endPnt.X + 1 . Locate right edge of subdivision
11: end while
12: while wallFound = false & endPnt.Y < height do . Move to corner
13: endPnt.Y ← endPnt.Y + 1
14: curX ← startPnt.X
15: while wallFound = false & curX < width do
16: if grid[curX, endPnt.Y ].PathDir 6= None then
17: wallFound← true
18: endPnt.Y ← endPnt.Y − 1
19: end if
20: curX ← curX + 1
21: end while
22: end while
23: subdivisions.Add(startPnt, endPnt)
24: end if
25: end for
26: end for
27: return subdivisions
28: end function
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Algorithm 14 Partition Encapsulation
1: function MARKPARTITIONBOUNDARIES(grid, partition)
2: for x = partition.X : partition.Width do
3: if partition.Y > 0 then
4: grid[x, partition.Y − 1].SouthWall← true . North boundary
5: end if
6: grid[x, partition.Y + partition.Height− 1].SouthWall← true . South boundary
7: end for
8: for y = partition.Y : partition.Height do
9: if partition.X > 0 then

10: grid[partition.X − 1, y].EastWall← true . West boundary
11: end if
12: grid[partition.x+ partition.Width− 1, y].EastWall← true . East boundary
13: end for
14: if partition.Height = 1|partition.Width = 1 then . No room for walls, create opening
15: if partition.X = 0 then
16: grid[partition.X + partition.Width− 1, partition.Y ].EastWall← false
17: else
18: grid[partition.X − 1, partition.Y ].EastWall← false
19: end if
20: end if
21: end function

Algorithm 15 Partition Opening Placement
1: function INSERTPARTITIONOPENING(grid, partition, wallGene)
2: if wallGene.Orientation = Horizontal then
3: wallLoc← (partition.X, partition.Y + partition.Height ∗ wallGene.wallLoc)
4: if partition.X > 0 then
5: grid[partition.X − 1, wallLoc.Y ].EastWall← false . Opening on left
6: else
7: grid[partition.Width− 1, wallLoc.Y ].EastWall← false . Opening on right
8: end if
9: else

10: wallLoc← (partition.X + partition.Width ∗ wallGene.wallLoc, partition.Y )
11: passageLoc← (0, wallLoc.Y + partition.Height ∗ wallGene.passageLoc)
12: if partition.X > 0 then
13: grid[partition.X − 1, passageLoc.Y ].EastWall← false . Left opening
14: else
15: grid[partition.Width− 1, passageLoc.Y ].EastWall← false . Right opening
16: end if
17: end if
18: end function

119



Algorithm 16 Partition Subdivision
1: function SUBDIVIDEPARTITION(grid, partition, wallGene)
2: if wallGene.Orientation = Horizontal then
3: wallLoc← (partition.X, partition.Y + partition.Height ∗ wallGene.wallLoc)
4: passLoc← (wallLoc.X + partition.Width ∗ wallGene.passLoc, wallLoc.Y )
5: wallLength← partition.Width . Wall spans full length of partition
6: for position = 0 : wallLength do . Mark horizontal wall and passage in maze grid
7: if position 6= passLoc.X then
8: grid[wallLoc.X + position, wallLoc.Y ].SouthWall
9: end if

10: end for
11: childPartition1.StartPoint← (partition.X, partition.Y ) . Top partition
12: childPartition1.Width← partition.Width
13: childPartition1.Height← wallLoc.Y − partition.Y
14: childPartition2.StartPoint← (partition.X,wallLoc.Y + 1) . Bottom partition
15: childPartition2.Width← partition.Width
16: childPartition2.Height← partition.Y + partition.Height− wallLoc.Y
17: else
18: wallLoc← (partition.X + partition.Width ∗ wallGene.wallLoc, partition.Y )
19: passLoc← (wallLoc.X,wallLoc.Y + partition.Height ∗ wallGene.passLoc)
20: wallLength← partition.Height . Wall spans full height of partition
21: for position = 0 : wallLength do . Mark vertical wall and passage in maze grid
22: if position 6= passLoc.Y then
23: grid[wallLoc.X,wallLoc.Y + position].EastWall
24: end if
25: end for
26: childPartition1.StartPoint← (partition.X, partition.Y ) . Left partition
27: childPartition1.Width← wallLoc.X − partition.X
28: childPartition1.Height← partition.Y
29: childPartition2.StartPoint← (wallLoc.X, partition.Y ) . Right partition
30: childPartition2.Width← partition.X + partition.Width− wallLoc.X
31: childPartition2.Height← partition.Height
32: end if
33: return < childPartition1, childPartition2 >
34: end function
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All of the experiments in this dissertation utilize the NEAT algorithm. In the maze domain, NEAT

evolves agent controllers, while in the body-brain coevolution domain, a variant of NEAT called

