10 research outputs found

    A THz Video SAR Imaging Algorithm Based on Chirp Scaling

    Full text link
    In video synthetic aperture radar (SAR) imaging mode, the polar format algorithm (PFA) is more computational effective than the backprojection algorithm (BPA). However, the two-dimensional (2-D) interpolation in PFA greatly affects its computational speed, which is detrimental to the real-time imaging of video SAR. In this paper, a terahertz (THz) video SAR imaging algorithm based on chirp scaling is proposed, which utilizes the small synthetic angular feature of THz SAR and the inherent property of linear frequency modulation. Then, two-step chirp scaling is used to replace the 2-D interpolation in the PFA to obtain a similar focusing effect, but with a faster operation. Point target simulation is used to verify the effectiveness of the proposed method.Comment: 5 pages, 7 figure

    A Beam-Segmenting Polar Format Algorithm Based on Double PCS for Video SAR Persistent Imaging

    Full text link
    Video synthetic aperture radar (SAR) is attracting more attention in recent years due to its abilities of high resolution, high frame rate and advantages in continuous observation. Generally, the polar format algorithm (PFA) is an efficient algorithm for spotlight mode video SAR. However, in the process of PFA, the wavefront curvature error (WCE) limits the imaging scene size and the 2-D interpolation affects the efficiency. To solve the aforementioned problems, a beam-segmenting PFA based on principle of chirp scaling (PCS), called BS-PCS-PFA, is proposed for video SAR imaging, which has the capability of persistent imaging for different carrier frequencies video SAR. Firstly, an improved PCS applicable to video SAR PFA is proposed to replace the 2-D interpolation and the coarse image in the ground output coordinate system (GOCS) is obtained. As for the distortion or defocus existing in the coarse image, a novel sub-block imaging method based on beam-segmenting fast filtering is proposed to segment the image into multiple sub-beam data, whose distortion and defocus can be ignored when the equivalent size of sub-block is smaller than the distortion negligible region. Through processing the sub-beam data and mosaicking the refocused subimages, the full image in GOCS without distortion and defocus is obtained. Moreover, a three-step MoCo method is applied to the algorithm for the adaptability to the actual irregular trajectories. The proposed method can significantly expand the effective scene size of PFA, and the better operational efficiency makes it more suitable for video SAR imaging. The feasibility of the algorithm is verified by the experimental data

    News and reports from high energy density generated by heavy ion and laser beams : 2015

    Get PDF

    Applications of laser wakefield accelerator-based light sources

    Get PDF
    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science

    LASER Tech Briefs, Fall 1994

    Get PDF
    Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Science

    Generation and metrology of ultrashort pulses and their application in attosecond science

    Get PDF
    This thesis deals with the dynamical processes in atoms and small molecules initiated by the absorption of ultrashort, coherent light pulses. The studied phenomena takeplace on the femtosecond (1 fs = 10−15 s) and attosecond (1 as = 10−18 s) timescales and critically depend on the properties of the light fields that drive them. Wework with infrared (IR) femtosecond laser pulses, which we manipulate through nonlinear interactions with matter to either study these interactions themselves or applythem to investigate other light-induced processes.One part of this thesis focuses on the generation and characterisation of IR pulses spectrally broadened through the Kerr effect. We use a technique called dispersion scanto temporally compress and at the same time measure pulses broadened in gas-filled hollow-core fibres. We propose multiple improvements to this well-established characterisation technique. Further, we investigate femtosecond filamentation in gases, a process with highly complex dynamics involving several non-linear processes including the Kerr effect and ionisation. We develop a method that allows us to measure the electric field of a laser pulse undergoing filamentation in three dimensions, whilealso scanning along the filament length. Our technique provides access to pulses with desirable characteristics that may be generated at a point inside the filament, simultaneously enabling their measurement and extraction for applications. In addition, this technique opens up the possibility to explore intricate filament dynamics.In the other part of this work, we up-convert the IR laser pulses into trains of extreme ultraviolet (XUV) attosecond pulses through a non-linear process called high-orderharmonic generation. We combine the IR and XUV pulses to study the photoionisation dynamics in different species using a method known as RABBIT (Reconstructionof Attosecond Beating By Interference of Two-photon transitions). In this technique, a target gas is ionised by the XUV field, creating an electron wave-paket (EWP) in thecontinuum, while a weak IR pulse probes the system. The EWP scatters off the ionic potential, acquiring an additional phase as it propagates. Recording the photoelectronspectrum as a function of the IR-XUV time delay allows us to infer time-resolved information about the ionic potential. We apply this method to investigate the dynamicsof different ionisation processes in noble gases (He, Ar, and Xe) and the N2 molecule. The high spectral resolution of our electron spectrometer allows us to disentanglethe contributions from different ionisation channels. In addition, we perform angle-resolved measurements, investigating the coherent superposition of final stateswith different angular momenta

    LDRD Annual Report FY2006

    Full text link

    1999 LDRD Laboratory Directed Research and Development

    Full text link

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Optical study of shear and longitudinal acoustic waves and complex relaxation dynamics of glass forming liquids

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.Includes bibliographical references (p. 259-277).The spectroscopic technique Impulsive Stimulated Scattering (ISS) was refined and used to study the complex structural relaxation dynamics of glass forming liquids, allowing both empirical modeling and testing of the predictions of the mode-coupling theory (MCT). Longitudinal and shear acoustic waves throughout much of the MHz frequency range, time-dependent thermal expansion on nanosecond and microsecond scales, and slower thermal diffusion were all monitored in real time. The data were used to construct complex longitudinal modulus spectra spanning from, 30 kHZ to 3 GHz, and complex shear modulus spectra from - 10 MHz to 1 GHz. In the liquid tetramethyl tetraphenyl trisiloxane, experiments which verified timetemperature superposition of its relaxation dynamics permitted construction of a master plot of scaled relaxation spectra in the entire temperature range studied. MCT predictions of power-law frequency dependencies of the high and low frequency wings of the loss modulus yielded a high-frequency exponent parameter in good agreement with the width of the non-exponential relaxation kinetics. The low-frequency exponent did not agree with the predicted value. In triphenyl phosphite, measurements of the measured shear relaxation spectrum over two decades in frequency revealed that it does not match the previously measured longitudinal spectrum, suggesting that different underlying degrees of freedom contribute to shear and compressional relaxation. Measurement of shear wave propagation as a function of temperature lent credence to the dominance of the temperature dependence of the transport by the instantaneous shear modulus. These measurements also call into question other relationships drawn between glass mechanical behavior and the supercooled liquid fragility. In work conducted collaboratively, the ISS technique was employed in singles hot measurements of liquid benzene under conditions of shock loading. The results indicate that benzene remains in a liquid state for at least 200 ns after the shock's arrival. ISS was also used to characterize both the thermal transport and mechanical properties of nanofluids.(cont.) Finally, results of ISS acoustic measurements of thin films and their relationship with the study of glass forming liquids are briefly discussed.by Darius H. Torchinsky.Ph.D
    corecore