2,584 research outputs found

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance

    UNSUPERVISED LEARNING FOR ANOMALY DETECTION IN REMOTE SENSING IMAGERY

    Get PDF
    Landfill fire is a potential hazard of waste mismanagement, and could occur both on and below the surface of active and closed sites. Timely identification of temperature anomalies is critical in monitoring and detecting landfill fires, to issue warnings that can help extinguish fires at early stages. The overarching objective of this research is to demonstrate the applicability and advantages of remote sensing data, coupled with machine learning techniques, to identify landfill thermal states that can lead to fire, in the absence of onsite observations. This dissertation proposed unsupervised learning techniques, notably variational auto-encoders (VAEs), to identify temperature anomalies from aerial landfill imagery. Twenty years of Landsat satellite observations at a number of landfills were examined for hotspots that may be associated with or leading to subsurface fires. The main contribution of this dissertation is to detect temperature anomalies in landfills using the state-of-the-art unsupervised deep learning technique of VAE based on both model reconstruction error and encoder module feature extraction. Additionally, a simple framework for assessing the health state of the landfill at any given time was established by using the clustering findings to generate a past behavior for each location in the landfill and eventually assigning it to one of four risk categories (No Risk, Low Risk, Moderate Risk, and High Risk). This framework can function as a monitoring system, inferring information such as past landfill temperature profiles, predicting possible heat elevation or smoldering events as new observations are added, and identifying the percentage of each of the four risk categories and how they increase or decrease over the lifetime of the landfill

    Dynamical Hyperspectral Unmixing with Variational Recurrent Neural Networks

    Full text link
    Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences. It reveals the dynamical evolution of the materials (endmembers) and of their proportions (abundances) in a given scene. However, adequately accounting for the spatial and temporal variability of the endmembers in MTHU is challenging, and has not been fully addressed so far in unsupervised frameworks. In this work, we propose an unsupervised MTHU algorithm based on variational recurrent neural networks. First, a stochastic model is proposed to represent both the dynamical evolution of the endmembers and their abundances, as well as the mixing process. Moreover, a new model based on a low-dimensional parametrization is used to represent spatial and temporal endmember variability, significantly reducing the amount of variables to be estimated. We propose to formulate MTHU as a Bayesian inference problem. However, the solution to this problem does not have an analytical solution due to the nonlinearity and non-Gaussianity of the model. Thus, we propose a solution based on deep variational inference, in which the posterior distribution of the estimated abundances and endmembers is represented by using a combination of recurrent neural networks and a physically motivated model. The parameters of the model are learned using stochastic backpropagation. Experimental results show that the proposed method outperforms state of the art MTHU algorithms

    Corn Yield Prediction based on Remotely Sensed Variables Using Variational Autoencoder and Multiple Instance Regression

    Full text link
    In the U.S., corn is the most produced crop and has been an essential part of the American diet. To meet the demand for supply chain management and regional food security, accurate and timely large-scale corn yield prediction is attracting more attention in precision agriculture. Recently, remote sensing technology and machine learning methods have been widely explored for crop yield prediction. Currently, most county-level yield prediction models use county-level mean variables for prediction, ignoring much detailed information. Moreover, inconsistent spatial resolution between crop area and satellite sensors results in mixed pixels, which may decrease the prediction accuracy. Only a few works have addressed the mixed pixels problem in large-scale crop yield prediction. To address the information loss and mixed pixels problem, we developed a variational autoencoder (VAE) based multiple instance regression (MIR) model for large-scaled corn yield prediction. We use all unlabeled data to train a VAE and the well-trained VAE for anomaly detection. As a preprocess method, anomaly detection can help MIR find a better representation of every bag than traditional MIR methods, thus better performing in large-scale corn yield prediction. Our experiments showed that variational autoencoder based multiple instance regression (VAEMIR) outperformed all baseline methods in large-scale corn yield prediction. Though a suitable meta parameter is required, VAEMIR shows excellent potential in feature learning and extraction for large-scale corn yield prediction

