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maximum likelihood estimator (MLE) is unable to attain the R T, region - %
Cramer-Rao lower bound at low and medium signal-to-noise [ S © T N g S c
ratios (SNR) due the threshold and ambiguity phenomena. In ’je';’iig: f

order to evaluate the achieved mean-squared-error (MSE) at
those SNR levels, we propose new MSE approximations (MSEA) 4
and an approximate upper bound by using the method of intervh =
estimation (MIE). The mean and the distribution of the MLE are
approximated as well. The MIE consists in splitting thea priori
domain of the unknown parameter into intervals and computing Apriori - Threshold
the statistics of the estimator in each interval. Also, we d&ve region region
an approximate lower bound (ALB) based on the Taylor series
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expansion of noise and an ALB family by employing the binary Por  SNR Py Por Pami SNR Py Py
detection principle. The accurateness of the proposed MSEfand b
the tightness of the derived approximate bounds are validated (@) (b)

by considering the example of time-of-arrival estimation. Figure 1. SNR regions (& priori, threshold and asymptotic regions for non-
Index Terms—Nonlinear estimation, threshold and ambiguity oscillating ACRs (b)A priori, ambiguity and asymptotic regions for oscillating

phenomena, maximum likelihood estimator, mean-squaredreor, ACR? € %FLB' ev: MSE of uniform distribution iri') thea pri‘i’)ri domai”d
’ g o ! ' e: achievable MSEppr, pam1, pam2, pas: @ priori, begin-ambiguity, end-
upper and lowers bounds, time-of-arrival. ambiguity and asymptotic thresholds).

|. INTRODUCTION

ONLINEAR estimation of deterministic parameters suf-
N fers from the threshold effedtl/[2211]. This effect means
that for a signal-to-noise ratio (SNR) above a given thré&sho
estimation can achieve the Cramer-Rao lower bound (CRL
whereas for SNRs lower than that threshold, estimation

teriorates Qrastlcally_ u.ntll the_ estimate becomes umfy)rmcan be split, as shown Figl 1(b), into five regions:
distributed in thea priori domain of the unknown parameter. L .
1) A priori region.

As depicted in Fig.11(a), the SNR axis can be split into threez) A priori-ambiguity transition region.
regions according to the achieved mean-squared-error IMSE3) Ambiguity region.
1) Apriori region: Region in which the estimate is uniformly 4) Ambiguity-asymptotic transition region.
distributed in thea priori domain of the unknown param- 5) Asymptotic region.
eter (region of low SNRs). The MSE achieved in the ambiguity region is determined by
2) Threshold region: Region of transition between #e ine envelope of the ACR. In Figsl 1(a) dAd 1(b), we denote by
priori and asymptotic regions (region of medium SNRS)OPT, Pami, Pame and pas the a priori, begin-ambiguity, end-
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3) Asymptotic region: Region in which the CRLB is
achieved (region of high SNRs).

ddition, if the autocorrelation (ACR) of the signal gang

e information about the unknown parameter is oscillating

'en estimation will be affected by the ambiguity phenonreno
, pp. 119] and a new region will appear so the SNR axis
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parameters in order to be used as benchmarks and to ded the AUBs using McAulay’s approach are very tight in
scribe the behavior of the MSE in the threshold reg@ [16fhe asymptotic and threshold regions. Both approachesean b
Some upper bounds (UB) have also been derived like theed to determine accurately the asymptotic region. Variou
Seidman UB |l_1|7]. It will suffice to mention herEﬂlE 18Jestimators are considered in the aforecited referencese Mo
the Cramer-Rao, Bhattacharyya, Chapman-Robbins, Barantdéchnical details about the MIE are given in Jed. IV.
and Abel deterministic LBs, the Cramer-Rao, Bhattacharyya \we consider the estimation of a scalar deterministic parame
Bobrovsky-MayerWolf-Zakai, Bobrovsky-Zakai, and Weisster, We employ the MIE to propose new approximations (rather
Weinstein Bayesian LBs, the Ziv-Zakai Bayesian LB (ZZLB}han AUBs) of the MSE achieved by the MLE, which are
[2] with its improved versions: Bellini-Tartaral[4], Chaka highly accurate, and a very tight AUB. The MLE mean and
Ziv-Zakai [19], Weinstein [20] (approximation of Bellini- probability density function (PDF) are approximated aslwel
Tartara), and Bell-Steinberg-Ephraim-VanTreks [21] @en More details about our contributions with regards to the MIE
alization of Ziv-Zakai and Bellini-Tartara), and the Reove are given in Sec§_IV and]V. We derive an approximate LB
Messer LB [22] for problems of simultaneously determimisti(ALB) tighter than the CRLB based on the second order Taylor
and Bayesian parameters. series expansion of noise. Also, we utilize the binary deiac
The CRLB ] gives the minimum MSE achievable byrinciple to derive some ALBs; the obtained bounds are very
an unbiased estimator. However, it is very optimistic faw lo tight. The theoretical results presented in this paper ppdi-a
and moderate SNRs and does not indicate the presence@ile to any estimation problem satisfying the system model
the threshold and ambiguity regions. The Barankin LB (BLBptroduced in Sed.lll. In order to illustrate the accurassnef
[24] gives the greatest LB of an unbiased estimator. Howevéte proposed MSEAs and the tightness of the derived bounds,
its general form is not easy to compute for most interestingg consider the example of TOA estimation with baseband
problems. A useful form of this bound, which is much tighteand passband pulses.
than the CRLB, is derived il [25] and generalized to vector The materials presented in this paper compose the first part
cases in[[26]. The bound ih_[25] detects the asymptotic regiof our work divided in two partd [45, 46].
much below the true one. Some applications of the BLB canTpe rest of the paper is organized as follows. In $gc. I

