63,957 research outputs found

    Towards the Development of an Interactive 3D Coach Training Serious Game

    Get PDF

    An automatic visual analysis system for tennis

    Get PDF
    This article presents a novel video analysis system for coaching tennis players of all levels, which uses computer vision algorithms to automatically edit and index tennis videos into meaningful annotations. Existing tennis coaching software lacks the ability to automatically index a tennis match into key events, and therefore, a coach who uses existing software is burdened with time-consuming manual video editing. This work aims to explore the effectiveness of a system to automatically detect tennis events. A secondary aim of this work is to explore the bene- fits coaches experience in using an event retrieval system to retrieve the automatically indexed events. It was found that automatic event detection can significantly improve the experience of using video feedback as part of an instructional coaching session. In addition to the automatic detection of key tennis events, player and ball movements are automati- cally tracked throughout an entire match and this wealth of data allows users to find interesting patterns in play. Player and ball movement information are integrated with the automatically detected tennis events, and coaches can query the data to retrieve relevant key points during a match or analyse player patterns that need attention. This coaching software system allows coaches to build advanced queries, which cannot be facilitated with existing video coaching solutions, without tedious manual indexing. This article proves that the event detection algorithms in this work can detect the main events in tennis with an average precision and recall of 0.84 and 0.86, respectively, and can typically eliminate man- ual indexing of key tennis events

    Embedding of psycho-perceptual-motor skills can improve athlete assessment and training programs

    Get PDF
    Practitioners in a variety of sports seek unique ways to train athletes to better prepare them for competition. In this position paper, we argue that inclusion of psycho-perceptual-motor skills, from the fields of sport psychology and sport expertise, is crucial, but underutilized in the assessment and training of athletes. First, a brief introduction is provided as to why psycho-perceptual-motor skill is vital for training athletes. Second, examples are discussed relating to key concepts. These include the following: assessment of expertise discriminators such as visual anticipation under pressure contexts, incorporation of sports analytics and performance analysis to aid reflection upon previous experiences of good anticipation and coping with pressure, use of qualitative and quantitative measures to understand processes underlying performance and learning, as well as design of representative tasks for assessment and training anticipation under pressure contexts. Third, some recommendations are made to practitioners of sports teams to assist them in taking advantage of psycho-perceptual-motor skill to better prepare athletes for competition. Collectively, we hope this paper stimulates collaboration between practitioners of sports teams and scientists to create a greater focus upon integrated sport psychology and sport expertise in the training of athletes

    Haptic guidance improves the visuo-manual tracking of trajectories

    Get PDF
    BACKGROUND: Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)-on visuo-manual tracking ("following") of trajectories are still under debate. METHODOLOGY/PRINCIPALS FINDINGS: Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. CONCLUSION/SIGNIFICANCE: These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories

    The Impact of Flow in an EEG-based Brain Computer Interface

    Get PDF
    Major issues in Brain Computer Interfaces (BCIs) include low usability and poor user performance. This paper tackles them by ensuring the users to be in a state of immersion, control and motivation, called state of flow. Indeed, in various disciplines, being in the state of flow was shown to improve performances and learning. Hence, we intended to draw BCI users in a flow state to improve both their subjective experience and their performances. In a Motor Imagery BCI game, we manipulated flow in two ways: 1) by adapting the task difficulty and 2) by using background music. Results showed that the difficulty adaptation induced a higher flow state, however music had no effect. There was a positive correlation between subjective flow scores and offline performance, although the flow factors had no effect (adaptation) or negative effect (music) on online performance. Overall, favouring the flow state seems a promising approach for enhancing users' satisfaction, although its complexity requires more thorough investigations

    Time to start training: A review of cognitive research in sport and proposal for bridging the gap from academia to the field

