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Abstract

The spectroscopic technique Impulsive Stimulated Scattering (ISS) was refined and
used to study the complex structural relaxation dynamics of glass forming liquids,
allowing both empirical modeling and testing of the predictions of the mode-coupling
theory (MCT). Longitudinal and shear acoustic waves throughout much of the MHz
frequency range, time-dependent thermal expansion on nanosecond and microsecond
scales, and slower thermal diffusion were all monitored in real time. The data were
used to construct complex longitudinal modulus spectra spanning from , 30 kHZ to
3 GHz, and complex shear modulus spectra from - 10 MHz to 1 GHz.

In the liquid tetramethyl tetraphenyl trisiloxane, experiments which verified time-
temperature superposition of its relaxation dynamics permitted construction of a mas-
ter plot of scaled relaxation spectra in the entire temperature range studied. MCT
predictions of power-law frequency dependencies of the high and low frequency wings
of the loss modulus yielded a high-frequency exponent parameter in good agreement
with the width of the non-exponential relaxation kinetics. The low-frequency expo-
nent did not agree with the predicted value.

In triphenyl phosphite, measurements of the measured shear relaxation spectrum
over two decades in frequency revealed that it does not match the previously mea-
sured longitudinal spectrum, suggesting that different underlying degrees of freedom
contribute to shear and compressional relaxation.

Measurement of shear wave propagation as a function of temperature lent credence
to the dominance of the temperature dependence of the transport by the instanta-
neous shear modulus. These measurements also call into question other relationships
drawn between glass mechanical behavior and the supercooled liquid fragility.

In work conducted collaboratively, the ISS technique was employed in single-
shot measurements of liquid benzene under conditions of shock loading. The results
indicate that benzene remains in a liquid state for at least 200 ns after the shock's
arrival. ISS was also used to characterize both the thermal transport and mechanical
properties of nanofluids. Finally, results of ISS acoustic measurements of thin films
and their relationship with the study of glass forming liquids are briefly discussed.
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Chapter 1

Introduction

Despite being one of the first genuinely human made and engineered materials [1], in

many regards glass remains an enigma. While solid and thus mechanically rigid, it is

nearly identical structurally to its corresponding melted liquid state; nevertheless, it

continues to flow on millennial time scales [2]. More troubling is that the transition

from liquid to glass is marked by an increase of the viscosity by seventeen orders

of magnitude, all the while preserving the same structure. Indeed, even drawing

the boundaries between the viscous liquid state and the glassy state is accepted as

arbitrary.

So, how best to understand a phenomenon so veiled in ambiguities? Attempts

to cast the glass transition into the same mould as conventional phase transitions

[3, 4, 5] have met with failure [6]. Neither experiments nor numerical simulations show

divergences of the static correlation functions which are a hallmark of the cooperative

behavior as understood in the theory of phase transitions. Thus, the transition must

be viewed from a kinetic and dynamical perspective. To this end, it has been broadly

recognized that the key to understanding the dynamics of the glass transition lies

in the often broad relaxation spectra apparent from mechanical and dielectric linear

response measurements.

This thesis presents an advancement of the study of glass forming, as well as

simple, liquids in a number of directions which expand our ability to characterize

mechanical relaxation. My tool of choice has been the nonlinear optical technique



known as Impulsive Stimulated Scattering, a spectroscopy whose ability to both gen-

erate and probe coherent acoustic waves makes it an ideal candidate for the study

of mechanical relaxation. This technique has been applied in a number of different

situations as described below.

In Chapter 2, I present a background of the liquid-glass transition, starting with

basic phenomenology. The prevailing first-principles theory of the transition, the

mode coupling theory, is covered here, and the predictions most relevant to mechanical

spectroscopy are described. I also review some recent advances in the theory, as well

as the view of the existence of a growing dynamical length scale in the glass transition.

These results set the stage for chapter 3, in which I give a brief overview of the

Impulsive Stimulated Scattering (ISS) technique, as well as a motivation for its use

in supercooled liquid studies. I begin by reviewing prior derived results of the ISS

VVVV signal [7] and I discuss the different contributions to the signal in terms of

their physical origins. I then present original results of the analogous derivation in

the VHVH configuration in supercooled liquids, highlighting the effects of structural

relaxation on the shear degrees of freedom on the system. For both longitudinal and

shear waves, I provide experimental results that illustrate the effects of structural

relaxation on the acoustic measurements.

Chapter 3 continues with a discussion of the experimental apparatus I have built to

perform measurements of longitudinal and shear waves in supercooled liquids. After

the data acquisition and analysis are described in detail, the chapter concludes with

important notes on sample preparation.

The above provides the background for the experimental results of this thesis,

which begin with chapter 4. Here, results are presented on the mapping of the

longitudinal relaxation spectrum in a prototypical glass-forming liquid, tetramethyl

tetraphenyl trisiloxane (DC704) over 7 orders of magnitude in time. While this work

is similar to prior experiments conducted on other liquids, the acoustic frequency

range achieved here is a first for Impulsive Stimulated Scattering, or other mechan-

ical spectroscopy studies of supercooled liquids. I describe the analysis I have per-

formed, which examines the growing time scale characteristic of the transition and



quantifies the Debye-Waller factor - a measure of the system's non-ergodicity, or

"falling out of equilibrium." I have also shown evidence of an experimentally mea-

sured time-temperature-superposition, which conforms with both theoretical predic-

tions and other measurements performed on this liquid in different frequency and

temperature regimes.

Probing the longitudinal spectrum is a useful albeit incomplete method of studying

glass formers, as a more complete picture of mechanical relaxation also encompasses

the evolution of the shear acoustic spectrum. In light of this, chapter 4 presents

preliminary results of an attempt to measure the shear relaxation spectrum of DC704;

only partial results are presented due to the small shear ISS signal from this liquid.

Nevertheless, this provides motivation for chapter 5 where I have extended the

technique of depolarized Impulsive Stimulated Brillouin Scattering to encompass a

larger frequency range. With a coworker apprentice, I have set out to probe the

broadest spectral information possible in the glass forming liquid triphenyl phosphite.

The results presented therein constitute the broadest bandwidth shear acoustic mea-

surements performed optically on this or any glass forming system. As before, the

objective is to test assertions regarding the evolution of the slower components of

relaxation, in this case from the point of view of the transverse current correlations.

This is made possible by building upon prior work on this liquid [8, 9]; I have also

added an analysis of the shear spectrum in relation to the longitudinal one, where we

find that, in contrast with the mode-coupling theory, the two degrees of freedom do

not have consistent relaxation behavior.

As a theoretical understanding of the glass transition is still elusive, alternatives

to the mode-coupling theory, based on the samples' elastic parameters, have sprung

up to fill the void. One of these is the "shoving" model [10], which proposes that the

non-Arrhenius evolution of relaxation time with temperature finds its origin in the

instantaneous shear elastic modulus G, - as the molecules collectively rearrange in

response to a perturbation, they do non-compressive physical work on their neigh-

bors. This work sets the activation energy of the overall flow event whose gradual

arrest is at the root of increasing viscosity. Other authors have built upon this work



by taking a more phenomenological approach where they seek to draw correlations

between the supercooled liquid's fragility (or departure from Arrhenius kinetics) and

the corresponding glassy state's elastic parameters.

These assertions may also be tested by the Impulsive Stimulated Scattering tech-

nique, and chapter 6 describes a direct test of these notions. With a coworker, I have

measured depolarized Brillouin scattering responses from ten glass forming liquids,

rivalling the sum total of the depolarized Brillouin scattering literature. Our results

provide evidence for a correspondence between the average relaxation time and the

shear modulus. We also conclude that the ratio of bulk to shear moduli of the glassy

state and the evolution of the relaxation time of the liquid state of a given system

cannot be correlated in the way that other authors have proposed.

Chapter 7 describes how the spectroscopic techniques utilized in this thesis are

extended to interrogate simple liquid systems out of equilibrium, with a view towards

understanding glass forming liquids under similar conditions. With collaborators, we

have designed, built, and then implemented an experimental apparatus to conduct

the first single-shot, ISS studies of a sample under shock loading. We find a marked

difference between the elastic parameters of shocked liquid benzene when contrasted

with benzene under the corresponding static high pressure. We can conclude directly

from its mechanical behavior that benzene is not able to crystallize under shock at

the pressures achieved, nor is it likely to be in a vitrified state, after at least 200 ns.

Recent developments in the theory of liquids have centered on the study of colloids,

which share much in terms of phenomenology with glass forming liquids. Working

with collaborators, we have demonstrated the flexibility of the ISS technique in de-

termining the mechanical and thermal transport properties of "nanofluids" - liquids

with an immersion of alumina nanoparticles. These transport measurements provide

a consistency check of previous measurements conducted with different methods, and

also lay the groundwork for future studies on these systems.

The chapter ends with mention of work that I have done with collaborators involv-

ing acoustic measurements on thin-film multilayers. How these results may impact

the study of glass forming liquids is discussed therein.



Chapter 8 presents a conclusion of this thesis where results are summarized and

future directions of research are provided, as well as ideas by which to improve the

experimental methods used above.





Chapter 2

Phenomenology and Theory of the

Glass Transition

2.1 Introduction

Despite the widespread prevalence of glass in our everyday lives, the phenomenon

of vitrification is not yet fully understood. Further than the marked difference in

viscosity between the liquid and glassy states, the transition is rife with a rich phe-

nomenology ranging from distinct changes in heat capacities to evidence for growing

dynamic length scales. This behavior is made more remarkable by its apparent uni-

versality; materials ranging from associated and van der Waals liquids to ionic liquids,

polymers and colloids display many of the same characteristics upon cooling, indi-

cating that a common theory should underly their understanding. Explaining these

characteristics is the goal of present-day glass forming liquid theory.

Below, we present a broad introduction to the basic phenomenology of the glass

transition, as well as review some of the theoretical attempts that have been proposed

to describe it. In the interest of motivating the measurements made in this thesis,

we will restrict ourselves to a discussion focussed on changes in mechanical properties

upon cooling.



2.2 Basic Phenomenology

Owing to the quite vast difference in mechanical behavior between a liquid and its

corresponding glass, it would be reasonable to assume that these two states should be

structurally distinguishable on a microscopic level. To the contrary, measurements of

the static structure factor S(q) by x-ray diffraction show no differences between them

[11], except for a modest change in density associated with thermal contraction upon

cooling. Indeed, structural transitions between different amorphous states are only

found in a paucity of materials, and usually under the rather exotic circumstances of

confinement [12] or static high pressure [13]. One example of recent interest is water,

whose already rich pressure-temperature phase diagram has recently been shown to

also encompass three distinct amorphous glassy phases [14]. Another example, quite

relevant for the work presented here, is the case of triphenyl phosphite (TPP), a van

der Waals bonded organic molecular glass forming liquid. Within a given temperature

range, TPP apparently exhibits the ability to undergo a shift from a "regular" liquid

phase to a "glacial" liquid phase [15]. It is worth emphasizing that, as far as can be

discerned from any measurements, the mechanical properties of the distinct states of

the liquids described here are little different from one another, despite the apparent

change in liquid structure; for sure, their small mechanical differences certainly do

not rival the scale spanned by liquid and glass.

2.2.1 The Susceptibility Spectrum and Growing Time Scales

In light of the preceding discussion, a different physical marker than microscopic

structure is needed, and so we adopt the view that the transition should be considered

kinetically in terms of relaxation times or transport quantities. An understanding in

terms of transport quantities is conceptually straightforward. When flow becomes

arrested, or if electrical conductivity of an ionic glass former is greatly decreased, we

may use this as our measuring stick for the transition. In terms of the shear viscosity

q, the simple liquid state is arbitrarily defined at q = 10- 4 P [16]. The glass transition

temperature Tg is then (also arbitrarily) assigned to the temperature at which the



system has reached a viscosity of q = 1013 P.

An interpretation in terms of relaxation times is not as transparent. To under-

stand what is meant by this, we consider linear response measurements of various

susceptibilities of liquids taken over broad frequency regimes. In more precise terms,

we are examining the change of a property 6A of a system in response to an external

driving field a at frequency w:

6A = *(w)a(w). (2.1)

Here, j represents the frequency dependent susceptibility of interest. Since the vis-

cosity increases by 17 orders of magnitude going from the liquid to glass state, it is

reasonable to assume that the characteristic relaxation time should follow suit. Thus,

we require for complete characterization, a metrology capable of spanning such a large

frequency range. A good example is provided by dielectric spectroscopy [17], popular

for its exceptional dynamic range of over 17 decades in frequency. This technique

probes the orientational-orientational correlation function

X(t) = (60(0)60(t)), (2.2)

where 60(t) represents the angular displacement of a molecular glass-former's dipole

from its original equilibrium orientation at time t. Thus, a = E is the electric field,

A = P is the polarization and X = E is the liquid's time dependent permittivity.

Due to the disorder of the liquid state beyond any length scale greater than a

given molecule's first two solvation shells, the naive experimentalist may assume that

the frequency-dependent susceptibility would be featureless save some signature of the

short range order at very high frequencies. Experimental data provided by the reactive

part E' in figure 2-1(a) and dissipative part E", shown in figure 2-1(b) immediately put

this notion to rest. e" clearly shows a broad, yet distinct peak spanning many decades

in frequency, whose progression as a function of temperature is clearly towards lower

frequencies, while e' exhibits dispersive character that matches E". Taken together,

we may assign them as two pieces (related by the Kramers-Kronig transformation)



of a complex susceptibility c* = E' + ie", where the imaginary part E" is referred to as

the dielectric relaxation spectrum.

Another clear feature of the spectra in figure 2-1(b) is the separation of time

scales. On the slower end is the broad peak which shifts over many orders magnitude

in time with a change in temperature. This feature is known as the a relaxation,

and is representative of the collective reorganization that takes place on large scales,

such as during a flow event. The part of the spectrum contained at higher frequencies

around 1 THz is known as the 0 relaxation, and as we can see in figure 2-1(b) it

is generally independent of the temperature. These designations will be of utmost

importance in the remaining discussion of the glass transition throughout this thesis.

To date, it is impossible to fit the spectra shown in figure 2-1 by a form that is

justifiable from first principles, and so many authors extend the arguments of Debye

in analyzing a relaxation spectrum. In the Debye model, relaxation is given as the

response of a system with one characteristic time scale TR. When probed in the

frequency domain, the Debye form of the complex susceptibility is given as

X(w = (2.3)
1 - iWTR

Experimentally measured susceptibility curves of glass forming liquids are generally

much broader and more asymmetric than what is realized by equation 2.3. A more

general fitting function given by the Havriliak-Negami form [19]

1
x oc 0 < a, < 1 (2.4)

is able to fit almost any separately varying relaxation spectrum feature over several

decades in frequency. Here, the exponent a serves as a variance parameter by broad-

ening the Debye distribution, and / acts as a skew parameter. rR is interpreted

a characteristic relaxation time. In the glass-forming community Tg is (somewhat

arbitrarily) defined as the temperature at which -R = 100 s.

We also note that equation 2.4 is known as the Havriliak-Negami relaxation func-

tion, and is not the only generalization of a Debye spectrum. The Cole-Davidson
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(a) Reactive part of dielectric relaxation spectrum. From [18].
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(b) Dissipative part of dielectric relaxation spectrum.

Figure 2-1: Dielectric relaxation in glycerol where (a) shows the reactive part of the
permittivity as a function of frequency v, and (b) the dissipative part. Note the
structure in the imaginary part. Figure taken from [18].
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function takes a = 1, / variable, and expresses a distribution with skew but typi-

cal width. The Cole-Cole relaxation function assumes 3 = 1, a variable, implying

a wide, but symmetric distribution. Selection between these three functions has no

theoretical basis, and is considered to be at the discretion of the researcher.

Relaxation dynamics may be measured in the frequency or time domain. In such

a case, we may imagine a perturbing field which is turned on adiabatically from time

t = -oo and abruptly shut off at t = 0. The change in the observable 6A(t) is thus

given by

6A(t) = D(t)A(0), (2.5)

where '(t) is the relaxation function. In terms of experimentally measurable param-

eters of the glass transition, '(t) may fit the decay of two-point correlation functions

measured in the time domain, such as equation 2.2.

Equivalently, such a material response could also be measured by the sudden

imposition of a static perturbing field at time t = 0, and observing the relaxation of

the material towards its new equilibrium state

6A(t) = J(t)6A(t o- oc). (2.6)

'I(t) and '(t) are simply related by the equality '(t) = 1 - '(t). This framework

will be of importance in our experiments.

From our experience with the frequency domain susceptibility curves, where there

are two well-separated time scales for relaxation, we expect that the evolution of 1(t)

should progress in two distinct steps. The fast / relaxation should occur at very

short times, and its character should vary little as the liquid is cooled. At the longer

times of the a relaxation, we should witness the full decay of 1(t). This expectation

is borne out by both experimental data and computer simulations of glass forming

liquids, an example of the latter being provided for amorphous selenium in figure

2-2(a). We also notice from figure 2-2(a) that, as the system is cooled, the 0 and

a relaxation separate in time, their separation marked by a plateau that grows in

length with the decrease in temperature. Much theoretical effort has been spent
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(b) Scaled decay of two-point correlator.

Figure 2-2: Decay of the two point correlator in amorphous selenium as determined
from molecular dynamics simulations. (a) depicts an unscaled two-point correlator.
Of note is that, with decreasing temperature, a plateau develops between the fast, 3
decay and the slow a decay. In (b), all of the plots have been scaled to nearly collapse
to a common a decay. Figure taken from [20].
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trying to understand the characteristics of this plateau, and the relaxation dynamics

that precede and follow it, and we will defer this discussion until we have developed

the mode-coupling theory.

It then falls on how to describe the time-dependent behavior which constitutes

the a relaxation, as was done above for the frequency domain. If we are to assume a

single relaxation time, we recover the simple exponential decay of the Debye model

1(t) oc exp(-t/rR), (2.7)

which, in analogy to its Fourier domain companion equation 2.3, does a poor job of

fitting experimental data. Better fits for the average relaxation time are obtained

using the stretched exponential or Kohlrausch-Williams-Watts (KWW) relaxation

function

P(t) = exp (-(t/7mR)) 0 < P < 1, (2.8)

where the 3 parameter is used to account for the stretching in time that the relax-

ation displays when contrasted with pure exponential decay. This equation lacks a

first-principles explanation but nevertheless provides excellent fits of time-domain a

relaxation data for glass forming liquids.

While equations 2.4 and 2.8 are both representative of similar (and admittedly

heuristic) generalizations of Debye relaxation, neither has a closed-form Fourier trans-

form which may be related to the other', and thus the exponents and relaxation times

-R are not common between the two functions. Mathematical comparisons between

these two different approaches to relaxation in glass forming liquids can only be ap-

proached in a rather complex manner covered by Hilfer [21, 22] where an asymptotic

series is used to produce one function in the other's domain. This numerically deter-

mined transformed spectrum can then itself be fit by the corresponding function in

the transformed domain to recover the relevant parameters. This analysis is described

in depth in chapter 4 where it is used.

1An analytical form for the Fourier transform of equation 2.4 only exists for a = 1/2,1, 1 = 1,
while in equation 2.8, only for 3 = 1/2, 1.



2.2.2 Dynamical Heterogeneity, Non-Arrhenius Relaxation

The inability to model the susceptibility peak or, equivalently, the decay of a two-

point correlator by Debye relaxation with a single relaxation time is a subject of

long-standing interest. Two scenarios have been proposed [11, 23] as most spectro-

scopies, which interrogate a large collection of relaxing regions, are not be able to

distinguish between a single non-exponential decay manifest in all probed regions, or

a collection of exponential decays with different, locally varying values of TR. The

latter interpretation is referred to as "dynamical heterogeneity."

When the evolution of the relaxation time is probed as in the dielectric experi-

ments described above, or when the viscosity is measured in a rheology experiment,

its dependence on temperature is not simply exponential. Rather, systems display

strongly non-Arrhenius kinetics, as can be seen in figure 2-3. Numerous fitting func-

tions have been posited in order to fit the dependence of TR(T) or rI(T) [24], the most

popular being the Volger-Fulcher-Tammann (VFT) equation written for the average,

or characteristic, relaxation time as

S= -To exp T T(2.9)

where To and B are fitting parameters with units of seconds and temperature, respec-

tively, and To is a characteristic temperature. A formally identical equation is used for

the temperature dependence of the viscosity. Despite much effort, there is still little

insight as to the physical significance of the parameter To. Further, a single set of

VFT parameters generally does not fit the entire curve 77(T) or TR(T), and so authors

generally take care to fit different temperature regimes with different parameters.

2.2.3 Fragility and the Angell Plot

Earlier, it was mentioned that the several different classes of glass-forming liquid

behave in nearly identical fashions under cooling. This alludes to ideas of universality

based on the theory of phase transitions. Despite much effort on the part of theorists,

there remains to be identified any static correlator whose critical divergence at a set



temperature can be identified with a liquid-glass transition. Nevertheless, significant

efforts have been made to classify different liquids' behavior in a meaningful way

which seeks to highlight their similarities.

Of great use in describing a glass is its so-called "fragility," which is a measurement

of the departure of the glass-former's relaxation behavior from Arrhenius-activated

kinetics. In determining a glass-former's fragility, a plot is made of viscosity r or

relaxation time TR, versus a normalized inverse temperature, T9/T; the normalization

in temperature serves to bring the behavior of all liquids to the same domain and

range of a common plot, known after its originator as the "Angell" plot [25, 26]. The

fragility m is defined as the slope of this curve at T,

(0 log () (2.10)
m = O(TgI/T) ) T=T,

Perfectly Arrhenius kinetics will have a fragility value of m = 17, and those materials

close to this limit are referred to as "strong" liquids, while those with a larger value

of m are deemed "fragile" liquids; note that this nomenclature does not refer to the

actual resistance of the vitrified material to breakage.

There are a few trends that separate strong and fragile glass formers. Strong

glasses are generally metallic or covalently bonded network glass formers, such as

common silicate-based window glass. Their intermolecular interactions tend to be

very strong and highly directional. Fragile glasses are usually hydrogen-bonded and

van der Waals bonded organical molecular liquids whose intermolecular attractions

are typically very non-directional and fall off faster than r - 2, where r is the in-

termolecular separation. All of these materials share the phenomenology described

above.

2.2.4 Evidence of Growing Dynamic Length Scales

The concept of a diverging length scale, as is associated with typical phase transitions

and critical behavior, may not be altogether lost in the glass transition, and the

transition may yet be viewed through the lens of critical phenomena. Biroli and
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Figure 2-3: Angell plot for various glass forming liquids. For all liquids, the tem-
perature has been scaled so that they fall in a common domain and range. The
most noticeable trend is that most liquids do not obey simple Arrhenius kinetics (the
straight line). This leads to the classification of "strong" versus "fragile", where the
former is closer to Arrhenius activated kinetics, and the latter further away. Figure
taken from [26].



coworkers have taken steps toward a renormalization group formulation for a dynamic

order parameter in terms of the the density-density correlation function, given as

'((t) = (6pq(O)6pq(t)). (2.11)

The dependence on wavevector indicates that we must seek diverging behavior in the

four point density correlation function, represented in real space by

4(t) = dr(p(O, O)6p(O, t)6p(r, 0)6p(r, t)). (2.12)

Equation 2.12 measures the cooperativity of dynamical events located at the origin

and those at another location r. Divergence would reflect growth of cooperatively

rearranging regions as the glass transition temperature is approached. In contrast to

conventional critical phenomena, no static divergences are present.

Direct measurement of a four-point correlation function such as that represented

by relation 2.12 requires resolution in both space and time. The few measurements

made to date have been performed on macroscopic colloidal systems [27] for which

it is possible to directly tag constituent particles and track their behavior as the

packing fraction is increased. Berthier and coworkers have been able to construct a

lower bound on X4 which provides direct evidence of growing length scales in bulk

supercooled liquids without the need for difficult spectroscopies. This is done by

considering the derivative of a two-point correlator F(t) with respect to a control

parameter x

XF(t) = F(t) (2.13)

In this thesis, we take F(t) as the two point density correlator 2.11 and choose the

derivative with respect to temperature, i.e. x = T. The result in the NPT ensemble,

relevant for the experiments described below, is given by the fluctuation-dissipation

theorem as [28]

kBT 2XT(t) = N(6C(t)6H(O)) (2.14)

where C(t) = 6p(t)6p(O) in the case of density fluctuations. Here, N is the number



of particles, kB is the Boltzmann constant, and SH(t) is the fluctuating enthalpy

per unit particle. It now just remains to relate 2.14 to the four-point correlator of

interest. This is done by noting that X4(t) in the NPH ensemble of constant enthalpy

is related to the constant temperature NPT ensemble through [29]

X4(t) = 4NPH(t) + kBTT2X (t)/cp. (2.15)

Since xNPH(t) > 0, we can then obtain a lower bound for X4(t) as

X4(t) > kBT2x2(t), (2.16)
Cp

where an analogous equation holds for w4(w) [30]. Hence, a determination of the

frequency-dependent susceptibility spectrum as a function of temperature can be used

to directly determine a lower bound for dynamic length-scale correlations. Figure 2-4

shows an example of this analysis performed for dielectric relaxation data, where a

clear increase of this lower bound with an increase of relaxation time is observed via

the peak of the quantity XT(w). The abscissa indicates the time scale of relaxation

as it occurs in the liquid, while the ordinate is a measure of the dynamic length scale

of this relaxation. As the temperature is reduced, the relaxation spectrum moves to

longer times and, accordingly, the dynamic length scale associated with this relaxation

increases.

2.3 The Mode-Coupling Theory of the Glass Tran-

sition

2.3.1 Introduction

The mode coupling theory refers to a truly microscopic, non-phenomenological ap-

proach to describing glass transition phenomena. The basis of the theory lies upon

the Mori-Zwanzig projection operator formalism [16, 31, 32, 33, 34, 35], a method

developed in the 1960s for the treatment of generalized relaxation. This method also
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Figure 2-4: Evidence of growing length scales in supercooled glycerol. On the vertical

axis is the lower bound variable XT and on the horizontal axis is the inverse frequency.

As the temperature is decreased, the characteristic relaxation time increases, as well

as the peak of the susceptibility XT, indicating a large lower bound for cooperative

dynamics. Figure taken from [28].

finds great use in the description of light scattering spectra [34, 35]. Here we will es-

sentially replicate the derivation of the equations of motion as provided in [16]; what

follows differs little from this reference, although we will provide further depth and

insight on certain steps.

In the Mori-Zwanzig formulation, the procedure is the attempt to separate the

evolution of a vector of slow variables A in which we have physical interest, from

those fast variables whose time dependence is too rapid to be relevant to the dynamics

being studied. This partitioning of slow variables from fast variables must be made

partly by hand, thus requiring physical intuition and motivation.

2.3.2 Derivation of the Equations of Motion

We consider a liquid comprised of N constituent particles obeying a classical Hamil-

tonian H(x, p). Hamilton's equation of motion for any function g of the coordinates

x and the canonical momentum p is given by

g = {H, g} = ilg, (2.17)



where {., .} expresses the usual Poisson brackets. Equation 2.17 thus defines the

action of the Liouville operator £ whose role is to provide the time dependence of g.

A formal solution of 2.17 is given by g(t) = exp(i&t)g(O), where the right-hand-side

may be evaluated via a power series expansion in i£.

The next step in approaching workable equations of motion for glass forming

liquids is to define an inner product of two generally complex variables (g h) = (6g*bh)

as the canonical average of fluctuations of g and h, i.e. 3g = g - (g). With this inner

product, we may then define a normalized projection operator P which projects the

fluctuating content of any arbitrary function, say g, onto the slow variables A by

Pg = (AIg)(AIA)- 1A, (2.18)

where again, the inner-product operates on the fluctuating portions of its arguments

only. Note that P is also a projection operator in the mathematical sense, i.e. that

p2 = P. This implies that the operator (1 - P) is orthogonal to P: (1 - P)P =

P - 72 = 0, and projects the content of any function into a subspace orthogonal to

that of A.

Using 2.17 for A allows us to produce its time dependence dA/dt = exp(ift)A.

Inserting the identity operator 1 = P + (1 - P) after the propagator in this time-

dependent expression allows us to write

dA/dt = exp(iI t)[P + (1 - P)]i£A (2.19)

= iA A + exp(i£t)(1 - P)iLA. (2.20)

2 = exp(i£t)PLA is called the "frequency," as will become evident later on when a

time-domain expression for the density autocorrelation function q (t) = (Pq (t)Spq(0))

is derived. The task is now to rewrite eq. 2.19 in a form which provides more physical

insight. To that end, we take the second term on the right-hand-side of eq. 2.20 and

add and subtract the propagator of the orthogonal variables exp(i(1 - P)Lt):

exp(i£t) = exp(iLt) - exp(i(1 - P)Lt) + exp(i(1 - P)Lt)



= exp(iLt)[1 - exp(-iCt) exp(i(1 - P)Ct)] + exp(i(1 - P)LtX2.21)

= exp(iCt)S(t) + exp(i(1 - p)Lt). (2.22)

S(t) is just the grouping of the bracketed terms in equation 2.21, and a more useful

expression is retrieved by taking its derivative with respect to, and subsequently

integrating in, time

S(t) = dT exp(-iL•)iPl exp(i(1 - P)T7) (2.23)

where S(O) = 0 as can be seen by setting t = 0 in the bracketed quantity of 2.21.

Substitution of equation 2.23 into equation 2.20 yields

dA = i. A + j drexp(iL(t - r))iPL exp(i(1 - P) £c)(1 - P)iLA

+ exp(i(1 - P)£Ct)(1 - P)iCA. (2.24)

We can now group terms of the second line into

f(t) = exp(i(1 - P)Ct)(1 - P)iLA, (2.25)

whose form demands some comment. As mentioned above, the operator 1 - P is

orthogonal to P, which implies that it projects out the part of a function which is

orthogonal to the slow variables A. Additionally, evolution in time is given by a prop-

agator whose argument (1 - P)Lt is orthogonal to the other variables' propagators.

Hence, we deduce that f(t) is orthogonal to A, i.e. (f(t) A) = 0. In terms of f(t),

2.24 becomes

d = in- A + j dTexp(i (t - 7))iP£f (7) + f (t), (2.26)

where now it simply remains to find a more convenient representation of the convolu-

tion integral. To this end, we consider the product iPf f(r) = (iAI f(T))(A A)-1A.

Due to the Hermiticity of £, (iA f(-r)) = (iCAJf(r)). We can then insert the



identity operator and use the linear property of the inner product to obtain

(iLAlf) = (i(1 - P + PC)Alf)

= (i(1 - P)£AIf) + (iP£AJf). (2.27)

Operation of P on the quantity LA will yield a function proportional to A. Hence,

the second term in 2.27 is equal to zero due to the orthogonality of A and f. Closer

examination of the first term reveals that the left-hand term of the inner-product

is equal to -f(0), i.e. the complex conjugate of equation 2.25 when t = 0. Hence,

(AICf(7)) = -(f(0) f(7)) and the convolution integral may be rewritten

-j dr(f(0) f (r))(A A) - exp(i(t - r))A. (2.28)

Defining (f(0)If(t))(AIA) - 1 = M(t) and applying the propagator in the preceding

equation, the equation of motion for A can finally be written as

dA t

di = i -A - -drM(r)A(t - r) + f(t). (2.29)

Examination of equation 2.29 should make it evident where the names of the

various terms have come from - this equation has the form of a generalized Langevin

equation where 0 plays the role of the frequency and f functions as the random force 2.

M is considered as a memory function - its effects are felt on the variable A after a

delay t.

At this point, it becomes necessary to make a connection with relevant observables.

As mentioned above, the slow parameter of the glass transition may be taken as

(although not restricted to) the fluctuations in density; the density-density correlation

function is observable through light scattering experiments [34], neutron scattering

experiments [36], and inelastic x-ray scattering [37]. Thus, the easiest means to make

contact with experiment is in the form of a dynamic correlation function of the form

2Equation 2.29 is not the generalized Langevin equation. Further discussion of this point is
provided on page 150 of [33].



C(t) = (A*(0)A(t)). Thus, we multiply 2.29 from the left with A*(0) and take the

canonical average to arrive at

C(t) = i -C(t) - drM(-) . C(t - ). (2.30)

Equation 2.30 can be solved by a Laplace transformation in time, yielding

C(s) = -C((2.31)
sI + 12 - iMI(s)

If an explicit form for M(s) is known, a complete solution of the equations of

motion is trivial. Usually, this is not the case and 1M(s) must be approximated.

Recalling the memory kernel's definition as the autocorrelation of the random force

f, we can use the relation given by 2.25 to obtain an equation of motion for f

d(t) = i(1 - P)Lf(t) (2.32)
dt

and then follow all of the same arguments that led up to equation 2.30 to produce an

analogous equation for f

dft = in, f(t) - , M(Tr) . f(t - 7)dT + fi(t). (2.33)

where now the new Liouville operator is £C1 = (1 - P)L£ and the new projector Pi

is given by Pig = (fJg)(flf)-lf. This provides a frequency, fluctuating force, and

memory function as

in, = (fliitlf) -(ff)- 1  (2.34)

fl(t) = exp[i(1 - Pl)£Clt]i(1 -- P 1 )Cf (2.35)

Mil(t) = (fl fl(t)) -(ff)-1 (2.36)



Taking the inner product of 2.33 with f*(0) yields

dM(t) in 1 . M(t) - d-MI (t ) -M(t - T) (2.37)
dt o

whose Laplace transform is

M(0) (s) (2.38)
sI + nl - iMi(s)-1

The preceding arguments leading up to equation 2.38 can be repeated recursively

leading to the nth order expansion

dM,(t) in+- M,(t) - drM+ (Ir) M (t - r) (2.39)
dt o

which finally leads to a repeated fraction for the expression of C(s)

s-1
C(s) = 1 -C(0). (2.40)

sI + S + 1 • iM(0)
sl + iM + • iMI(0)

sI + '' +---

To this point, no approximations have been made, entailing that equation 2.40 is

exact; in fact, equation 2.40 is nothing more than a restatement of equation 2.17 [33].

The physics a particular system can then be recovered by an appropriate choice of

slow variables in the vector A and making appropriate approximations to the memory

function M [35]. Since the glass transition is marked by an increase in viscosity upon

cooling, it is natural to choose those variables associated with flow to be the slow,

relevant variables of the theory. The traditional choice for A is a single-element

column vector consisting of the density fluctuations of wavevector q, pq [16], while

other theorists extend the theory to incorporate transverse current fluctuations, jq

[38], as well as their coupling with each other. Once the selection of the slow variables

has been made, the remaining issue is how to truncate the hierarchy described by the

continued fraction in equation 2.40. Working to high order is difficult mathematically,

and so the fraction is typically closed after second order. The final issue is how to



approximate the memory function M.

The crux of the mode-coupling approximation is that the different fluctuations of

the slow variables A can decay into either other modes of the same type (say, a density

fluctuation into another density fluctuation), or into other conserved hydrodynamic

modes (e.g. a density fluctuation may decay into a transverse current fluctuation).

This idea was originally proposed by Kawasaki in his study of the critical slowing-

down of density fluctuations near the liquid-gas critical point [35, 39], and finds

inspiration in the observations presented in section 2.2.1 regarding the growing time

scale of density fluctuations in liquids cooled to their glass transition temperature.

Mathematically, this mode coupling is represented by products of the fluctuations

of the slow variable, of the form AA. Here the two copies of A represent the fluc-

tuations of the two modes under consideration; since this quantity is the product

of two slow variables, it is, itself, a slow variable. Furthermore, the product AA

is generally not orthogonal to the fluctuating force f, so that the memory function

M(t) = (ff (t)) - (AIA) - 1 may also have a nonzero overlap with the product AA.

This is the fundamental launching point for the mode-coupling theory of Bengtze-

lius and coworkers [40], who assumed that the random force may simply be replaced

by its projection onto the set of all coupled terms AA; coupling to higher order is

considered too small to impact the dynamics. This is equivalent to stating that the

slow part of M is fully contained by the set of these pair products.

For the rest of the discussion, we shall consider A = A, a scalar quantity which

may be the density fluctuations 6p. The memory function can then be split into a

fast piece and a slow, mode coupling piece MMC, yielding

MAc(t) = (AA f) 2(AA AA) - 1 (AA AA) -1 (AA exp[i(1 - P~Ct]AA) - (AIA) - 1

(2.41)

The physical implication of this approach is that the slow dynamics are contained in

the coupling of the modes with each other (represented by the pair product (AA)),

and it is this which creates the mechanism for structural arrest. As the liquid is

cooled, this non-linear feedback of coupled modes inhibits the relaxation of the slow



variables, causing the liquid to solidify while also inhibiting the motion necessary for

crystallization.

