1,150 research outputs found

    Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics

    Get PDF
    First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news.Web of Science421049

    What is the Connection Between Issues, Bugs, and Enhancements? (Lessons Learned from 800+ Software Projects)

    Full text link
    Agile teams juggle multiple tasks so professionals are often assigned to multiple projects, especially in service organizations that monitor and maintain a large suite of software for a large user base. If we could predict changes in project conditions changes, then managers could better adjust the staff allocated to those projects.This paper builds such a predictor using data from 832 open source and proprietary applications. Using a time series analysis of the last 4 months of issues, we can forecast how many bug reports and enhancement requests will be generated next month. The forecasts made in this way only require a frequency count of this issue reports (and do not require an historical record of bugs found in the project). That is, this kind of predictive model is very easy to deploy within a project. We hence strongly recommend this method for forecasting future issues, enhancements, and bugs in a project.Comment: Accepted to 2018 International Conference on Software Engineering, at the software engineering in practice track. 10 pages, 10 figure

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de Economía y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    Predicting Cyber Events by Leveraging Hacker Sentiment

    Full text link
    Recent high-profile cyber attacks exemplify why organizations need better cyber defenses. Cyber threats are hard to accurately predict because attackers usually try to mask their traces. However, they often discuss exploits and techniques on hacking forums. The community behavior of the hackers may provide insights into groups' collective malicious activity. We propose a novel approach to predict cyber events using sentiment analysis. We test our approach using cyber attack data from 2 major business organizations. We consider 3 types of events: malicious software installation, malicious destination visits, and malicious emails that surpassed the target organizations' defenses. We construct predictive signals by applying sentiment analysis on hacker forum posts to better understand hacker behavior. We analyze over 400K posts generated between January 2016 and January 2018 on over 100 hacking forums both on surface and Dark Web. We find that some forums have significantly more predictive power than others. Sentiment-based models that leverage specific forums can outperform state-of-the-art deep learning and time-series models on forecasting cyber attacks weeks ahead of the events

    Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction

    Full text link
    Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in China), we are able to collect large-scale taxi demand data continuously. How to utilize such big data to improve the demand prediction is an interesting and critical real-world problem. Traditional demand prediction methods mostly rely on time series forecasting techniques, which fail to model the complex non-linear spatial and temporal relations. Recent advances in deep learning have shown superior performance on traditionally challenging tasks such as image classification by learning the complex features and correlations from large-scale data. This breakthrough has inspired researchers to explore deep learning techniques on traffic prediction problems. However, existing methods on traffic prediction have only considered spatial relation (e.g., using CNN) or temporal relation (e.g., using LSTM) independently. We propose a Deep Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relations. Specifically, our proposed model consists of three views: temporal view (modeling correlations between future demand values with near time points via LSTM), spatial view (modeling local spatial correlation via local CNN), and semantic view (modeling correlations among regions sharing similar temporal patterns). Experiments on large-scale real taxi demand data demonstrate effectiveness of our approach over state-of-the-art methods.Comment: AAAI 2018 pape

    Portable Tor Router: Easily Enabling Web Privacy for Consumers

    Full text link
    On-line privacy is of major public concern. Unfortunately, for the average consumer, there is no simple mechanism to browse the Internet privately on multiple devices. Most available Internet privacy mechanisms are either expensive, not readily available, untrusted, or simply provide trivial information masking. We propose that the simplest, most effective and inexpensive way of gaining privacy, without sacrificing unnecessary amounts of functionality and speed, is to mask the user's IP address while also encrypting all data. We hypothesized that the Tor protocol is aptly suited to address these needs. With this in mind we implemented a Tor router using a single board computer and the open-source Tor protocol code. We found that our proposed solution was able to meet five of our six goals soon after its implementation: cost effectiveness, immediacy of privacy, simplicity of use, ease of execution, and unimpaired functionality. Our final criterion of speed was sacrificed for greater privacy but it did not fall so low as to impair day-to-day functionality. With a total cost of roughly $100.00 USD and a speed cap of around 2 Megabits per second we were able to meet our goal of an affordable, convenient, and usable solution to increased on-line privacy for the average consumer.Comment: 6 pages, 5 figures, IEEE ICCE Conferenc

    Transparent Forecasting Strategies in Database Management Systems

    Get PDF
    Whereas traditional data warehouse systems assume that data is complete or has been carefully preprocessed, increasingly more data is imprecise, incomplete, and inconsistent. This is especially true in the context of big data, where massive amount of data arrives continuously in real-time from vast data sources. Nevertheless, modern data analysis involves sophisticated statistical algorithm that go well beyond traditional BI and, additionally, is increasingly performed by non-expert users. Both trends require transparent data mining techniques that efficiently handle missing data and present a complete view of the database to the user. Time series forecasting estimates future, not yet available, data of a time series and represents one way of dealing with missing data. Moreover, it enables queries that retrieve a view of the database at any point in time - past, present, and future. This article presents an overview of forecasting techniques in database management systems. After discussing possible application areas for time series forecasting, we give a short mathematical background of the main forecasting concepts. We then outline various general strategies of integrating time series forecasting inside a database and discuss some individual techniques from the database community. We conclude this article by introducing a novel forecasting-enabled database management architecture that natively and transparently integrates forecast models
    corecore