2,155 research outputs found

    A Useful Form of the Abel Bound and Its Application to Estimator Threshold Prediction

    No full text
    International audienceThis correspondence investigates the Abel bound in order to predict the estimators mean square error (mse) threshold effect. A tractable and computationally efficient form of this bound is derived. This form combines the Chapman–Robbins and the Cramér–Rao bounds. This bound is applied to a data-aided carrier frequency estimation problem for which a closed-form expression is provided. An indicator of the signal-to-noise ratio threshold is proposed. A comparison with recent results on the Barankin bound (Chapman–Robbins version) shows the superiority of the Abel-bound version to predict the mse threshold without increasing the computational complexity

    On the influence of detection tests on deterministic parameters estimation

    Get PDF
    In non-linear estimation problems three distinct regions of operation can be observed. In the asymptotic region, the Mean Square Error (MSE) of Maximum Likelihood Estimators (MLE) is small and, in many cases,close to the Cramer-Rao bound (CRB). In the a priory performance region where the number of independent snapshots and/or the SNR are very low, the MSE is close to that obtained from the prior knowledge about the problem. Between these two extremes, there is an additional transition region where MSE of estimators deteriorates with respect to CRB. The present paper provides exemples of improvement of MSE prediction by CRB, not only in the transition region but also in the a priori region, resulting from introduction of a detection step, which proves that this renement in MSE lower bounds derivation is worth investigating

    Weiss–Weinstein Bound for Data-Aided Carrier Estimation

    No full text
    International audienceThis letter investigates Bayesian bounds on the mean-square error (MSE) applied to a data-aided carrier estimation problem. The presented bounds are derived from a covariance inequality principle: the so-calledWeiss andWeinstein family. These bounds are of utmost interest to find the fundamental MSE limits of an estimator, even for critical scenarios (low signal-to-noise ratio and/or low number of observations). In a data-aided carrier estimation problem, a closed-form expression of the Weiss–Weinstein bound (WWB) that is known to be the tightest bound of the Weiss and Weinstein family is given. A comparison with the maximum likelihood estimator and the other bounds of the Weiss and Weinstein family is given. The WWB is shown to be an efficient tool to approximate this estimator's MSE and to predict the well-known threshold effect

    A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family

    No full text
    International audienceMinimal bounds on the mean square error (MSE) are generally used in order to predict the best achievable performance of an estimator for a given observation model. In this paper, we are interested in the Bayesian bound of the Weiss–Weinstein family. Among this family, we have Bayesian Cramér-Rao bound, the Bobrovsky–MayerWolf–Zakaï bound, the Bayesian Bhattacharyya bound, the Bobrovsky–Zakaï bound, the Reuven–Messer bound, and the Weiss–Weinstein bound. We present a unification of all these minimal bounds based on a rewriting of the minimum mean square error estimator (MMSEE) and on a constrained optimization problem. With this approach, we obtain a useful theoretical framework to derive new Bayesian bounds. For that purpose, we propose two bounds. First, we propose a generalization of the Bayesian Bhattacharyya bound extending the works of Bobrovsky, Mayer–Wolf, and Zakaï. Second, we propose a bound based on the Bayesian Bhattacharyya bound and on the Reuven–Messer bound, representing a generalization of these bounds. The proposed bound is the Bayesian extension of the deterministic Abel bound and is found to be tighter than the Bayesian Bhattacharyya bound, the Reuven–Messer bound, the Bobrovsky–Zakaï bound, and the Bayesian Cramér–Rao bound. We propose some closed-form expressions of these bounds for a general Gaussian observation model with parameterized mean. In order to illustrate our results, we present simulation results in the context of a spectral analysis problem

    Hierarchies of Frequentist Bounds for Quantum Metrology: From Cram\'er-Rao to Barankin

    Full text link
    We derive lower bounds on the variance of estimators in quantum metrology by choosing test observables that define constraints on the unbiasedness of the estimator. The quantum bounds are obtained by analytical optimization over all possible quantum measurements and estimators that satisfy the given constraints. We obtain hierarchies of increasingly tight bounds that include the quantum Cram\'er-Rao bound at the lowest order. In the opposite limit, the quantum Barankin bound is the variance of the locally best unbiased estimator in quantum metrology. Our results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions and identify threshold behavior in quantum measurements with mixed states, caused by finite data.Comment: 6+7 pages, 1+1 figure

    Statistics of the MLE and Approximate Upper and Lower Bounds - Part 1: Application to TOA Estimation

    Get PDF
    In nonlinear deterministic parameter estimation, the maximum likelihood estimator (MLE) is unable to attain the Cramer-Rao lower bound at low and medium signal-to-noise ratios (SNR) due the threshold and ambiguity phenomena. In order to evaluate the achieved mean-squared-error (MSE) at those SNR levels, we propose new MSE approximations (MSEA) and an approximate upper bound by using the method of interval estimation (MIE). The mean and the distribution of the MLE are approximated as well. The MIE consists in splitting the a priori domain of the unknown parameter into intervals and computing the statistics of the estimator in each interval. Also, we derive an approximate lower bound (ALB) based on the Taylor series expansion of noise and an ALB family by employing the binary detection principle. The accurateness of the proposed MSEAs and the tightness of the derived approximate bounds are validated by considering the example of time-of-arrival estimation

    Hybrid Lower Bound On The MSE Based On The Barankin And Weiss-Weinstein Bounds

    No full text
    International audienceThis article investigates hybrid lower bounds in order to predict the estimators mean square error threshold effect. A tractable and computationally efficient form is derived. This form combines the Barankin and the Weiss-Weinstein bounds. This bound is applied to a frequency estimation problem for which a closed-form expression is provided. A comparison with results on the hybrid Barankin bound shows the superiority of this new bound to predict the mean square error threshold
    • …
    corecore