Further physical insight is needed to connect the mode-coupling theory with the

real-life glass transition. This can only be approached mathematically with further

simplification of 2.41, which contains static four-point correlation functions and a

propagator whose impact on the time evolution is not straightforward. Concerning

the four-point correlators, the factorization approximation is made, which states that

the four-point correlator can be replaced by the product of two-point correlators

(AAIAA) ; (A A) 2  (2.42)

and that the propagator of the projected dynamics can be replaced by the original

one

exp[i(1 - P)Lt] , exp iCt. (2.43)

The result is that the memory function MMc(t) can be written as

MMC(t) = IV(AA, f)12(AIA(t)) - (AIA(T)) (2.44)

where the "vertex" IV(AA, f)12 can be obtained from equations 2.42 and 2.43.

This is the final step toward producing the equations of motion of the mode-

coupling theory as it applies to the glass transition. Picking the slow variable as the

normalized density-density correlator

1 (Sp(q, t)6p*(q, t))A -=
N (bp(q, 0) p*(q, 0))
F(q, t)
= q '(2.45)S(q)

relation 2.40 can be closed to second order to yield

(qz) = . (2.46)

s4+ (r 9(q, z) + M(q, z))

45



Here, S(q) is the static structure factor and 2 = q2kBT/(mS(q)), where kB is the

Boltzmann constant and m is the particle mass. In relation 2.46, the memory function

has been explicitly split between its fast, "regular" part, Mreg (q, z), and the slow part

M(q, z). Transforming this equation to the time domain produces

4(t) + Q2(t) + p dt'[Mreg(q, t - t') + M(q, t - t')](q, t') = 0 (2.47)

where the slow part of the memory function is given by

M(q,t) = 1 dkV(2) (q, k, Iq - kl))(k, t)t(lq - k , t). (2.48)

In this expression, the vertex V (2) is given by

V( 2)(q, k, Iq - kl) = -nS(q)S(k)S(q - ki) [kc(k) + (q - k)c(Iq - kI)]

(2.49)

n being the particle density, and c(k) = n(1 - 1/S(q)).

Equations 2.47-2.49 constitute the mode-coupling equations. The hallmark of

the mode-coupling theory derives from the products of density autocorrelations in

equation 2.48, which constitute the nonlinear feedback mechanism. The strength of

this feedback is controlled by the strength of the vertex V(2), equation 2.49, whose

amplitude is set by the values of the static structure factor contained therein.

Thus, the mode-coupling theory gives us the physical picture of how structural

arrest occurs. Cooling or compression of the system results in a change of the static

structure factor S(q), which become more sharply peaked. This, in turn, serves to

increase the degree of coupling between the density fluctuations. The increase in this

coupling results in an increase in the retarded viscosity which controls relaxation of

the system back to its unperturbed state. In a real-space picture, the interpretation

is in terms of a "caging" effect. Molecules are trapped in a cage formed by their

neighbors, which are in turn trapped in their own cages, etc. As the system is cooled

or compressed, the amount of cooperative motion required to rearrange in response

to a perturbation increases and the dynamics slow down accordingly, all the way until



complete arrest.

2.3.3 Predictions of the Mode-Coupling Theory

Now that the complete equations have been derived, it is possible to form both

qualitative and quantitative predictions on the glass transition through the study

of their solutions. What follows are results that are obtained from the so-called

"idealized mode-coupling theory," which takes only the density fluctuations as the

slow variable.

Time-Temperature Superposition, criticality and non-ergodicity

In the process of vitrification, the alpha relaxation peak is shifted out to progressively

lower frequency with the reduction of temperature. Fits to the alpha relaxation

spectrum are made and a relaxation time 7 is deduced, either through the time-

domain fit of the decay of the two-point correlator o(q, t), or by a frequency domain

relaxation function. In the mode-coupling theory, the spectrum itself is predicted to

not change in shape. Rather, the dependence of the two-point correlator is given by

1(t, T) = 1(t/T(T)). (2.50)

This result is known as time-temperature-scaling or time-temperature-superposition

(TTS). In the idealized mode-coupling theory, the function r(T) is predicted to in-

crease with a decrease in the temperature as

Tx(T) = Cx(T - Tc) - ,  (2.51)

where Tc is a critical temperature approached from the liquid side. With the av-

erage relaxation time infinite, the system cannot relax in response to an external

perturbation, implying the "falling out of equilibrium" commonly used for describing

the glass transition. Now unable to relax, the liquid ceases to be ergodic, i.e. it is

not able to visit all allowable parts of phase space, specifically those associated with



crystallization.

The mode-coupling theory provides a numerical estimate of the so-called non-

ergodicity, or Debye-Waller factor, and we will closely review the arguments presented

in Hansen and MacDonald which provide this through the so-called F2 model, which

assumes that the largest contribution to the static structure factor is given by its first,

largest peak, i.e. S(q) , 1+a6(q-qmax). We also approximate that the fast dynamics

of the memory function given by Mreg are quick relative to the other dynamics in the

problem, i.e. Mreg(t) = v6(t). This leaves the mode-coupling equation as

(+t) + 22(t) + 2(t) + A [(t t)dt. (2.52)

Where A is a control parameter which sets the magnitude of the mode coupling and

may represent the effect of density or temperature.

When equation 2.52 is written in the Laplace domain it becomes

-1
(s) = - 2  ,(2.53)

S_-

where the memory function is identified as

M(s) = A [(t)]2 exp(-st)dt. (2.54)

We are interested in the finite, final value f that the two-point correlator reaches

in the long time limit, i.e limt.,oo (t) = f; or, using the final value theorem of Laplace

transforms

lim D(s) = f/s. (2.55)
8-0

Using equation 2.55 in equation 2.52 and solving for the memory function gives

lim i (s) = -f (2.56)- s0 s(1- f)



Equivalently, solving for M1(s) in the s -+ 0 limit produces

Af2lim M(s) = A 2  (2.57)
s-O S

which, combined with the previous expression gives

f = Af2 .  (2.58)1-f

There are two solutions. The first is f = 0, implying that the correlator has fully

relaxed and the system is in the ergodic state. In the non-ergodic state, the two-point

correlator remains at a finite value for long times, given by

f = [1 ± (1 - 4/A) 1/2 ] . (2.59)

As f refers to the physically observable two-point density correlator, it must be a real

number. Hence, only the root f = 0 is acceptable for A < 4. In the limit of A - oco,

' [1 - (1 - 4/A) 1/2] -+ 0, implying that the system comes closer to ergodicity with

increase in the controlling parameter. This, too, is unphysical. Thus, we pick the root

' [1 + (1 - 4/A) 1/ 2], which states that the larger the controlling parameter, the closer

4(t) is to 1 and the more out of equilibrium the system becomes. Conventionally,

the non-ergodicity parameter is given in terms of the distance from the transition by

E = a(A - Ac)/Ac, where a = -1 for an ergodic system and a = +1 for the arrested

one. The expression for f then reveals a square-root cusp as E tends to zero

limf = (1 + 1/2). (2.60)
E-o 2

An alternative definition of the non-ergodicity parameter in terms of elastic parame-

ters is given by [41]

limf = - Co (2.61)
q--+0 c

where co is the zero-frequency longitudinal speed of sound and c, is the instantaneous

speed of sound. The identification of equation 2.61 as the non-ergodicity parameter



comes about by integrating the q -- 0 limit of the dynamical structure factor for

elastic light scattering

Sq(W) N (2.62)
[(w/q)2p - M'(w)]2 + [M"(w)]2'

This integral defines the Debye-Waller factor; taking its low-wavevector limit yields

equation 2.61.

From the previous discussion, it should be obvious what non-ergodicity refers to

mathematically: that the two-point correlator does not decay back to zero at long

times. In other words, the system remains out of equilibrium for all times, not

just on the time-scales relevant for observation. In contrast to the case of diverging

length scales in order-disorder transitions, this mathematical divergence is unphysical.

The standard physical argument theorists have devised to address this issue is that

thermally activated processes, such as coupling to transverse current modes, step in

to relax the system back to equilibrium at long times. The "extended" mode coupling

theory explicitly incorporates these extra modes into the vector of slow variables, and

when many of the above computations are performed with them in place, ergodicity

is mathematically restored.

Recent work by Mayer, Miyazaki, and Reichman [43] points to the factorization

of the four-point correlators and replacement of the propagator exp(i(1 - -P)Lt) by

exp(iPLt) as being the mathematical sources of these woes. These steps represent the

two significant, uncontrolled approximations of the Mode Coupling Theory - they are

utilized simply as mathematical conveniences whose only justification comes from the

ability of the subsequent theory to make predictions that match computer simulation

and experiment. In [43], Mayer et al. delay this factorization entirely by directly

incorporating the higher order correlations and building a coupled hierarchy indepen-

dent of mode wavevector. In the recursive relationship, however, they derive exact

relationships between the hierarchy of frequencies Qin. The mode coupling equations

are as before with the coupling vertex V (referred to as A in [43]) approximated as

pairs of the static structure factor. When evaluating the hierarchy numerically to
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Figure 2-5: Behavior of the two-point correlator for a hard-sphere system for various
packing fractions. We note that at and above a critical packing fraction, denoted in
the figure by c, the correlator does not relax back to equilibrium at long times, and
in fact persists out to t --- oc, illustrating the concept of non-ergodicity. Figure taken
from [42].

finite order, the density-density correlator is still observed to level off to a plateau

for a critical value V, of the vertex parameter, i.e. for specific values of the static

structure factor. This value of V, grows monotonically with an increase in the evalu-

ated order. When the hierarchy is taken to infinite order, ergodicity is restored for all

values of the coupling vertex without the need to incorporate any more variables than

the original density fluctuations. Equally remarkable is the fact that this approach

to the mode-coupling theory still produces many of the other predictions, specifically

those surrounding factorization of the two-point correlator, as discussed below.

Behavior of the two-point correlator

The biggest successes of the mode-coupling theory are centered around the behavior

of the two-point correlator in the f relaxation regime and how it relates to the a

regime. The first of these is the so-called "factorization property," which states that

the time dependence of any correlator of the variable x in the 3 regime is given by

4ý(t) = Dc + hxG(t), (2.63)



the sole caveat being that x must have a non-zero projection onto density fluctuations.

(I is the magnitude of the non-ergodicity parameter, hx is a critical amplitude,

and G(t) is a universal function in common with all considered relaxing variables.

Substituting 2.63 into 2.47 and using the approximation that the system is close to

the critical point defined by 2.51 gives

a + AG(t)2 = t G(t - t')G(t')dt', (2.64)

where a = C(T, - T)/T, denotes the distance from the critical temperature Te, and A

is the so-called "exponent parameter," a quantity which may be calculated from the

vertices V (2 ) . The expression for G(t) can only be determined asymptotically, allowing

us to investigate four distinct regimes of interest. We may consider the system to be

either in the nonergodic state, i.e. T < Te, or in the liquid state T > Tc. Then, we

make a division in time either much earlier or later relative to the occurrence of the

plateau at t,. Within the mode-coupling theory, the location of the plateau is shown

to obey a power-law divergence in temperature of the form

ta = to/l ,1/2a, (2.65)

where to is a microscopic time, and the exponent a will be determined below.

For early times, i.e. when t < ta,

G(t) = ~T(tl/t)a (2.66)

on either side of the critical temperature T,. The exponent a is related to the param-

eter A by
r(1 - a)2  (2.67)= A (2.67)F(1 - 2a)

F being the standard P-function and 0 < a < 0.5.



For times t > t, but still much shorter than the a relaxation regime,

G(t) f= o - (\~ T < T,(2.68)

where the exponent 0 < b < 1 of the critical, liquid state dynamics is given in terms

of A by
r(1 + b)2

( 2b)= A. (2.69)r(1 + 2b)

The expressions 2.66 and 2.68 for G(t) in the different limits may now be re-

substituted into the original factorized equation 2.63 to recover the behavior of the

correlator for all times and temperatures. Below Tc,

t I'c + hV1/ -j(to,/t)a to < t < ta(DX (t) X (2.70){ ¢ - hXv/al/ i -'X to < t. < t

while above the critical temperature,

=( D + hV/[Ji (t /t) a to < t < t({ ' - hxv/FU(t/t )b to < t' < t.

Of note in equation 2.70 is the fact the universal function G(t) is constant for all

values of time when the system is cooled below T,. This expresses that the system is

not allowed to return to equilibrium, reflecting the non-ergodicity described above.

Above Tc, as described in 2.71, we can obtain insight on the decay of the two-point

correlator in the a regime, which decays as (t/r)b, where

7 = to/ljal. (2.72)

y is thus given in terms of the other exponents by

1 11= + 1 (2.73)
2a 2b
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a result which states that the fast 3 dynamics measurable by the exponent a are

inherently tied to the slow a dynamics governed by b.

2.3.4 Recent Theoretical Developments and Improvements

Das and coworkers have studied the physics of shear waves in supercooled liquids from

the mode-coupling perspective in a number of recent publications [44, 45, 46, 47]. In

this case, one must add the transverse currents (and their coupling to density fluctu-

ations) to the collection of slow variables and examine the transverse autocorrelation

function, the physically relevant correlator for shear waves. The system studied is

a collection of hard spheres in the Percus-Yevick approximation, and thus the pack-

ing fraction A is the relevant control parameter. When a critical packing fraction

Ac = 0.525 is reached, the system jams and the density autocorrelators do not relax

to equilibrium at long times, indicating the onset of the ideal glassy phase.

The onset of shear waves is observed when the transverse autocorrelation function

exhibits an oscillatory decay, which does not necessarily occur only for values of

A > Ac. Instead, the relevant parameter is a characteristic wavevector qgo below

which the correlator is simply diffusive and shear wave propagation is not observed

to occur. The model predicts a power law divergence of the length scale Lo = 27r/qo

as

Lo = (2.74)
(A - Ac)1.2

when the critical packing fraction is approached. Treatment with an extended theory

that properly accounts for all couplings of the various transverse modes to the density

shows that a complete divergence is cut off, leaving a weaker enhancement. Further

results in [45] include the behavior of the transverse acoustic velocity which, below

critical packing fraction, is shown to go to zero at finite wavevector.

This approach differs slightly from that taken in [46], which is motivated by the

supposed connection between the elastic parameters of the glass and the transport

quantities of the liquid state. Briefly, in this treatment, the mode-coupling theory

is generalized to include in its collection of slow modes the displacements u~ from



their equilibrium positions Ro of the disordered state (here a indicates the particle

index). Since the supercooled liquid is considered solid on the timescales of the sim-

ulation, the positions Ro are considered stationary, and as particle displacements in

a solid medium are considered, the resulting generalized Langevin equation explicitly

includes terms containing the shear and bulk elastic moduli G and K, respectively.

The authors pick the control parameter A0o to represent the scaled temperature

of an Angell plot T/Tg, and study the evolution of the average relaxation time in

the a regime versus A0o in order to determine a fragility parameter. The upper

wavevector cutoff of the density fluctuations considered in the numerical evaluation

of the integrals computed in this study (denoted in [46] by A) provides a second

control parameter, A0 = (A3/67r 2no) (V/CL). Here no is the equilibrium density, CL is

the longitudinal sound speed, and v = 1/ /3H= is an average thermal velocity for a

particle of mass m at a temperature given by 3 = 1/kBT. The results of performing

this analysis as a function of parameters K/G is shown in figure 2-6, where good

agreement between experiment and theory can be recovered for A0o = 0.4.

Other theoretical predictions from this model include a derived dependence of

the stretching parameter of the KWW law, /, as a function of the Poisson ratio,

a. Further analysis of the dependence of the power law exponent a of equation 2.70

versus K/G in the long-time limit is also discussed therein.

2.3.5 Tests and Failures of the Mode-Coupling Theory

The results of the mode-coupling theory discussed above have been been tested re-

peatedly since the first predictions were formulated in the mid to late 80's. The

literature abounds with light scattering measurements [49, 50], dielectric relaxation

studies [51], x-ray [52] and neutron scattering [53] experiments, and nuclear magnetic

resonance measurements [54]. Computer simulation is also an indispensable tool in

the study of the theory [55], as it is able to give insight to response on small length

and time scales that are difficult to examine in the lab.

Arguably, the biggest success of the mode-coupling theory has been the relation-

ships between the exponents of the 0 and a relaxation regime, specifically equations
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Figure 2-6: Fragility versus K/G in MCT elastic model for three different values of
the wavevector cutoff A0, with Ao fixed at 1.7. The points are experimental data
taken from [48]. For the value A• = 0.4, the model matches the observation of a
correlation between fragility and ratio of bulk and shear elastic moduli. Figure taken
from [46].



2.67 and 2.69. These have been confirmed by both molecular dynamics simulations

and experiments [56]. Further, many of the predictions concerning the square-root

cusp of the non-ergodicity parameter, described above, have been confirmed by both

light scattering measurements [57], as well as by inelastic x-ray [58] and neutron

scattering [59].

Despite these successes, the mode-coupling theory suffers from a collection of

shortcomings which preclude its acceptance as the overarching theory of the glass

transition. The most famous of these is the prediction of completely frozen-out dy-

namics at the critical temperature T,. Experimentally, T, has been determined to

be well above T, through non-ergodicity measurements. As the system is still in the

supercooled liquid state at these temperatures, it is certain that the two-point cor-

relator is not inhibited from coming back to equilibrium at long times. This is the

issue addressed by Mayer et al. [43] and discussed above.

Another problem is that the aforementioned predictions for a power law divergence

in the relaxation times, and thus for transport coefficients, are only valid for a small

temperature range and do not fully encapsulate the experimentally observed dynamics

as well as the VFT equation. A proper theory of the glass transition would be able

to account for the evolution of relaxation in all temperature and frequency regimes.

To date, that has yet to be accomplished.

An imperfect theory it may be at present, but as demonstrated in [43], it is

a changing one and thus worthy of continued attention and experimental scrutiny.

As the natural variable of the mode-coupling theory is fluctuations in density, any

metrology which directly couples into these is well suited to test its predictions and

guide theorists towards overcoming its shortcomings. This motivates the extensions

of light scattering techniques which directly probe these fluctuations and whose use

will form the experimental foundation of this thesis.





Chapter 3

Experimental Methods

3.1 Introduction

In the previous chapter, we saw the need to interrogate the density fluctuations of

the liquid state, as they can provide a direct window upon the relaxation dynamics

intrinsic to the glass transition. These density fluctuations comprise the longitudinal

acoustic phonon spectrum whose most common method of measurement has been

Brillouin Scattering spectroscopy. In this technique, depicted schematically by figure

3-1, a single CW laser beam is incident upon the sample and this light is scattered

from thermally present phonons. By measuring the frequency shift at a selected angle

for the scattered light, energy and momentum conservation can be used to recover

the phonon frequency and wavevector. Measurements conducted at various scattering

angles can thus build an acoustic phonon spectrum.

Typically the signal levels in Brillouin Spectroscopy are very low, and each data

point generally requires hours of signal averaging. To overcome this significant exper-

imental disadvantage, we have chosen a technique, Impulsive Stimulated Scattering

(ISS), by which a large, coherent population of acoustic phonons at a user-selected

wavevector can be created and subsequently probed. The presence of this large coher-

ent phonon amplitude boosts signal levels significantly, and the beating of the Stokes

and Anti-Stokes contributions to the scattered light can become large enough that

the scattering may even be recorded in the time domain on a single-shot basis, as



Figure 3-1: Schematic description of Brillouin scattering. A beam of frequency wo
and wavevector ko is scattered off of the sample by thermally present phonons with
frequency ,ph and wavevector kph. The scattered light comes out frequency shifted
as w1 = wo ± Wph and wavevector kI = Iko ± kphl.

opposed to integrated over several hours in the frequency domain.

The methodology of an ISS experiment is simple, in principle. As depicted in

figure 3-2, a single pulse from a short-pulse laser system is selected, split into two

parts, and the two pulses intersected within the sample at an experimentalist-defined

angle. Depending upon the relative polarizations of the two intersected beams, the

result is an interference pattern - or grating - of either laser intensity or polarization

inside the sample. This optical grating lasts for only the duration of the laser pulse,

and given the short nature of the exciting pulses compared to any acoustic oscillation

period, the material is driven impulsively. The excitation so generated shares the

grating character of the optical excitation pattern. It is this quality of the metrology

which is the source of its more common name, "transient grating."

Once driven, the evolution of this excitation in time is probed by coherent scat-

tering of a separate beam. For optimal scattering to occur, this beam must be intro-

duced at the Bragg diffraction angle set by the wavelength of the imprinted grating.

In practical terms, this beam may be a piece of the original driving laser that has

been mechanically and incrementally stepped at regular delayed intervals to build up

a time-dependent signal trace of diffracted light. With the advent of fast digitizing

electronics, it may also be a CW laser whose diffraction off the time-evolving transient
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Figure 3-2: Schematic description of Impulsive Stimulated Scattering. Two ultrashort
pump pulses, shown here in red, are incident on the sample with relative angle 0 to
generate a grating pattern of wavelength A = A/2 sin(0/2), where A is the wavelength
of the light. A probe beam, designated in blue, is incident upon the grating at the
Bragg angle, and exchanges energy and momentum with material excitations of the
grating wavevector. The coherently scattered probe light, shown here by the dashed
line, is recorded in the time-domain by an amplified photodetector.



material grating is recorded on a digitizing scope.

Transient grating methods have found their use in studying a variety of systems: in

superconductors to probe quasiparticle lifetimes [60], as a probe of electronic excited

state dynamics [61], and to generate narrowband terahertz responses via Raman active

modes in ferroelectric crystals [62], to name a few. For the experiments on glass-

forming liquids, we take advantage of their ability to thermally and electrostrictively

drive both shear and longitudinal acoustic waves.

In what follows, we shall first introduce the transient grating technique from a

theoretical point of view. Both longitudinal and shear components of the signal will be

computed from generalized hydrodynamics, and their characteristics as a function of

temperature examined. Other consequences of laser excitation, such as the torque on

the constituent molecules which results in a decaying orientational response (Optical

Kerr Effect), will be briefly discussed within the context of the derivation of shear

waves. From there, we will describe the experimental apparatus that has been built

and used to perform the measurements made in this thesis. We proceed with detailed

information on how the data has been processed. We conclude with the procedures

used in sample purification.

3.2 Theoretical Considerations

Before attempting to derive signal, we first concern ourselves with which variables'

time dependencies are interrogated in a transient grating experiment on supercooled

liquids. To this end, we consider the ith component of the probe electric field Ei'n

incident on an excited portion of the medium. In the linear response regime, the jth

component of the scattered electric field EJc of the probing laser is proportional to the

change in refractive index 6n. As changes in the magnetic permeability upAi in such

experiments are negligible, the relevant part of the refractive index is the material's

permittivity and so 6n oc 6•j . Mathematically, the scattered field is proportional to

E-c(k ± q+, t) cc &eiJ(4 , t)E nc(A, t) (3.1)



where k is the incident wavevector, k + q is the scattered wavevector, and ' is the

transient grating wavevector.

Equation 3.1 states that in order to compute the signal embedded in the time-

dependence of E , we need to compute the time-dependence of the material's per-

mittivity, or equivalently its polarizability, induced by the pump laser. This quantity

couples to many of the intensive variables of the system. For longitudinal waves,

which are fluctuations in density, the variables that concern us are the density p and

temperature T. The importance of the former is obvious whereas the latter is relevant

mainly for the reason that changes in temperature are usually strongly coupled to

changes in density. We also note that in some materials, fluctuations in density and

temperature couple to the diagonal components of 0e, and hence in the longitudinal

case, the polarization states of the incident and scattered waves are the same. This

gives rise to the name polarized scattering. Since both incident pump fields, the

incident probe field, and the scattered signal field share the same polarization, this

configuration is denoted VVVV.

In the case of shear waves, the change in the permittivity &eij is not the result

of changes in either density or temperature. Rather, it is the induced polarization

anisotropy Qii which is the relevant variable [63]. This quantity couples into the off-

diagonal components of 'i j , and it is these components which are responsible for the

scattered field. Here, the incident and scattered electric fields have different polar-

izations, hence the phrase "depolarized scattering" is used to describe the process by

which shear waves are observed. In this case, the two pump beams are perpendicularly

polarized to each other, and the incident probe field has an orthogonal polarization

to the scattered signal field. We denote this configuration VHVH.

The theory for Impulsive Stimulated Scattering in supercooled liquids has been

developed elsewhere for the case of longitudinal waves [7] and we will review the

derivation below. The corresponding derivation for shear waves is similar in practice,

but offers enough subtlety to be treated separately and in detail.



3.2.1 VVVV Signal

The transient grating experiment, as depicted in figure 3-2, results from the action of

two coherent, polarized pulses of field strength Eo/2 incident upon the sample at an

angle 0. Each beam has a wavevector given by k = ikPA + kz^, using the coordinate

system of figure 3-2. For fields polarized in the Y direction

E(r) = Eoei(wt - k zz) cos(kxx)9. (3.2)

where w = ck is the frequency of the light field. Equation 3.2 shows us that the

intersection of the two beams has resulted in a modulation of the overall field with

wavelength A = 2wr/kx.The field may interact with the sample in a variety of ways,

and we describe the two processes relevant for longitudinal wave generation.

In a process known as electrostriction the field first instantaneously induces electric

dipole moments in the material, whose magnitude is given by p = aE, where a is the

liquid's polarizability. These dipoles now have an electrostatic interaction with the

field that generated them. The energy of this interaction is given by U = -p - E =

-alE 2, where E is given by 3.2. The compressional force in the grating dimension

is thus given by

F = -VU

= akkEo sin(2klx). (3.3)

Since the duration of the electric field is short with respect to the period of an acoustic

wave, this force is impulsive, and the excitation process goes by the name Impulsive

Stimulated Brillouin Scattering (ISBS). We note that the electrostrictive excitation

force scales linearly with the wavevector, the polarizability, and the light intensity.

The second mechanism of longitudinal-wave excitation is by the absorption of

the excitation light into the sample, either into electronic or vibrational degrees of

freedom. The former are usually the result of pumping with an ultraviolet source. The

latter can be achieved with infrared wavelengths; in the cases of direct importance



here (organic molecular liquids), the laser wavelength A , 1 pm matches the third

overtone of the O-H stretching mode. In either the electronic or vibrational route, the

absorbed energy is rapidly thermalized, and the result is a grating in temperature.

The absorption and the temperature grating are proportional to the intensity I of

the incident light as

T oc I oc E2 1 = E0 cos2(kxz)
E2= o (1 - cos(2k~x)). (3.4)2

Regions of higher temperature have a lower equilibrium density, and so the resulting

step-function compressional stress launches longitudinal acoustic waves with force

F oc ST. This process of launching acoustic waves via sudden heating is known as

Impulsive Stimulated Thermal Scattering (ISTS). It shares in common with ISBS the

linear dependence upon light intensity and the same grating spacing A, although its

force magnitude is independent of grating wavevector and is 90 degrees out of phase

with the electrostrictive case.

With this information, we are ready to derive the signal. The starting point is the

set of linearized hydrodynamic equations of motion written in the time domain and

Fourier transformed from real space to the wavevector domain according to

F•{f (r) = drf(r)e~q r. (3.5)

The first equation is the conservation of mass

SS6p(q, t) - poiqv1 (q, t) = 0; (3.6)

which expresses that the local change in density, 6p of a region under consideration

is due to particles flowing into and out of it. Here, v is the velocity and q is the

wavevector. The subscript on v denotes that the choice has been made here to only

consider the part of the velocity parallel to the propagation of the wave, as the interest

is in the derivation of longitudinal waves.



Second is the Navier-Stokes equation

av 1 (q, t) ksTo . kBTo
Po iq- 6p(q, t) - iq poO6T(q, t)Ot S(q) S(q)

+ poq2 j dtL(q, t - t')vll(q, t') = iqF(q, t) (3.7)

which is an expression of the conservation of momentum. Here, S(q) is the static

structure factor, To is the local temperature, , the thermal expansion coefficient, and

F the force due to the laser. The first term is the usual mass times acceleration

term, the second term expresses the force due to a change in density, and the third

term describes the force due to a change in temperature. In the damping term,

the convolution integral involving OL is a generalization of the viscosity term in the

original Navier-Stokes equation and accounts for the complex structural relaxation

dynamics of glass forming liquids. This term recalls the memory function term in the

mode-coupling equations of motion, equations 2.47-2.49.

Finally, the last equation needed to derive longitudinal signal expresses the con-

servation of energy,

0ST(q, t) r - 1 0p(q, t)
Po (q t) - ( t) + q2 6T(q, t) = Q(q, t) (3.8)

a t c Oat

c, is the specific heat at constant volume, y is the ratio of the specific heats c,/cp , (

is the thermal conductivity, and Q is the thermal energy coupled in by the absorption

of the pump laser light. Here, the first term represents the time dependence of the

temperature, the second describes the change in temperature due to a change in

density, and the third term the diffusion of heat.

As mentioned above, we are interested in the fluctuating part of the density which

couples into the permittivity. Thus we seek a solution of equations 3.6 - 3.8 by taking

the Laplace transform defined by

£C{g(t)} = dtg(t)e- st  (3.9)
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and eliminating the variable vIl between equations 3.6 and 3.7. The result is

{s 2  kBTo • kBTo

{q2 + L(q s) + S(q) p 0I S T I (q, s)

= -F(q, s) + 6p(q) q + L(q, s) (3.10)

and

{s(Y - 1)c 6p(q, a) + {PV + q}6T(q, a)

(- - 1)c,= Q(q, s) - 6p(q) 1) + ST(q)poc,. (3.11)

The quantities Sp(q) and 6T(q) in the above equations correspond to the spon-

taneous fluctuations in density and temperature already present in the liquid and

may be set to zero; they are several orders of magnitude smaller than the stimulated

fluctuations we are interested in. With this, we can cast these equations into matrix

form as

+ SL(q, s) + kTO kBTo p(q, s)

8 L 9, S(q) PO S(q)) (3.12)

K pcs + (q 2  ST(q, s)

-F(q, s) + Sp(q) {s/q 2 + L ( , )  (3.13)

Q(q, s) - 6p(q) (y)c- + 6T(q)poc,

This can be solved for the four response functions of the system.

Gp,(q, s) = - sq2+ + (3.14)

Gp(q, s) q2 BT} (3.15)
A c, S (q)

1 (7 - 1)sq2  (3.16)GTp(q, s) = (3.16)
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1 S2  +2 q2 kB To
G (q,s) = -- + q- L(q, s)s + (3.17)

A poCe Pocv pocz S(q)
Where A is given by

A = s3 + S2q2 { L(q, s) + (/(pocv)}

+s 4 (q, s) + q BT + kBT (3.18)

PoCv S(q) poc S(q)

A is the dispersion relation - its roots determine the nature of the excitations observed

in the system. Complex roots indicate propagating excitations, and real roots relate

to diffusive ones.

Gp and GpT are the ISBS and ISTS response functions, respectively, and are

discussed at length below. The terms GTp and GTT describe the temperature changes

due to either a change in density or the direct heating via the laser. Since the refractive

index is far less sensitive to T than to p, these terms do not give rise to significant

signals, and will be neglected for the rest of the analysis of our results.

In the modelling of the observed signal, we have generalized the viscosity term

to include memory. For the benefit of understanding the salient points of our mea-

surements, here we use the Debye model which is characterized by a single relaxation

time TR. We separate the term L~n into a relaxing part and a background part. The

Laplace transform of the Debye relaxation function can be expressed as

2 - 2
lim OL(q, s) = L + ' R VL + 04(q, s) (3.19)
q--+0 1 + STR

where we have added a background viscous damping term, vL = (rlB +- 4,s)/P to the

equation, and c, and co are the infinite frequency and zero-frequency longitudinal

acoustic speeds, respectively.

When equation 3.19 is substituted into equation 3.18, a proper factorization is

neither straightforward nor instructive. Instead, the preferred method of solution

is to make the approximations OLq2 <K coq and PH <K coq (here, FH = xq 2 , where

X = C/Pocp is the thermal diffusivity), which enable easy factorization of A, and then

proceed via a perturbation expansion in these small parameters. The result of this



procedure is

[ 21A = ( + )(S+i+WA rA)( - WA +r) C+ 2 = 0 (3.20)

The four roots of equation 3.20 detail the three different excitations present in the

excited liquid'. The first root is purely real, and provides the thermal diffusion time

rH. This represents the decay of the induced grating response via the transport of

heat from the grating peaks to nulls. The other real root in the the fourth term

denotes another dissipative mode. In this case it has a time scale related to the

relaxation time TR, which implies a time-dependent transient grating response due to

structural relaxation in the liquid.

The second and third terms in 3.20 represent left and right going acoustic waves

of frequency WA and damping rate FA. The acoustic frequency is given by

WA = Aq = coq [D + /D 2 + (oqR) 2 1/2  (3.21)

where

D = 2 [C~CO2 _ ( 0oqR)_2] . (3.22)

The damping rate is given by

FA = 2 {(VL +( - 1)x X(1--c /cA )} (3.23)

1 c 2 - c 2

+-q2 0 , (3.24)2 1 + (WAR)2

assuming FHTR << 1.

The damping rate is itself comprised of four terms. The first is simply due to the

background viscous damping, and scales as q2 . This term becomes important when

ISS is used to measure the longitudinal viscosity of a liquid.

The second and third terms are related to thermal diffusion. As the longitudinal

2

'Note that the last factor is given by (s + ) - the expression in [7] has a misprint. The
solution as printed is correct, however.



wave passes through the liquid, the periodic compression of the wave slightly increases

the local temperature. The heat generated can then move to the uncompressed region

before the rarefaction occurs. In practice, the compression and rarefaction in the MHz

range of ISS occur far too quickly for thermal diffusoin across this distance to occur,

as PH is much less than any of the other terms in FA. In other words, the influence of

thermal diffusion on acoustic damping could only be important in the regime where

the thermal diffusion is on the order of an acoustic period. Therefore, we may neglect

the second and third terms for all of the analysis conducted in the rest of this thesis.

The fourth term is due to the structural relaxation dynamics, and has the form

of the imaginary part of the Debye relaxation function. This term shows how the

relaxation dynamics give rise to acoustic damping. As remarked in [7], it may be

necessary to separate the effects of the structural relaxation dynamics from the back-

ground viscous damping in order to characterize the former from measured acoustic

damping rates.

After a partial fraction expansion of the dispersion relation 3.18, the expressions

for G,p and GpT may then be Laplace transformed back into the time domain. The

signal in an ISBS experiment is thus given by

C2 q2T2 2
G,p(q, t) = AC +C2CA2 -q - t sin(wAt)

CAq2T + CCA4 CA
(1 _CA-2)q R c2/2

S(1 - co•cA -[R 'A cos(tAt) + c t/CATR] (3.25)
cAq 2  + COCA

while that of an ISTS experiment is

GT = A [e-rHt - et cos(wAt)] + B [e - C2tR (3.26)

where
2 22 r C2CA 2

A+4r A (3.27)
Cp CA CAq 2TL + COCA4

and

B = 7 2 (CA -_C) (3.28)
cp Cqq2 2  + C "CA4-
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In both equations 3.25 and 3.26, we see the modes that were alluded to in the dis-

persion relation 3.20 and we shall analyze each one in turn.

Equation 3.25 is comprised of two oscillatory terms from the acoustic response,

and the diffusive term from to the structural relaxation dynamics. The thermal mode

is missing due to the fact that this response function only probes changes in density

due to electrostriction. It can be shown that the last term in equation 3.25 only

becomes relevant when 1/WA is on the order of TR. In practice, however, it is still

small compared with the first term and thus it can be neglected. This implies that

the signal in a VVVV ISBS experiment is dominated by the acoustic modes.