be found in [3/5[8l19, 27, 28]. we introduce our system model. In SEC] Il we describe the
The Bayesian ZZLB family[[2[14, 19-21] is based on théhreshold and ambiguity phenomena. In $eg. IV we deal with
minimum probability of error of a binary detection problemthe MIE. In Sec 'V we propose an AUB and an MSEA. In Sec.
The ZZLBs are very tight; they detect the ambiguity regidillwe derive some ALBs. In SeC. VIl we consider the example
roughly and the asymptotic region accurately. Some apptif TOA estimation and discuss the obtained numerical result

cations of the ZZLBs, discussions and comparison to other
bounds can be found in [10-12,]29-35]. Il. SYSTEM MODEL

In [@ pp. 627-637], Wozencraft considered time-of-ativ N this section we consider the general estimation problem
(TOA) estimation with cardinal sine waveforms and employe®f a deterministic scalar parameter (Sec.1I-A) and theipart
the method of interval estimation (MIE) to approximate thelar case of TOA estimation (Sec. 1I-B).

MSE of the MLE. The MIElﬁB, pp. 58-62] consists in splitting
the a priori domain of the unknown parameter into intervalé. Deterministic scalar parameter estimation

and computing the probability that the estimate falls in@gi | et © be a deterministic unknown parameter with, =

interval, and the estimator mean and variance in each &iteryg,  ©,] denoting itsa priori domain. We can write theth,
According to [18[ 37], the MIE was first used [n [38] 39] befor¢; — 1,... ) observation as:

Wozencraft [36] and others introduced some modifications

later. The approach in_[B6] is imitated in_[18,! 37] 40} 41] for ri(t) = asi(t; ©) + (1) (1)
frequency estimation and in_[42] for angle-of-arrival (ADA wheres; (¢; ©) is theith useful signal carrying the information
estimation. The ACRs in [1 E3E| 401-42] have then ©, o is a known positive gain, and;(¢) is an additive

special shape of a cardinal sine (oscillating baseband Wiffhite Gaussian noise (AWGN) with two-sided power spectral
the mainlobe twice wider than the sidelobes); this limitati density (PSD) ofXe; i (t), - - - ,w;(t) are independent.

makes their approach inapplicable on other shapesl]ln [1],Denote by E,(0) = ZI eroo +2(t:0)dt the sum of the
r - i=1J—0o0 Vi \"

McAulay considered TOA estimation with carrier-modulategner ies ofry (£:0),- - 21(£:0), by & and i the first and
pulses (oscillating passband ACRs) and used the MIE toeeriv 9 21830), 00, T1\i30), DY & r

. ) econd derivatives of w.rt. §, and by E, ® and P the
an approximate UB (AUB); the approach of McAulay can b§ ectation, real part and probability operators respelgti
applied to any oscillating ACR. Indeed, it is followed (inde xP 1on, P b ity op ot

pendently apparently) i @544] for AOA estimation angrom (??) we can write the log-likelihood function @ as:
in [|_4L_1|] (for frequency estimation as mentioned above) wliere A9) = S [Er +a2E, () — 20X, r(9)} )
is compared to Wozencraft's approach. The ACR considered 0 '

in [43, [44] has an arbitrary oscillating baseband shape (dwiered € Do denotes a variable associated wéth and

to the use of non-regular arrays), meaning that it looks dike

I 00
cardinal sine but with some strong sidelobes arbitraritpted.  x_ (0) = Z /+ ot O (6t = (6, 0) +w(6) (3)
The MSEAs based on Wozencraft's approach are very accurate - -



is the crosscorrelation (CCR) with respect to (w.iét.with  Now, we define the ECRLB as:
No/2 1