    Get PDF
    Research demonstrates the importance of perceptual-cognitive skills, such as pattern matching, anticipation, and decision making in numerous sports, including badminton (Abernethy & Russell, 1987), baseball (Burroughs, 1984), basketball (Allard, Graham, & Paarsalu, 1980), handball (Johnson & Raab, 2003), rugby (Lorains, Ball, & MacMahon, 2013), soccer (Ward & Williams, 2003), squash (Abernethy, 1990), tennis (Haskins, 1965), and volleyball (Borgeaud & Abernethy, 1987). While other factors may be important (e.g., visual search patterns), the accuracy and/or speed with which athletes anticipate their opponent’s intentions and/or decide on an appropriate course of action, as assessed in domain-specific tests designed to simulate and represent real-world sporting demands have been shown to be the best and most reliable predictors of skilled performance in the field (see Mann, Williams, Ward, & Janelle, 2007). Moreover, several studies indicate that when training is based on expert models of superior performance, these skills can be improved and transfer to the field (e.g., Fadde, 2009; Ward, Suss, & Basevitch, 2009). In most elite and everyday sports training contexts, expensive research technology (such as eye-tracking equipment) is not always available to practitioners that would help us better understand the cognitive basis of, and ecological constraints of anticipation and decision-making in a way that could be leveraged to tailor training to improve individual and team performance. However, other technologies are now becoming more readily available to support the development of perceptual-cognitive skills. This is particularly timely, because although there is a growing body of research demonstrating the trainability of perceptual-cognitive skills in sport and their transfer to the field, few researchers have attempted to translate this research into accessible and useful training tools for everyday coaches and athletes (for an example, see Belling, Suss, & Ward, 2014). Moreover, research on the validation of such perceptual-cognitive or decision-making skill training tools is startlingly absent from the literature, not just from research on human factors in sport, but in human factors more broadly. In this research, we review what has worked in the past, what can be leveraged by simple and effective tools for accessible devices (e.g., personal computer, tablet), and how powerful these tools can be by reviewing changes in real world performance following their implementation. An NCAA Division 1 baseball team was given access to Axon Sports Cognitive Training for hitting in baseball for the 2013 season. Batting statistics are compared from the 2012 season, without training present, and 2013 season, with training present. The results suggest that batting improved during the season when cognitive training was available to the players. Implications for future research and application are discussed

    Research priorities in light of current trends in microsurgical training: revalidation, simulation, cross-training, and standardisation.

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly citedPlastic surgery training worldwide has seen a thorough restructuring over the past decade, with the introduction of formal training curricula and work-based assessment tools. Part of this process has been the introduction of revalidation and a greater use of simulation in training delivery. Simulation is an increasingly important tool for educators because it provides a way to reduce risks to both trainees and patients, whilst facilitating improved technical proficiency. Current microsurgery training interventions are often predicated on theories of skill acquisition and development that follow a 'practice makes perfect' model. Given the changing landscape of surgical training and advances in educational theories related to skill development, research is needed to assess the potential benefits of alternative models, particularly cross-training, a model now widely used in non-medical areas with significant benefits. Furthermore, with the proliferation of microsurgery training interventions and therefore diversity in length, cost, content and models used, appropriate standardisation will be an important factor to ensure that courses deliver consistent and effective training that achieves appropriate levels of competency. Key research requirements should be gathered and used in directing further research in these areas to achieve on-going improvement of microsurgery training

    Pedagogical Feedback for Computer-based Sport Training

    No full text
    Feedback in Computer-based Sport Training (CBST) may be synthetically designed to allow athletes to practise in a more effective way and enhance their skill acquisition. Little research has integrated pedagogic theory and instructional design with the design of feedback in CBST. To bridge this gap, the paper presents the design of pedagogically-informed feedback for the implementation of a CBST system. The heart of the design is to generate feedback based on the athletes’ achievement of their intended training outcome. The pedagogical feedback system measures athletes’ performance and compares it with the given training outcomes. The system then identifies the performance’s gap and generates feedback to reinforce better performance. A Counterbalanced experiment asked student rowers (N = 8) to explore the differences between the pedagogical feedback system and their current feedback system (Sean-Analysis). Pedagogical feedback was at least as good as Sean-Analysis with respect to the level of satisfaction of the athlete. Overall, it can be concluded that the pedagogical feedback appears to be a good model for generating feedback in CBST
    corecore