The structure of the solution to equation 3.26 is richer, where all modes of equa-

tion 3.20 are manifest. Here, the signal is split into contributions due to simple driven

a-coustic and thermal responses (proportional to A) and contributions from the struc-

tural relaxation dynamics (proportional to B). In contrast to the ISBS case, the

coefficient B in ISTS may become on the same order as A, and the effects of struc-

tural relaxation dynamics are plainly evident in the time domain. Physically, this

behavior results from the step-function stress imposed on heated regions of the liquid

which induces thermal expansion towards its new, spatially modulated equilibrium

state. As we have seen in chapter 2, the change in density occurs in two steps: a

quick one due to the , relaxation dynamics, and a slow one due to the a relaxation

dynamics. When the a relaxation dynamics are slowed down, the thermal expansion

is correspondingly slowed. For mathematical simplicity we have assumed Debye re-

laxation dynamics, but in fact highly non-exponential thermal expansion given by the

structural relaxation function 41(t) from equation 2.5 can be observed. In practice,

in ISTS, we are able to use this to recover relaxation dynamics from - 10- 7 s to

, 10 - 3 s, limited on the shorter time-scales by the acoustic response and on longer

time scales by thermal diffusion or the repetition rate of the measurement.

To further analyze this signal, we examine its features in four regimes of interest

as illustrated in figure 3-3. First, when the sample is in the liquid state (a,a'), the

acoustic velocity cA , co and B ; 0. At short times we see the counterpropagating

acoustic waves represented by the cosine term, and at long times thermal diffusion is



observed.

In the low-T glassy state (d,d'), the acoustic speed cA coo, and WATR > 1. Again,

we see acoustic waves and thermal diffusion at short and long times, respectively, and

the amplitude of B is reduced with respect to A.

At intermediate temperatures where WATR - 1 (b,b'), the structural relaxation

contribution to acoustic damping, as represented by the last term in equation 3.23,

becomes important. This provides us a method by which to map the relaxation

spectrum in the frequency domain: measurements at as broad a distribution of

wavevectors as possible are taken, and the frequencies WA and damping rates IA

are determined. These can then be used to reconstruct the relaxation spectrum by

relating it to the mechanical susceptibility, the complex longitudinal elastic modulus

M*(w) = M'(w) + iM"(w), using the relations

M'(WA) = A 2 A (3.29)

q22WArAM"(WA) = q2 (3.30)

The modulus can then be related back to the original relaxation spectrum ¢L by [7]

.M' (A) 2M'( -WAIm [L(q, WA) + CO (3.31)
p

M" (wA) M() WARe [L (q, WA) + WA [VL + X('Y - 1)]. (3.32)
p

The above equations have been derived in the Debye model, where an analytic

solution can be found in the time domain. The more realistic case of non-exponential

relaxation has been typically treated by a phenomenological KWW stretched expo-

nential relaxation function exp(-(t/rR)O), as mentioned earlier. As we have done in

the description of time-domain relaxation in chapter 2, we may heuristically substi-

tute this form instead of the exponential in equation 3.26. This does not change how

the values for WA and IA relate to the modulus.

At somewhat lower T (c,c'), WATR > 1, the acoustic damping rate is reduced,

and structural relaxation dynamics can be observed directly in the form of a gradual



time-dependent thermal expansion, as discussed above.

The information provided by ISTS is not limited to mapping of the structural re-

laxation spectrum through the measured acoustic parameters and thermal expansion

dynamics, although this is already of great significance and will be exploited amply

in this thesis. It is also possible to test one of the more significant predictions of the

mode-coupling theory, the existence and evolution of the non-ergodicity parameter,

directly from the time-domain data. In the limit that the three time scales are well

separated (i.e. WA < T- <<• H), we may take the ratio of the coefficient B to the

total signal A + B and obtain

B c_
= 1- (3.33)A+B c2

which we recognize from chapter 2 as being the non-ergodicity parameter. This

information can also be obtained directly from the determination of the frequency-

dependent longitudinal modulus, provided there is a wide enough frequency range to

clearly observe coo and co.

3.2.2 VHVH Signal

In order to compute the VHVH signal, we must first determine how the laser excites

the sample. In the VHVH geometry, the driving fields are given by

x(t, x, y, z) = Eo cos(wt - kxx - kzz) + Eo cos(wt + kxx - kzz)y. (3.34)

As the interest is in driving shear waves, the liquid's polarizability aij must be used in

its full tensor form to account for the fact that the dipole moment does not necessarily

lie along the direction of the electric field:

= ( a 11 a12 Ez (3.35)
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Figure 3-3: Representative longitudinal signal taken in DC704 with A = 40 pm and

at the specified temperatures. To the right are representative loss modulus spec-

tra, not the actual spectra of DC704. The acoustic frequency regime accessible by

ISTS is represented by the shaded area. When the relaxation spectrum is at higher

frequencies than the measured acoustic frequency (a,a'), the acoustic wave is un-

derdamped as in a simple liquid. When the relaxation spectrum overlaps with the

acoustic frequency, acoustic energy is dissipated into the coincident structural relax-

ation dynamics, resulting in strong acoustic damping as shown in (b,b'). At colder

temperatures (c,c') when the relaxation spectrum is centered somewhat lower than

the acoustic frequency, the liquid becomes highly viscous and the thermal expansion

dynamics reveal complex structural relaxation. At still lower temperatures (d,d'), the

relaxation dynamics are far slower than any of the responses probed by ISTS, and the

acoustic waves is underdamped as in an ordinary solid. No slow structural relaxation

is observed since thermal diffusion ends the measurement on a faster time scale.



(x+Ax,y+Ay)

Y

Figure 3-4: Force on aligned dipole in electric field gradient. There is a different

amount of force on the positive charge located at (x + Ax, y + Ay), and the negative

charge located at (x, y). The result is a net translational force on the center of mass

of the dipole. We also note that the dipole is not parallel to the electric field (not

depicted).

The resulting dipole moment of a molecule in the liquid is given by

all cos(wt - kxx - kz z) + a 12 cos(wt + kxx - kzz) (3.36)

a21 cos(wt - k.x - kzz) + a22 cos(wt + kXz - kzz)

At this point, we are able to compute the force in the VHVH geometry. In order to do

so, we consider a dipole comprised of two distinct charges of strength q and separated

by a distance 1 = v(Ax) 2 + (Ay) 2, as depicted in figure 3-4. The negative charge is

located at (x, y) and the positive one at (x + Ax, y + Ay). Due to the electric field

gradients in equation 3.34, there is a net force in both the x and y directions given

by

Fx = q(Ex(x + Ax, y + Ay) - E(x, y)) (3.37)

F, = q(Ey(x + Ax, y + Ay) - E,(x, y)). (3.38)

We multiply and divide the right hand sides of both 3.37 and 3.38 by the charge

separation I and take the limit 1 -- 0 in order to recover the point dipole p of the

..sea...>



molecule as

S= lim ql(Ex(x + Ax, y + Ay) - Ex(x, y)) (339)

S= lim ql(E,(x + Ax, y + Ay) - E,(x, y)) (3.40)
1-+0 1

We recognize in equations 3.39 and 3.40 a directional derivative taken along the orien-

tation of the dipole moment. Thus, the ith component of the force can be represented

as

Fi = - - (VEi). (3.41)

In the preceding derivation, we neglected the portion of the H-polarized field that

lies in the Z direction. Only the projection of this field along the X direction can

contribute to driving the shear wave. The result is that the excitation efficiency is

also proportional to the projection of the H-polarized beam onto the x-axis, and so

the force must also scale as cos(0/2), where 0 is the angle between beams.

We compute the force by substituting the fields from equation 3.34 and the induced

dipole moment from equation 3.36 into equation 3.41. Ignoring constants and terms

that oscillate at twice the optical frequency since they do not contribute to acoustic

signal [64], we are left with

= - cos(0/2) k [12 sin(2kxx)I + all sin(2kxx)y]. (3.42)

This expression shows that the driving strength of the shear wave is proportional

to both the diagonal and off-diagonal polarizabilities all and a 12, the laser intensity

E 2 , the wavevector q = 2k, of the acoustic wave, in addition to the geometrical

scattering factor cos(0/2). The minus sign also shows that the sense of the force is

opposite that of the polarized ISBS case above.

The situation described above mathematically is presented graphically in figure 3-

5. The polarization grating that results from the crossed V- and H-polarized pulses is

shown in a). The force given by equation 3.42 deforms a given element of the liquid

in a sheared fashion as shown in b), the sum total of which provides a shear wave
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Figure 3-5: a) The intersection of the two pump beams results in a grating whose
time-averaged polarization state is described as regions which blend from circular to
elliptical to linear polarization, to elliptical and change to circular of the opposite
helicity. b) Only the linear components of the polarization are able to exert a net
force on the liquid. Considering a segment of the liquid of the size of the region be-
tween circular polarization states, the resulting electrostriction is a volume-preserving
shearing force. Here, the initial cell is depicted as a dotted square and its sheared,
equal-volume element is solid. c) The alternating regions of linear polarization induce
similarly alternating sheared regions of the liquid, the result of which is a shear wave
polarized in the y direction.



polarized in y, depicted in c).

Finally, we note that in addition to the force in equation 3.42, the laser torques

the molecules about their centers of mass according to - = -i x 7. In the liquid

case, where all = a 22 = all and a12 = a 21 = ai, we recover

- = E2all sin(wt - kzz) sin(2kx)2 (3.43)

Unlike the acoustic wave case, the torque only scales with the laser intensity and

the diagonal polarizability - the signal strength does not depend upon the grating

wavevector.

In computing the signal in an ISBS experiment, we assume that the measured

scattered light is proportional to the time-dependent polarizability anisotropy QaP.

We start with the generalized, linearized hydrodynamic equations of motion. First is

the momentum density conservation law,

Opu(r, t) + V I(r, t) = 0 (3.44)

where p is the density, u(r, t) the velocity, and II(r, t) the stress tensor. The next

relevant equation is the expression for the stress tensor

Hnp(r, t) = 6cpP(r, t) -71cp (r, t)

+ 2(3q - ()V. u (r, t) - pQp(r, t) + Fp(r, t). (3.45)

65• is the Kronecker delta, P(r, t) is the pressure, 77 is the shear viscosity, ( is the lon-

gitudinal viscosity, Qp(r, t) is the orientational variable, p expresses the coupling of

translational force due to rotational motion, and r is the spatial coordinate. Fp(r, t)

is the external shearing stress of the laser field, assumed to be a Dirac delta function

in time and wavevector, and T• is the rate of strain, defined by

Ou,(r, t) &up(r, t)
7a r = + (3.46)

+r ar,



The polarizability anisotropy obeys its own equation of motion, given by

gQ•(r, t) = -FoQaP(r, t) + rOTP(r, t) + Qo(r, t) (3.47)

where ]o is the orientational relaxation rate, ( is the torque due to translational mo-

tion, and Qo(r, t) is the torque exerted by the laser. As with the laser-induced stress,

the torque will also be modelled as a Dirac delta function in time and wavevector.

We are also assuming Debye orientational relaxation.

We set the grating wavevector in the x direction and the transverse direction to be

y. For notational convenience, we also omit the arguments of the variables. Since we

are interested in shear waves, we select the transverse elements of the above equations,

and after a Fourier-Laplace transform defined as above in equations 3.5 and 3.9 we

are left with

Ry = -rJY + Fx'  + pQ (3.48)

psvy = -iqlx"y (3.49)

7T XY = SE (3.50)

sQ = -FoQ + ~7 + Qo. (3.51)

The above system can be solved for the orientational variable to yield

Y = q2 Fy + Qo(sp + q2 ) (3
(s + ro)(sp + q2 ,) - 2yq2 "

In order to arrive at an analytic solution, we make the approximation that (pq2

is a coupling of higher order that can be ignored in the solution of the equations of

motion. This is formally equivalent to omitting the term proportional to p in equation

3.45 but keeping ( in equation 3.47. Physically, we are making the approximation

that the rotational motion of the molecules does not cause measurable translational

motion, but that the translational motion does amount to a significant torque. In



this approximation, the expression for QXy separates as

(q2FxY Qo
Q"+ = . (3.53)

(s + Fo)(sp + q2n) S + Fo"

In order to extract how the structural relaxation dynamics are manifest in our

signals, we proceeded as in Boon and Yip [65] and model the a peak by Debye

relaxation where the kinematic viscosity qi/P is generalized to vo + 2r r. Here, vo is

the background kinematic shear viscosity 7lo/p, coo is the infinite frequency speed of

sound, and rT is the characteristic relaxation time. In this model, the above equations

can be solved for Q'Y to yield

QX F + Q (3.54)
P (s + fo)(s + voq 2 + •¢••r s rFo"

Equation (3.54) can be recast into the form:

Sq
2 FxY 1 + S QoQXY = +Fx I + Sr Q0(3.55)p (s + rr,)(s + rA + iWA)(S + rA - iWA) s + ro

where the damping rate FA is given by

1 q2 0FA = + (3.56)
2Tr 2

and the frequency of oscillation WA by

wA COO 2 -r 2 . (3.57)

FA is comprised of two terms, the first due to the structural relaxation dynamics,

and the second due to the background damping. We also note that w may go to zero

for finite wavevector when
1 q2 VO

oq 1 q2  (3.58)
2T-r 2

This condition may be met for finite q in the case where Tr is comparable to the

acoustic period.



Separation of equation 3.55 by partial fractions yields a time domain solution

Qxt(q, t) = ýqF [Ae-rAt sin(wAt) + B (e- r ot - e- r At cos(At))]
p

+Qo exp(-rot) (3.59)

where
1 . (r2 + 2 rAro) + (ro -FA)

A (A = 2 + 2  (3.60)
wA (ro - rA) 2 +

and
1 - FoTrB = . (3.61)

(ro - rA)2 + (3.61)

The solution represented by equation 3.59 is comprised of two pieces. The term

proportional to q2Fxy is due to the shear acoustic response, and the other term pro-

portional Qo is a decaying exponential independent of q. This orientational response

is the Optical Kerr Effect (OKE) signal. We also note the presence of OKE signal in

the acoustic response, due to the rotational-translational coupling.

Analogously to the longitudinal case, we may examine the behavior of the solution

represented by equation 3.59 in three regimes of interest. These three limits are repre-

sented by the data in figure 3-6. In all cases, we will neglect the background damping.

Due to the rotational translational coupling, there is the additional complication that

we must also consider the effect of Fo on the signal through its contribution to the

factors A and B.

When the sample is in the glassy regime, WAT7r 1, which implies that FA - 0.

We also note that the orientational relaxation is also in the regime where o, L- 0.

In this case, A oc 7r/WA which is much larger than B o; WA2 . Hence we observe

underdamped oscillations about the zero baseline due to counterpropagating shear

acoustic waves.

In the case where WATr - 1, the analysis requires more care. If we assume that

the orientational relaxation rate is on the order of 7,- 1, the term proportional to

A contributes as 7,/WA and the term proportional to B contributes as 1/w~. The

numerator of B carries the additional complication that its value may be close to
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Figure 3-6: Representative shear signal taken in triphenyl phosphite with A = 10 pm
and at the specified temperatures. In (a) the material is in a vitreous state where
WATr > 1. Here the oscillations are underdamped and last for several cycles. When
W•r - 1 as in (b), the oscillations become heavily damped due to the exchange of the
acoustic energy with the relaxation dynamics as well as the fact that the material
is gaining the ability to flow. Also in this regime, the orientational relaxation is
significant enough that the oscillations do not occur about zero. Finally, in (c) the
acoustic waves are overdamped as the real part of the shear modulus has gone to zero
- all that is left is the orientational response.
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zero in this regime if, for instance, FoTr 1. If it is not, then the two terms may

contribute equally to the signal, i.e. if Fo = FA = 1/27, and WA7r = 1, then B = A/2.

Since there is a subtraction of a cosine from a sine term with the same argument,

this could manifest as an acoustic phase whose magnitude is related to the relative

amplitudes of A and B. Finally, we note that in this case, the orientational response

has contributions both from direct excitation of the OKE signal, as well as the term

from the rotational-translational coupling.

At higher temperatures, the condition stated by equation 3.58 can be met for the

wavevector regime reached by the ISBS experiment. In this case, equation 3.55 can

be written
Q q2F xy  1 + s7, Qo

Qx" = + (3.62)
p (s + Fo)(S + rI)(s + Pc) s + ro

where

FB,c 21 v 2 - c2q 2  (3.63)27, 2 7, 2
In this case, the time domain signal separates as

QXY = (rq2FxY (• - Pc) (A'e - r Bt - B'e- r ct) + C'e- r
ot (3.64)

with

1 - FBT7,
A' = (3.65)

FB - o

1 - FcT•
B' = r (3.66)

ec - Fo
= q2 Fxy 1 - FoTr

C' = + Qo. (3.67)p (r -ro)(rc -ro)

In equation 3.64, the time dependence of the signal derives from the sum of a q-

dependent biexponential from the overdamped shear mechanical response and the

q-independent OKE signal.

Analogous to the longitudinal case, we can consider a frequency dependent mod-



ulus G*(s) = G'(s) + iG"(s) which obeys the dispersion relationship [66]

ps2 + G(s)q2 = 0, (3.68)

which yields the following expressions for the real and imaginary parts of the shear

modulus from the acoustic frequency and damping rate

G'(WA) = pw- (3.69)

G" (WA) = 2WAF (3.70)
q

As equation 3.68 has been derived considering the strain, in order to compare it

with the results of the above analysis, we must solve for the strain from the original

equations of motion. This gives the dispersion relation

ps2 + lsq 2 = 0. (3.71)

Comparison between equations 3.68 and 3.71 yields the connection between the elastic

modulus and the relaxation spectrum

G'(WA) = --wAIm[r(q, WA)] (3.72)
P

= wARe[n7(q, WA)1 + WAVO. (3.73)
P

We conclude by noting that orientational responses of anisotropic molecules can

be induced not only by the excitation pulses, as in the case of OKE, but also by flow

that occurs due to the induced density changes [67]. Both of these sources lead to

signals that can be suppressed by proper selection of probe and signal polarizations.

Thus the excitation pulse polarizations (VV or VH) we used to select the material

responses that are driven, and (where possible), the probe polarizations, were selected

to suppress unwanted orientational contributions to signal. In general, this can be

easily achieved while examining longitudinal signal due to its large amplitude. This



step was impractical when measuring shear responses, as a choice of polarization which

would suppress the orientational response often reduced the already weak shear signal

beyond the limit of detection.

3.3 Experimental System2

The pump laser used for these experiments is a High Q FemtoRegen regeneratively

amplified laser based on an Yb:KGW gain medium lasing from 1030 nm to 1040 nm.

The repetition rate is adjustable from 500 Hz to 100 kHz, with an average power that

falls from 400 mW at the lowest repetition rates to 200 mW at the highest ones. At

1 kHz, which was the most experimentally convenient rate, it has an output energy of

400 pJ per pulse. The pulse duration is adjustable upon recompression from anywhere

from 250 fs to 10 ps.

Acoustic waves in the wavevector regime accessed by ISTS and ISBS are on the

order of 10 MHz to 1 GHz in frequency, and so are still driven impulsively for pulse

durations up to 100 ps or longer. With longer pulse durations, the peak powers of

the pulses are not great enough to cause permanent chemical change, even when the

integrated fluence is high. To this end, we often bypassed the compressor of the laser.

This leaves a certain amount of temporal chirp in the output pulse which does not

impact the acoustic measurements. The only other effect is a slightly larger output

spot size with no reduction in spot quality.

The probe laser used for much of the data collected in this thesis is a CW Sanyo

DL-8032-001 diode laser lasing at 830 nm with a maximum average power of 150 mW.

The choice of this particular diode laser was motivated by its single transverse mode

output at the maximum power for a wavelength that is sufficiently close to that of

the pump laser that lenses can focus both beams to the same focal planes. The probe

laser is housed in a Thorlabs model LDM21 unit and is powered by a Newport model

560 diode driver with a current limit set to 200 mA (operation of the diode above

2The pump laser system and all of its idiosyncracies are described in detail in Appendix A - here
we provide the parameters of experimental interest.



this limit results in irreversible failure). This mount can also thermoelectrically cool

the diode, but due to the low output power of the diode, this was unnecessary. The

output was collimated into an elliptical spot by an aspheric lens which was screwed

into the diode mount. The beam was then relayed to the experiment.

3.3.1 Optical Setup

Homodyne vs. Heterodyne Detection

The diffracted intensities of an ISS experiment can range anywhere from 10- 5 at

best to 10-8 depending upon the efficiency of the pumping as well as diffraction. As

the probing field needs to be weak relative to the pump to avoid further exciting

the sample, detection of small signal fields can present a significant challenge. To

overcome this difficulty, without exception in this thesis, we have taken advantage

of the principle of heterodyne detection to boost detectable signal levels. In this

case, the time-dependent signal field E,,(t) is superposed upon a static, coherent

local oscillator or "reference" field ELO which is typically several orders of magnitude

larger than Ec,(t). The intensity registered by the detector is then given by

I = IEsC(t) + ELO 2

= IEsc(t)12 + ELOol 2 + 2 cos(ýp)Es,(t)ELo, (3.74)

where ýp is the optical phase between the scattered and local oscillator (LO) fields.

In equation 3.74, E8c(t) 2 is the intensity of the original scattered field. It is called

the homodyne contribution, and its quadratic dependence indicates that a sinusoidal

signal will be detected at twice its frequency. The homodyne signal may be considered

negligible if the LO field amplitude is adjusted properly.

ELo is a static quantity and provides a large DC offset; having no time-dependence,

it can also be ignored. Thus, we see that amplification is provided by the cross term,

or heterodyne contribution 2 cos(ýp)EscELo, which gives the time-dependence of the

field E8c(t) itself. We note that the optical phase ýp must be optimized to provide the
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Figure 3-7: 3D perspective view of ISTS setup. The green beam is the pump and

the red beam is the probe. The two beams encounter the cylindrical lens (CL) that

brings them to an elliptical spot at a common point on the phase mask (PM). A

two-lens telescope formed by lenses (SL1) and (SL2) images the phase mask grating

pattern seen by the beams to the sample plane (SP). In between these two lenses is

an ND filter (ND) which is placed in the path of the local oscillator to attenuate it. A

third lens (SL3) recollimates the beams so that signal field, overlapped with the local

oscillator, can be isolated and sent to the detector (not pictured). Also not pictured

is a glass slide that is placed in the other, non-attenuated, half of the probe and is

used for optical phase cycling as described in the text.

largest possible signal, and may be adjusted to provide a positive or negative signal

relative to the baseline provided by EL·.

Achromatic Lens Setup

Figure 3-7 shows the transient grating setup used in the experiments conducted in a

majority of this thesis. The pump and probe beams are introduced to the experiment

parallel to one another by two sets of turning mirrors, the first far from the experiment,

the other nearby. Use of these two mirrors can achieve a level beam height and parallel



travel in the far field, both of which are optimal for the experiment. These mirrors

may also be used to "tweak" the experiment for greater signal. Small adjustment of

the further of the two mirrors, due to its long lever arm, essentially translates one the

beams relative to the other, while similarly small adjustment of the closer of the two

mirrors impacts the angle of the beams more than it does the overlap.

The first element encountered is a 15 cm focal length cylindrical lens (CL) which

serves the purpose of drawing the pump and probe to a common point while focussing

them down in the transverse dimension. Use of a cylindrical optic preserves a large

beam width that encompasses several grating fringes of the phase mask (PM). The

phase mask's etch depths and features are optimized to diffract the light into the ±1

order of diffraction according to the equation

mA = (3.75)
2 sin 0/2

where m is the order of the diffracted light, A is the feature size of the grating, A is

the wavelength of the light, and 9 is the angle between the diffracted beams. The etch

depth of the phase mask can only be optimized to one wavelength of the incident light

at a time. The result is that for all other wavelengths, there is a significant portion of

the light that goes straight through the phase mask (zero order transmission) without

diffraction. For this setup, we have chosen to optimize the etch depth for the probe

wavelength, as the pump intensity already had to be routinely turned down in these

experiments to avoid sample damage, while more probe light simply yielded more

signal. A spatial filter had to be incorporated to block out the "O-order" pump light

later in the setup.

The first optical element after the phase mask is a 15cm focal length Thorlabs

model AC508-150-B near-IR, 2 inch spherical achromatic lens (SL1). This lens func-

tions both to collimate the beams (if they are focussed into the grating) and bring

them all parallel to one another. The use of achromatic lenses in the experiment

not only serves to nearly eliminate chromatic abberations between pump and probe,

but also greatly reduces geometrical abberations, as well. At small grating spacings



(1.75 pm, here), the pump beams nearly clip the edges of the lenses. This means

that both the imaging defects from operating outside the paraxial limit, as well as

chromatic abberations would render this experiment impossible with conventional

piano-convex lenses.

The second lens used was a Thorlabs AC508-075-B near-IR, 7.5 cm focal length 2

inch achromat, which was selected for having the largest available numerical aperture,

and thus able to produce the smallest grating spacings. The beams cross at its focal

point, which is where the grating is formed and where the sample must sit. With the

first lens, SL1 and SL2 constitute a two lens telescope that relays the image of the

beams on the phase mask onto the sample with a factor of 2 demagnification. In this

configuration, it is possible to access experimental wavelengths from A = 1.75 pm

(q = 3.59 pm- 1 ) up until A = 49.7 pm (q = 0.126 pm- 1 ), though in practice, this

setup was used from 1.75 pm to 6.56 pm.

A point worthy of mention in the alignment of these lenses: conventional wisdom

dictates that the curved surfaces of both of these plano-convex lenses should face

outwards of the beam path. In the case of the transient grating experiment this is

exactly wrong, as the more relevant requirement for making a good grating pattern

at the sample is more determined by the beam pointing than it is by the Rayleigh

range; i.e., when ±1 order beams, diverging from the phase mask, first encounter a

lens, it is far more effective that this face be flat. Likewise, when crossing the beams,

it is best done with the parallel beams first encountering the curved faces of the final

optic. Not doing so can lead to exaggerated abberation defects in the imaging and

will greatly reduce signal levels.

In between SL1 and SL2 is depicted an ND filter which serves to attenuate the

local oscillator field. In practice we have used an ND3 filter, although other values

of attenuation may be more appropriate depending upon saturation effects in the

detection electronics (see below). In the other arm of the probe beam, we have placed

a glass slide (not pictured) whose adjustment can change <p, the optical phase between

the signal field and local oscillator. The glass slide was glued to a mirror mount so

that the phase could be changed by turning one of the mount's adjustment screws. In



practice, the screw was replaced by a Thorlabs model Z612 motorized actuator and

controlled by a Thorlabs model TDC001 Servo controller. This allowed measurement

of positive and negative phase signals to be recorded back-to-back during overnight,

temperature-dependant scans.

Besides the glass slide and ND filter, other modifications to the beam charac-

teristics can be made. In particular half-waveplates may be introduced into any of

the beams in order to rotate its polarization before it reaches the sample; this is

the approach we took in making depolarized transient gratings such as depicted in

figure 3-4a.

Finally, we note that the last focussing optic depicted in figure 3-7 is another

Thorlabs AC508-075-B near-IR, 7.5 cm focal length 2 inch achromat which is used

to recollimate the beams. The signal field and colinear local oscillator can then be

spatially filtered away from the other three beams using a pinhole, and this light then

focussed onto the detector.

Mirror-Based Setup

An alternate setup, depicted in figure 3-8 was used for transient grating spacings from

A = 6.70 pm to A = 100.9 pm. In this configuration, two separate phase masks (PM)

are used for the pump and probe. The two beams are recombined at a dichroic mirror

after collimation. We have also chosen to use spherical reflectors (SM1, SM2, SM3)

instead of lenses where SM1 and SM2 are 50 cm focal length, and SM3 is 25 cm focal

length. In order to generate longer wavelength acoustic waves, the second focusing

mirror (SM3) can be replaced by a 50 cm, or even 100 cm, achromatic lens.

Since this setup is based around focussing mirrors, this requires that there be

a small departure from normal incidence (usually less than 10 degrees, as a rule of

thumb) upon the mirrors to avoid large abberations. In order to meet this condition,

the phase masks are oriented such that the diffraction occurs vertically, i.e. outside

of the plane of figure 3-8.

This approach was motivated by a number of concerns. First was the need to

be able to use the half-waveplates mounted in rotation stages in the paths of all the
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Figure 3-8: Mirror-based ISTS setup. The two collimating mirrors are physicallyseparated, while the focussing mirror is common between the pump and probe. The
orange box at the end of the beam path is used to denote the cryostat where thesample is located.

beams without occluding any of the other beams in the process. These were placed
in between the collimating mirrors (SM1 for the probe and SM2 for the pump) and
the dichroic mirror DM; with the four beams separated in such a manner into pairs,
it was possible to use waveplates in the probe beam down to a grating spacing of
24.9 pm with the 2: 1 imaging or 49.8 pm with 1 : 1 imaging. This set the limits on
the largest grating spacing measured in the shear wave experiments.

Second, the complete separation of the pump and probe beams before the focussing
mirror also allows for different focal-length cylindrical lenses (CL1 and CL2 for the
probe and pump, respectively) to focus into the separate phase masks, and in fact,
the relative spot sizes of pump and probe on the sample can be controlled entirely
separately from one another.

Finally, this setup is completely achromatic. The use of mirrors will always result
in the same imaging for any choice of pump and probe wavelengths. Additionally,
the phase masks can be chosen to have an etch depth optimized for the wavelength
of the beam that they are used in.



The main drawback of this method was that the use of non-common path optics

introduced relative phase instability in heterodyne measurements due to air currents

and vibrations on the table. The result is that the relative phase (P between local

oscillator and probe picks up noise and turns this into an instability of the measure-

ment. The vibrations become more important for smaller grating spacings, so the

noise is exacerbated for shorter acoustic wavelength measurements. Interestingly, we

found that turning on the HEPA filters above the optical table actually served to

stabilize the setup. This problem does not exist for the homodyne measurement,

where there is no optical phase information recorded and vibrations of either phase

mask are immaterial.

3.3.2 Detection

Detectors and Probe Lasers

Detection of acoustic waves is performed by a Cummings Electronics Laboratory

Model 3031-0003 amplified avalanche photodiode whose amplification has a band-

width of approximately 10 kHz - 3 GHz. The AC coupling allows for measurement

of induced gratings without a fluctuating background due to pointing instability and

fluctuations in the quantity ELO.

The detector used for slow responses was a New Focus model 1801-FS amplified

photodiode detector with a bandwidth specified by the manufacturer to be between

DC and 125MHz. We found it absolutely essential to use this detector for both

thermal and structural responses, as it was not possible to reliably deconvolve the

effects of the AC coupling from the slow response for the Cummings detector.

In either case, the detection limits the level set by the local oscillator field ELo.

For the New Focus detector, the output DC voltage saturates to a maximum value,

completely disguising any signal behavior. We have also found that operating close

to this limit can yield incorrect behavior and provide inconsistent fits of long-time

signals such as thermal diffusion or structural relaxation dynamics.

For the Cummings detector, excessive levels of background light will cause satu-



ration of the detector's gain for the amplified fast response, despite its AC coupling.

The result is actually an attenuation of the response that can serve to disguise the

dynamics of interest and also lead to spuriously high observed decay rates for acoustic

waves. In practice, we have found that an upper level of background light is roughly

85 pW CW at 830 nm, although due to the responsivity of the diode as a function of

wavelength, this number is relaxed somewhat when probing with shorter wavelengths.

This last point indicates that the choice of probe wavelength must be balanced

between several factors: if lenses are preferred, it must match the pump wavelength

closely enough for the phase mask to be properly imaged at the sample, or else special

achromatic lenses with design wavelengths specifically for the pump and probe should

be used. A second issue is that the photodiode must have ample sensitivity at the

detection wavelength to be useful; most photodiodes have a peak in their sensitivity

in the 800 nm range. Finally, we note that these two points should be balanced by

the fact that Brillouin scattering, like Rayleigh scattering, has a cross-section that

scales as 1/A4 with probe wavelength.

Depolarized Scattering

The use of phase masks and heterodyne detection in depolarized measurements on

glass forming liquids is a recent development and demands further comment. In order

to create a polarization grating such as that in figure 3-5a, it is necessary to insert

A/2 plates in the paths of at least two of the beams to rotate their polarizations

perpendicular to the other coincident pulse. Ensuring that the pump pulses are still

coincident in time requires that a piece of glass of identical thickness to the waveplate

be inserted in the part of the beam whose polarization is not rotated. In practice,

this was accomplished by inserting another waveplate aligned so as to not influence

the polarization of the beam in question.

Even though zero order waveplates were used, there is an inevitable extent to

which the output polarization is not pure, resulting in a superposition of both an

intensity grating and a polarization grating. In the past, this inconvenience has been

dealt with by introducing Glan-Thompson polarizers into the paths of all the beams to



clean up the incident polarizations. The main drawback is that this introduces further

non common-path optics into the setup, and also tends to walk beams, implying that

even greater care needs to be taken in the initial alignment of the experiment.

With the use of CW heterodyne detection, however, this becomes unnecessary.

The beam which is diffracted by the shear wave is amplified by heterodyne detection

as it now shares the same polarization as the local oscillator. The portion which is

diffracted by the density grating now has a perpendicular polarization to the local

oscillator and thus does not get amplified. As homodyne signals are typically quite

small, the amount of parasitic longitudinal signal is typically very small, if at all mea-

surable, entailing that the use of Glan-Thompson polarizers to clean up depolarized

signal is an unnecessary complication.

A drawback of the use of phase masks in depolarized measurements is the close

proximity of the beams for larger grating spacing measurements; in practical terms,

there is a limited amount of space in which to insert the A/2 waveplates, while such

a limitation does not exist when using beamsplitters and mirrors. In practice, this

may be overcome by using square waveplates whose fast axis is aligned with one of

the optic's edges. A simple holder may be designed to hold these two waveplates in

the path of the two laser beams.

Pump Laser Optimization

Some of the experiments performed below required chopping the output of the laser

to a repetition rate slower than can safely be achieved electronically by turning down

the laser repetition rate3 . Due to this particular regenerative amplifier's construction,

there exists a steady stream of oscillator pulses at 78 MHz that come out colinear with

the amplified pulse. This static background is not sufficient to generate measurable

acoustic signal on its own, but the cumulative effect of 60 mW of oscillator power

incident on the sample causes a static thermal grating. Chopping of the amplified

pulse also chops this static thermal grating, whose disappearance and reappearance

are marked by thermal decays and rises, respectively. While this effect is small, it is

3 This is for the laser's sake. See Appendix A for an important discussion of this point.



noticeable, and can be inconvenient for samples which provide little signal. Therefore,

effective chopping requires the selection of a single pulse while rejecting the oscillator

train. This can be most easily performed with the use of an electro-optic or acousto-

optic modulator.

The second point is concerned with the gating of the amplified pulse in the am-

plifier cavity. We simply note that care must be taken that the timing is adjusted to

minimize pre and post pulses, the existence of which can doubly excite the sample

and wash out the acoustic signals of interest, as well as cause other troublesome signal

artifacts.

3.4 Data Acquisition and Fitting

The detector was attached to a Tektronix model TDS-7404 digital oscilloscope which

has a bandwidth from DC to 4 GHz. The oscilloscope was externally controlled via

GPIB interface and the data traces recorded on a computer using a home-made Lab-

view program. This program was also able to automate data acquisition by using an

adaptive loop to help the temperature controller reach a set temperature and ensure

that it was stabilized at this temperature for a given amount of time before acquiring

the data. Neither laser was blocked during the process of changing temperature. The

automation was also able to adjust the glass slide in order to cycle the optical phase O

of the heterodyne beam between two preset positions that were optimized for positive

and negative phase signals. Most of the data acquired below did not use this scheme,

however, as its development was fairly late in the course of data acquisition.

Data of both positive and negative optical phase were collected independently for

every data point used in this thesis. This was defined by, in the longitudinal case,

the offset of the signal from the baseline before t = 0 and, in the shear wave case, the

direction of the non-resonant electronic response. Subtraction of the negative phase

signal from positive phase signal allows for the removal of common-mode electronic

noise (such as is emitted by the Pockels cell), and also generally boosts the signal to

noise ratio of the measured signal, as can be seen in figure 3-9.
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Figure 3-9: Effect of phase cycling on signal. (a) shows the raw positive and negative
data traces. At t = 0, some of the pump light has gotten into the detector amounting
in the negative phase never reaching below zero. We also observe electronic noise in
the second half of the data trace. Both of these artifacts are "common mode" forms
of noise that drop out upon phase cycling, as seen in trace (b). The scales of all traces
are identical.
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Figure 3-10: Example of instrument response function obtained by sending a small
portion of the laser pulse into the detector. The Gaussian is able to fit almost all of
the features of the detector's instrument response. There is a little bit of the response
after the Gaussian that is not accounted for, but which we found to be insignificant.