    A Debiasing Variational Autoencoder for Deforestation Mapping

    Get PDF
    Deep Learning (DL) algorithms provide numerous benefits in different applications, and they usually yield successful results in scenarios with enough labeled training data and similar class proportions. However, the labeling procedure is a cost and time-consuming task. Furthermore, numerous real-world classification problems present a high level of class imbalance, as the number of samples from the classes of interest differ significantly. In various cases, such conditions tend to promote the creation of biased systems, which negatively impact their performance. Designing unbiased systems has been an active research topic, and recently some DL-based techniques have demonstrated encouraging results in that regard. In this work, we introduce an extension of the Debiasing Variational Autoencoder (DB-VAE) for semantic segmentation. The approach is based on an end-to-end DL scheme and employs the learned latent variables to adjust the individual sampling probabilities of data points during the training process. For that purpose, we adapted the original DB-VAE architecture for dense labeling in the context of deforestation mapping. Experiments were carried out on a region of the Brazilian Amazon, using Sentinel-2 data and the deforestation map from the PRODES project. The reported results show that the proposed DB-VAE approach is able to learn and identify under-represented samples, and select them more frequently in the training batches, consequently delivering superior classification metrics

    Advancing Land Cover Mapping in Remote Sensing with Deep Learning

    Get PDF
    Automatic mapping of land cover in remote sensing data plays an increasingly significant role in several earth observation (EO) applications, such as sustainable development, autonomous agriculture, and urban planning. Due to the complexity of the real ground surface and environment, accurate classification of land cover types is facing many challenges. This thesis provides novel deep learning-based solutions to land cover mapping challenges such as how to deal with intricate objects and imbalanced classes in multi-spectral and high-spatial resolution remote sensing data. The first work presents a novel model to learn richer multi-scale and global contextual representations in very high-resolution remote sensing images, namely the dense dilated convolutions' merging (DDCM) network. The proposed method is light-weighted, flexible and extendable, so that it can be used as a simple yet effective encoder and decoder module to address different classification and semantic mapping challenges. Intensive experiments on different benchmark remote sensing datasets demonstrate that the proposed method can achieve better performance but consume much fewer computation resources compared with other published methods. Next, a novel graph model is developed for capturing long-range pixel dependencies in remote sensing images to improve land cover mapping. One key component in the method is the self-constructing graph (SCG) module that can effectively construct global context relations (latent graph structure) without requiring prior knowledge graphs. The proposed SCG-based models achieved competitive performance on different representative remote sensing datasets with faster training and lower computational cost compared to strong baseline models. The third work introduces a new framework, namely the multi-view self-constructing graph (MSCG) network, to extend the vanilla SCG model to be able to capture multi-view context representations with rotation invariance to achieve improved segmentation performance. Meanwhile, a novel adaptive class weighting loss function is developed to alleviate the issue of class imbalance commonly found in EO datasets for semantic segmentation. Experiments on benchmark data demonstrate the proposed framework is computationally efficient and robust to produce improved segmentation results for imbalanced classes. To address the key challenges in multi-modal land cover mapping of remote sensing data, namely, 'what', 'how' and 'where' to effectively fuse multi-source features and to efficiently learn optimal joint representations of different modalities, the last work presents a compact and scalable multi-modal deep learning framework (MultiModNet) based on two novel modules: the pyramid attention fusion module and the gated fusion unit. The proposed MultiModNet outperforms the strong baselines on two representative remote sensing datasets with fewer parameters and at a lower computational cost. Extensive ablation studies also validate the effectiveness and flexibility of the framework

    Unsupervised Doppler Radar Based Activity Recognition for e-Healthcare

    Get PDF
    Passive radio frequency (RF) sensing and monitoring of human daily activities in elderly care homes is an emerging topic. Micro-Doppler radars are an appealing solution considering their non-intrusiveness, deep penetration, and high-distance range. Unsupervised activity recognition using Doppler radar data has not received attention, in spite of its importance in case of unlabelled or poorly labelled activities in real scenarios. This study proposes two unsupervised feature extraction methods for the purpose of human activity monitoring using Doppler-streams. These include a local Discrete Cosine Transform (DCT)-based feature extraction method and a local entropy-based feature extraction method. In addition, a novel application of Convolutional Variational Autoencoder (CVAE) feature extraction is employed for the first time for Doppler radar data. The three feature extraction architectures are compared with the previously used Convolutional Autoencoder (CAE) and linear feature extraction based on Principal Component Analysis (PCA) and 2DPCA. Unsupervised clustering is performed using K-Means and K-Medoids. The results show the superiority of DCT-based method, entropy-based method, and CVAE features compared to CAE, PCA, and 2DPCA, with more than 5\%-20\% average accuracy. In regards to computation time, the two proposed methods are noticeably much faster than the existing CVAE. Furthermore, for high-dimensional data visualisation, three manifold learning techniques are considered. The methods are compared for the projection of raw data as well as the encoded CVAE features. All three methods show an improved visualisation ability when applied to the encoded CVAE features
    corecore