CPPN-NEAT evolves CPPNs that generate material patterns in voxel bodies and weights for NNs

that control active material deformation. Novelty search, which has an additional set of parameters,

was used to bootstrap MCC with seed genomes in the maze domain as well as in the body-brain

coevolution experiments. A description of each relevant NEAT parameter and novelty search pa-

rameter is provided below. Additionally, tables B.1 and B.2 enumerate the novelty search, NEAT

and CPPN-NEAT parameter configurations for the maze navigation and body-brain coevolution

experiments respectively (maze evolution parameters are exhaustively-detailed in chapter 5 sec-

tions 5.1.1 and 5.1.2).

NEAT parameter descriptions:

• Population Size: The number of NEAT genomes that compose the population.

• Weight Mutation Probability: The rate at which to apply mutations that modify a connec-

tion weight.

• Add Connection Probability: The rate at which to apply mutations that add a new connec-

tion.

• Add Node Probability: The rate at which to apply mutations that add a new node (neuron).

• Delete Connection Probability: The rate at which to apply mutations that remove an exist-

ing connection.

Novelty search parameter descriptions:

• Behavior Characterization: The behavioral trait used to characterize and compare individ-

uals. For example, the trajectory end-point in a maze navigation domain could characterize

122



behavior.

• Nearest Neighbors: The number of individuals that are closest in behavior space against

which to assess behavioral distance.

• Archive Addition Threshold: The minimum numeric novelty score that an individual must

exceed to be entered into the novelty archive.

• Max Batches with Archive Addition: The maximum number of consecutive batches that

can result in an archive addition without an increase in the archive addition threshold. Once

this number is exceeded, the archive addition threshold is increased per the archive threshold

increase multiplier.

• Max Batches without Archive Addition: The maximum number of consecutive batches

that can be executed without an archive addition. After this number of batches has elapsed,

the archive addition threshold is decreased per the archive threshold decrease multiplier.

• Archive Threshold Increase Multiplier: The proportion by which to increase the archive

addition threshold.

• Archive Threshold Decrease Multiplier: The proportion by which to decrease the archive

addition threshold.
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Parameter Bootstrap MCC

Population Size 100 250
Weight Mutation Prob. 0.9 0.6
Add Connection Prob. 0.05 0.1
Add Node Prob. 0.005 0.01
Delete Connection Prob. 0.001 0.005
Behavior Characterization End Point N/A
Nearest Neighbors 15 N/A
Archive Addition Threshold 6 N/A
Max Batches w/Archive Addition 5 N/A
Max Batches wo/Archive Addition 10 N/A
Archive Threshold Inc. Multiplier 1.3 N/A
Archive Threshold Dec. Multiplier 0.95 N/A

Table B.1: Maze navigation experiment parameter settings. This table depicts the novelty
search and NEAT parameter settings for the maze navigation experiments in chapters 4 and 5.
Novelty search parameters apply only to the bootstrap.

Parameter Bootstrap MCC (Brains) MCC (Bodies)

Population Size 100 150 30
Weight Mutation Prob. 0.9 0.6 0.6
Add Connection Prob. 0.05 0.1 0.1
Add Node Prob. 0.005 0.01 0.01
Delete Connection Prob. 0.001 0.005 0.005
Behavior Characterization End Point N/A N/A
Nearest Neighbors 15 N/A N/A
Archive Addition Threshold 6 N/A N/A
Max Batches w/Archive Addition 5 N/A N/A
Max Batches wo/Archive Addition 10 N/A N/A
Archive Threshold Inc. Multiplier 1.3 N/A N/A
Archive Threshold Dec. Multiplier 0.95 N/A N/A

Table B.2: Body-Brain coevolution experiment parameter settings. This table depicts the nov-
elty search and CPPN-NEAT parameter settings for the body-brain coevolution experiments in
chapter 7. Novelty search parameters apply only to the bootstrap.
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