The phase cycled signal was then fit in the time domain to the appropriate the-

oretical signal function given above. Effort was made to include the effect of the

detector's instrument response function (IRF) on the signal, which was modelled by

a Gaussian of the form

IRF(t) = A exp ( to (3.76)
( a)

where A is an amplitude parameter, to is the fitted arrival time of the laser pulse and

t = 0 for the experiment, and a is a width parameter for the Gaussian. An example

of an IRF is shown in figure 3-10 for fit parameters A = 5.69 ns, to = 2.24 ns, and

a = 0.262 ns. In the case of shear waves, this IRF was fit to the hyperpolarizability

spike separately for each individual data trace; we have found the a parameter to

vary little from fit to fit.

The measured signal is then given by the convolution of the IRF with the the-

oretical signal as, in practice, it is a lot easier to fit the convolved function than

to deconvolve the instrument response from the frequency domain. The fits were



performed with the nonlinear least squares method embedded in the prepackaged

MATLAB "fit" function. Generally, proper judgment is involved in fitting the time-

domain traces, and for ease of use, a GUI was developed for fitting the time-domain

data. In the cases of poor signal to noise, the implementation of MATLAB's Butter-

worth filtering was used to find realistic starting parameters, but the fits ultimately

used for subsequent analysis were always performed on the unfiltered data.

All of the data used for mapping relaxation spectra were acoustic traces taken at

a single timescale on the oscilloscope. Due to their temporally broad characteristics,

direct determination of the structural relaxation parameters TR and f requires past-

ing together several data sweeps taken at different oscilloscope time scales. Slight

variations of signal, intensity are likely between phase cycled sweeps, and to account

for this, we subtracted any offset from before t = 0 to bring all traces to a common

baseline, superposed the two traces at their common data points4 , and used MAT-

LAB's "fminsearch" function to produce the multiplication factor of the longer-time

signal which gave best overlap. The plots in figure 3-3 were generated in this manner.

3.5 Sample Preparation and Handling

Several authors vacuum distill the liquid under study into the dust-free cells, and then

flame-seal the cells under vacuum. While preferred, this is not presently possible given

the configuration of the cell being used [68]. In all of the studies performed for this

thesis, the most sample preparation consisted of heating the liquids under vacuum

to remove volatile impurities, using the drying agent MgSO 4 , or a combination of

both. This is quite important as impurities such as phenols, alcohols, and especially

water, may either phase separate from the liquid under study, rendering it opaque

and unusable, or they may even crystallize, causing the glass former to crystallize,

too.

After outgassing, we removed dust (which may serve as nucleation sites for crys-

4 Traces of differing time-scale also have different resolution, hence the need to pair up the different
sweeps accordingly.



tals) by transferring the liquid to the cell through a teflon millipore filter. We have

found it of great importance to use teflon as the filtering medium, as opposed to the

several other options otherwise available - such as cellulose - which may be dissolved

by the liquid and then either phase separate or crystallize on their own.

Liquids may contract significantly upon cooling. If the resulting stresses are not

relieved after the liquid has lost the ability to flow, the glass may crack, rendering

the sample opaque and unsuitable for study. To avoid this issue, a cell with movable

windows, as described in [68], is used in the experiments. In practice, the cell did not

work as well as hoped, likely due to the teflon o-rings holding in the windows being

too tight to allow the window to move inwards upon cooling. In these cases, the liquid

either had to be melted and recooled or, if there was a clear path, the sample moved

so that light could still get through.

After the liquid was loaded inside, the cell was attached to the coldfinger of a

Janis model ST-100-H cryostat which was evacuated in order to avoid condensation

on the sample during cooling. The vacuum also lowered the thermal load of the

coldfinger. We have used liquid nitrogen exclusively in this thesis, and the boil-off

from the mini-dewar that it was contained in was enough back pressure to be able

to force the cryogen into the cryostat. The sample temperature was regulated by

a LakeShore Cryotronics, Inc model 331 temperature controller which was able to

keep the temperature stable to within 0.01 K for each data point using the cryostat's

heater located at the interface of the coldfinger and the sample.
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Chapter 4

Impulsive Stimulated Thermal

Scattering Study of DC704

4.1 Introduction

In the previous chapters, we described how Impulsive Stimulated Scattering may be

used as an effective tool in characterizing the phenomenological aspects of the glass

transition, as well as be a means of testing the predictions of the mode-coupling theory.

In what follows, we present an ISS study of the glass forming liquid tetramethyl

tetraphenyl trisiloxane, a diffusion pump oil developed by the Dow-Corning company

and sold by the trade name DC704. Our choice of sample is motivated by the work of

Dyre and Olsen, who have characterized both the bulk and shear mechanical, as well

as dielectric relaxation of this liquid across several decades in frequency from 10-3 Hz

up to 104.5 Hz [69, 70]. Below, we employ ISS in order to map the longitudinal

spectrum from 107 Hz to 1010 Hz through acoustic measurements, and 103 Hz to

107 Hz through direct determination of relaxation in the time-domain. Thus, among

the many long-term goals of this study is a view towards extending the dynamic range

of measured acoustic spectra.

Our broad dynamic range in time and frequency also allows for a comparison

between our two methods for obtaining the modulus, and is presented below. We

shall also use the acoustic spectra we obtain to look for evidence of growing dynamic
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Figure 4-1: Chemical structure of tetramethyl tetraphenyl trisiloxane. The liquid is
likely to be entirely van der Waals bonded due to the phenyl groups; as the oxygens
are bonded silicon atoms, hydrogen bonding is likely prohibited.

length scales using the analysis of Berthier et al [28].

An analysis in terms of the mode-coupling theory is also presented. Here we look

for a square-root cusp in the Debye-Waller factor, which is a quantitative measure of

the non-ergodicity, or "falling out of equilibrium" of the liquid. The information we

obtain on the evolution of the relaxation also allows us to test the notion of time-

temperature superposition. Our mode-coupling analysis concludes with a measure,

and comparison, of two of the three critical exponents of the theory.

Finally, we have been able to observe propagating shear waves in DC704 over

a modest range of temperatures and wavevectors. Below we present preliminary

results of an attempt to produce a shear spectrum, and form a comparison with the

longitudinal spectrum.

4.2 Experimental Methods

The lasers and experimental configurations that were used for these measurements

are described above in chapter 3; in order to span as broad a frequency range as

possible, we have used both the lens-based and mirror-based setups. The acoustic

wavelength for both setups was calibrated through ISTS measurements in ethylene

glycol, for which the speed of sound is known to a high degree of accuracy [66]. This
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calibration was double-checked after all of the data collection was finished and the

variation in acoustic wavelength ranged from approximately 0.1% at the smallest to

1.8% at the largest with an average value of 0.7%. This determined our uncertainties

in the sound speeds, but did not affect the uncertainties in the damping rate.

In both setups, when acoustic spectra were measured, the signal was collected with

a Cummings Electronics Labs Model 3031-0003 amplified photodiode with 10 kHz -

3 GHz bandwidth. When longer time signals were studied, we used a New Focus

Model 1801-FS detector with a bandwidth of DC to 125 MHz. In all cases, the signal

was processed by a Tektronix TDS-7404 digitizing oscilloscope with a 4 GHz band-

width. Depending upon signal-to-noise ratios, signals from 2,000 to 4,000 repetitions

of the measurement were averaged for each data trace, with total data acquisition

times of less than a minute per trace.

When building acoustic spectra, data were taken for every available wavelength

in the range from 1.75 pm to 101 pm by fixing the temperature and scanning the

this wavelength. These grating spacings were 1.75 pm, 1.97 pm, 2.33 pm, 2.68 pm,

3.14 pm, 3.64 pm, 4.20 pm, 4.85 pm, 5.66 pm, 6.56 pm, 6.70 pm, 7.61 pm, 9.13 pm,

10.2 pim, 11.7 pm, 13.7 pim, 15.7 pm, 18.3 pm, 21.3 pm, 24.9 pm, 28.5 pm, 33.0 pm,

38.1 pm, 44.2 pm, 49.8 pm, 50.7 pm, 56.9 pm, 65.9 pm, 76.0 pm, 88.0 pm, and

101 pm. The raw data are provided in Appendix B. In order to have a baseline of

comparison from setup to setup, we have taken one wavevector in common between

different configurations of the optics.

Scans of the temperature at fixed wavevector were also done in order to provide

access to the evolution of acoustic velocity and damping rate as a function of T. In

these cases, the temperature was set to 330 K and decreased slowly over a period

of many hours. Differences of 2K in temperature were typically given 30 minutes to

equilibrate before the data were taken. This was also done in the regime where the

structural relaxation is evident in the time domain (for 1.97 pm, 11.7 pm, 24.9 pm

and 49.8 pm grating spacings), although for experimental convenience, here the data

were taken upon warming.

DC704 was obtained from Sigma Aldrich and used without purification. The liq-
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uid was transferred into the cell through a 0.22 pm millipore filter; as the sample was

observed to become slightly opaque upon cooling, the liquid was placed in a 5 mm

fused quartz cuvette made by Starna Cells, which provided a small enough optical

path length to not attenuate the signal beam, but was more than thick enough to

permit the excitation of bulk acoustic gratings. It was discovered after the measure-

ments were performed that the opacity was due to phase separation of water and

other dissolved impurities from the base liquid, and this could be largely overcome

by mixing the sample with a drying agent such as anhydrous MgSO 4, combined with

heating under vacuum. This fact was discovered after this study was completed.

Nevertheless, the DC704 never crystallized during the course of our experiments.

Once loaded, the cuvette was placed in a holder provided by Janis where it was

ensured that good thermal contact was made between the two with indium foil. The

holder was directly attached to the coldfinger of a Janis model ST-100 cryostat which

was controlled by a Lakeshore model 331 temperature controller. Temperature sensing

was provided by a factory calibrated Lakeshore model PT-102 platinum resistor which

was immersed in the liquid a few millimeters away from where the beams were crossed

for the experiment. Both temperatures were stable to within 0.01 K for the duration

of each measurement.

4.3 Results and Discussion

Four separate traces of ISTS data recorded with 38.1 pm grating spacing, representing

the four different signal regimes are shown in figure 4-2. In all traces at short times,

there are oscillations due to the counterpropagating acoustic waves, and at long times,

the signal decays to zero due to diffusion of the thermal grating. The trace in (a)

shows data taken in the high-temperature liquid state, showing weak damping of

the acoustic wave. In the regime where the a relaxation is on the time scale of an

acoustic period, mechanical energy is quickly dissipated into structural relaxation and

the acoustic signal is strongly damped, as shown in (b). At slightly lower temperatures

as depicted in (c), a relaxation dynamics extend to time scales significantly longer
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Figure 4-2: Longitudinal signal from DC704 at four temperatures.
spacing was 38.1 pm. The different regimes are discussed in detail

the grating fringe
in the text.
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Figure 4-3: Longitudinal signal in DC704 at 242K, 24.9 pm grating spacing. The fit

is able to account for all observed features of the data.

than that of the acoustic response, resulting in reduced acoustic damping and slow

components of thermal expansion that are observed directly in the data. Finally,

when the liquid is cooled into the glassy state as in (d), the damping is observed to

decrease significantly, and the slow components of thermal expansion are no longer

observed because thermal diffusion releases the stress on a faster time scale.

Figure 4-3 details one particular trace which shows excellent agreement with a fit

to the model function

A(e - t/ "h - e- r t cos(wAt)) + B(e - t/ ' - e- (t/r)) + Ce - r t sin(wAt) (4.1)

which is identical to equation 3.26 in section 3.2.1, save for a sine term added to

express contribution from ISBS signal. Here, A and B are ISTS amplitudes, while

C is the amplitude for the ISBS signal. Tth is the thermal decay time and 7, is the

characteristic structural relaxation time stretched by the exponent P. These two
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variables will be known as TKWW and IKWW in all that follows. Finally, WA is the

observed acoustic frequency, and F is the total acoustic damping rate, including the

background viscous damping.

The fits were performed by first fitting the acoustic part of the response with

freely varying parameters for all other quantities. After that, the time window was

expanded to incorporate the full signal sweep and the other parameters were fit while

the acoustic parameters were held fixed. When acoustic data were analyzed to form

frequency domain spectra, data for each temperature were fit in succession from

highest wavevector to smallest, and the results for the previous fit were used as

the starting parameters in the next fit. In the cases where time domain relaxation

was studied, data were fitted for all temperatures taken with a given wavevector.

Randomly selecting a number of different experimental traces and fitting with random

starting parameters always reproduced the same fitted values to within the stated

95% confidence interval provided by the fitting routine, as did reversing the fitting

procedure (i.e. fitting long-time behavior before the acoustic response), indicating

that there was no operator bias in the fits.

4.3.1 Phenomenological Analysis

Using the above fitting procedure allows access to the characteristics and evolution

of the a relaxation spectrum, specifically the KWW function used to model the slow

rise in our signals, exp(-(t/TKww)OKww). Data were taken every 2 degrees in the

temperature regime in which it was observed, specifically from 220 K to 248 K. Fits

which yielded a value for rKWW which was longer than the time between laser pulses

(here 1 ms) were cast out as being unrealistic. This restricted the temperature range

from 230 K to 248 K for the wavevectors in which we could examine this feature.

A plot of the behavior of TKWW as a function of temperature is shown in figure 4-

4. The data span several orders of magnitude in time, from 100 ns to 1 ms, over a

range of 28 K. We note that there is quite good agreement between the data taken at

24.9 pm and 50.7 pm. Time-dependent thermal expansion signals were also recorded

with grating wavelengths of 11.7 pm and 101 pm. At 101 pm, thermal diffusion was so
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Figure 4-4: rKWw in DC704 as a function of temperature. The data from 24.9 Jpm
and 50.7 pm show excellent agreement.
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Figure 4-5: VFT and power law fits to relaxation time determined from KWW fits in
DC704. Both give good agreement with the data. The VFT fit parameters we obtain
here are 70 = 3 ± 18 ps, B = 300 ± 200 K, and To = 218 ± 8 K, while the power
law yields y = 7 ± 3 and T, = 227 ± 5 K. The power law fits are explained in more
detail in the context of the mode-coupling theory below.

slow that it exceeded the time between repetitions of the measurement. The resulting

buildup of the stead-state signal level from shot to shot had no significant effect

on the observed acoustic frequency and damping rate, but likely led to significant

distortions of the slower signals and the KWW fits to them. At 11.7 pm, the time-

dependent thermal expansion was observed on time scales that extended across two

regimes that were measured by two different photodetectors and that were difficult

to connect reliably into a single time-dependent feature. The data at 24.9 pm and

50.7 pm were recorded with a single (low-bandwidth) photodetector, and at these

wavelengths thermal diffusion from one measurement was complete well before the

next measurement began.

A VFT fit to the data is also shown in figure 4-5 where a reasonably good fit is
given to the 24.9 pm and 50.7 jm data for all values of the scaled inverse temperature
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Figure 4-6: IKWW in DC704 as a function of temperature. The relative invariance

of /KWW with temperature over the wide range of relaxation times indicates that

DC704 obeys time-temperature superposition with 1 KWW = 0.4.

1000/T. The fit parameters we obtain here are To = 3 -± 18 ps, B = 300 ± 200 K,

and To = 218 ± 8 K. From this expression, we are able to deduce a glass transition

temperature where Tg is defined as the temperature at which T = 100 s. The value of

Tg that we obtain is 227 K, which is in contrast with other measurements of DC704

[70, 71] where a value of Tg = 210 K has been obtained. As VFT fits are not universal,

this implies that the temperature region of this portion of the analysis, which only

goes down to 230 K, is sufficiently far away from the slow dynamics to adopt VFT

parameters that would provide the correct value for Tg.

Examining the fitted values of /KWW shows a remarkably small amount of varia-

tion with temperature, where all values cluster around /KWW = 0.4 ± 0.1. Thus, we

can conclude that, in the temperature regime examined here (230 K - 248 K), DC704

exhibits time-temperature superposition.

When only acoustic contributions to the signal appeared at short times, the data
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Figure 4-7: Acoustic velocity in DC704 as a function of temperature for three wavevec-
tors. Also plotted are linear extrapolations for the values of co and co.

were fit to the full time domain form given in equation 4.1. For smaller grating

spacings (smaller than 7.5 pm), we note that the ISBS contribution to the signal

became significant because, as described in Chapter 3, the magnitude of contribution

increases linearly wth wavevector. In cases where time-dependent thermal expansion

overlapped with the acoustic response, we fit to the full form of equation 4.1 to

account for the gradual rise, but we only used the acoustic parameters, as the KWW

parameters could not be determined reliably.

In figures 4-7 and 4-8, the measured acoustic frequencies and damping rates,

respectively, as a function of temperature are shown for a variety of grating spacings

ranging from 1.97 pm to 38.1 pm. The data show all the features consistent with

the material undergoing a transition from liquid to glass, as mentioned above in the

description of the signal in various temperature regimes. First we examine the shift of

the acoustic velocity in the two separate regimes. For high temperatures (1/7R > WA),

the acoustic damping rate is low, and the velocity increases linearly with temperature.
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Figure 4-8: Scaled acoustic damping rate in DC704 for three wavevectors, where the
scaling has been done by multiplying by the acoustic wavelength A. The damping
rates for higher wavevector are much larger due to the - q2 background damping.
The low-temperature damping rates at 38.1 pm wavelength were too low to measure
reliably due to propagation of the acoustic waves away from the excitation and probing
region.
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Being on the slow side of the relaxation, this allows us to extrapolate a value for

the zero frequency sound speed co. Here we have assumed linear dependence on

temperature and fit points from several grating spacing in the region from 330 K to

310 K. This analysis yields

co = 2530 ± 10 [m/s] - 3.53 ± 0.05 [m/s - K] T [K], (4.2)

as depicted in figure 4-7.

When 1/rR ' WA, there is a peak in the damping rate, and a significant change in

the sound speed. For the wavevectors used, these features appear in the temperature

range 240 K - 270 K. Finally, at low temperatures (210 K - 230 K), 1/TR < WA, the

damping comes back down to low values, and again the acoustic velocity increases

approximately linearly with a decrease in temperature. A fit of the velocity vs.

temperature in this range yields a phenomenological expression for the evolution of

the instantaneous longitudinal sound speed c,

c, = 4230 - 50 [m/s] - 8.7 ± 0.2 [m/s -K] T [K]. (4.3)

The expressions for low and high-frequency acoustic velocities cannot be extrapolated

reliably into temperature ranges far from those measured directly. Additional mea-

surements (including ultrasonics, Brillouin scattering, or picosecond ultrasonics [72])

are needed for this purpose.

The damping rate r may be used to get an estimate of the background viscous

damping term 1/2vlq2 . This has been extracted by fitting the acoustic decay rate

versus the wavevector squared for a series of data points taken at the two extremes

of our acoustic scans for which time-domain fits yielded accurate results: namely at

320 K and 216 K. For temperatures warmer than 330 K or colder than 216 K, the

damping rate relative to the frequency was low enough that the finite size of the probe

and excitations spot impacted the shape of the signal. Once the damping coefficient

was determined at each temperature extreme, we assumed a linear dependence upon
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the temperature, which produced the result

UL(T) = (31 ± 2 [m2/s] + 0.13 ± 0.01 [m2/S K](T[K] - 320 [K])). (4.4)

Using the acoustic parameters determined at a common temperature, the com-

plex frequency-dependent longitudinal modulus M*(w) = M'(w) + iM"(w) can be

determined from

M'(WA) = P A 2 A (4.5)

2WArA (4.6)
M"(wA) = p q2(4.6)

where p is the density, and the background damping has been subtracted as FA

F - 1/2vLq2. Thermal contraction of the sample was accounted for by using literature

data of the temperature dependence of density [73, 74]

p(T) = 1.0679 [kg/m 3 ] + 7.2 x 10- 4 [kg/m 3 - K](298 [K] - T[K]) (4.7)

in order to extract the true moduli.

Modulus plots are shown in figures 4-9 and 4-10. Of note in our data is a small

jog in the moduli around WA/27r = 40 MHz, and another at WA/27r = 300 MHz.

These small jumps are the result of using three different optical configurations for

the data that were taken at three different times and hence on three different cool-

down cycles. We are confident that the small uncertainties in wavevector (± 1% or

less) and temperature (typically ± 0.1 K or less) are not the source of the jog. We

conclude that the jog may result from differences in the cooling rates, which ranged

from approximately 1 K/min to 6 K/min.

Once data points for the modulus were obtained, they were fit to the relationship

Mo - M248M*(w)= M - (48)
(1 + (iWc HN s)taHN) HN()

where Mo and Mo are the infinite frequency and static longitudinal moduli, respec-
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Figure 4-9: Longitudinal relaxation spectrum at 246K and 254K. The real part is in
blue, imaginary in green.
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tively. We have chosen to model the relaxation peak by a Havriliak-Negami distribu-

tion as its use of two separate exponent parameters better facilitates the transition

between it and its time-domain analogue, the KWW function. This transition was

accomplished using the recent work by Hilfer [21, 22] where a series expansion repre-

sentation for the Fourier transform of the KWW function is given by

e1 - Ek0= (-1)kr((k+k ) 6+ li(A)
F(exp(-(t/Tp3))) = k=O 3r(k+l) (4.9)

= 1 - k= (o1 (k+ 1) i )-ik liwr, > 0.

where F(x) is the complementary incomplete Gamma function

F(x) = e-ttx-ldt. (4.10)

In both expressions of equation 4.9, T represents TKWW and ' is ,KWW. The upper

expression in 4.9 is an asymptotic series that applies in the low frequency limit, and

the lower is a convergent series for larger frequencies. In our analysis, we evaluated

the appropriate series numerically, and the resulting real and imaginary curves were

then simultaneously fit to equation 4.8 with M, = 1, Mo = 0. These fits provided

the frequency domain parameters THN, aHN and OHN from our time domain data.

Figure 4-11 shows an example of this analysis for values ,KWw = 0.4, 7KWW = 1 /s.

Since these two functions are not strict Fourier transforms of one another, different

parts of the spectrum fit to differing degrees. In order to extract consistent values

of THN, OIHN, and 3HN from the KWW parameters, the transformed spectrum was

centered at the experimental value of 1TKW w and the domain of the transform was

taken as 5 decades. Fits to the entire spectrum for the values of 1Kww observed

routinely led to values of OHN = 0.75 ± 0.15 and PHN = 0.45 ± 0.1. Since 3KWW was

observed to vary little in the original KWW fits, it was no surprise that OHN and

/HN behaved similarly. Thus, the utility of equation 4.9 is not limited to obtaining

a characteristic relaxation time that may be compared with the analogous frequency

domain values. It also may be used to provide a regime of valid aHN and PHN

parameters in equation 4.8 that may be compared to values determined from acoustic

117



0.8

7,

"• 0.6

N

E 0.4
0

0.2

0.0
0.01 0.1 1 10 100 1000

o/2i (MHz)

Figure 4-11: Comparison of transformed KWW function and its Havriliak Negami fit

for /gKWW = 0.4 and TKWW=1 uls.

data in the same temperature range.

We believe that this procedure is more accurate (and more useful) than transform-

ing the Havriliak-Negami fits into KWW parameters: as the structural relaxation

modelled by the KWW equation represents the full long-time decay of the density-

density correlator, it encapsulates the entirety of the alpha relaxation spectrum. In

contrast, at the same temperatures that we observe relaxation in both the domains,

we can only access this spectrum's high-frequency wing in our frequency domain.

This is a consequence of the fact that we are able to observe the time-dependent

thermal expansion from which the KWW parameters are derived when it occurs on

slow time scales compared to the acoustic response at the same wavevector. As a re-

sult, our acoustic data provides information about the relaxation spectrum at higher

frequencies than our time-dependent thermal expansion data. Even when the average

relaxation time is in the middle of our acoustic window, our limit of two decades in
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acoustic frequency precludes the ability to accurately fit an acoustic spectrum without

assumptions made for at least one of the fitting parameters.

In principle, fits to expression 4.8 may also be constrained by the limits of the elas-

tic moduli, Mo and M,. These may be obtained from the extrapolated results of the

acoustic measurements, equations 4.2 and 4.3, respectively. However, as mentioned

above, extrapolation of the value for c, and co far from the temperature ranges in

which they were measured cannot be done reliably.

Thus, in fitting the acoustic results, we have adopted four different approaches

with varying constraints, with a view of balancing the quality of the fits versus realistic

bounds on the parameters. First, all parameters were allowed to vary in order to

obtain a best fit whose only use (given the limited slice of the spectrum available)

was for a visual comparison to the constrained fits.

In the second approach, the data were fit assuming that time-temperature su-

perposition holds and that the spectral parameters derived from the KWW data are

also applicable in the frequency domain. In these cases, we used alHN = 0.75 and

PHN = 0.45. The third approach was to fix the limiting moduli based on the linear

extrapolations given above. Finally, the fourth method was to apply both sets of

constraints, on the moduli and the exponents. If the constrained fit yielded results

consistent with the transformed values of rKWW while still resulting in a low least

squares error compared to the unconstrained fit, the fit was considered valid.

The results of fitting our longitudinal modulus data comparing constraints on the

exponents with freely bounded fits are shown in figures 4-12 - 4-15. Qualitatively,

we found that the fits with fixed exponents are consistent in quality with fits using

freely varying parameters, although the latter are somewhat better for a few of the

individual spectra, particularly for the lowest 3 temperatures studied (240 K - 244 K).

Indeed, many of the unconstrained fits where the dissipative part of the susceptibility

is in the middle of our frequency window yielded the same results as the constrained

ones.

In both of these cases, we obtained the unrealistic value of the zero-frequency

modulus being nearly equal to zero for the low-temperature regime, which is symp-
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Figure 4-12: Longitudinal relaxation spectrum at 246K. The data are represented bypoints and the Havriliak-Negami fits by curves. The solid, colored line represents thefit when OHN = 0.75 and /HN = 0.45, which gives THN = 0.47 ± 0.03 ps. The dashedblack line is from a free fit of all parameters. Here, this fit yields aHN = 0.53 ± 0.07,3HN = 1 ± 0.1, and 7 = 0.04 ± 0.02 ps.
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Figure 4-13: Longitudinal relaxation spectrum at 254K. The data are represented by

points and the Havriliak-Negami fits by curves. The solid, colored line represents the

fit when aHN = 0.75 and /HN = 0.45, which gives THN = 0.010 ± 0.001 Ps. The

dashed black line is from a free fit of all parameters. This fit yields O!HN = 0.76 -0.05,

OHN = 0.44 ± 0.08, and 7 = 0.011 ± 0.005 ps.
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tomatic of our acoustic frequency range being higher in frequency than the relaxation

spectra determined mainly through thermal expansion data. Our dynamic range

therefore did not include the center of the relaxation spectrum or the low-frequency

limit at most temperatures. When we tried to fix the zero-frequency modulus using

equation 4.2, we were not able to obtain good fits to the data for some of the lower

temperature traces, and we observed significantly more scatter in the fitted values

for all of the other parameters. Again, this is likely due to the fact that equation

4.2 is only applicable in the higher end of this temperature window and could not be

extrapolated through the regime where we observe structural relaxation. Finally, we

note that fixing Mo and the exponents yielded even worse fits and more scatter in

the fitted value of THN. Indeed we only have direct knowledge of co for T > 270 K

and c, for T < 220 K which is, unfortunately, outside of the range of interest for our

acoustic spectra.

Our conclusion for the fits is as follows: KWW data show time temperature

superposition via a temperature independent value for the exponent 3KWw = 0.4

in the regime 230 K - 248 K. Similarly, the best fits for the unconstrained variables

reproduced the Havriliak-Negami values of aHN = 0.75 and PHN = 0.45 for many

temperatures in the range 252 K to 264 K, which corresponds to /KWW = 0.4; those

temperatures for which the free-fit spectral parameters were appreciably different did

not have very different fits from when aHN and /HN were held fixed. Hence, we

deduce that time-temperature superposition holds in this regime as well. For the

regime 240 K to 250 K of the Havriliak-Negami fits, there was simply not enough

spectral structure to contradict the KWW results, as the fits with OHN and PHN

constrained by 3KWW were still consistent with the data.

Thus, we can conclude that time-temperature superposition holds for the range

230 K-268 K with parameters fKWW = 0.4 or OHN = 0.75, OHN = 0.45. This

allows us to use our data shifted by the fitted values of THN in order to obtain a

master plot for the longitudinal acoustic modulus, as shown in figure 4-16. The data

show remarkably good agreement with the master function. Of note is the lack of

any anomalous behavior which may indicate the presence of a secondary relaxation
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Figure 4-16: Master plot for DC704 longitudinal modulus showing the results of time-
temperature superposition. The individual traces are scaled and shifted according to
the fit values. Here, a = 0.75 and 3 = 0.45 as determined from KWW fits to the
time-dependent thermal expansion data and from Havriliak-Negami fits to acoustic
data that included the peak of the loss modulus. Acoustic data that included the
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be used to determine the fitting parameters aHN and /HN independently but were
consistent with those values.
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Figure 4-17: VFT and power law fit to relaxation time determined from both KWW

fits and HN fits in DC704. Both forms provide good fits to the data over a wide

range of temperatures and relaxation times. The VFT parameters for THN are 70 =

100 ± 200 fs, B = 500 ± 100 K, and To = 212 ± 4 K, and the power law parameters

(discussed in terms of the mode-coupling theory in greater detail below) are ' = 8 ± 1

and Tc = 227 ± 2.

peak (the so-called Johari-Goldstein l-relaxation [75]). We note that there is slightly

greater scatter in the fitted values of the imaginary part of the modulus near the peak.

This is intrinsic to the measurement itself: in this regime, the acoustic damping rate

is appreciably higher than in other areas. With fewer cycles to fit against, the spread

in the fitted values becomes correspondingly larger.

Using the measured values for the average relaxation time obtained from both

acoustic and time-domain structural relaxation measurements allows us to examine

its evolution across several orders of magnitude in time. This behavior is plotted in

figure 4-17, where rather good agreement is obtained for data taken in the two domains

at a set of common temperatures; there is a slight difference that can be accounted

for both in terms of fitting uncertainties, as well as the uncertainty associated with
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transforming KWW data into the frequency domain. We are able to attempt a

VFT fit, which is also shown within figure 4-17. Fits to the entire set of THN yields

To = 100 ± 200 fs, B = 500 ± 100 K, and To = 212 ± 4 K. Fits that only

account for those values obtained by the Havrliak-Negami fits give ro = 3 ± 26 fs,

B = 800 ± 700 K, and To = 200 ± 30 K.

The fitted parameters provided by the above analysis may also allow access to the

full spectra for the mechanical relaxation of DC704 over a significant temperature

range, and thus allow for a test of the growing length scale as predicted by [28] and

outlined in chapter 2. Briefly, we require a derivative of the spectrum with respect to

temperature
-OF(t)

XT(t) = (4.11)
aT

which we can use to form a lower bound for the four-point correlator X4, which

measures the degree of dynamic cooperativity in a relaxation process

X4(t)> kT2X (t). (4.12)
Cp

If the analysis is to be performed in the frequency domain, the compliance J(w) =

M- 1(w) must be calculated. However, a more straightforward approach may be to

transform the modulus to the time-domain KWW form using the formalism of Hilfer

[21, 22]. The temperature derivative in equation 4.11 can then be approximated by

simply taking the difference between adjacent time-domain traces, using the fitted

values instead of actual data in order to avoid experimental noise propagating with

the results. Finally, measurements of the specific heat c, are required for this analysis.

These may be performed by differential scanning calorimetry (DSC); DSC data on

DC704 from a scan performed every two degrees upon cooling from 280 K to 240 K

is given in appendix B.
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4.3.2 Mode-Coupling Analysis

In addition to the evolution of collective relaxation, the time domain data also provide

access to the q -+ 0 limit of the Debye-Waller factor through the relationship

B
fq-O B (4.13)A+B

where A is the magnitude of the thermal plus acoustic signals, and B is that of the

structural relaxation contributions to the signal [7]. In figure 4-18 we have plotted

fq-.o for all of the wavevectors for which structural relaxation data were taken. We

do not observe the predicted mode-coupling theory cusp from our data. We note that

DC704 is not unique in this respect. Paolucci and Nelson observed no such feature in

glycerol [76], nor did Torre and coworkers in their work on o-terphenyl [77], although a

quantitative measure of non-ergodic behavior has been observed in o-terphenyl with

neutron scattering [78, 79]. We also note that, to date, its presence in Impulsive

Stimulated Scattering data has been verified in salol [57, 80] and CKN [81], the only

other two liquids in which this feature has been sought after.

In order to explain the absence of the square-root cusp behavior in their data,

Torre and coworkers offer that, for o-TP, neutron scattering measurements of the

Debye-Waller factor taken in their q -- 0 limit would show a vanishingly small cusp.

While this is likely to be the case for DC704, no such high-wavevector measurements

have been taken by which to form a basis for comparison. In light of this, we would

also like to recall the observation of Paolucci and Nelson that the average value of

f--o is already fairly high (i.e. > 0.6) while for CKN and salol, it is appreciably lower

(, 0.4). We note that the o-TP data of Torre data and our DC704 data share this

feature with glycerol, as well. This may, albeit circumstantially, point to a common

origin, such as the scenario presented in [77]. Paolucci and Nelson suggest reasons

such as thermally assisted hopping events, or the fact that the sharp square root cusp

is a feature of schematic MCT, whose predictions may be less valid for these liquids

than for salol and CKN; the non-ergodicity feature in DC704 may be broader or more

rounded than the sharp square-root cusp that is expected. At present, we can only
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conclude that further study is required to uncover the cause.

In principle, fq-o may also be obtained from the spectral fits to the acoustic data

from the definition of the Debye-Waller factor as

fq-o = 1 (4.14)

This underscores the necessity to extend our measurements across a broader range of

temperatures and frequencies, a direction which is being actively pursued.

Testing the predicted power law behavior of the average relaxation time T

(T - T,)-7 in equation 2.51 requires a measurement of the crossover temperature.

Regrettably, without evidence of the square root cusp in the Debye-Waller factor, our

only source of this behavior is examination of the characteristic relaxation time itself,

which is shown in figures 4-5 from the KWW data and 4-17 from the combination of

acoustic and time-domain data fit to the Havriliak-Negami function. The power-law

behavior fits the data over a good range in the KWW data alone, yielding a value for

Tc = 227 ± 5 K and y = 7 ± 3. This value of Tc is reasonable, as it is about 10%

higher than the accepted value for Tg. Fits to the entire measured spectrum, as shown

in 4-17, are also quite good, yielding very similar parameters to the approach utilizing

only the KWW information: Tc = 227 ± 2 K and y = 8 ± 1. Both of these fits

yield values for T, which are lower than we were able to reliably study experimentally.

While we may posit that the reason we did not see non-ergodicity in the Debye-Waller

factor is that we simply could not go down far enough in temperature, this needs to

be verified by further measurements.

The mode-coupling theory also makes predictions on the scaling behavior of the

imaginary part of the modulus [82]. Notably, the low-frequency part of the a spectrum

should fit to a frequency dependence of M" - wl, while the high frequency side of

the a relaxation should be shown to scale as

M"(w) - w-b .  (4.15)

The exponent in equation 4.15 is precisely the b exponent referred to in Chapter 2,
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equation 2.69. This implies that a determination of b from the high frequency piece

of the a relaxation in tandem with measurements of the 3 relaxation to determine

values for a in equations 2.67 and 2.73 should uniquely determine the critical behavior

of DC704. In particular, these two exponents can then be used to obtain the power

law exponent 7. Further work in the schematic model studied in [82] provides an

estimate for the 3KWW parameter from these exponent parameters given by

log(2)
KWw = - og(2) (4.16)KWW-- log(1- A)'

which is an assertion that should also be easily tested by this analysis.

The imaginary part of the modulus is plotted on a log-log scale in figure 4-19 in

order to emphasize power-law behavior on both sides of the relaxation peak. Fitting

the available portion of the low-frequency behavior, we recover the value 0.39 ± 0.01.

More data on this side of the maximum would be useful, but the available results

cannot support the mode-coupling theoretical prediction.

From the high-frequency side of the peak, we are able to deduce a value of

b = 0.28 ± 0.01, which results in an exponent parameter A = 0.92. Using the approx-

imation, equation 4.16 for OKWW, gives an estimate of gKWw = 0.29, which is very

close to the experimentally determined values centered around 0.4. Finally, we may

use the values of y and b to obtain a value for a from equation 2.73. Using the result

for -y from the power law fit to the entire measured temperature range yields a = 0.08

which, then using equation 2.67 gives an exponent parameter A = 0.99. This value

is slightly higher than the value provided by b, but it is not far off. Without a direct

measurement of the / relaxation regime it is impossible to confirm this result, but

reasonable consistency among the exponent parameters motivates measurements of

GHz frequency acoustic properties of DC704. Measurements of this type are presently

underway.
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mode-coupling exponent b.
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4.3.3 Shear Acoustic Relaxation

Figures 4-20 shows representative shear wave data at 4.25 pm at a series of tempera-

tures. At short times there is a spike in the signal due to the non-resonant electronic

response to the pump pulses. Following this so-called hyperpolarizability spike are

oscillations about zero due to counterpropagating shear waves which damp out over

several acoustic cycles. In some of the warmer temperature traces, especially where

the acoustic damping is stronger, we observe a gradual decay of the signal from an

offset, which is due to the orientational relaxation described in section 3.2.2.

As mentioned in section 3.2.2, the data may be fit to the form

A exp(-r,t) sin(w,t + 0) + B exp(-rRt) + C6(t) (4.17)

which must be convolved with the instrument response function. Here, A is the

acoustic amplitude, r, is the shear damping rate and w8 is the shear frequency. q

is a phase which accounts for the cosine term in equation 3.59 and only becomes

important for temperatures where the damping is strong. In the next term, B is

the optical Kerr effect signal, FR is the orientational relaxation rate, and in the last

term C is the strength of the hyperpolarizability spike. It is an over-simplification to

model orientational relaxation with a single exponential [83], since complex relaxation

dynamics can be observed in molecular orientational dynamics. However, the orien-

tational contribution to our data was weak and the introduction of more parameters

did not change the fits.

The fitting function is able to account for all features of the observed signal as is

seen in the fits of figure 4-20. Analogous to the longitudinal case, using the informa-

tion of the shear frequency and damping rate allows construction of a complex shear

modulus G*(w) = G'(w) + iG"(w) according to

U2 _ r2
G'(w2) = p S 2 (4.18)

2

G"(w,) = p 2 (4.19)
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Figure 4-20: Shear waves in DC704 at 210 K, 230 K and 238 K at 4.20 pm grating
spacing. The data are in black and the fits are in red. The data show excellent
agreement with the fitting function, although a very weak signal is observed. Note
that in (c), the time axis is zoomed in by a factor of two.

134



where the complex shear modulus can be modelled by a Havriliak-Negami spectrum

of the form

G(w) = G,~ 1 - (4.20)

which has the same form as equation 4.8 save that the zero frequency shear modulus

of the supercooled liquid Go = 0 by definition.

Figures 4-21 and 4-22 show attempts at construction of a shear spectrum at 230 K

and 238 K, respectively. The fits shown are supposing that the values for &HN = 0.75

and PHN = 0.45 obtained from analysis of the longitudinal measurements apply to

the shear spectrum as well. Fits allowing r8 to vary yield values of the characteristic

relaxation time for the shear degrees of freedom as -r = 3 + 1 ps at 230 K and

- = 0.3 ± 0.1 ps at 238 K. When rs is constrained by the value from the longitudinal

data, we are not able to construct a fit to the data as the curve for G" is consistently

low.

The fitted value for Tr at 230 K is at least three orders of magnitude smaller than

the longitudinal value, while the value at 238 K is two orders smaller, which may

indicate that the shear degrees of freedom relax at a significantly faster rate than the

longitudinal ones, and that their evolution with temperature is not as pronounced as

in the longitudinal case. However, low signal levels, even at relatively high wavevector,

preclude the development of a full shear modulus spectrum that spans a range much

wider than a decade in frequency; the linear q dependence of the signal strength

becomes prohibitive for this measurement, and we were typically unable to observe

shear waves for wavelengths greater than 11 pm. Although our shear results are

limited in scope, they are provocative because they suggest significant differences

between longitudinal and shear relaxation dynamics in a supercooled liquid.

4.4 Conclusions

Longitudinal relaxation was measured in the glass former DC704 over a range of

temperatures from 232 K to 268 K using Impulsive Stimulated Thermal Scatter-

ing. From 232 K to 248 K, the data were obtained from time-domain from fits of
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Figure 4-21: Shear relaxation spectrum at 230K. The data are represented by points
and the different fits by curves. The data show considerable scatter due to the noise
in the original data traces, as well as the low signal levels. We also note that the
data are only available over slightly wider than one decade. These factors preclude
a free fit to the data, but we are still able to perform a fit constraining the spectral
exponents aOHN = 0.75 and /HN = 0.45 with the relaxation time T, both free and
fixed by the longitudinal data. In the case where -7 is fixed, the imaginary part is
consistently below all the data points, while allowing it to vary produces a good fit
with T, = 3 ± 1 ps.
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Figure 4-22: Shear relaxation spectrum at 238K. The data are represented by points

and the fits by curves. The data show even more scatter than at 230 K. We also

note that the data are only available over one decade. These factors preclude a

free fit to the data, but we are still able to perform a fit constraining the spectral

exponents aHN = 0.75 and /HN = 0.45 with the relaxation time r, both free and

fixed by the longitudinal data. In the case where 7s is fixed, the imaginary part is

consistently below all the data points, while allowing it to vary produces a good fit

with , = 0.3 ± 0.1 ps.
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the KWW function to time-dependent thermal expansion signals, while a frequency-

domain Havilriak-Negami functional form was fit to acoustic wave data recorded in

the temperature range from 240 K to 268 K. Both sets of results were consistent with

time-temperature superposition, with the KWW exponent value gKWW = 0.4 and

Havriliak-Negami parameters of aHN = 0.75, fHN = 0.45.

The temperature-dependent characteristic relaxation times were successfully fit to

both VFT and mode-coupling power-law expressions. An examination of the Debye-

Waller factor was unable to find any evidence of the system following the trend in

nonergodicity that is predicted by the mode-coupling theory. This outcome is consis-

tent with ISTS studies of two other glass forming liquids (glycerol and o-terphenyl)

and inconsistent with ISTS studies of yet another two liquids, salol and CKN. Unlike

glycerol where it is speculated that hydrogen bonding may be responsible for this

behavior, DC704 is incapable of forming hydrogen bonds, suggesting that the root

of this behavior may be in the large value for the Debye-Waller factor at all temper-

atures, the only common trait between these three liquids. In the case of DC704,

however, we may also speculate from the value of T, derived from the relaxation time

fits that we may not have been able to take data to low enough temperatures to

observe the cusp in fq-o.

Power-law fits to the wings of a master spectrum for alpha relaxation yielded the

exponent b = 0.28 which yielded a value of the control parameter A = 0.92. This in

turn yielded a value of the KWW exponent gKWW = 0.3 that was consistent with

our experimental measurements. The value of b, in combination with the exponent

7 = 7.3 derived from the power-law fit of relaxation times, also yields a prediction

for the value of the power-law exponent a = 0.1 that characterizes the low-frequency

wing of the beta-relaxation. This should be tested by future measurements of GHz-

frequency acoustic properties. A power-law fit to the low-frequency side of the a

relaxation spectrum yielded an exponent 0.39 < 1, inconsistent with mode-coupling

theoretical predictions.

Shear wave propagation was also observed in DC704 over a limited range of tem-

peratures and wavevectors. An attempt at construction of a shear relaxation spectrum
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was precluded due to low signal levels and the resulting limited spectral range of about

one decade. Preliminary results indicate that the characteristic shear relaxation time

is several of orders of magnitude faster than the longitudinal one, although better

data with a wider dynamic range and temperature range will be needed to verify this

conclusion.

Further studies of DC704 will hinge on broadening the ranges of observation,

examining both the longitudinal and shear degrees of freedom. The use of shorter

optical wavelengths and larger-angle excitation geometries will widen the available

extent of ISTS measurements. More efficient detection schemes with larger bandwidth

will also aid these experiments. Finally, the study of glass forming liquids will profit

immensely from the use of novel longitudinal and shear acoustic generation methods

[72, 84]. Efforts in these directions are presently underway.
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Chapter 5

Depolarized Impulsive Stimulated

Scattering Study of triphenyl

phosphite 1

5.1 Introduction

The analysis of DC704 concluded with preliminary results on shear wave propagation

and the construction of a shear modulus spectrum akin to the longitudinal spectrum.

However, due to low shear signal levels in that liquid, our measurements were limited

to a narrow range of frequencies. Building upon prior work [8, 9] on the fragile glass-

former triphenyl phosphite (TPP), the experiments described below constitute an

attempt at directly characterizing the shear acoustic spectrum in the regime from

10 MHz to 1 GHz. In this prior work, the shear modulus was measured over a narrow

frequency range, comparable to our results from DC704 presented in the previous

chapter. As in our case with DC704, the earlier results did not permit sufficient

comparison between shear and longitudinal modulus spectra. In the present case,

a more complete comparison is carried out and an assessment is made of whether

the transverse current correlations that comprise the shear spectrum has sufficient

'Done collaboratively with Jeremy Johnson of MIT.
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overlap with the density fluctuations of the longitudinal spectrum to yield identical

behavior as predicted by MCT.

5.2 Experimental Methods

The experimental setups used in this study have already been described in chapter 3.

Here, we used both the mirror-based and lens-based systems to be able to probe the

largest possible range of wavevectors. In order to generate the polarization grating,

we inserted A/2 waveplates into each of the beams. These waveplates were held in

precision rotation mounts to provide accurate alignment of the relative polarization

of the V and H polarized beams. This set the upper limit on the grating spacing that

could be achieved in our measurements - for longer wavelengths, the beams came close

enough together to be clipped by the rotation mounts. In the lens-based system, this

limit was at 6.56 pm, and for the mirror-based system, it was at 24.9 pm which was

extended to 50.7 pm with proper imaging. Finally, as noted in chapter 3, we did not

find it necessary to use Glan-Thompson polarizers to ensure a high degree of purity

for the polarizations due to the amplification provided the shear wave by heterodyne

detection relative to the homodyne longitudinal signal. In both setups, the signal

was collected in a Cummings Electronics Laboratories model 3031-0003 detector and

recorded by a Tektronix Model TDS-7404 oscilloscope. The shear signals were weak

and required 10,000 averages, resulting in data acquisition times of a few minutes.

TPP at 97% nominal purity was purchased from Alfa Aesar and had both water

and volatile impurities removed by heating under vacuum with the drying agent

MgSO 4 immersed in the liquid. The sample was then transferred to a cell with

movable windows [68] via filtering through a millipore 0.22 pm teflon filter. After

loading, the cell was placed in a Janis ST-100-H cryostat where the temperature was

measured with a Lakeshore model PT-102 platinum resistor immersed directly within

the liquid, and monitored and controlled with a Lakeshore 331 temperature controller.

The grating spacings examined in this study were 2.33 pm, 3.65 pm, 6.70 pm,

7.61 pm, 9.14 pm, 10.2 pm, 11.7 pm, 13.7 pm, 15.7 pm, 18.3 pm, 21.3 pm, 24.9 pm,
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Figure 5-1: Chemical structure of triphenyl phosphite.

28.5 pm, 33.0 pm, 38.1 pm, 42.6 pm, and 50.7 pm, while data for 0.48 pm, 1.52 pm,

3.14 pm, and 4.55 pm grating spacings were taken from prior reported results [8, 9].

When the samples were cooled to the desired temperature, the cooling rate never

exceeded 6 K/min, with 2 K/min being typical. Data were taken at fixed wavevector

every 2 K from 220 K to 250 K upon warming as we found crystallization was less

likely to occur upon warming than cooling. Only a few measurements could be

taken without having to thermally cycle the liquid, as it invariably crystallized. We

noticed that the tendency towards crystallization was particularly pronounced in the

temperature range between 234 K and 242 K. After a few days of use, the sample was

observed to develop a slightly cloudy yellowish hue, and so was replaced by a new

one. The yellowish samples tended more readily towards photorefractive damage, as

well as crystallization, than the original, clear samples. Comparison of the signals

obtained from the degraded samples and fresh ones yielded the same frequency and

damping rate values, indicating that uncertainties in either of these quantities were

due mainly to noise in the data or to the variations in cooling rates, as described in

the previous chapter.
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Figure 5-2: Shear waves in TPP at 2.33 pm grating spacing. The data are in black
and the fits in red. As the temperature is increased, the acoustic wave becomes
more heavily damped. At higher temperatures, we also note the presence of the
orientational relaxation, which appears to skew the signal such that the oscillations
do not occur about the zero baseline.
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5.3 Results and Discussion

The results of several VHVH experiments performed at A=2.33 pm grating spacing

are shown in figure 5-2. There is an initial spike due to the non-resonant electronic

response. Immediately following this hyperpolarizability peak are oscillations about

the zero baseline from the counterpropagating shear waves. At a sample temperature

of 220 K, these oscillations are seen to disappear on the scale of tens of nanoseconds

due to acoustic damping. As the sample is warmed, the shear modulus is observed

to soften and the damping increases dramatically with temperature. At sufficiently

high temperatures, the shear wave becomes overdamped. We also note that at some

temperatures, the signature of orientational relaxation is observed through a long

diffusive mode which offsets the signal from zero baseline.

Another illustration of the influence of relaxation dynamics upon the signal may

be obtained by examining data from a collection of wavevectors at a common temper-

ature, as depicted in figure 5-3, where we provide data taken at 10.2 pm, 21.3 pm, and

44.2 pm grating spacings. Since the shear waves are driven electrostrictively, signals

at larger grating spacings are observed to be weaker due to the linear q dependence

of the excitation efficiency. We also observe that shear waves at lower frequencies are

more heavily damped than their higher frequency counterparts as at these frequen-

cies, the acoustic period is closer to the time scale of the characteristic relaxation

time 7,.

Time-domain signals were fit to the function

I(t) = A exp(-F,t) sin(wt + 0) + B exp(-FRt) + CS(t) (5.1)

which was convolved with the instrument response function, modelled here by a Gaus-

sian with duration 0.262 ns. This convolution was necessary to determine the true

t = 0 for the experiment. Here, A is the acoustic amplitude, F, is the shear damping

rate and w, is the shear frequency. q is a phase which accounts for the cosine term

proportional relaxation strength and only becomes important for temperatures where

the damping is strong. In the next term, B is the optical Kerr effect signal ampli-
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Figure 5-4: Shear speed of sound in TPP as a function of temperature for a variety of
grating spacings. We note that the highest temperature for which we could observe
shear waves increases with the decrease of grating spacing.
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tude, FR is the orientational relaxation rate, and in the last term C is the strength of

the hyperpolarizability spike. As discussed in chapter 3, it is an over-simplification

to model the orientational behavior by a single decaying exponential [83]. A more

accurate description might be in terms of a KWW function, as is used for the longitu-

dinal mechanical relaxation; however, since the orientational signal contributions are

weak, we were still able to obtain excellent fits with fewer parameters using a single

exponential.

The obtained values of the the shear acoustic velocity c8 = ws/q at a collection

of wavevectors are shown in figure 5-4, while in figure 5-5 the scaled damping rates

are shown. Two features of the data are immediately evident in these plots: first,

we observe significant acoustic dispersion for the shear waves across all temperatures

studied, and this dispersion increases dramatically as the temperature is raised. This

is the hallmark of the structural relaxation dynamics we are characterizing in this

temperature region. The second feature we note is that, as a result of the dispersion

and the shear softening it represents, at each temperature above 240 K there is a

wavelength beyond which we are unable to observe the shear wave in our measure-

ments due to its increased damping and reduced signal strength. This wavelength is

observed to increase with temperature.

From the fitted values for the shear frequency w, and the damping rate Fr,, we

may compute a value of the reactive and dissipative shear moduli from

W2 - P2
G'() = p 2 (5.2)

q2

G"(w,) = p 2 (5.3)

In contrast with the longitudinal case, we have not been able to deduce a background

damping term, as we were unable to get an accurate enough measure of the damping

across a wide enough range of temperatures and wavevectors. Hence, the term F, in

the expressions above is simply the observed damping rate in equation 5.1. Since the

shear waves become overdamped at high temperatures, it is likely that the damping

rate at all temperatures are dominated by structural relaxation rather than back-
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grating spacings. We note that the highest temperature for which we could observe

shear waves increases with the decrease of grating spacing.
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ground viscous damping. The density values we obtained from data in reference [85]

were fit to a quadratic as

p(T) = 1.507 [g/cm 3 ] - 1.3 x 10- 3 T [K] + 6.8 x 10- 7 T 2 [K2] (5.4)

Figures 5-6 and 5-7 show plots of the real and imaginary parts of the shear modu-

lus, respectively, as a function of temperature. These plots are for the same collection

of wavevectors for which we have plotted the velocity and damping information. As

in the plot of the velocity, we see the softening of the modulus at higher temperatures.

The imaginary part shows generally monotonic behavior as a function of temperature

as well, save for the 10.2 pm data, which shows a small decrease in the imaginary

part at higher temperatures, a feature which is only weakly evident in the damping

rate itself represented in figure 5-5. This is likely due to the period of our shear wave

exceeding the characteristic relaxation time Tr,, permitting observation of a piece of

the low-frequency side of the relaxation curve. We generally did not observe this

trend at most wavevectors, as the shear wave signal often became either too weak or

too strongly damped.

The moduli at each temperature were plotted as a function of frequency and then

fit to the Havriliak-Negami relaxation function

G*(w) = Goo 1 - (1 (5.5)

in order to extract the shear relaxation spectrum. We note that Go = 0 for all

temperatures, by definition. As discussed in chapter 4, the Havriliak-Negami function

has been chosen due to the fact that a transformation of the time-domain KWW

parameters into the frequency domain is readily achieved with the two exponents

OHN and OHN. This transformation into the frequency domain was done using the

results of Hilfer [21, 22] as described in the previous chapter.

In fitting our spectral data, we adapted three different approaches with different

constraints, with the aim of balancing the quality of the fits against how realistic the

parameters we obtained were. In the first approach, we let all of the parameters vary.
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the shear modulus is observed to soften considerably. Again, the highest temperature
for which we could observe shear waves increases with the decrease of grating spacing.
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This was done in order to provide a visual guideline for the minimum least-squares

uncertainties of the fitting routine relative to the ranges of physically plausible values

for the fitting parameters.

The second approach relied heavily on the results of the analysis presented in

[8, 9]. As we typically only saw the high-frequency side of the a relaxation peak, with

a frequency range of two decades, it is likely that a free fit of the spectral parame-

ters aHN and /HN would produce unreliable results. Hence, we chose to constrain

these exponents with the transformed value for 3KWw supplied from polarized ISTS

measurements of longitudinal acoustic waves and time-dependent thermal expansion

reported previously in [8, 9]. Finally, the third method was to constrain not only

aHN and 3 HN, but also the value of the relaxation time 7, to its corresponding value

for longitudinal relaxation, -r, obtained by transformation of KWW fits to previously

reported polarized ISTS data into the frequency domain by the procedure described

above.

Three representative plots of the complex shear modulus with their fits are shown

in figures 5-8 - 5-10. As a first comparison, we see that the fit which is constrained for

the three parameters OlHN, /HN, 7s does not fit the data. The fitted portion of G'(w)

is consistently high for all plots, and that of G"(w) consistently low. This was true

for all temperatures. Hence, we may draw the immediate conclusion that the shear

spectrum of TPP that we observe does not share identical relaxation parameters with

the previously published longitudinal spectrum. As mentioned above, we have not

subtracted the background damping term, but it is unlikely that this is comparable

in magnitude to the shear wave damping due to structural relaxation. Background

damping was not subtracted from the previously reported longitudinal spectra [8, 9]

that we are comparing our results to, but this could not account for poor agreement

across the entire two-decade frequency range.

Over most of the temperature and wavevector ranges covered, the fits without

constraints and with constraints on the HN exponents are consistent with each other

within the uncertainties inferred from the scatter in the data. We note that the results

from earlier work [8, 9] suggested a weak variation of the KWW exponent 3KWW with
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Figure 5-8: Shear acoustic spectrum of TPP at 220 K. The freely varying fits and the

fits with aHN and • HN are nearly identical, while the fit constrained for all spectral

parameters except G, produces a poorer fit in the real part, and is consistently low

in the imaginary part.
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Figure 5-9: Shear acoustic spectrum of TPP at 234 K. Again, the freely varying fits

and the fits with aHN and PHN are comparable. The fit with aHN, /HN, and 7s fixed

produces poorer agreement with the real part of the modulus consistently low values

compared to the imaginary part.
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Figure 5-10: Shear acoustic spectrum of TPP at 240 K. Here, the freely varying fits
and the fits with aHN and PHN differ considerably due to the scatter in the obtained
values. The fit presented by the constraining aHN, /HN, and T, together also agrees
poorly for the real part of the modulus, while it is again consistently low for the
imaginary part.
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Figure 5-11: Values of G,(T) obtained from the various fitting approaches. The ex-

pected decrease of G. with temperature is observed except (for fits with constrained

values of the parameters aHN, IHN, and for unconstrained fits) at the highest tem-

peratures at which the determination of G, becomes unreliable.

temperature (a change of 0.15 over 30 K) which is within the uncertainty that can be

deduced from the present results.

A plot of the fits of G, as a function of temperature is shown in figure 5-11. Since

the material is becoming less and less viscous with an increase in the temperature,

we should expect G, to decrease monotonically with T. We observe this behavior

for all temperatures when the full set of parameters aHN, IHN and 7, are constrained

and for all but the highest temperatures when only the exponents are constrained or

when no constraints are applied At the highest temperatures, our data are probing

the low-frequency wing of the relaxation spectrum and so the high-frequency features,

including the high-frequency limiting modulus value cannot be determined accurately.

Figure 5-12 presents -T as obtained from the various fitting approaches, where the

values of •1 to which some of the fits have been constrained are also shown. When
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OHN and PHN are fixed by the longitudinal spectra, -r is consistently lower than rl by

slightly less than an order of magnitude, although the two sets of values run parallel

to each other over the entire temperature regime probed. The fit with freely varying

parameters shows more scatter in 7,, with significant deviation from the rT values at

higher temperatures.

From this analysis, we conclude that the HN spectral parameters aHN and /HN

from our shear acoustic wave data differ significantly, at least at the higher sample

temperatures measured, from those obtained based on KWW fits to earlier polarized

ISTS data [8, 9]. The differences between our results and the earlier results at some

temperatures clearly exceed their combined uncertainties. We are hopeful that the

shear frequency range can be extended significantly, but the two decades of frequen-

cies that we have collected already are sufficient to indicate real differences in shear

and longitudinal modulus spectra. In particular, the width of the shear spectra at

higher temperatures appears to be greater than that of the longitudinal spectra. The

characteristic relaxation times may also show systematic differences, but we do not

believe we have sufficient data to reach a firm conclusion about this at present.

In figure 5-12, we present VFT fits to the temperature-dependent -T values de-

rived from the different fitting approaches. The fit of the -r values obtained without

constraints produced a value for Tg = 218 K and a fragility of m = 73, while the fit

of the T7 values obtained by constraining OHN and PHN also yields Tg = 218 K, with

m = 63. The original VFT fit gives Tg = 212 K and m = 161. The literature value

of Tg is generally accepted at around 202 K [86], while the fragility obtained in these

measurements varies from m = 100 to m = 120.

Using the theoretical results of chapter 3 for the signal, we may attempt to deduce

a lower length scale for shear wave propagation. Briefly, we recall that the observed

frequency of the shear acoustic wave is given by

WS= c 22- (2 ,2  (5.6)

where co is the instantaneous shear velocity, q is the wavevector, and TR is the
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Figure 5-12: Characteristic relaxation time 7, plotted versus temperature for both
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characteristic relaxation time of the liquid. This expression has been derived in a

Debye model, and thus can be viewed as a simple approximation to the result with

a more general relaxation spectrum. Assuming that the acoustic speed has gone to

zero at finite wavevector, we set w8 = 0 and solve for the critical wavevector qo

1
qo = (5.7)

This analysis requires information on the value of G,, whose determination has

not been entirely consistent by our measurements here, as mentioned above. In this

light of this, we have chosen to substitute the values obtained by Brillouin scattering

measurements [87] in a linear extrapolation to colder temperatures as

coo = 2904.7 - 8.84T [K] (5.8)

This extrapolated values were consistently - 8% larger than the acoustic velocities

measured in this study.

The results of this analysis are shown in figure 5-13 using both the constrained and

unconstrained fits of the relaxation spectrum. As with the plot of the characteristic

relaxation times, the constrained fits show a parallel evolution in temperature, while

the unconstrained fits display more scatter, and appear to vary between the other

two approaches.

We may attempt to understand our results in the mode-coupling framework of

Das [44]. Briefly, when a calculation of a collection of hard spheres in a Percus-

Yevick approximation is considered, the critical length scale Lo = 27r/qo beyond

which propagation of shear waves becomes overdamped obeys the power law

A
Lo = (5.9)

where A = 1, 6 = 1.2, A represents the packing fraction, and Ac is a critical value

beyond which shear wave propagation is allowed for all length scales.

In our study, we have instead chosen the scaled temperature T,/T as the inde-
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pendent parameter. A power law fit to our data is shown in figure 5-13, where we

are able to produce a good fit only if we let both A and the exponent 6 vary. The

critical temperature which yields a diverging length scale for shear wave propagation

is T, = 198 K ± 9 K for the fit with constrained exponents, and T, = 210 K + 8 K

for the values of T1. Both values are close to the literature value for Tg = 202 K.

We remark that the wavelength scales Lo reached as this temperature is approached

from above are several orders of magnitude larger than those corresponding to any

diverging structural correlation length scale.

The value for the exponent that we have obtained, 6 = 15 +5 from the constrained

exponent fits and 6 = 9.9 ± 0.3 from the values of -r(T), are significantly larger than

the value of 1.2 suggested by eq. 5.9. We may explain this by the remarks made

in [44], which state this value for the exponent is particular to the model studied,

and is not expected to be a universal characteristic of the mode-coupling theory. A

more detailed computation with a model and parameters more relevant to triphenyl

phosphite may be able to explain the exponent we obtain here.

5.4 Conclusions

We have used depolarized Impulsive Stimulated Brillouin Scattering to measure shear

acoustic waves in supercooled triphenyl phosphite from 220 K to 250 K. Using pre-

viously obtained results, we are able to examine a frequency regime from - 10 MHz

to almost 1 GHz. Our results indicate that the shear and longitudinal spectra do not

share the same spectral parameters ClHN and OHN-

Further work in the study of shear relaxation in triphenyl phosphite will center on

expanding the dynamic range of the measurements. We also note that a comparison

with dielectric data via the model of DiMarzio and Bishop [88] could also be performed

if dielectric relaxation measurements at a similar combination of temperatures and

frequencies were carried out. Research in these directions is presently underway.
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Chapter 6

Elastic Perspectives of the Glass

Transition1

6.1 Introduction

We present an Impulsive Stimulated Scattering (ISS) test of the "shoving model" of

the glass transition and of the correlation between the fragility index and Poisson ra-

tio of eight supercooled liquids. Samples of triphenyl phosphite, DC704 (tetramethyl

tetraphenyl trisiloxane), m-fluoroaniline, Ca(N0 3)2 .4H 20, diethyl phthalate, propy-

lene carbonate, m-toluidine, phenyl salicylate (salol), 2-benzylphenol, and Santovac

5 (5-phenyl 4-ether) were cooled to their respective glass transition temperatures and

the elastic moduli directly measured at the highest accessible shear frequencies. The

shear modulus was then measured every 2K as deeply as permitted into the liquid

state for all liquids save propylene carbonate. Our results, in conjunction with dy-

namical relaxation data for these liquids obtained from the literature, lend credence

to the notion that the dynamics of the glass transition are governed by the evolution

of the shear modulus, but do not suggest a strong correlation between fragility and

Poisson ratio.

'Done collaboratively with Jeremy Johnson of MIT

163



6.2 General Background

One of the foremost puzzles of the glass transition continues to be the origin of a

glassformer's "fragility," which is a measure of the departure of its relaxation behavior

from Arrhenius activated kinetics. Recent developments in the study of the glass

transition aimed at addressing this mystery have centered around the relationship of

the elastic properties of the glassy state to the fragility of the supercooled liquid [89].

Dyre and coworkers have proposed that the instantaneous shear modulus G. con-

trols the fragility [10, 90] as the activation energy at all temperatures is controlled

by the energy cost associated with a non-compressional rearrangement of molecules

via the "shoving aside" of their neighbors. As such a model of glassy systems views

collective relaxation as a series of individual relaxation events between configura-

tional minima, this perspective recalls landscape activated models [91] for the glass

transition [92], and in recent years has been equated with them [93].

Building upon both the shoving model, which ties the shear modulus to the acti-

vation energy, and the empirical observation that the activation energy at Tg scales

with the elastic moduli [94, 95], Novikov et al. [48, 96] have provided evidence that

there exists a linear relationship between the ratio of the instantaneous elastic moduli

of the glass and the fragility of the liquid:

m = 29(K,/G, - 0.41) (6.1)

where K. and G, are the bulk and shear moduli, respectively and m the fragility

index. While the form of this correlation is contested [97, 98, 99], that there exists a

connection is less disputed.

At the core of both of these theoretical advancements is the shear elastic modulus.

A brief survey of the literature reveals that its measurement in glass forming liquids

is underdeveloped at frequencies in the high MHz and GHz regime, largely due to the

small cross section of depolarized Brillouin scattering (BS) through which thermally

excited shear acoustic phonons may be observed. This stumbling block can be partly

overcome by the technique of Impulsive Stimulated Brillouin Scattering (ISBS) [100]
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performed in a depolarized geometry [8, 64] through which coherent shear acoustic

phonons may be excited and probed. Until now, however, this technique has remained

relatively unexploited in the study of glass forming liquids, also because of low signal

levels. Here, we show that the implementation of diffractive optics and heterodyne

detection make this measurement significantly more accessible.

With the aim of testing both of the aforementioned theoretical assertions, we

have conducted depolarized ISBS on a collection of liquids, many of which are not

included in the earlier theoretical and phenomenological developments [10, 48, 90, 96].

We also have examined longitudinal acoustic waves in polarized impulsive stimulated

Brillouin and thermal scattering (polarized ISBS and ISTS respectively). The family

of impulse stimulated scattering (ISS) methods is well suited to the study of lon-

gitudinal acoustics waves in supercooled liquids, shear waves have remained largely

unexamined despite their obvious importance.

6.3 Theoretical Background

6.3.1 The Shoving Model

Conceptually, the shoving model predicts that the temperature dependence of the

fragility arises solely from that of the instantaneous shear modulus Go. One arrives

at this result via the core assumptions that the average relaxation time is dictated

only by flow and that during a rearrangement as occurs during this flow event, the

molecules do not rearrange at constant volume - the energy cost arising from the

strongly anharmonic repulsive piece of the intermolecular potential renders this too

costly. Rather, it is more energetically favorable for this rearrangement to occur with

a change in volume as the molecules do work on their neighbors.

In analyzing the nature of this work, one first assumes that the molecular dis-

placements are purely radial, i.e. the displacement vector u satisfies V x u = 0. In

such a case, it is possible to show that no compressional work is done on the sur-

rounding medium; rather than a change in density, the neighboring molecules are
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simply "shoved" aside during flow. With no change in density, the energy required to

make a local rearrangement of the liquid is due exclusively to the contribution from

the shear elastic modulus. As these motions take place at very short length and time

scales, they are necessarily due to the instantaneous modulus.

In the framework of the shoving model, this relaxation event is considered as

an Arrhenius activated process and hence the average relaxation time 7 depends

on temperature as 7 - exp(AE,(T)/kBT) where now the activation energy AEr

is explicitly temperature dependent. According to the arguments of the shoving

model, this energy is entirely elastic, and hence, its temperature dependence derives

exclusively from that of the instantaneous shear modulus G,. Thus, the average

relaxation time is given as

S= Toexp ( ) (6.2)

Here, To is a high temperature relaxation time, typically on the order of picoseconds.

Vc is a "characteristic" volume associated with the flow event and is given by

2 AV 2

Vc = (6.3)
3V

where AV is the change in volume during the flow event and V is the volume of the

flowing region before flow.

In practice, it is generally not possible to estimate the value of V,. Rather, a more

experimentally accessible coordinate is provided by examining the logarithm of the

characteristic relaxation time T versus a normalized argument of equation 6.2

X = Go(T)Tg (6.4)
G(Tg)T"

The variable X runs from 0 in the liquid state to 1 at Tg, for which we have used

the definition of a relaxation time 7 = 100 s. In the high temperature liquid state

limit, i.e. X = 0, we take r to represent an attempt frequency, [71], so here we have

assigned a value of 7 = 10- 15 s. Thus, for the shoving model to successfully map

the average relaxation time to Arrhenius activated kinetics, in terms of X, we must
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observe

log(7) = 17X - 15. (6.5)

Inherent in the derivation of this model is the simplification that the geometry of

the flowing region is perfectly spherical. This is a highly idealized case as more

realistically, much less symmetric and also more varied geometries are involved in

flow. Both of these issues preclude the assignment of a single activation energy to

the dynamics of flow, and due to this lack of spherical symmetry, it is reasonable to

expect that the bulk modulus will contribute to the activation energy, as well. While

the issue of these dynamical heterogeneities in the shoving model is not addressed

in the literature, it can be shown [101] that the upper bound for the contribution

to relaxation from the longitudinal modulus can be set at 10%, even in the most

asymmetric of flowing geometries.

6.3.2 Relationship between the fragility and K,I/G

We now review the arguments made by Novikov et al. in the derivation of equation 6.1.

By construction, all glass-forming liquids, regardless of fragility, share two common

points on the Angell plot: in the liquid state (defined by a viscosity of 10- P or

relaxation time 7r -, 1 ps), and at T,. The derivative of such a viscosity curve is

monotonically increasing with the scaled inverse temperature T,/T, which implies

that the higher the liquid's fragility, as determined by the definition

(d log(rq) (6.6)
dT T=T(

the shallower the slope of the viscosity curve in the liquid state.

To put this relationship in more quantitative terms, the authors first appeal to

the observation that the temperature dependence of the viscosity in the region of the

liquid state is linear on an Angell plot. Hence, the viscosity at high T is considered to

follow the Arrhenius law q,- exp(AE1 /T), where a single activation energy AEl has

been assigned to the dynamics. As the derivative of the relaxation time with respect
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to scaled inverse temperature Tg/T is equal to AE 1/Tg in the liquid state, the authors

argue that this is the proper combination of variables with which to correlate against

fragility. The authors then proceed to fit experimental values of m versus AE1 /Tg to

obtain
AE, _ 19.22 In 10

(6.7)
T, m

Novikov et al. then recall other authors' arguments - all based on empirical

grounds - that the transition temperature Tg correlates linearly with both the bulk

K and shear modulus G of the glass [95, 102, 103, 104]. This idea leads them to posit

that Tg is proportional to a linear combination of elastic constants

T, oc K, + xG, (6.8)

where x is a fitted proportionality constant.

To link these two arguments, the authors first argue that AE oc G. from the

shoving model, so they may substitute this into equation 6.7. The next step is to

simply replace Tg in equation 6.7 by the right hand of equation 6.8 and solve for m.

Fitting the results of several measurements of elastic parameters with fragilities to a

straight line finally yields equation 6.1.

Johari and coworkers have debated that the linear form of this relationship is

unjustified, and as an example, demonstrate that a quadratic dependence of m on

the ratio K,I/G fits the data as well as a linear one. They further call into question

the ability to make a prediction at all due to the scatter in the plot. Novikov et

al. have, to some extent, addressed the latter issue by showing that metallic glass

formers cannot be considered alongside molecular ones due to the contribution to the

elastic modulus made by the Fermi gas [105].

Nevertheless, Priya and Das have sought to put this correlation on sound theo-

retical ground by a first-principles treatment in terms of the mode-coupling theory

studied for a system of hard spheres [46]. Briefly, the theory is extended to include

slow modes associated with molecular constituents that have been frozen into their

configurations in the glass. Using a scaled packing fraction as the analogy to temper-
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ature, the relaxation time (equivalently the fragility) in the model is correlated with

the change in elastic moduli. When a specific value is picked for the upper wavevector

cutoff of the density fluctuations considered in the theory, the behavior of the ratio

K,O/G, as a function of m exhibits remarkable agreement with the results of [48].

6.4 Experimental Methods

6.4.1 Impulsive stimulated scattering: General considera-

tions

Experimentally, the assertions are best tested with a technique that can simultane-

ously probe the longitudinal and shear modulus at a common, high frequency. While

somewhat lower in frequency than Brillouin scattering, ISS holds the significant ad-

vantage that the scattered light arises from coherently generated phonons, rather

than those that are thermally present, resulting in better signal to noise ratios and

much quicker data acquisition times. Additionally, the data are recorded in the time

domain, and avoid the problem of overlap of central peak phenomena with the dy-

namics of interest. Consequently, we are able to detect shear waves in a collection of

liquids that have previously remained unstudied.

In a typical ISS experiment, conducted in a heterodyned four-wave mixing geom-

etry, light from a pulsed laser is incident on a diffractive optical element, typically

a binary phase mask (PM) pattern, and split into two parts (+1 diffraction orders;

other orders are blocked) that are recombined at an angle 0 as depicted in Fig. 6-

1. The crossed excitation pulses excite an acoustic wave whose wavelength A and

wavevector magnitude q are given by

A
A = (6.9)2 sin 0/2

where A is the excitation laser wavelength. Probe light (in the present case from a

CW diode laser) is also incident on a phase mask pattern (the same one or another

with the same spatial period) and split into two parts that are recombined at the
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Figure 6-1: Schematic illustration of the ISS setup. Both the pump and probe beams

are incident on the phase mask (PM) and their ±1 diffraction orders are recombined

at the sample at an angle 0. In the case of a depolarized experiment, waveplates in

the path of each of the four beams are used to create a polarization grating pattern

in the sample plane as depicted.
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sample to serve as probe and reference beams. The signal arises from diffraction of

probe light off the acoustic wave and any other spatially periodic responses induced

by the excitation pulses. The diffracted signal field is superposed with the reference

field for heterodyned time-resolved detection of the signal, which typically shows

damped acoustic oscillations from which the acoustic frequency and damping rate

can be determined.

The polarizations of the beams in the present measurements are all vertical (V) or

horizontal (H) relative to the scattering plane. We denote the polarizations of the ex-

citation fields, probe field, and reference/signal field in that order, i.e. VHVH denotes

V and H excitation, V probe, and H reference and signal polarizations while VVVV

denotes all V polarizations. All the measurements reported herein were conducted

with one of these two polarization combinations.

In a VVVV experiment, the action of the excitation pulses is twofold. First,

depending upon the absorbance at the pump wavelength, a fraction of the light is

absorbed into the sample and this energy is very rapidly converted into heat. Sud-

den thermal expansion launches counterpropagating acoustic waves with the acous-

tic period A. In addition to acoustic oscillations, the signal may also show slower,

nonoscillatory density responses and thermal diffusion from which complex structural

relaxation dynamics and thermal diffusivities may be determined [7]. This excitation

mechanism is labelled Impulsive Stimulated Thermal Scattering (ISTS) and is the

dominant mechanism in the VVVV measurements.

The second excitation channel arises from the electrostrictive work done on the

liquid by the V-polarized excitations pulses. The electric field of the interference max-

ima both induces a polarization and does compressive work on the induced dipoles,

resulting in impulsive excitations of counterpropagating longitudinal acoustic waves

of wavelength A even in the absence of optical absorption. This excitation mecha-

nism is impulsive stimulated Brillouin scattering (ISBS). As the force scales with the

gradient of the field squared, the efficiency of the excitation scales as q. Therefore

this mechanism becomes more important as the scattering wavevector is increased.

In a depolarized (VHVH) experiment, each of the pump arms carries a different
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polarization and the ensuing grating is described as an alternating polarization pat-

tern, depicted in the Fig.6-1 inset. Here it is the regions of linear polarization that

perform electrostrictive work, deforming the excited region in a fashion that drives

counterpropagating shear acoustic waves. As described above, the ISBS driving force

scales as q, so the signal from shear waves becomes markedly stronger as the wavevec-

tor is increased. In this case, the diffracted signal polarization is rotated 900 from

that of the incident probe light, analogous to depolarized (VH) Brillouin scattering.

The excitation pulses may also induce molecular orientational responses that can

contribute to signal, analogous to depolarized quasielastic scattering [8, 83].

To our knowledge, until this work, neither diffractive optics nor heterodyne de-

tection has been used in depolarized ISBS experiments. We have found that both of

these experimental advances have been indispensable in our measurements.

6.4.2 Impulsive stimulated scattering: Experimental setup

The pump laser system used for these studies was an Yb:KWG High-Q FemtoRegen

lasing at 1035 nm and producing pulses of 500 pJ at a repetition rate of 1 kHz. While

a 300 fs compressed pulse width FWHM was typical, we bypassed the compressor to

retrieve pulses directly from the regen that are 80 ps in duration in order to avoid

sample damage at high peak powers, yet remain in the impulsive limit relative to

the oscillation period. The excitations beams were focussed to a spot 2.5 mm in the

grating dimension and 100 pm in the perpendicular dimension so that the acoustic

waves would have many periods and the decay of signal would be due primarily to

acoustic damping rather than propagation away from the excitations and probing

region of the sample.

As a probe, we used a Sanyo DL8032-001 CW diode laser lasing at 830 nm with

150 mW power focused to a spot of 1 mm in the grating dimension by 50 pm in

the perpendicular dimension. We also used a common phase mask optimized for

diffraction into +1 order at 800 nm for both pump and probe beams, and we utilized

two-lens 2:1 imaging with Thorlabs' NIR achromats to recombine the beams at the

sample. The local oscillator was attenuated by a factor of 10- 3. Approximately 30%
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of the pump power was lost into zero order with this configuration, but the pump

intensity still had to be routinely reduced significantly to avoid unwanted nonlinear

effects. The signal was collected with a Cummings Electronics Labs Model 3031-0003

amplified photodiode with 3 GHz bandwidth and processed in a Tektronix TDS-7404

digitizing oscilloscope with a 4 GHz bandwidth. Signals from 10,000 repetitions of

the measurement were averaged for each data trace, with total data acquisition times

of a few minutes.

The acoustic wavelength was calibrated through ISTS measurements in ethylene

glycol, for which the speed of sound is known to a high degree of accuracy [66]. The

acoustic wavelength selected for each sample was between 1.75 pm and 4.67 pm,

the choice dictated by the amount of signal the sample produced. While at higher

acoustic wavevector q (i.e. shorter acoustic wavelength), the ISBS signal is greater

Clue to the linear q-dependence of the excitation efficiency, this enhancement is offset

by the reduced depth of overlap of the beams in the bulk liquid sample when they are

crossed at a larger angle. The signal at large angles is also diminished somewhat due

to imaging defects caused by working outside of the paraxial limit for the imaging

optics. The wavevectors for shear and longitudinal acoustic wave measurements were

selected to give frequencies that were as similar as possible.

Samples of triphenylphosphite (TPP), DC704 (tetramethyl tetraphenyl trisilox-

ane), m-fluoroaniline, m-toluidine, Ca(N0 3)2 -4H 20, diethyl phthalate, propylene car-

bonate, an 87% 2-benzylphenol (ar-phenol o-cresol) 13% o-terphenyl mixture (2BP8 7/

oTP 13 ), and Santovac 5 (5-phenyl 4-ether) were obtained from Alfa Aesar. TPP, di-

ethyl phthalate, salol, and the 2-benzylphenol mixture were heated under vacuum to

remove volatile impurities, while DC704, propylene carbonate, m-toluidine, and m-

fluoroaniline were mixed with anhydrous MgSO 4 to remove water. Ca(N0 3)2 . 4H 20

was used directly without further processing other than heating to a melt in a sealed

container. After filtering with a 0.2 pm millipore teflon filter, the samples were loaded

into a teflon coated aluminum cell with movable windows and a factory calibrated

Lakeshore PT-102 platinum resistor thermometer immersed in the liquid for tem-

perature measurement; this cell is described in detail elsewhere [68]. The cell was

173



then placed in a Janis coldfinger ST-100 cryostat and the temperature monitored and

controlled with a Lakeshore 331 temperature controller.

The samples were cooled to T, at a cooling rate that never exceeded 6 K/min, with

2 K/min the typical rate. Although the sample cell windows were designed to move

in order to relieve the stresses due to contraction of the liquid upon cooling, diethyl

phthalate and 2-benzylphenol were still observed to crack shortly after vitrification.

In these cases, a clear spot of the sample was found and the measurement continued.

In the case of TPP, crystallization or clouding associated with the "glacial" phase

[15] was observed occasionally. In such cases the sample was heated to melt and then

cooled back down. Homodyne ISBS data from an earlier study of TPP [8, 9] (the only

previous depolarized ISBS study of a glass-forming liquid, made possible by strong

signal from this sample) were compared to the data recorded in the present study and

were in agreement within experimental uncertainties at all common temperatures.

Data from the earlier study were used for the analysis below since a slightly higher

wavevector range was achieved.

Samples were equilibrated at Tg for 15 minutes before longitudinal and shear

wave measurements were made. Then, the shear measurement was conducted upon

warming every 2K until the sample either crystallized (as in the case of Ca(N0 3)2 '

4H 20, 2BP8 7/oTP 13, salol, and diethyl phthalate) or the shear modulus disappeared.

At each temperature, the sample equilibrated for roughly 15-30 minutes.

6.5 Results and Discussion

Fig. 6-2 shows representative VVVV data from diethyl phthalate collected with a

4.22 pm acoustic wavelength. Upon arrival of the pump laser pulses there is a nonres-

onant electronic response observed, followed by a modulation of the diffracted signal

due to the counterpropagating longitudinal acoustic waves in the region of excitation.

The oscillations are not centered around zero, but rather about a steady-state DC

offset which is due to the induced thermal grating whose decay time (oc q2) is long

compared that of the acoustic waves. The signal is fit in the time domain to a simple
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Figure 6-2: 4.22 pm longitudinal waves in diethyl phthalate at Tg = 178 K. The signal
is offset from zero after the arrival of the laser pump pulses due to the thermal grating
which diffuses on the order of 10 ps. The inset shows the Fourier transform of the
signal on the GHz scale, revealing the acoustic frequency in a manner analogous to a
Brillouin spectrum.
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damped sine wave

I(t) = A exp(-Ft) + B exp(--t) cos(wt + q) (6.10)

where A and B are thermal/orientational and acoustic amplitude coefficients, respec-

tively, - is the acoustic damping rate, w is the acoustic angular frequency, and 0 is a

phase. The variable F was used to represent thermal decay in the case of longitudinal

measurements and the decay of orientational relaxation in the case of shear measure-

ments. The phase accounts for the ISTS and ISBS signals which are r/2 out of phase

with one another and contribute to the overall signal in differing amounts. From

the fit, we deduce the acoustic frequency and damping rate, and hence the complex

Young's modulus M according to

M = M'(w) + iM"(w) (6.11)

where the storage modulus is given by

M'(w) = p ( 2 _ 72) (6.12)
q2

and the loss modulus by

M"(w) = (6.13)
q2

The results of several VHVH experiments are shown in figures 6-3 and 6-4, and

an example of evolution with temperature is provided by Fig. 6-5. There is an initial

spike caused by the nonresonant electronic hyperpolarizability induced by the excita-

tion pulses, followed by oscillations about baseline due to counterpropagating shear

waves which disappear on the scale of hundreds of nanoseconds as a result of acous-

tic damping. With the exceptions of m-fluoroaniline and m-toluidine, there are no

significant slow components of the signal resulting from either a thermal background

or to structural relaxation dynamics. In these two liquids, the influence of the pump
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Figure 6-3: Shear waves in, and chemical structures for, 2BP8 7/oTP 13 , 5-phenyl 4-
ether, and diethyl phthalate at their literature glass transition temperatures Tg and
transient grating spacing as given in Table 6.1 below. The vertical scale, though
arbitrary, is the same for all liquids. The inset shows the Fourier spectrum on the
GHz scale. The predominant peak is always due to shear waves, though in some cases
(particularly in diethyl phthalate), longitudinal signal leaks through.
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Figure 6-4: Shear waves in, and chemical structures for, m-fluroaniline, salol, and
m-toluidine at their literature glass transition temperatures Tg and transient grating
spacing as given in Table 6.1 below. The vertical scale, though arbitrary, is the same
for all liquids except salol, for which it is scaled down by 2 x. The inset shows the
Fourier spectrum on the GHz scale. The predominant peak is always due to shear
waves, though in some cases, longitudinal signal leaks through. The baseline offset
seen in m-fluoroaniline and m-toluidine is due to absorption effects, as explained in
the text.
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pulses on the liquid caused a change in the transmitted profile of the probe laser.

This observed change was manifest in the offset of the signal from zero, as well as

the likelihood of cumulative nonlinear effects in the liquid. It did not, however, affect

the observed shear frequency or damping rate. As all of these effect were strongly

dependent upon pump intensity, the pump was attenuated as much as was possible

while still maintaining good signal to noise ratios. Consequently, the sample was not

observed to undergo any physical changes during measurement.

We point out that although the absolute scale of the signal is arbitrary, the rel-

ative scales of the VVVV and VHVH signals can be compared as all of the incident

pulse intensities were comparible - the VVVV signal level was roughly 100x stronger

than the VHVH signal. This is due to two reasons: first, the shear acoustic wave is

driven entirely by electrostriction, as opposed to the longitudinal wave which benefits

from the contribution from heating. Further, off-diagonal coefficients of the photoe-

lasticity tensor are generally an order of magnitude weaker than the diagonal ones,

implying that shear acoustic waves should be -, 10 times weaker in amplitude than

the corresponding electrostrictively generated longitudinal ones.

A test of the shoving model would normally require the correlation of the derived

quantity X as described in equation 6.4 with the relaxation time at that temperature

as deduced from either viscosity data or measurements of the evolution of the loss

peak of shear relaxation. To the extent that these data are available in the literature,

we have used them to compare with our results. However, motivated by the greater

accessibility of dielectric relaxation data, as well as the theoretical proposal that

dielectric and shear relaxation should be related [106, 107], we have also performed

the analysis with respect to this form of relaxation, too.

Figs. 6-6 and 6-7 show the results of several shear wave measurements performed

as deeply as permitted into the melt at the highest wavevector at which these mea-

surements could be performed, and scaled according to equation 6.4. For each liquid,

we have accounted for the thermal contraction during cooling with literature data of

either measured densities [85, 108, 109, 110, 111, 112, 113, 114]. For all liquids save

TPP and diethyl phthalate, this information was a simple linear expression which
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Figure 6-5: Shear waves in 5-phenyl 4-ether at three characteristic temperatures,
displaying weakly damped, moderately damped, and strongly damped behavior re-
spectively. Data are in black and the best fit is represented in red, which capture all
features of the measured signal. Insets are Fourier transforms from the point forward
of the non-resonant electronic response. Of note at T= 305 K is the long tail in the
signal due to the decay of the slow orientational relaxation.
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Table 6.1: Raw data used in comparison of the ratio Koo/Go, to dynamic fragilities.
All elastic parameters as listed were taken at the literature values of T,. The
temperature in parentheses is T, as calculated for each liquid from the low tem-
perature dielectric VFT fits given in the references. We have used the convention
of a transition temperature defined by 7 = 100 s, used in the test of the shoving
model. Fragilities m are literature values, while the adjacent values in parentheses
denote those calculated from the VFT fits at the derived Tg, again from the dielec-
tric relaxation data. mcalc was computed using eq. 6.1. The data for TPP are from [8].

Liquid designations are: (A) 2BP8 7/oTP13 ; (B) 5-phenyl 4-ether; (C) Ca(N0 3) 2 •
4H 20; (D) DC704;
carbonate; (H) salol;
Grating spacings are:
(6) 3.65 pm; (7) 4.22

Liquid
A
B
C
D
E
F
G
H
I
J

T,(K)
220
243 (236)
217 (212)
214
178
173 (172)
159.5
218
187 (184)
208 (202)

(E) diethyl phthalate; (F)
(I) m-toluidine; (J) triphenyl
(1) 1.52 pm; (2) 1.75 pm; (3)
pm; (8) 4.87 pm.

v,(MHz)
6692
625.22
729.54
482.12
570.13
5902
5892
496.83
620.22
640.71

v,(m/sec)
1171
1094
1714
1133
1140
1033
1031
994
1085
974

v (MHz)
611.27
666.86
750.38
486.48
593.67
584.37
618.17
486.48
603.97
785.55

m-fluoroaniline; (G) propylene
phosphite.
2.00 pm; (4) 2.35 pm; (5) 3.00 pm;

v (m/sec)
2579
2434
3654
2369
2505
2466
2608
2369
2548
2357

m
83 (84)
85 (65)
101 (79)
95
73 (62)
70 (127)
99
73
78 (84)
115 (98)

mcalc

90
93
81
80
89
115
135
114
109
120
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Figure 6-6: Test of the shoving model using mechanical relaxation data for the six liq-
uids for which data were available: the 2-benzylphenol/o-TP mixture (-), 5-phenyl-
4-ether (A), DC704 (>), m-fluoroaniline (o), salol (o), and m-toluidine (0). There are
two scales, viscosity which only applies to 5-phenyl-4-ether, and average relaxation
time, which is relevant for the rest. X is obtained from our measured values of Go(T)
via equation 6.4, while T(T) and r/(T) are from literature VFT mechanical relaxation
fits. The straight line represents Arrhenius activated kinetics, which would be either
log10(7) = 17X - 15 in terms of average relaxation time or loglo(T) = 17X - 4 in the
case of the viscosity.
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Figure 6-7: Test of the shoving model for 8 glass forming liquids using dielectric data:
the 2-benzylphenol/o-TP mixture (0), Ca(N0 3)2 -4H20 (V), DC704 (>), diethyl
phthalate (<), m-fluoroaniline (o), salol (o), m-toluidine (0), and triphenyl phosphite
(O). As before, X results from using this work's measured value of Goo(T) in equation
6.4, and r(T) comes from literature VFT fits of the average relaxation time measured
in dielectric experiments. The straight line is a plot of loglo(7) = 17X - 15, which
represents Arrhenius activated kinetics.

183



prompted us, in cases where this information was not available, to assume linear con-

traction using the thermal expansion coefficient at room temperature [73, 74]. By

comparing linear approximations to full forms for the density for TPP and diethyl

phthalate, the uncertainty in the linear assumption was determined to be on the order

of 5%.

To obtain the average relaxation time, we have used fits to the Vogel-Fulcher-

Tammann (VFT) relationship

r = oexp T To(6.14)

as obtained in the literature [86, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122]

for both dielectric and mechanical degrees of freedom. These VFT fits are also the

source of our values of Tg, and in all cases, great care was taken to ensure that this

form fit the data over the range of temperatures examined. As discussed above, if

the predictions of the shoving model are borne out in practice, the points from the

various liquids should fall on the straight line logl 0(T) = 17X - 15 indicating that the

temperature dependence of the activation energy arises from that of the shear elastic

modulus.

Most of the points from our measurements come close to resting upon a straight

line in both cases, yet they still include some amount of non-Arrhenius activated

behavior, especially in the glass formers m-fluoroaniline and triphenyl phosphite. To

quantify the shoving model's departure from ideal, we have computed the root mean

squared error A of the model from the observed behavior as

A= =/((17Xob - 15) - loglo()) 2/N (6.15)

where Xobs is the observed value of X for the given liquid, T is the observed relaxation

time, and N is the number of points recorded.

The results of this analysis are presented in Fig. 6-8. Clearly, in the case of

the dielectric measurements, the higher the degree of measured fragility, the greater

the departure from the predictions of the shoving model. We have not observed the
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Figure 6-8: Correlation between deviation from the shoving model and fragility com-
puted from VFT fits. The clear positive trend in the dielectric data suggests that
the model does not fully encapsulate the dynamics of the glass transition as seen
from dielectric relaxation. The inset shows the same plot for the mechanical data, for
which no such correlation exists.
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same trend in the departure of the shoving model from ideal for the mechanical data.

Efforts in the past to link these two degrees of freedom [107, 123, 124] have found

that qualitatively, there is physical grounds for a definite relationship, but making

such a connection quantitative is tenuous at best. Therefore, we can only conclude

that the model is progressively more in disagreement with dielectric measurements

as the fragility increases.

With Fig. 6-9 we show a plot of the measured ratio K,I/G - 4/3 versus the

fragility index m. Where possible, we have taken the temperature dependent average

relaxation times and computed the fragility as

(d log(Tr) (6.16)
= dT ) T=Tg

directly from the VFT literature fits. Tg was defined as a relaxation time of 7 = 100 s.

Our data show considerably more scatter than those used in [48], and we show

the points used therein for comparison. Owing to the extremely good signal to noise

ratio in both polarized and depolarized components of all of our measurements, we

consider that any scatter due to measurement error arises from determination of the

fragility - our uncertainties are in KI/G are computed to be ±0.05 based on error

propagation of the uncertainties in the grating period and acoustic frequencies. In

an effort to remove the scatter in fragilities, the values for m used for this plot were

all derived from the dielectric VFT fits used in the test of the shoving model. Here,

too, the uncertainties are low. For the three VFT variables log10 (To), B, and To as

represented in the equation 6.14, typical errors were on the order of ±3, ±200, and

±5 respectively.

We have also included salol and m-toluidine in our study to serve as points of

comparison between our data and that used by Novikov et al. Our m-toluidine data

yield the same shear acoustic velocity for the glassy state as [114] to within 1%, yet

we obtain a slightly higher longitudinal velocity. As our results are almost two orders

of magnitude higher in frequency, they may avoid secondary relaxation features that

have been observed in m-toluidine [125] which may skew the acoustic results.
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Figure 6-9: Plot of the fragility index m versus K,/G,, for a variety of glass forming
systems. Those points denoted by U are from [48], while those depicted by numerals
are from this work. The two points represented by o are liquids in common between
this work and [48], specifically, from left to right, m-toluidine and salol. The numerals
are: 1. 2BP87/oTP 13 , 2. 5-phenyl 4-ether, 3. Ca(N0 3) 2 .4H 20, 4. DC704, 5. diethyl
phthalate, 6. m-fluoroaniline, 7. propylene carbonate, 8. salol, 9. m-toluidine, and
10. triphenyl phosphite. There is considerably more scatter in the measurements
from this work. We consider this to be real, as the uncertainties in our values are
much smaller than the scatter in the plot.
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Figure 6-10: Plot of the instantaneous elastic moduli K, (0) and Go (o) for the glass
formers studied here. There is no clear dependance of either of these quantities on T,.
Of note is the significant outlier posed by the sole ionic glass former Ca(N0 3)2 .4H 20,
which is discussed briefly in the text.

Our salol data are in agreement with literature values used for the longitudinal

wave [126], yet the shear velocity we observe is significantly lower than that used

in [48]. Since our longitudinal and shear data were taken at the same time and

temperature, and at very similar frequencies, we believe that this difference is much

larger than the margin of error in our experiments.

A more direct test of the predictions of reference [48] would also involve testing the

individual assertions underlying the derivation of equation 6.1. The most immediately

available is the linear dependence of the instantaneous elastic moduli on the glass

transition temperatures. A plot G, and K,. vs Tg using our data is shown in Figure
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6-10. It is clear that there is at best a weak linear dependence of both of these elastic

properties on the glass transition temperature Tg. The most striking feature of the

results is how similar all the modulus values are. A large departure from this trend is

demonstrated by Ca(N0 3)2 .4H 20, a material that displays significantly stiffer elastic

properties likely due to its higher density compared with the rest of the liquids under

consideration.

Our efforts to enforce consistency and provide points of reference in the relation-

ships used in Fig. 6-9 have only introduced more disagreement between the proposed

relationship eq. 6.1 and the results based on our data. These problems are, in fact,

exacerbated by using liquids already present in the original study. Hence, we cannot

support the simple linear form suggested in [48] unless selective choices of both the

fragility and acoustic velocities are made in the literature. We suggest that to exam-

ine the relationship in a more systematic fashion, further elastic results need to be

compared with fragility results from mechanical relaxation experiments taken with

the same samples and apparatus.

In terms of the theoretical work of Priya and Das, our results may indicate either

that the choice of a single upper wavevector cutoff for density fluctuations is not

justified across a broad selection of liquids or that the hard-sphere model on which

the treatment is based is inadequate to describe all the liquids studied here.

6.6 Conclusions

We have performed a systematic investigation of the Poisson ratio of several glass

forming liquids, and measured the evolution of the shear elastic modulus from Tg

to as deeply as permitted into the melt. The shoving model of the glass transition

is generally supported by our data when used in conjunction with literature data on

average relaxation times in glass forming liquids. We find that the deviations from the

model describing the non-Arrhenius dependence of the relaxation time on temperature

increase with the fragility of the liquid for dielectric degrees of freedom, suggesting

that other degrees of freedom besides G. are fundamental to the transition. No such
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behavior is observed for the mechanical degrees of freedom.

We observe a considerable amount of scatter in the plot of m vs. K,I/G beyond

what was originally present in [48]. It is still unclear if the source of this scatter is from

measurements of m by the variety of methods utilized, or if the correlation is more

fundamentally called into question. We suggest that to remove this scatter, more

consistent fragility measurements could be used in tandem with the above reported

elastic parameters.

Our studies have been primarily focused on aromatic compounds, both van der

Waals and hydrogen bonded. A more complete test of the correlations of these pa-

rameters would involve the study of ionic systems and also studies of network glass

formers at high temperature.

The experimental data reported here show the capability for determination of

both shear and longitudinal acoustic properties of glass-forming liquids in the MHz

frequency range. Complementary methods have been developed to permit study of

GHz frequency acoustic responsed [72]. This opens up the possibility of determination

of the mechanical relaxation spectrum across all of these frequencies. Work towards

this objective is underway.

The author would like to thank Tina Hecksher for useful discussions and Joshua

Lessing for assistance with sample preparation. This work was supported in part by

NSF grants CHE-0616939 and DMR-0414895.
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Chapter 7

Further Applications of Impulsive

Stimulated Scattering

7.1 Introduction

Impulsive Stimulated Thermal Scattering finds a variety of uses outside of the realm of

supercooled liquids. Here we will briefly review the other applications of this technique

as it has recently advanced the understanding of a variety of different systems, and

we will provide an outlook of how these methods and results can impact the study of

glass forming liquids.

7.2 Studying Liquids Under Shock Loading'

7.2.1 Introduction

Here, we will discuss a novel application of the Impulsive Stimulated Scattering tech-

nique in the study of simple liquids, where the mechanical properties of a liquid are

examined in the "shocked" state. The term "shock loading" is used to refer to a

unique state of stress and temperature imposed on a sample by the passage of a me-

chanical shock front through it. The shock front can be generated in a number of ways,

'Done collaboratively with Dr. Naoki Hemmi, Dr. Michael Winey, and Prof. Yogendra Gupta
of Washington State University
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ranging from mechanical impact of a projectile, to ablation of a layer attached to the

sample by a high powered laser [127] to the highly exotic plasma Z-pinch approach

implemented as Sandia National Laboratory's Z-machine [128]. In the present study,

we concern ourselves with the "plate impact" experiment, defined by the imposition

of a uniaxial strain by mechanical impact.

Depending upon the velocity of the projectile and the mechanical impedances

of both target and impactor, one can use the Rankine-Hugoniot equations, which

express conservation of mass, momentum, and energy

poD = pi(D - ul)

pi = poDul (7.1)
1 1

eo -e = -•l(po - PI )

in tandem with an externally supplied equation of state for the material to deduce its

final thermodynamic state [129]. Here, p is the density, D is the speed of the shock

front, u is the local particle velocity, p is the pressure, e is the internal energy, and

the initial and final states are represented by the subscripts 0 and 1, respectively (the

sample is also assumed to be at rest and under negligible pressure prior to the shock).

The portion of the phase diagram reached in this manner is generally inaccessible by

other means, due to the unique combination of density, stress, and temperature.

The equations in 7.1 represent a set of three equations in five unknowns implying

that experimental determination of two of these variables permits a complete descrip-

tion of the sample in the shocked state. Therefore, the traditional study of shocked

materials involves the mapping of the "Hugoniot" curve, which is the locus of end

states of a liquid upon a series of shock experiments; this curve may be represented

in the two-dimensional space of any pair of the variables from 7.1. The most con-

veniently measured variables are the particle velocity u, which is a measure of the

velocity of the shocked material in the wake of the shock front, and the shock wave's

speed, D. Single shot measurement of the former is elegantly performed by the use of

the VISAR interferometric technique [130], while determination of the latter proceeds
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by recording the time from impact to observation of the shock on the back end. Given

the Hugoniot curves of samples of interest, it is possible to deduce the pressure given

an initial projectile speed.

7.2.2 Experiment and Results

The setup used for this experiment differs from the ISTS experiments described pre-

viously due to the destructive nature of the measurement. The sample sits at the end

of a 44'-long gun, and the shock excitation is created by the impact of a 4"-diameter,

12'-long, hollow barrel of aluminum. This ballistic projectile is normally incident on a

sample at velocities ranging anywhere from 400m/sec to 2.5km/sec. Since the sample

is destroyed by the impact, it is important that the experiment be carried out in a

single shot, in contrast to the rest of the results presented in this thesis, where the

data are the results of thousands of averaged traces. It is also not possible to position

the detector on the far side of the sample; instead the signal is reflected by a mirror

that forms part of the sample cell, and transmitted back through the original imaging

optics to a pick-off mirror that relays the signal and reference fields to the detector.

Great care is also taken to ensure that the impact between projectile and target is

completely planar, typical tolerances being on the order of 1-2 milliradians; larger

amounts of "tilt" will cause the beam to walk off of the detector upon impact and

ruin the measurement.

The laser is run in an external-trigger mode, where the seeding of the amplifier

occurs upon the impact of the projectile on a trigger pin extended a predetermined

distance from the target. The offset of this pin is set by the speed of the projectile,

the build-up time of the amplifier, and the delivery time of the amplified pulse to the

sample. Triggering of the detection electronics is achieved by a photodiode monitoring

the output of the laser. Timing performed in this manner is generally accurate to

within 10 ns.

Benzene was selected as the target liquid due to its large ISTS signal levels, ease

of loading (i.e. low viscosity), and wealth of prior knowledge of its shocked and

static high-pressure properties [132]. Further, the question of whether or not benzene
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Quartz Window Diffracted

Quartz
Impactor

Sample Waves

Figure 7-1: Schematic illustration of setup used in single-shot shock-ISTS experi-
ments. The projectile is incident from the left, precluding the placement of optics on
that side of the sample. A mirror incorporated as part of the sample cell serves to
return the beams to the same side from which they are delivered. Figure from [131].

crystallizes under shock has been approached by a number of different authors [133,
134] in differing fashions, and a definitive answer based on hard evidence is lacking.
A method which directly probes the mechanical properties could resolve this issue.

Examples of the signal from such an experiment is shown in figure 7-2. The data
show an excellent signal-to-noise ratio that permits easy analysis. There is an initial
jump of the signal which we attribute to changes in alignment from passage of the
shock front through the mirror. As the shock front progresses through the benzene,
there is a growing in of signal at a higher frequency, which is that of the shocked
liquid. The spectral content of this trace is shown in figure 7-3, where a shift by
nearly a factor of two is shown. It is worthy of mention that another measurement
at a lower pressure indicates a shift by a number that is not close to a factor of
the original frequency, indicating that this change in frequency is not due to the
appearance of a homodyne signal component; homodyne signal would be at exactly
twice the frequency.

Experiments of this kind were performed at two pressures: 0.42 GPa and 0.85 GPa,
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whose values were determined from benzene's Hugoniot curve in the manner described

above. The measurements were redone a number of times in order to ensure repeata-

bility. The experiment could not be performed at higher pressures, as in these cases

the silver mirror on the sample cell would peel off of the front window resulting in

the disappearance of the signal. Unfortunately, this precluded looking for a phase

transition that has been reported to occur at - 2.5 GPa [134]. Nevertheless, we were

able to compare our results with those taken at static high pressure where benzene

crystallizes at 0.7 GPa. For the static high pressure measurements, liquid benzene

was loaded into the cell and the pressure repeatedly cycled in order to "grow" a

single crystal. ISTS measurements were then conducted in order to form a basis of

comparison with the shock measurements.

This comparison is shown in figure 7-4. There is a clear difference between the

shock and static high pressure results. The nearly factor of two difference between

the speeds of sound in the two states is not attributable to the modest increase

in temperature that the benzene undergoes as a result of shock loading. We can

conclude from this that the benzene is not crystallizing at these shock pressures. Due

to the comparatively low speed of sound at this pressure, and the absence of any

marked change in damping behavior, we may simply deduce that, in addition to not

crystallizing, the liquid has also not vitrified at these modest pressures.

7.2.3 Future Directions

The potentials for single-shot ISTS spectroscopy in the study of glass-forming liquids

are myriad. In the process of initiating a shock in a liquid is the pressure equivalent

of rapid thermal quenching - therefore, these measurements may form a method by

which to study structurally arrested liquids that would otherwise crystallize under

conditions of slowly increased pressure. Additionally, the theoretical description of

glass-forming liquids under both linear [135] and nonlinear [136] externally imposed

stresses and strains is in a nascent stage that lacks experimental verification. Further

studies of this kind will be able to provide much needed input.

This work was supported by ONR MURI Awards N00014-01-1-0802 and ONR
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Figure 7-2: Acoustic waves in benzene under shock loading. The blue trace is from
the unshocked sample, and the red trace is the one taken during a shock experiment.
After the arrival of the impactor, there is a jump in the signal, likely due to a change
in alignment. The liquid gradually shifts from unshocked to shocked as the shock
front progresses through the sample. This is made evident by the diminishing of the
original signal frequency and the growing in of the shocked signal frequency. Figure
from [131].
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Figure 7-3: Fourier transform of signal from shocked benzene at 0.42 GPa and

0.85 GPa. In both instances, there are two distinct frequencies that appear in the

shock experiment. The lower is due to the signal at ambient conditions, while the

higher one is in the shocked state. Figure from [131].

4500

4000

3500
E

1 3000

2500

O 2000

1500

1000
0.0 0.2 0.4 0.6 0.8

Pressure (GPa)

Figure 7-4: Acoustic velocities in benzene under static high pressure and shock load-

ing for various pressures. The shock results are denoted by (*) and the static high

pressure by (0). The brackets around the static high-pressure results denote the

range of longitudinal sound speeds observed in the benzene single crystal. There is

a clear discrepancy between the two different sets of data, indicating that, at the

pressures reached here, the benzene did not crystallize or vitrify on the time scale of

the measurement. Figure from [131].
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7.3 Characterizing Transport in Nanofluids 2

The study of liquid-solid composites has gained recent attention for both fundamental

and practical reasons [137, 138]. Apart from the relative ease of conducting numerical

"experiments" on hard-sphere colloid solutions, these systems are deserving of study

in their own right; many of the same phenomena that take place in simple glass form-

ing liquids are also manifest in colloids, where the controlling parameter is the volume

fraction 4 instead of the temperature or pressure. Indeed, many of the predictions of

even the Idealized Mode-Coupling Theory agree with dynamic light scattering mea-

surements performed on colloids [139, 140]. The execution of Impulsive Stimulated

Scattering studies on colloidal suspensions may thus be seen as a "proof of principle"

for its application in testing theoretical predictions of MCT for these samples.

The experiments conducted here were centered on studying other aspects of these

systems, in particular their thermal conductivity and both longitudinal and shear

viscosities. Theoretical modelling of the shear viscosity of colloids as a function of

volume fraction has been conducted extensively from a microscopic perspective [141].

At present, the best available method for predicting thermal transport of colloidal

solutions is based on the effective medium theory work of Hamilton and Crosser [142].

This theory greatly underestimates their thermal conductivities, and this theoretical

shortcoming is readily accepted in the present-day literature [143, 144]. Further

complication arises from the fact that different measurements of thermal transport in

these systems have produced inconsisten results.

Our choice of colloidal system is a simple liquid doped with nanometer-scale

inclusions, i.e. a "nanofluid." For the studies conducted here, we have used alu-

mina (A120 3) nanoparticles, shown in figure 7-5, stabilized by the surfactant surbitan

monolurate in host liquids of either decane or isoparaffinic polyalphaolefin (PAO).

Both acoustic and thermal ISTS measurements were conducted on concentrations

2Done collaboratively with Jeremy Johnson, Aaron Schmidt, and Dr. Matteo Chiesa.
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Figure 7-5: TEM image of alumina nanoparticles. From [145].

ranging from 0.15% volume fraction to a maximum of 1% volume fraction in both of

these liquids. Higher volume fractions could not be studied, as the alumina nanopar-

ticles are poorly index matched with the base fluids; bulk quantities of the suspension

are opaque, even at the lowest concentrations used. To overcome this difficulty, we

used a 200 pm thick cuvette for all the measurements and utilized the achromatic

lens-based setup described in chapter 3. The grating spacings used here were between

2 pm and 6 pm, which is much smaller than the sample thickness. This preserves the

one-dimensional nature of the measurement while allowing enough light through to

enable adequate signal levels.

7.3.1 Thermal Conductivity Measurements

The primary interest in this portion of the study was to provide a consistency check

between the "hotwire" technique [146] and measurements of the thermal diffusivity

performed by Impulsive Stimulated Scattering. Two methods differing so much in

execution likely do not share common sources of systematic error, suggesting that

agreement between them would provide a strong indication of reliability.

In the hotwire method, the liquid is contained in a cylindrical pipe 19 mm in

diameter and 190 mm in length. Within this pipe, a 150 mm long, 25 pm diameter

platinum wire is connected to two copper electrodes. The wire is coated with a
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Figure 7-6: Simulation of the increase in temperature measured in a hotwire mea-
surement. The inset shows actual data, taken between 0.1 and 2 seconds. From [145].

1.5 pm thick layer of isonel to provide electrical, but not thermal, isolation from the

surrounding liquid. A current is passed through the the wire and the liquid is warmed

via Joule heating. The thermal conductivity of the sample k,f can then be directly

determined through
Q

kn4f L d= (7.2)
dint

where Q is the power dissipated, L is the length of the wire, T is its temperature

(derived from accurate measurement of its resistance), and t the elapsed time. An

example of both simulation and experimental data of this kind of experiment is shown

in figure 7-6. In practice, data between 0.1 and 1 seconds is used; before 0.1 s, the

data suffer from transient effects of thermal capacitance, and after 100 s, convection

effects are manifest.

As described in chapter 3, ISTS data at long times show an exponential decay of

the induced thermal grating, given by exp(-t/Tth). Here, Tth is a thermal relaxation

time expressed in terms of the thermal diffusivity Dth and the grating wavevector q as
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Th I = q2Dth. In contrast to the hotwire technique, ISTS does not provide direct access

to the thermal conductivity k which must be determined through the relationship

Dth = k (7.3)
PC'

where p is the density, c, is the heat capacity, q is the grating wavevector, and

the product pcp is known as the volumetric heat capacity. For pcp, we have used

an effective value given by (pcp),f = ¢(PCp)partice + (1 - ¢)(pcp)fluid, where ¢ is the

volume fraction of the nanoparticles; the heat capacities and densities of the individual

constituents used here were taken from accepted literature values [147].

In principle, it is possible to determine the thermal diffusivity from a single tran-

sient grating experiment. However, in order to reduce experimental uncertainty in

the measured value, we have chosen to make a series of measurements as a function of

grating wavevector for each base fluid and volume fraction combination. The results

of several measurements of the thermal decay time Tth are plotted as a function of

q- 2 and the slope of this line provides a more accurate measurement of the inverse

thermal diffusivity Dth. An example of this analysis is provided in figure 7-7.

The results for the thermal conductivity of the nanofluid kef at various volume

fractions can then be compared with that of the base fluid kf . The Hamilton-Crosser

prediction for knf is expressed in terms of the ratio of these quantities by

kn _ k, + 2kf - 20(kf - kp) (7.4)
kf k+ 2kf + ¢(k- kp)

where k, is the thermal conductivity of the nanoparticle.

In figures 7-8 and 7-9 we show the plots of experimentally determined values

of knf/kf from both techniques, as well as the predictions of the Hamilton-Crosser

model. From analysis of our results, two important observations that can be made.

First is that the hotwire and transient grating techniques appear to be quite consistent

with one another, although we observe a slightly larger discrepancy at higher volume

fraction. This is likely attributable to greater opacity at these larger values of ¢ - with

less light getting through the sample, the ISTS signal-to-noise ratio was significantly
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Figure 7-7: Plot of thermal diffusion time versus inverse grating wavevector squared.

From [145].

decreased, which led to greater uncertainties in the values for k,f.

The second observation is that both the transient grating and hotwire techniques

show a marked enhancement of the thermal conductivity of the nanofluid beyond

the predictions of the Hamilton-Crosser model. In the case of decane the relative

thermal conductivity is 3.3 times greater than that predicted by the effective medium

model, while for PAO the enhancement is by a factor of 1.6. Thus, transient grating

spectroscopy has not only verified the enhancement of thermal transport in nanofluids,

but has also provided accurate numerical values for the extent of this enhancement.

7.3.2 Longitudinal Viscosity Measurements

In prior chapters, we have used the measurements of the acoustic damping rate as a

probe of the mechanical loss spectrum of the liquid being studied. As noted in chap-

ter 3, however, structural relaxation is not the sole contributor to acoustic damping:

equation (3.23) also bears contributions from the frequency independent viscosity,
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Figure 7-8: Relative thermal conductivity versus concentration in decane measured
by transient grating and hotwire techniques. Both the hotwire and transient grating
measurements show an enhancement of the conductivity relative to the Hamilton-
Crosser theory. Results from the two methods are in good agreement. From [145].
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Figure 7-9: Relative thermal conductivity versus concentration in PAO measured by
transient grating and hotwire techniques. Here, too, the hotwire and transient grating
techniques show an enhancement of the conductivity relative to the Hamilton-Crosser
theory. From [145].
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as well as thermal diffusion. As before, the contribution to the damping from ther-

mal diffusion is negligible since the nanosecond acoustic oscillation periods accessed

through ISTS are much too fast for significant thermal diffusion to occur across the

micron acoustic wavelengths. Since we may choose to operate in a temperature regime

where the structural relaxation dynamics are far from our acoustic frequency regime,

we are left with the frictional contribution to the damping: F = q2vL. Here, vL

is the "longitudinal" viscosity, which is defined by vL = q + i, j being the shear

viscosity and , the bulk viscosity.3 This quantity, in conjunction with a separate

shear viscosity measurement, would thus be able to provide full information of the

effects of nanoparticles on frictional damping in liquids.

While a number of acoustic measurements on colloids have been made [148, 149],

in contrast with the present work, those systems of study have consisted of larger

volume fractions and particle sizes than the ones presented here. Few measurements

of the viscosity of such systems have been performed [150, 151, 152, 153], and even

then, these have centered around the shear viscosity rather than the longitudinal

viscosity accessible by the ISS technique.

Experimentally, we have proceeded by measuring the acoustic response of the

liquid in tandem with the above thermal measurements, using the same samples,

grating spacings and setup as described above and in previous chapters. The acoustic

signals were fit to the form

A exp(-t/T) cos(wt + 0) + B exp(-t/rth) (7.5)

where A and B are amplitude parameters, 7 is the acoustic decay time, and Tth is

the thermal decay time. w is the acoustic frequency from which the acoustic velocity

may be obtained, while 0 a phase which results from a combination of ISTS and ISBS

contributions to the signal.

3A careful reader of this thesis will note that the expression for the acoustic damping was derived

using a hydrodynamic model, whereas with a colloidal suspension such an assumption may not be

valid. We believe that the hydrodynamic approximation is still valid due to the fact that the average
particle size is, on average, 2 orders of magnitude smaller than the shortest acoustic wavelengths
accessed here. Further interpretation of the results are performed with a hydrodynamic model.
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Figure 7-10: a) Plot of frequency vs. wavevector from which the isentropic sound

speed can be derived. b) Plot of the damping rate vs. wavevector squared for

0.5%A120 3. The slope of this line yields the longitudinal viscosity vL. From [154].

To obtain reliable measurements of the longitudinal viscosity, we applied the same

rationale as was used for determining the thermal diffusivity: experiments were con-

ducted at several grating spacings and the damping rate was plotted versus the quan-

tity 1/2q2 . The slope of this line gives the required result. This was also the approach

taken for acoustic velocity measurements, where the slope of the line of the frequency

versus the inverse wavelength provides the value of interest. Data from ISTS experi-

ments on 0.5% A120 3 in decane are shown in figure 7-10.

Measurement of the shear viscosity was performed at zero frequency using a com-

mercial TA Instruments model AR-G2 controlled-stress rheometer. These results are

shown in figure 7-11, along with the predictions of the Einstein model [155, 156]

_ = 1 + 2.5, (7.6)

which under-predicts the increase in shear viscosity with volume fraction. A more

accurate prediction proposed by Prasher et al. [157] is given by nf//rf = 1 + 100, as

shown within the figure.

A summary of all viscosity measurements for the base fluids is shown in table 7.1.
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Figure 7-11: Zero-frequency viscosities for the liquids studied here. The values are
significantly higher than the predictions of the Einstein model, while the expression
proposed in [157] comes much closer. From [154].

Table 7.1: Measured Properties of Base Fluids. From [154]
Fluid 77 vL

(Pa- 1) x 10- 9  (Pa s) x 10- 3  (Pa s) x 10- 3

Decane + Surf. 0.41 0.85 4.10
PAO + Surf. 0.74 30.0 32.3

The tabulated results can be used to derive the bulk viscosity r = vL - 91; the value
for K = 2.54 - 3 Pa -s in decane is in good agreement with a previously measured value
[158], while that obtained for PAO is found to be negative. At present, we do not
have a definitive explanation for this anomaly; PAO is a multi-component oil and it
is possible that mechanical relaxation processes that are active at low frequency are

not present at MHz ISS acoustic frequencies. Other evidence, discussed below, points
to a spuriously high value for the shear viscosity.

In the further analysis of our data, we have assumed that the attenuation of the
acoustic wave is governed by the linear sum of the viscous decay of the base fluid

VL,bf and a contribution due to the presence of the nanoparticles

7- =1 2VL,bf - ar t  
(7.7)

-22 L TbS ÷
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allowing us to deduce the influence of the nanoparticles by subtracting away the

portion due to the base fluid.

Such an approach allows a direct test of the model developed by Harker and Tem-

ple [159], which supplies an experimental prediction for the quantity Tpart from other

easily obtainable experimental values. Here, the problem is approached by solving

the hydrodynamic equations using conservation of momentum and mass between the

base fluid and nanoparticles. We simply state here the result that the decay rate due

to the nanoparticles is given by 7,t = c x Im(q) where c is the speed of sound and

)2P[(1 f[Ps(1 - k + OS) + pfS(1 - )](7.8)
ps(1 - 0)2 + p [S + 0(1 - 0)]

is the complex wavevector. In the above equation, w is the measured angular fre-

quency, ¢ is the volume fraction, / is the compressibility of the fluid, p, is the density

of the solid nanoparticles and pf is the density of the base fluid. The quantity S is

given by
(1+24 9a\ .9 2

S = (l+ 20+ ~ 96 +9 + 2- (7.9)2 1- 4a 4 a a2

with a the average particle radius and 6 = V2i_/wpy.

Expression 7.8 can be considered as defining a longitudinal viscosity due to the

nanoparticles, r-a -= 1/2q2vL,part, meaning that using equation 7.7 we may write

VL/VL,bf = 1 + VL,part. Thus, the predictions of the Harker-Temple model as a function

of the volume fraction can be tested by plotting the experimentally determined ratio

VLIVL,bf for each sample using the measured shear viscosity. This is done in figure 7-

12 for the different liquids studied here, where good agreement is found for the decane

system. The same is not true for the PAO-based nanofluids, where the Harker-Temple

model grossly under-predicts the longitudinal viscosity; as discussed above, the shear

viscosity measured at DC frequencies appears to be spuriously high. This notion is

supported by the fact that, when a lower value for the shear viscosity is inserted

in the relation 7.8, much closer agreement between the Harker-Temple model and

experimental data is obtained.
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Figure 7-12: Bulk viscosity for volume fractions from 0.25% to 1.0%. There is fairly
good agreement between experiment and the Harker Temple model for decane, but
not for the PAO system. From [154].

7.3.3 Conclusion and Future Directions

The measurements described above clearly demonstrate the capabilities of ISTS as

a viable technique for probing the transport quantities of colloidal systems. With

ISTS, we have confirmed the anomalously high thermal conductivity displayed by

nanofluids, and also determined their longitudinal viscosities. Future research may be

centered on improved fundamental understanding of structural relaxation dynamics

in colloidal solutions, including comparison to phenomenological models, numerical

simulations, and mode-coupling theoretical predictions. This may require access to

higher volume fractions. Although in this study it was not possible to conduct tran-

sient grating measurements at values greater than 1% due to the sample's opacity at

the probe wavelength, possible solutions may be to seek base fluids and nanoparti-

cles that are better index-matched to one another or to perform the experiment with

longer wavelength light.

This work was supported in part by NSF grants CHE-0616939 and DMR-0414895.
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7.4 Elastic Properties of Thin Film Multilayers 4

One of the greatest successes for Impulsive Stiumlated Thermal Scattering has been its

use in the characterization of multilayer thin films, in particular in the private sector,

where an automated instrument has been developed that uses ISTS to generate surface

acoustic waves (SAWs) in a multilayer thin film deposited atop a thick substrate. In

these measurements, the excitation beams are crossed on the surface of the sample

being characterized, creating a grating. As in the case of bulk liquids, the light is

absorbed and its energy is rapidly thermalized, forming a modulation in temperature

which in turn causes sudden thermal expansion, launching acoustic waves. Since

this thermal expansion occurs at the surface, the resulting deformation is uninhibited

in the perpendicular direction, and in addition to expanding against neighboring

regions, the acoustic wave also bows outward in the transverse dimension. Being a

combination of longitudinal and shear deformations, the surface acoustic wave thus

encodes information about both the shear and longitudinal elastic properties of the

material in which it is generated.

When the SAW is generated in a film whose thickness is of the same order as the

wavelength of the acoustic wave, propagation takes place as an acoustic waveguide

mode and is not only influenced by the elastic properties of film and substrate, but also

by the film thickness. Characterization then proceeds by scanning the wavevector and

building up an acoustic dispersion curve. Fits of this curve to well developed models

[160] provide a non-invasive and highly accurate measurement of film thicknesses and

elastic parameters. Among the systems most commonly studied in this manner are

polymers , which share a lot of the phenomenology and relaxation behavior observed

in glass forming liquids, and thin metallic films important in industry[161]. In gen-

eral, multiple acoustic waveguide modes may be generated within a single layer or

a multilayer structure. The theoretical understanding of SAWs generated in ISTS

measurements on thin film multilayers has been worked out by Rogers, Duggal, et al.

[160, 162] and a complete treatment is found therein.

4 Done collaboratively with Gagan Saini and Dr. Thomas Pezeril
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In general, SAW propagation is not only governed by the elastic properties of

the substrate and deposited layers, but also by the same quantities in a semi-infinite

adjacent medium. Depending upon the proper confluence of acoustic impedance

between the substrate and adjoining medium, the elastic energy may even be confined

to a bound-state interface wave, known as a Scholte wave [163], whose single-mode

propagation is sensitive to the shear modulus of this adjacent material. In practice,

this may be a glass-forming liquid. This approach has recently been exploited by

Glorieux and coworkers [164], avoiding the experimental pitfalls in direct shear wave

generation, specifically the need for a large polarizability anisotropy, as well as those

associated with the linear q dependence of excitation efficiency. The main drawback

of this method is the necessity to deconvolve the liquid's shear properties from the

single Scholte oscillation frequency observed.

Experimentally, the application of ISTS to thin-film samples differs little in exe-

cution from the prior results presented in this thesis. Since the samples tend to be

reflective, the measurement must be conducted in a folded geometry similar to the one

described for shock measurements in section 7.2. In conducting these experiments, we

have also found it convenient to excite the sample with ultraviolet light (specifically

the fourth harmonic of the laser at 257 nm), where the absorption is greater, and to

probe with 532 nm light. As there are no achromats available for this combination of

wavelengths, we used reflective optics instead of lenses.

In the experiments conducted here, the samples of interest were a layer of PMMA

deposited on a silicon wafer, a distribution of TiO 2 nanoparticles on a silicon wafer,

and a multilayer system of alternating layers of these two materials as depicted in fig-

ure 7-13, bottom inset. The goal of this study was to determine the elastic properties

of the composite system based upon an understanding of the individual constituent

layers.

Figure 7-13 shows ISTS data from the multilayer structure, along with a TEM im-

age of the sample. The data and their Fourier transform clearly reveal two prominent

waveguide modes (and one weaker mode) beating against each other.

ISTS measurements were conducted at several different wavevectors, and acous-
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Figure 7-13: Surface acoustic waves in a PMMA - TiO 2 multilayer system, whose
TEM image is presented in the lower inset. A Fourier transformation of the time
domain signal is shown in upper inset and clearly shows the two frequencies which
contribute to the signal. From [165].

tic dispersion curves were constructed for the two modes that contribute strongly to

signals from the multicomponent system (see figure 7-14). From the fit to the dis-

persion curves, the effective density and elastic constant values of the composite were

extracted. Multilayer organic-inorganic hybrid structures of the sort studied here are

of interest for impact mitigation applications. The figures in Fig. 7-14 show that at

the higher wavevectors examined, the group velocity of the lower-frequency mode is

extremely low. This suggests a strategy for impcat and shock mitigation in which

acoustic energy is split among waveguide modes with substantially different group

velocities, spreading the energy out in the propagation direction and strongly reduc-

ing peak amplitudes to preventing or reducing shock formation and other nonlinear

responses.

This work was supported by the United States Army through the Institute for Sol-

dier Nanotechnologies, under Contract DAAD-19-02-D-0002 with the United States

Army Research Office.
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Figure 7-14: Acoustic dispersion curves in the multilayer system. Note the avoided
crossing which indicates coupling between the acoustic waveguide modes. From [165].

7.5 Impulsive Stimulated Scattering at Higher

Wavevector 5

All of the experiments described above occur at q x 0. Measurements in this regime

profit from easier analysis in the context of hydrodynamics, yet often fall outside

the regime of much of the contemporary theoretical and computational work on liq-

uids and other materials. Many new phenomena become apparent with acoustic

wavelengths comparable to the length scales of g(r), the two-particle distribution

function. Atomistic computer simulations also are often limited to nanosecond time-

scales and nanometer length scales [16]. The need for shorter length and time scale

measurements becomes even more conspicuous when confronting the issues of dynam-

ical heterogeneities and correlated length scales in supercooled liquids.

To this end, acoustic measurements that reach towards the edge of the Brillouin

zone become increasingly important. Traditionally, incoherent neutron [36] and in-

elastic X-ray scattering [37] have been the only ways to achieve the required wavevec-

tors, presenting experimental challenges that reach beyond the need to bring samples

5Done collaboratively with Dr. Raanan Tobey of the Kapteyn-Murnane group at JILA.
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to - and acquire time at - nuclear reactors and synchrotron facilities.

A few approaches that enable experimentalists to make these measurements on

laser tables rather than at large-scale facilities have emerged in recent years. One that

shows particular promise, which we simply reference [72], uses tunable pulse trains to

measure narrowband longitudinal or shear acoustic waves at frequencies from 3 GHz

to 300 GHz.

Another method that we shall briefly review here takes advantage of the recent

advances in the field of high harmonic generation [166, 167]. In such experiments, an

intense, short pulse of 800 nm laser light from a Ti:sapphire laser is focused into a

gas jet. Multiphoton processes lead to the ejection of a frequency comb of the odd

harmonics of the fundamental (even harmonics are symmetry forbidden), ranging

from the 3 rd harmonic all the way up to the 3 5th or higher. In principle, this light

may then be used to perform many of the same experiments done in the visible regime,

including transient grating measurements.

While a pure EUV-pump EUV-probe transient grating experiment has yet to be

performed, great progress has been made towards this capability through a collab-

orative effort with the Kapteyn-Murnane group at JILA. Figure 7-15 presents the

ISTS setup used in these experiments, which differs substantially from setups used in

this thesis first in the way that probe light is generated and detected, and also in the

back/front pump/probe geometry used.

Figure 7-16 shows data from surface acoustic waves in a thin nickel film on a silicon

substrate recorded with this system. Although the probe light was derived from the

2 9th harmonic of the amplified laser output, the data still show excellent signal to

noise. The data provided from this experiment were analyzed in a similar manner as

described above in section 7.4 to provide accurate measurement of the thickness of

Nickel films. This analysis is displayed in figure 7-17, where the results are provided

to a high degree of accuracy.

The significant advantage posed by use of such high frequency light, beyond the

ability to probe smaller scale and faster dynamics, is its much greater sensitivity;

diffraction efficiencies at these wavelengths are up to 700 times higher than at fun-
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Figure 7-15: High wavevector EUV setup. The acoustic wave is generated in the thin
film using either the fundamental, second or third harmonic of a Ti:sapphire laser
and amplifier system. Probing is done from the other side using the 30 nm HHG
output. The diffracted EUV light at a given temporal delay is then is collected on a
CCD camera. Inset (a) shows a typical CCD output at maximum signal levels, and
(b) provides a detail of the excited sample. Figure from [168].

damental [168]. While inadequate laser fluences may limit the intensity required to

excite the sample, efforts to optimize the levels of HHG may lead to such experiments

being routinely employable. This would advance the study of not only thin films, but

also glass-forming liquids.
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Figure 7-16: Data from a nickel/silicon sample recorded using the high wavevector
EUV setup with four different acoustic wavelengths. The y-axis is the total diffracted
light and the x-axis is the delay of the probe pulse with respect to the pump. The
data correspond to grating spacings of a) 750 nm, b) 940 nm, c) 1.2 pm, and d)
1.5 pm. Figure from [168].
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Figure 7-17: Nickel dispersion curves. The symbols denote the experimental data
and the lines provide a fit to the acoustic dispersion curve. The filled squares with
solid line correspond to a film thickness of 75 nm, the open circles with dashed line
to a thickness of 29 nm, and the triangles with dotted line to a thickness of 12.5 nm.
From [168].
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Chapter 8

Conclusions and Future Directions

for Research

In this thesis, we have used Impulsive Stimulated Scattering to characterize longi-

tudinal and shear acoustic waves, time-dependent thermal expansion, and thermal

diffusion in glass-forming materials. The results have been used for empirical char-

acterization of structural relaxation dynamics and for testing of mode-coupling theo-

retical predictions. They also have been used to test models that relate the fragility

of a supercooled liquid to the mechanical properties of the corresponding glass.

The longitudinal modulus spectrum of the glass forming liquid tetramethyl tet-

raphenyl trisiloxane (DC704) was characterized based on measurements of acoustic

waves in the regime from 10 MHz to 1 GHz, and was fit by the Havriliak-Negami

function. Direct time-domain measurements of nonexponential structural relaxation

dynamics in time-dependent thermal expansion were conducted on nanosecond and

microsecond time scales, and the results were fit by the KWW function. Comparison

between the results showed that they were largely consistent in overlapping frequency

ranges and that they could be combined reliably to provide longitudinal modulus

spectra that covered about 5 decades in frequencies from roughly 10 kHz to 1 GHz.

Time-temperature superposition of the spectra at different sample temperatures was

observed to obtain the the high-frequency a relaxation exponent b. Relating it with

the observed power-law behavior of the characteristic relaxation time given by -y,
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we were able to predict a value for the low frequency 0 relaxation exponent a. We

also applied a mode-coupling analysis to our data and did not see evidence for a

square-root cusp in our measurements of the Debye-Waller factor.

Initial results also showed the ability to generate and probe coherent shear waves

in DC704, with the preliminary result that the shear degrees of freedom either do not

share the same spectral exponents as, or relax at a significantly faster rate than the

longitudinal spectrum. This conclusion can only be made firm with a separate, full

characterization of the spectrum, which at present was not possible.

A more full characterization could be performed on the glass former triphenyl

phosphite, where we have built upon prior measurements in order to build a shear

relaxation spectrum spanning nearly two decades in frequency. Using this informa-

tion, we were able to measure the evolution of the characteristic shear relaxation time

with temperature. Our results indicate that it does not follow that of the longitudinal

relaxation time for the temperatures in which we could observe it.

We have also been able to use this information to test for a growing length scale

required for shear wave propagation. Motivated by the arguments of [44] derived

in the idealized mode-coupling theory for hard spheres, we have fit the length scale

to a power law, from which we obtain an unusually high exponent of 15. We also

observe critical behavior in the temperature dependence of the longest wavelength for

underdamped shear wave propagation. The critical temperature is almost identical

to the glass transition temperature and the centimeter wavelength scales reached as

this temperature is approached from above are much too large to be meaningful in

terms of any diverging structural correlation length scale.

Our test of the "shoving" model of the glass transition [10, 90] on nine separate

glass forming liquids supports its view that the non-Arrhenius evolution of relaxation

time with temperature is governed by the temperature dependence of the instan-

taneous shear modulus. Nevertheless, these same measurements called into question

other arguments which derive from this model and link the fragility of the supercooled

liquid state to the elastic parameters of the corresponding glass [48, 96].

Finally, we demonstrated the versatility of the Impulsive Stimulated Scattering
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technique in its ability to examine systems under shock on a single-shot basis, as

means to determine transport quantities in nanofluids, and as a method by which to

derive mechanical properties of thin film multilayers.

8.1 Further Directions

To date, broadband shear measurements utilizing ISS methods have only been per-

formed on TPP. In chapter 6, we showed that the shear behavior of a variety of liquids

may be studied with this technique. A particularly good candidate is 5-phenyl 4-ether,

which showed excellent shear signal and never crystallized. Although we were not able

to do so, prior work on salol indicated that it was possible to prepare this liquid in a

stable form that avoids crystallization [57]. It, too, has shown excellent depolarized

ISBS signal, and thus warrants future study. Salol carries the advantage of being

well studied by other researchers and so it may facilitate comparisons between ISBS

results and those of other spectroscopies, in particular dielectric relaxation.

Studies of the glass transition have most commonly been performed using temper-

ature as the control variable, yet a very fundamental question remains in the study

of these liquids: what are the separate roles of the change in density and the change

in kinetic energy when the system is cooled? The answer to this question may be

approached by using pressure as a control variable in addition to temperature. There

has been a recent burgeoning in this field led by the work of Paluch [169, 170], as well

as Casalini and Roland [171, 172], among others. In [171, 172] it is proposed that a

thermodynamic scaling of the characteristic relaxation time in terms of the density

and temperature

7(T, V) = ro exp T (8.1)

where C and To are system constants, and y is an exponent which measures the degree

of anharmonicity of intermolecular interactions. Plotting the characteristic relaxation

time 7 versus 1000/TVy was shown to permit data superposition onto a single plot for

all liquids examined in this fashion. However, verification of this relationship has only

been performed with dielectric measurements, and not with mechanical spectroscopy.

219



The workhorse of the high pressure community is the Diamond Anvil Cell (DAC)

[173]. ISTS measurements have already been conducted in DACs on liquids [131, 174],

and on inorganic single crystals [175]. ISTS measurements of supercooled liquids in

DACs are just getting under way.

8.2 Experimental Improvements

Measurements on the same liquids performed by ultrasonic transducers, impulsive

stimulated scattering, and picosecond ultrasonics present the novel opportunity to

create acoustic spectra whose bandwidths may rival that of dielectric spectroscopy.

This will enable thorough tests of a and 3 relaxation behavior and the connections

between them as predicted by mode-coupling theory from the point of view of density

fluctuations, which are the natural variables of the theory.

To this end, experiments conducted at common frequencies can eliminate sources

of systematic differences between the different experimental methods. Extensions

to lower wavevector are unnecessary, as broadband transducer measurements are al-

ready available in a range that overlaps with the lower end of the ISTS bandwidth.

Thus, attention should be focussed on increasing the upper-frequency limit of the

measurements.

It has already been suggested [176] that novel geometries involving prisms may

be used to increase the effective numerical aperture of the imaging system [177]. If

successful, this would push measurements toward significantly higher frequencies. Ad-

ditionally, taking advantage of the linear dependence of electrostriction on wavevector

q implies that IR excitation light may be superseded by higher laser harmonics, due to

the linear dependence of grating wavelength on pump wavelength, the sole caveat be-

ing that the laser light must not induce photochemistry on the sample. For example,

unpublished test data at 1.1 pm grating spacing were taken with 514 nm excitation

and probed with a 532 nm CW laser. The data yielded excellent signal-to-noise for a

variety of liquids, producing signals up to 1.5 GHz in the simple liquid state.

CW probing may still be used in these configurations, as higher harmonics of
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diode pumped CW lasers can be employed so as to reduce the imaging restrictions on

the setup. The electronic bandwidth needed to probe such higher frequencies is also

available in the correspondingly higher range; some optical detectors can reach up to

20 GHz, and digitization electronics can match these frequencies. Amplification can

be performed by a separate microwave amplifier or for lower electronic noise, a cooled

microwave amplifier.

The measurements of the shear modulus presented here constituted an improve-

ment over previous efforts [8, 9], although there is much room for growth. As in the

case of longitudinal measurements, there is a distinct need for larger bandwidths as

mentioned above and, in particular for shear wave experiments, higher signal levels

in order to reduce scatter in measured moduli.

The pump laser is likely not a source of improvement. The major step that made

many of these experiments possible was to bypass the compressor, which yielded more

light and a lower peak power due to the output of 60 ps pulses. A separate stretcher

may be built outside of the laser 1, but little more can be done to decrease the peak

power significantly without pushing the pulse duration outside of the impulsive limit.

Perhaps the easiest improvement that can be made on the experiments is to in-

crease the probe power. As mentioned in chapter 3, the choice of probe laser is a

balance between optical (in the form of imaging), electronic (in the form of photodi-

ode sensitivity), and physical (in the form of diffraction efficiency) constraints. The

ideal probe source for CW measurements is a high powered, single-mode laser that

can be easily gated, and whose wavelength is close to that of the pump.

For the probe wavelength of 830 nm used here, at present the highest available

power for single transverse mode output is 200 mW. However, the recent advent of

tapered amplifier diodes provides for the single-mode operation desirable for an optical

experiment with output powers in the single watt range that rival their multimode

counterparts. Diode lasers also have the advantage of being easily electronically

gated to the duration of the acoustic signal, which can limit the amount of heating

the sample experiences from the probe.

1The stretcher within can not and should not be adjusted!
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Another means of increasing the probe power would be to use a different diffractive

optic for the pump and probe. In the present experimental configuration, almost half

the probe light is simply thrown away by attenuating the local oscillator with an ND 3

or ND 4 filter. The probe's phase mask could be blazed, rather than binary, so that

probe light is preferentially diffracted into one order. Invariably, there will be light

present at other orders; the light in the local oscillator will still have to attenuated,

although by a much weaker filter.

It was discovered that even the modest local oscillator levels used here almost

began to saturate the bias of the amplification circuit used. A reduction of the level of

light simply leads to lower signal, while an increase in the bias amounts to more noise.

The source of the noise is likely not the dark current of the avalanche photodiode

employed in the detector, but more likely from the amplification electronics. The

most effective means of overcoming this problem would be to employ a Peltier cooled

(or cryogenically cooled, if necessary) amplifier circuit.

With such improvements, the detection for the experiment may be adequately

sensitive to turn the shear wave measurements from the difficult experiment we found

it to be into one as routine, and fruitful, as the longitudinal measurements.

The work in this thesis was supported by ONR MURI awards N00014-01-1-0802

and N00014-06-1-0459, and NSF grants CHE-0616939 and DMR-0414895.
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Appendix A

Notes on the High Q FemtoRegen

A.1 The Oscillator

The laser used for these experiments is a High Q FemtoRegen regeneratively amplified

system based on an Yb:KGW gain medium and lasing anywhere from 1030 nm to

1040 nm depending upon the selected wavelength of the oscillator. The oscillator is in

a factory-sealed box which cannot by opened by the user due to the Semiconducting

Saturable Absorbing Mirror (SESAM), which must be kept in cleanroom conditions.

The function of the SESAM is to passively mode-lock the system. It also doubles as

a cavity end-mirror.

The oscillator has five knobs accessible from the outside for tuning and alignment.

Two are for directing the laser on the SESAM (labelled SAH and SAV), and two others

for aligning the other end mirror of the cavity (CAH and CAV). These should only

be touched by a High Q technician except in the direst of circumstances. There is

a fifth, unlabelled knob which controls a filter responsible for tuning the wavelength

of the oscillator cavity. Adjustment of this knob can effectively increase the seeding

efficiency of the amplifier. This is strongly discouraged, as safe operation of the system

depends upon reliable operation of the oscillator, as described below. Consequently,

the wavelength has been adjusted to optimize for reliability and not output power of

the laser.

Pumping is accomplished by user-replaceable laser didoes integrated into the main
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oscillator housing. The diodes must be pumped by no less than 4.5 A of current. The

current may be turned up to 5.0 A, but not beyond this limit unless cleared by a High

Q technician. After a lifetime of 10000 hours, these diodes will have to be replaced.

The oscillator runs at a 78 MHz repetition rate and is monitored by a photodiode

which detects leakage from one of the end mirrors. The output of this photodiode is

the SMA connector labelled "PD Seed," which is on the back of the laser. PD Seed

serves as the clock for the Pulse Delay Generator (PDG), but also as a means by

which to monitor the workings of the oscillator. When the system is properly mode-

locked, the output will be a train of pulses that register between 50 mV to 200 mV

on the oscilloscope.

The main failure mode of the oscillator is a self Q-switched output, usually indi-

cating either insufficient diode pumping or a damaged optical element in the cavity.

Its main signature will be extremely unstable triggering of the oscilloscope, and a

modulated rise in the monitored pulse train that behaves erratically. Do not attempt

to operate the amplifier while the oscillator is self Q-switching as this will cause it to

fail! Thus, it is highly recommended that when turning on the system, the oscillator

output should be observed to be stable before proceeding to turn on the amplifier.

In the event that such oscillator failure occurs, the safest solution is to turn the

system off and contact a High Q technician. However, other steps which may solve

the problem are:

1. Check that the chiller is on and operating properly, and that the temperature

is stabilized. If the oscillator is not at the correct temperature it may self

Q-switch.

2. Increase the current to the pump diodes in increments of 0.1 A. Self Q-switching

can be an unstable mode of operation due to insufficient pumping of the gain

medium. The current to the diodes may safely be increased to up to 5.0 A.

3. Slowly shift the wavelength of the oscillator. The oscillator will come into

mode-lock when the wavelength is selected for stable operation. Note: Before

proceeding, mark the starting position of this knob!
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4. If it is suspected that the SESAM crystal is burned, it is possible to move

the spot off of this damaged position by slowly adjusting the SAH and SAM

knobs. Again, before proceeding, mark the starting position of these knobs!

Turning these mirrors too far may cause the oscillator to stop lasing altogether.

Additionally, the beam pointing from the oscillator cavity will change slightly,

and this may require that the seeding of the amplifier be reoptimized by a High

Q technician.

If these steps don't fix the oscillator, the problem is likely very serious (such as a

burned gain crystal) and needs to be attended to by the technician.

A.2 Timing Electronics

The PDG down-counts the oscillator pulse train by a factor set by a user-controllable

program running on a PC, and in this manner sets the repetition rate of the laser.

This program is not straightforward to use. If the PDG has been powered down since

it was last operated, it will have to be activated using the program "PDG1 neu. exe."

When doing this, the first button pressed should be "Get State." After that, one must

then check the "Pulse Enable" box and the "internal trigger" box. At this point, it

may be necessary to click directly on the labels Div(27), Div(15), SP2, SP1, SP4,

SP3, Latchl, and Latch2 to get the PDG to start working properly! These labels are

actually toggles. After this has been done, or if the PDG has not been powered down

since its last use, the program PDG120. EXE may then be used to adjust the timing of

the Pockels cell, as described below.

It is essential that the PDG register an amplitude of over 50 mV in order to operate

stably and safely trigger the Pockels Cell gating the amplifier. The divide-by marker

("Divisor" in the program PDG120.EXE), can be set at any value which operates the

laser from a repetition rate of 500 Hz all the way up to 100 kHz. Note that this is

division of 78 MHz by Divisor. The lower limit of this range is set by the fact that

if the pulse duration is too low, too much gain can build up in the amplifier gain

medium before it is extracted by a pulse. This highly amplified pulse can damage
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optical components in the amplifier. Hence, on turning down the repetition rate, the

current to the amplifier pump diodes should be decreased first. The upper limit of

the repetition rate range is set by the operating speed of the Pockels cell, as well as

the excited state lifetime of the gain medium. Finally, we remark that over this broad

range of repetition rates, the average power of the laser generally decreases anywhere

from 10-20% as the repetition rate is increased.

During normal operation, the oscillator is continually seeding the amplifier. Both

admittance of one of these pulses into the amplifier cavity, as well as retrieval of

it, are controlled by the same intracavity Pockels cell. The window of the amplifier

next to the Pockels cell is in fact a A/4 waveplate. If an oscillator pulse makes two

visits to this optic, its polarization is rotated by 900 and it is subsequently ejected

by the thin film polarizer. During pulse amplification, a voltage is applied to the

Pockels cell which causes it, too, to function as a A/4 retarder. The combined effect

leaves the polarization of the incident pulse untouched. In this case, it is reflected by

the TFP, and continuously makes round-trips in the cavity until it is ejected at the

user-specified time when the voltage on the Pockels cell is released. Meanwhile, other

oscillator pulses continue to pass through the amplifier and to the experiment.

The gating of the Pockels cell is tuned via PDG120.EXE. Fine adjustment is given

for the "on" and "off' triggering of the amplifier in units of 0.15 ns. Coarse operation

for the "off' designation is provided in units of amplifier cavity round-trip times.

This can be accomplished through intracavity monitoring of the amplifier via the

"PD Int" SMA output and extracavity monitoring via the "PD Ext" SMA output.

The maximum output power of the laser is achieved when the gain medium is observed

to saturate. The output of the amplifier cavity should also be monitored at a point

after the laser's output. The fluence is high enough the unfocussed reflection off a

glass slide onto a photodiode will suffice.

The Pockels cell is powered by a control box which sits on the rack near the laser.

On the front of this box is a knob which provides fine control over the Pockels cell

voltage. Pre and post pulses can be eliminated by a combination of proper timing of

all of these elements: the Pockels cell voltage primarily corrects for pre-pulses, while
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adjustment of the Pockels cell timing, the A/4 waveplate, and the angle of the Pockels

cell can correct for post-pulses. Voltage adjustments require no special precautions,

though optimization of the A/4 waveplate should only be done while the amplifier

diodes are run at a significantly reduced amperage - this is so that excessive gain

does not build up in the cavity which may damage amplifier components. Physical

adjustment of the Pockels cell is inadvisable, as small adjustments can cause the

amplifier to stop lasing. This should only be attempted by a High Q technician.

A.3 The Stretcher, Compressor, and Amplifier

Before entering the amplifier, the oscillator seed pulses are stretched by a folded-

geometry grating stretcher. The blazed 1800 grooves/mm gold gratings used in both

stretching, and later in recompression, are extremely fragile and should not be touched

under any circumstances. They also cannot be cleaned. Over time, they will degrade

in quality, becoming cloudy and will have to be replaced.

The degree of compression can be adjusted via movement of an internal roof

mirror. Adjustment of this mirror is accomplished via a servo motor attached to

the amplifier diode power supply. Optimal compression has been measured via an

autocorrelator at FWHM of 250 fs. Pulse durations as long as 10 ps can be achieved

this way. Longer pulses are available only if the compressor is bypassed altogether.

The stretcher and compressor cannot be adjusted by the experimentalist, as this may

change the seeding of the amplifier or the ejection of the pulse from the laser.

As of the writing of this thesis, adjustment of the servo driving the roof mirror

causes the amplifier power supply to cut power to the amplifier diodes. The power

will also be cut off randomly if the cable connecting the amplifier power supply to

the servo motor is even in place at all. Leaving the connecting cable unplugged

temporarily resolves this issue.

The amplifier is pumped by a bank of laser diodes powered externally. Adjustment

of the current to the amplifier diodes is an effective way of controlling the output power

of the laser. There is no lower limit to this current, although an upper limit of 40.0 A
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is suggested by the manufacturer.

When working directly with any of the laser diodes, it is absolutely necessary to be

grounded via a wrist bracelet to ground. It is also necessary to ground the amplifier

pump diodes by shorting the inputs to one another by a single power cable when the

amplifier diodes are unplugged. These precautions are taken to prevent failure due to

electrostatic discharge. No such shorting precautions need be taken for the oscillator

diode bank, though it is still recommended.

The main failure mode of the amplifier has historically been burning of the thin-

film polarizer, and less commonly, the amplifier crystal. In either case, the result is

that the amplifier will stop lasing or produce a weak TEM 11 output. The mechanism

has been determined to arise from faulty timing by the PDG: if the PDG is mistimed,

too much gain in the amplifier cavity will build up while there is no pulse to remove

it. Then, the PDG will trap the pulse in the cavity for too long, extracting all of the

energy from the gain medium. The resulting pulse carries so much energy that it will

cause damage to the optical elements. This timing usually arises from the oscillator

self Q-switching. Damage to the amplifier's optics may also occur if the stretched

seeding bandwidth is clipped.

Finally, the amplifier gain crystal is housed in a copper mount that is cooled

by a Peltier element. The setpoint and temperature of the Peltier cooler can be

monitored by the banana cable outputs on the back of the amplifier's thermoelectric

cooler controller, TEC AMP. If the element is working properly, the two numbers

should match well when the system is turned on. The thermal contact between

these two components has failed in the past. The distinguishing characteristic of this

failure is a gradually decreasing amplifier output power with time (on the scale of

minutes). This may be confirmed by noticing that the Peltier element's voltage drifts

from the setpoint over time after the amplifier has been turned on. As alignment of

the amplifier cavity is difficult, this problem may only be approached by a High Q

technician.
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Appendix B

Raw Data for DC704 used in

Chapter 4

Below are the longitudinal spectral data for DC704. Grating spacings with * before

them are provided for completeness but were not used in construction of the spectra

due to systematic errors which led to unrealistic fits.
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B.1 Time-Dependent Thermal Expansion Data

Table B.1: TKWW and /KWW for DC704

A T TKWW 3KWW
(rm) (K) (ps) [-]
24.9 238 3.21 0.32
24.9 240 0.864 0.38
24.9 242 0.401 0.43
24.9 244 0.191 0.44
24.9 246 0.100 0.47
24.9 248 0.0644 0.5

50.8 232 779 0.40
50.8 234 260 0.33
50.8 236 40.8 0.31
50.8 238 2.42 0.33
50.8 240 0.667 0.28
50.8 242 0.397 0.44
50.8 244 0.121 0.63
50.8 246 0.0474 0.37
50.8 248 0.0411 0.40
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B.2 Frequencies and Damping Rates Used in Con-

struction of Modulus Spectra

Table B.2: T=240 K

A w/27r F
(pm) (MHz) (1/ps)
1.97 1061 139
2.33 894.9 121
2.68 772.6 107
3.14 663.4 84.7
3.65 571.4 71.9
4.20 496.1 60.0
4.85 428.6 52.5
5.66 366.8 47.6
6.56 316.3 40.5
6.70 309.0 34.0
7.62 273.1 29.3
9.14 227.0 24.6
10.2 204.3 23.0
11.7 177.1 22.7
13.7 150.7 18.9
15.7 131.2 17.8
18.3 112.7 16.6
21.3 96.40 14.9
24.9 82.38 13.4
28.5 72.07 12.6
33.0 61.96 12.1
38.1 53.82 10.9
44.2 46.38 10.7
49.8 40.48 9.23
50.8 40.24 10.1
56.9 35.36 8.42
65.9 30.35 7.75
76.0 26.25 7.27
88.0 22.55 6.68
101 19.59 6.30

Table B.3: T=242 K

A w/27 F
(pm) (MHz) (1/ps)
*1.97 1052 146
*2.33 885.2 129
*2.68 767.0 112
*3.14 654.1 93.7
*3.65 563.7 82.6
*4.20 488.1 72.4
*5.66 361.4 56.8
*6.56 311.7 46.2
6.70 308.0 43.6
7.62 270.5 40.0
9.14 225.1 38.1
10.2 201.4 32.8
11.7 175.7 31.5
13.7 149.3 27.1
15.7 129.8 27.4
18.3 111.5 25.9
21.3 95.51 21.6
24.9 81.64 20.0
*28.4 68.98 20.0
*33.0 59.43 17.3
*38.1 51.45 15.7
*44.2 44.09 12.5
*49.8 39.70 10.9
*50.8 38.25 13.1
*56.9 34.61 9.92
*65.9 29.75 8.86
*76.0 25.68 8.15
*88.0 22.09 7.33
*101 19.20 6.68
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Table B.4: T=244 K

Am) w/2r
(pm) (MHz) (1/ps)
1.97 1041 178.5
2.33 877.9 145.6
2.68 761.5 118.7
3.14 648.4 103.5
3.65 559.0 89.9
4.20 484.9 76.3
4.85 419.0 69.3
5.66 357.8 63.7
6.56 308.0 54.4
6.70 305.0 46.1
7.62 267.7 40.9
9.14 222.9 38.3
10.2 200.2 34.8
11.7 173.4 33.1
13.7 147.1 30.8
15.7 127.8 29.0
18.3 109.8 26.6
21.3 93.91 23.7
24.5 80.19 21.7
28.4 70.04 19.6
33.0 60.30 18.2
38.1 52.07 16.6
44.2 44.74 15.5
49.8 39.05 12.7
50.8 38.86 14.5
56.9 33.92 11.9
65.9 29.14 10.6
76.0 25.13 9.65
88.0 21.61 8.94
101 18.70 8.12

A w/27r F
(pm) (MHz) (1/ps)

1.97 1029 196
2.33 870.4 156
2.68 751.7 137
3.14 643.0 116
3.65 551.8 95.9
4.20 479.0 84.9
4.85 413.3 73.8
5.66 352.3 66.9
6.56 304.1 58.3
6.70 301.3 51.8
7.62 264.0 53.1
9.14 219.4 45.5
10.2 196.9 42.5
11.7 170.6 39.3
13.7 144.8 35.5
15.7 125.7 34.3
18.3 107.8 29.8
21.3 92.00 28.2
24.9 78.62 24.6
28.5 68.59 22.5
33.0 58.90 21.1
38.1 50.81 19.1
44.2 43.66 17.2
49.8 38.18 14.0
50.8 37.66 15.4
56.9 33.20 12.9
65.9 28.41 11.7
76.0 24.43 10.6
88.0 20.98 9.50
101 18.20 8.84
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Table B.6: T=248 K

Sw/2irr F i
(MHz) (i/ps)

A
(pm)

1.71
1.97
2.33
2.68
3.14
3.65
4.20
4.85
5.66
6.56
6.70
7.62
9.14
10.2
11.7
13.7
15.7
18.3
21.3
24.9
28.5
33.0
38.1
44.2
49.8
50.8
56.9
65.9
76.0
88.0
101

1182
1012
855.2
740.9
632.3
543.5
471.3
407.5
348.4
299.8
296.0
259.6
215.0
193.6
167.7
142.3
123.5
105.9
90.30
76.92
67.03
57.52
49.61
42.48
37.40
36.82
32.34
27.69
23.89
20.39
17.66

Table B.7: T=250 K

233
227
190
146
132
116
102
94.7
83.2
73.0
66.6
62.3
56.5
50.3
45.8
40.8
38.1
32.6
30.4
26.9
24.3
22.0
19.9
17.6
16.6
16.1
14.8
12.9
11.4
10.1
9.06

233

I

(1/ps)

A w /a27rw
(pm) (MHz)
1.70 1171
2.65 745.6
3.44 577.0
4.06 486.4
4.67 421.4
5.46 360.4
6.37 306.1
6.70 286.8
7.61 252.9
9.13 210.2
10.2 189.2
11.7 163.2
13.7 138.1
15.7 120.3
18.3 103.1
21.3 87.78
24.9 74.92
28.5 65.46
33.0 56.02
38.0 48.21
44.2 41.14
49.8 36.35
50.7 35.61
56.9 31.50
65.9 26.91
76.0 23.12
88.0 19.77
101 17.18
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126
124
112
105
87.9
73.0
74.2
70.2
56.2
53.6
47.3
41.6
40.8
37.1
32.5
30.2
28.1
25.4
23.4
21.8
21.5
19.4
15.5
10.9
8.39
6.51
4.63



Table B.8: T=252 K

w/27 F
(MHz) (1/ps)

994.8 306

A

1.97
2.33
2.68
3.14
3.65
4.20
4.85
5.66
6.56
6.70
7.62
9.13
10.2
11.7
13.7
15.7
18.3
21.3
24.9
28.5
33.0
38.1
44.2
49.8
50.8
56.9
65.9
76.0
88.0
101

237
194
163
144
132
121
110
96.1
84.1
75.8
68.2
62.6
62.0
51.5
49.0
42.2
37.9
32.1
28.6
26.3
23.4
20.0
17.4
18.5
15.1
13.0
11.1
9.44
8.04

A

1.97
2.33
2.68
3.14
3.65
4.20
4.85
5.66
6.56
6.70
7.62
9.14
10.2
11.7
13.7
15.7
18.3
21.3
24.7
28.5
33.0
38.1
44.2
49.8
50.8
56.9
65.9
76.0
8.0

w/2 ir(I
(MHz) (1/ps)
980.3
822.9
712.3
608.5
521.3
452.3
391.3
331.2
286.8
280.6
246.4
203.7
182.8
157.9
133.9
115.4
97.80
84.28
71.80
62.51
53.49
46.08
39.47
34.24
34.07
29.87
25.43
21.85

318
260
207
175
155
138
128
120
100
98.6
88.3
79.5
71.8
65.7
56.6
45.4
40.9
38.7
33.1
29.1
25.3
22.5
19.6
16.9
17.3
14.6
12.3
10.2

836.8
721.3
617.4
527.3
456.8
393.3
336.0
288.5
287.0
252.0
209.2
186.1
161.4
137.1
118.5
101.2
86.04
73.33
63.89
54.61
47.09
40.17
35.33
34.98
30.60
26.20
22.47
19.23
16.63 101 16.23 7.54
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Table B.10: T=256 K

A w/2wr P f
(pm) (MHz) (1/ps) ,
1.97 969.9 300
2.33 811.3 279
2.68 701.0 238
3.14 597.6 200
3.65 512.5 171
4.20 444.5 153
4.85 382.9 139
5.66 326.6 124
6.56 280.8 109
6.70 274.9 106
7.62 240.8 99.5
9.14 199.4 82.6
10.2 178.4 77.3
11.7 154.1 70.8
13.7 130.9 61.9
15.7 112.4 51.6
18.3 96.89 46.6
21.3 82.02 39.3
24.9 70.50 36.2
28.5 60.99 31.8
33.0 52.06 26.4
38.1 45.12 22.2
44.2 38.42 18.6
49.8 33.65 15.4
50.8 33.22 15.7
56.9 29.04 13.3
65.9 24.93 11.1
76.0 21.36 9.15
88.0 18.39 7.79
101 15.99 6.58

Table B.11: T=258 K

A w(/2zr
(pm) (MHz)
1.97
2.33
2.68
3.14
4.85
4.20
5.66
6.56
6.70
7.62
9.14
10.2
11.7
13.7
15.7
18.3
21.3
24.9
28.5
33.0
38.1
44.2
49.8
50.8
56.9
65.9
76.0
88.0
101

958.1
803.4
696.5
589.6
378.1
439.6
323.2
277.3
271.5
237.7
196.0
175.3
151.4
128.0
110.7
94.47
80.05
68.25
59.46
50.98
43.68
37.60
32.74
32.55
28.48
24.42
21.03
18.04
15.65

235

F

(1/ps)
349
290
239
220
145
163
134
117
115
103

89.7
80.8
72.3
62.1
53.7
45.0
38.3
31.7
27.7
23.7
19.7
17.0
15.3
13.8
12.8
10.7
8.51
6.95
5.90



Table B.12: T=260 K

A w/2F Fr
(pm) (MHz) (1/ps)

1.70 1102 373
2.65 696.4 229
3.44 533.1 208
4.06 449.2 181
4.67 386.0 178
5.46 327.1 150
6.37 278.6 116
6.70 264.5 112
7.61 228.9 95.4
9.13 190.6 87.5
10.2 169.0 79.7
11.7 146.7 66.7
13.7 124.3 60.2
15.7 106.7 51.2
18.3 91.44 42.1
21.3 78.33 34.1
24.9 66.80 30.4
28.5 58.07 23.8
33.0 49.59 24.4
38.1 42.91 16.4
44.2 36.59 13.9
49.8 32.15 12.3
50.8 31.91 12.7
56.9 27.89 9.89
65.9 24.02 8.29
76.0 20.66 6.76
88.0 17.80 5.78
101 15.49 4.84

Table B.13: T-262 K

A w/27r IF
(pm) (MHz) (1/ps)

2.65 694.9 240
2.97 613.1 243
3.44 527.7 212
4.06 444.9 192
4.67 381.1 179
5.46 320.9 151
6.37 274.1 122
7.44 232.7 104
8.52 202.9 94.6
9.14 188.3 98.5
10.2 167.3 80.9
11.7 144.6 66.4
13.7 123.0 61.8
15.7 105.5 49.6
18.3 90.66 40.1
21.3 76.92 32.3
24.9 65.36 26.9
28.5 56.99 23.0
33.0 48.78 19.7
38.1 41.96 16.0
44.2 35.98 13.0
49.8 31.70 11.2
50.8 31.15 11.3
56.9 27.60 9.17
65.9 23.66 7.35
76.0 20.55 6.09
88.0 17.70 5.00
101 15.27 4.30
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Table B.14: T=264 K
Table B.15: T=266 K

mA wM/2
S(pm) (MHz)
1.71
1.97
2.33
2.68
3.14
3.65
4.20
4.85
5.66
6.56
6.70
7.62
9.14
10.2
11.7
13.7
15.7
18.3
21.3
24.9
28.5
33.0
38.1
44.2
49.8
50.8
56.9
65.9
76.0
88.0
101

1095
922.0
769.8
665.6
562.5
481.5
415.8
357.3
304.2
260.6
257.3
225.0
184.0
163.9
142.0
120.4
103.9
88.94
75.49
64.32
56.10
48.02
41.31
35.47
31.29
30.75
27.28
23.49
20.31
17.51
15.19

F
(1/ps)

563
445
359
299
255
218
199
171
145
129
152
117
95.2
75.7
62.8
54.5
46.8
38.2
28.5
23.2
19.7
17.7
13.6
11.2
9.84
8.98
7.81
6.31
5.14
4.34
3.82

A
(pm)
*1.90
*2.20
*2.65
*2.97
*3.44
*4.06
*4.67
*5.46
*6.37
6.70
7.62
9.14
10.2
11.7
13.7
15.7
18.3
21.3
24.9
28.5
33.0
38.1
44.2
49.8
50.8
56.9
65.9
76.0
88.0
101

w/27r
(MHz)
909.1
755.1
652.8
555.2
475.9
411.0
353.2
299.7
256.4
249.6
219.8
181.4
160.9
139.4
117.8
102.1
86.73
73.80
63.04
54.97
47.11
40.61
34.84
31.05
30.28
27.05
23.26
20.21
17.38
15.02

(1/ps)
465
360
301
261
225
201
173
144
127
116

94.3
89.4
72.6
61.1
54.4
45.0
33.0
26.4
21.3
17.9
14.7
11.8
10.5
8.17
7.69
6.69
5.44
4.54
3.83
3.42
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Table B.16: T=268 K

A

(pm)
1.97
2.33
2.68
3.14
3.65
4.20
4.85
5.66
6.56
7.62
9.14
10.2
11.7
13.7
15.7
18.3
21.3
24.9
28.5
33.0
38.1
44.2
49.8
50.8
56.9
65.9
76.0
88.0
101

w /27r IF

(MHz) (1/ps)
885.7
742.6
643.6
547.5
469.0
404.9
346.8
294.4
251.5
216.4
177.7
159.0
137.2
116.2
100.3
86.02
73.35
62.61
54.52
46.78
40.28
34.77
30.71
30.24
26.86
23.02
20.09
17.22
14.96

484
393
307
258
219
202
174
150
123
117
81.4
73.9
56.0
47.7
39.9
29.3
23.6
18.9
16.1
12.8
9.76
7.76
6.84
7.00
5.75
4.68
4.00
3.45
3.17
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B.3 Differential Scanning Calorimetry Data

T
(K)

240.0
240.1
240.2
240.3
240.4
240.5
240.6
240.7
240.8
241.0
241.5
242.0
242.5
243.0
243.5
244.0
244.5
245.0
246.0
247.0
248.0
249.0
250.0
251.0

cp
(mJ/K)

2.6102
3.1218
2.4911
2.4149
3.3593
5.0192
5.8023
7.0529
8.1438
9.1694
10.2724
11.1201
11.9863
12.4167
12.6266
12.8145
12.9882
13.0744
13.1370
13.1471
13.1557
13.1745
13.1984
13.2194

T

(K)
252.0
253.0
254.0
255.0
256.0
257.0
258.0
259.0
260.0
261.0
262.0
263.0
264.0
265.0
266.0
267.0
268.0
269.0
270.0
271.0
272.0
273.0
274.0

239

cp
(mJ/K)

13.2358
13.2443
13.2593
13.2714
13.2721
13.2642
13.2516
13.2395
13.2336
13.2258
13.1782
13.1568
13.1388
13.1279
13.1103
13.0931
13.0812
13.0698
13.0607
13.0433
13.0313
13.0303
13.0188



240



Appendix C

Raw Data for TPP used in

Chapter 5

Below are listed the data used in shear spectral fits for TPP. Grating spacings preceded

by * are provided for completeness but were not used in construction of the spectra

because of systematic errors in their collection which led to unrealistic spectral fits.

Data at A = 0.48 pm, 1.52 pm, 3.14 lim, and 4.55 pm are from [66].

241



Table C.2: T=222 K
Table C.1: T=220 K

A w/27r r
(pm) (MHz) (I/ps)

1.52 574.3 107
2.33 379.6 60.2
3.14 277.4 78.0
3.65 246.9 38.9
4.55 190.3 45.6
7.62 112.5 22.7
9.14 92.72 23.0
10.2 83.40 20.1
11.7 72.45 17.2
13.7 61.61 15.9
15.7 53.34 14.7
21.3 39.77 11.0
24.9 34.19 9.36
*28.5 32.35 5.95
*33.0 27.78 7.48
*38.1 24.12 6.04
*44.2 20.21 5.41
*50.7 17.14 4.22

A w/2ir F

(Prm) (MHz) (1/ps)
1.52 563.2 128
2.33 372.0 70.0
3.14 269.7 38.0
3.65 241.8 40.1
4.55 183.5 48.3
7.62 110.7 30.7
9.14 91.69 26.5
10.2 82.51 23.0
11.7 71.27 21.3
13.7 60.46 19.0
15.7 52.25 16.0
18.3 45.11 15.1
21.3 38.54 13.1
24.9 33.17 9.36
*28.5 31.35 8.79
*33.0 27.31 6.49
*38.1 23.31 7.55
*44.2 19.88 7.01
*50.7 16.57 5.30
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Table C.3: T=224 K

A, w/27 IF
(pm) (MHz) (1/ps)
1.52 551.3 153
2.33 362.9 83.8
3.14 265.9 98.0
3.65 232.3 50.6
4.55 179.3 52.5
7.62 106.6 36.9
10.2 78.88 27.1
11.7 68.26 26.8
13.7 59.34 22.6
15.7 52.39 15.3
18.3 43.75 14.7
21.3 37.04 17.8
24.9 32.10 12.2
*28.5 30.39 9.02
*33.0 26.57 9.59
*38.1 22.71 9.06
*44.2 18.99 8.50
*50.7 16.01 5.69

Table C.4: T=226 K

A w/2ir ]r
(pm) (MHz) (1/ps)
0.48 1710 537
1.52 535.5 169
2.33 355.0 89.7
3.14 261.1 138
3.65 222.4 69.2
4.55 172.7 70.4
7.62 103.0 42.4
9.14 85.04 35.5
10.2 78.88 27.1
11.7 65.89 31.7
13.7 57.43 25.1
15.7 51.15 18.1
18.3 42.20 19.2
21.3 35.75 20.1
24.9 30.59 14.8
*33.0 25.66 9.19
*38.1 21.64 10.4
*44.2 18.48 7.45
*50.7 15.16 9.28
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Table C.5: T=228 K

A w/27r F
(pm) (MHz) (1/ps)
0.48 1654 602
1.52 523.0 194
2.33 345.6 105
3.14 253.8 124
3.65 224.3 68.5
4.55 167.0 91.1
7.62 98.94 49.4
9.14 81.86 39.0
10.2 72.61 40.5
11.7 63.61 36.1
13.7 54.82 28.1
15.7 47.33 23.6
18.3 40.11 23.9
21.3 35.92 22.1
24.9 29.35 20.4
*28.5 27.97 15.0
*33.0 24.61 12.4
*38.1 21.25 11.0
*44.2 17.50 11.1
*50.7 14.42 10.8

Table C.6: T=230 K

S(pm) (MHz) (1/ps)
0.48 1644 681
1.52 511.2 219
2.33 337.1 119
3.14 241.7 166
3.65 207.8 90.9
4.55 160.4 98.0
7.62 94.90 60.3
9.14 78.47 46.0
10.2 69.25 45.6
11.7 61.99 39.1
13.7 52.34 31.1
15.7 44.67 32.1
18.3 38.11 26.6
21.3 34.09 21.3
24.9 28.32 17.3
*28.5 26.38 19.5
*33.0 23.58 14.9
*38.1 20.03 12.8
*44.2 16.57 11.1
*50.7 14.02 11.8
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Table C.7: T=232 K

A w/27r F
(pm) (MHz) (1/ps)
0.48 1621 720
1.52 496.7 256
2.33 323.9 138
3.14 237.3 174
3.65 199.6 122
4.55 153.4 116
7.62 91.10 69.1
9.14 74.79 52.2
10.2 65.38 56.1
11.7 58.53 43.5
13.7 51.46 33.0
15.7 42.57 34.8
18.3 36.59 30.2
21.3 32.32 29.3
24.9 26.55 28.2
*28.5 24.40 25.2
*33.0 23.08 17.6
*38.1 18.06 18.8
*44.2 16.67 14.7
*50.7 13.01 18.0

Table C.8: T=234 K

A w/27 I
(pm) (MHz) (1/ps)
0.48 1556 746
1.52 480.3 302
2.33 317.4 155
3.14 229.0 204
3.65 190.5 142
4.55 146.2 101
7.62 85.64 81.2
9.14 71.11 60.4
10.2 61.17 62.6
11.7 56.66 46.7
13.7 48.78 37.5
15.7 40.18 41.4
18.3 33.23 34.3
21.3 27.28 46.4
24.9 24.81 32.6
*28.5 23.11 27.4
*33.0 21.32 27.0
*38.1 17.49 29.7
*44.2 14.83 18.8
*50.7 12.38 11.6
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Table C.9: T=236 K

A w/27 F
(pm) (MHz) (1/ps)

0.48 1563 772
1.52 462.5 339
2.33 306.1 182
3.14 220.1 234
3.65 183.0 158
4.55 139.3 110
7.62 79.87 114
9.14 66.26 65.3
10.2 57.14 66.8
11.7 53.47 53.4
13.7 45.77 41.3
15.7 37.54 44.8
18.3 31.01 43.9
21.3 24.86 65.0
24.9 22.88 54.3
*28.5 23.00 36.2
*33.0 20.54 28.0
*44.2 12.60 23.2
*50.7 12.21 22.5

Table C.10: T=238 K

A• w/27r
(nm) (MHz) (1/ps)
0.48 1554 942
1.52 443.4 376
2.33 297.5 211
3.14 210.2 262
3.65 175.0 166
4.55 131.9 119
7.62 76.14 103
9.14 62.40 68.5
10.2 54.87 67.5
11.7 49.33 62.1
13.7 43.02 45.1
15.7 33.89 48.1
21.3 20.98 62.8
24.9 21.04 69.9
*28.5 20.38 50.8
*33.0 15.26 68.5
*50.7 10.65 33.0
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Table C.11: T=240 K

A w/2w Fr
(pm) (MHz) (1/ps)
0.48 1500 929
1.52 428.9 413
2.33 271.4 253
3.14 196.2 280
3.65 164.3 175
4.55 120.0 134
7.62 72.09 108
9.14 58.06 72.1
10.2 51.92 61.2
11.7 45.03 61.0
13.7 39.17 52.8
15.7 35.88 43.8
18.3 27.99 46.1
21.3 20.59 75.3
24.9 19.55 58.8
28.5 19.15 44.5

Table C.12: T=242 K

A w/27 F
(pm) (MHz) (1/ps)
0.48 1463 1100
1.52 411.8 455
2.33 271.7 273
3.14 172.6 256
3.65 155.5 184
7.62 68.88 124
9.14 52.16 79.7
10.2 46.86 66.5
11.7 42.61 63.8
13.7 35.28 62.5
18.3 24.35 45.9

Table C.13: T=244 K

A w/27r F
(pm) (MHz) (1/ps)
0.48 1423 1113
1.52 392.8 504
2.33 250.9 378
3.14 165.9 320
3.65 146.3 173
7.62 64.08 131
9.14 44.54 109
10.2 35.45 164
11.7 36.56 79.1
13.7 33.03 41.1
15.7 27.03 88.5

Table C.14: T=246 K

A w/27r FI
(pm) (MHz) (1/ps)
0.48 1381 1283
1.52 375.0 554
2.33 237.6 355
3.14 160.5 304
9.14 38.69 204
10.2 23.66 300
11.7 31.50 99.9
15.7 24.81 98.8
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Table C.15: T=248 K

A w/2ir P
(pm) (MHz) (1/js)

0.48 1346 1427
1.52 351.3 641
2.33 225.3 383
3.14 136.6 400
9.14 37.16 197
10.2 22.02 304
11.7 26.75 158
15.7 21.04 110

Table C.16: T=250 K

•A w/2x r
(pm) (MHz) (1/ps)

0.48 1304 1728
1.52 331.6 703
2.33 216.3 416
3.14 145.5 382
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Appendix D

Raw Data used in Chapter 6

Below are tabulated the data for the shear frequency w/2xr and damping rate F used

in the analysis in chapter 6.
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Table D.2: 5-phenyl 4-ether, A =1.75 pm

Table D.1: 2BP 87 /oTP13, A =1.75 rpm

1'

(K)

220
222
224
226
228
230
232
236
238
240
242
244
246
248
250
252
254
256

I, I

w/27r
(MHz)

669.5
661.7
655.6
648.1
639.9
631.0
621.6
602.1
592.4
582.4
572.1
559.5
544.2
537.2
516.4
508.9
489.7
471.4

(/s)(1/ps)
31.9
33.4
35.2
42.7
45.6
57.2
56.2
68.4
80.4
105
117
118
137
164
170
206
199
230

T w/2xr F
(K) (MHz) (1/ps)

243 625.2 24.6
245 619.8 26.0
247 613.7 28.0
249 606.4 31.8
251 599.2 32.0
253 592.0 33.4
255 584.8 36.9
259 568.3 47.6
261 560.2 46.2
263 552.4 56.0
265 543.8 60.4
267 534.8 63.7
269 526.7 68.2
271 517.2 76.8
273 507.5 90.9
275 496.8 106
279 477.1 120
281 466.8 130
283 456.7 151
285 447.5 165
289 425.9 209
293 422.1 294
297 385.0 384
301 364.2 593
305 311.7 915
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Table D.4: DC704 K, A =2.35 pm

Table D.3: Ca(N0 3)2 . 4H 20, A =2.35 pm

T w/2 F
(K) (MHz) (1/ps)

213 743.7 27.6
215 737.8 27.9
217 730.8 31.7
219 723.0 35.9
221 713.8 48.3
223 707.0 37.6

L T w/2s F
(K) (MHz) (1/ps)
210 482.1 25.9
212 476.3 27.2
216 466.1 26.2
214 469.2 28.3
218 459.4 28.8
220 454.3 29.4
222 447.7 32.8
224 447.6 32.9
226 434.0 40.7
228 426.7 46.3
230 418.9 56.3
232 408.7 77.0
234 399.4 96.6
236 391.9 90.3
238 382.5 107
240 372.2 109
242 363.4 146
244 356.5 169
246 339.3 249
248 336.6 438
250 333.7 623
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Table D.5: diethyl phthalate, A =2.00 pm

T w/12 rF
(K) (MHz) (1/ps)

178 568.1 54.8
180 562.0 59.1
182 557.5 43.3
184 549.0 42.6
186 540.5 46.5
188 532.9 45.5
190 525.5 42.3
192 517.8 44.1
194 509.4 49.4
196 501.2 47.6
198 493.7 48.7
200 485.6 50.6
202 476.9 53.0
204 469.2 56.0
206 461.3 55.4
208 451.5 60.1
210 442.8 64.6
212 434.5 75.9
214 423.0 90.3
216 412.2 97.3
220 390.5 106
222 382.9 129
224 376.0 143
226 364.3 137

Table D.6: m-fluroaniline, A =1.75 pm

T w/2r F
(K) (MHz) (1/ps)

173 589.7 44.2
175 579.8 46.1
177 568.2 48.0
179 556.8 52.8
181 544.0 63.6
183 532.2 69.6
185 517.0 91.0
187 499.0 112
189 485.1 134
191 474.4 195
195 456.3 337
197 460.0 280
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Table D.7: salol, A =2.00 pm

T w/27r F
(K) (MHz)

218 497.5
220 497.8
222 491.5
224 484.7
226 478.5
228 471.9
230 465.1
230 465.2
232 458.4
234 451.1
236 443.7
238 435.9
240 427.8
242 419.4
244 410.7

I (i/ps) II
5.45
5.44
5.42
7.66
8.23
8.67
9.73
9.10
10.4
12.8
15.3
18.2
21.2
27.8
36.3

Table D.8: m-toluidine, A =1.75 pm

T w/27 F
(K) (MHz) (1/ps)
185 630.6
187
189
191
193
195
197
199
201
203

622.2
613.8
603.2
592.2
583.4
573.6
562.5
543.1
534.0

23.6
26.7
32.2
37.0
39.9
49.0
57.8
60.4

113.1
87.8
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Appendix E

VFT Parameters Used in

Chapter 6

Here we present the VFT data used for testing the shoving model, deriving the value

of Tg used in the analysis, and deriving the value of m used in the analysis. Except

where noted, all liquids were presented in the form

B
T = exp A + (E.1)T - To'

m-toluidine was represented by a base-10 form of this equation, i.e.

7 = 1 0 A+B/(T-To) .  (E.2)

The mechanical relaxation data for 5-phenyl 4-ether were fit to a simple exponen-

tial of the form
Ah*

7 = B exp( ) (E.3)RT
where B= 6.8 x 10-53 P, Ah* = 70322 cal, R is the ideal gas constant, and T is the

temperature [111].

Dielectric relaxation data for salol were represented in the form [117]

loglo0(r) = A + B/(T- To + ((T- To) 2 + CT)1/2 (E.4)
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where A=-2.157, B=123 K, C=3.984 K, and To = 261.2.

Table E.1: VFT parameters used in chapter 6. Liquid designations are:
(A) 2BP 8 7/oTP13 ; (B) Pure 2-benzylphenol; (C) Ca(NO 3)2 - 4H 20; (D) DC704;
(E) diethyl phthalate; (F) m-fluoroaniline; (G) m-toluidine; (H) triphenyl phosphite.

Liquid loglo(A) B To Tg derived m derived Method Ref
A -17.4 988 169.4 220 84 Dielectric [118]
B -16.5 2221 134.5 210 82 Mechanical [122]
C -43 2300 160 212 79 Dielectric [116]
D -14.6 619 176.5 214 95 Dielectric [70, 71]
D -26.8 988 135.7 211 80 Mechanical [70, 71]
E -21.2 3552 111 178 62 Dielectric [115]
F -14.7 870 149 172 127 Dielectric [120]
F -15.8 909 140 162 130 Mechanical [121]
G -19.2 981 138 184 84 Dielectric [119]
G -13.3 755.2 161.5 184 128 Mechanical [178]
H -26.4 3837 143.7 202 98 Dielectric [86]
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Appendix F

Haikus on the Glass Transition

Go, boson peak! Run!

My laser can not see you;

Are you really there?

Happy beta peak,

You hide all your mysteries

at high omega.

Alpha processes,

your spectrum is as wide as

Mount Fuji in spring.

Salol is fragile.

Crystallization sets in

Our data are crap.

Warm, 'tis the spring hare;

Now cold, slow as the tortoise:

Flow is arrested.
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Cunning like the fox

and stealthy like the ninja

shear waves elude me.

The pulse is too short.

My signal disappears like

fog burns off at dawn.

Words, once my servants,

Now reign as cruel masters.

Writing theses sucks.
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