I 400
e Q) =—- " = 15
R0.0)= [ sose)d @ “O) =" eRin 0 e
=1 where
denoting the ACR w.r.t(4,6’) and R{ér (0,0
52() = - M. (9.0)} (16)
I 400 s
w(f) = Z/ si(t; 0)w; (t)dt (5) denotes the normalized curvaturecgf (4, ©) atf = ©. From
=177 (10), (??) and [16), we have:
being a colored zero-mean Gaussian noise of covariance B2(0) = 2(0) + 472 f2(O) 17)
I H .
Ow(979/) _ ZE{wl(ﬁ)wl(G/)} _ %RS(G,G/) (6) 2) BLB: The BLB can be written aQZS]
i=1 cg=(0©-0)'D1(©-0) (18)
1) MLE, CRLB and envelope CRLB: By assuming?,(6) = \where
E, in (??), that is, E;(0) is independent off, we can -
respectively write the MLE and the CRLB & as [23, pp. © (O, 01 140 601---0ny)
39]: D = (dij)lij=ni, -y
é = argmast,r(H) (7) with Gm,--- ,9nN (nl <0,ny >0, 60y = @) denotingN
0cDe testpoints in thea priori domain of®, an
~1 —No/2 1 ,
c(®) = = = = = 8 _oE:(©) _ 1
) E{A()lo=0} a?Ry(©,0) pB(O) ®) doo="Np = o)
where do,izo = dio = 775 [1s(0,6;) — Rs(©,0)]
) a’E; ©) di0,j#0 = ﬁz/z[Rs(@', 0;) — Rs(0:,0) — Rs(6;,0) + Es].
N‘gz(@ o) 3) Maximum MSE: The maximum MSE
2 o S )
pi(O) = T B (10) ey =0 4+ (0 — uy)? (19)
denote the SNR and the normalized curvaturerofd, ©) at With py = 2522 andof, = W is achieved when the

0 = © respectively. UnlikeZ, (), 2,(0, ©) may depend on estimator becomes uniformly distributed e [30, [34].

O (e.g, AOA estimation[[47]). The CRLB if{8) is inversely The system model considered in this subsection is satisfied

proportional to the curvature of the ACR@t= ©. Sometimes for various estimation problems such as TOA, AOA, phase,

R,(0,0) is oscillating w.r.td. Then, if the SNR is sufficiently frequency and velocity estimation. Therefore, the thécat

high (resp. relatively low) the maximum of the CCR id? results presented in this paper are valid for the different

will fall around the global maximum (resp. the local maximapnentioned parameters. TOA is just considered as an example

of Rs(#,©) and the MLE in[[¥) will (resp. will not) achieve to validate the accurateness and the tightness of our MSEAs

the CRLB. We will see in Sed_MIl that the MSE achieveénd upper and lowers bounds.

at medium SNRs is inversely proportional to the curvature of

the envelope of the ACR instead of the curvature of the ACR Example: TOA estimation

I[I%S]If\}vzov\finacggﬁ:]e;éil?\;vs tﬂzegr?\igfon;enIérF]e?_Vén(ESCSITB?QUIt With TOA estimation based on one observatidn=£ 1),
s1(t;0) in (??) becomess; (t;©) = s(t — ©) where s(t)

Denote by f the frequendy relative to 6 and define the genotes the transmitted signal a@l represents the delay
Fourier transform (FT), the mean frequency and the complgsroduced by the channel. Accordingly, we can write the

envelope w.r.t.f.(©) of Rs(0,©) respectively by ACR in (?9) as R,(0,0') = R,(0 — ¢') where R,(0) =
0, . [ s(t + 0)s(t)dt, and the CCR inT?) as:
_ —j2nf(6—-©
Tl =, 00 v X () = a6~ ©) + w(0). 20)
£.(0) = [ PR{FR.(f)}df (12) The CRLBc(O)in @), ECRLBc,(©) in (??), mean frequency
¢ 0+°° R{Fr.(f)}df f-(©) in (I2), normalized curvature® (©) in (I0) ands?(O)

in (I8) become now all independent®f Furthermorej3? and

3% denote now the mean quadratic bandwidth (MQBW) and
the envelope MQBW (EMQBW) 0§(t) respectively.

. . The CRLB in [8) is much smaller than the ECRLB 7

— Rs(0,0) = —R{ép,(0,0)} +47°fZ(©)Es.  (14) pecause the MQBW in@) is much larger than the EMQBW

R(0,0) = R{e> 00Oy (9,0)}.  (13)

In Appendix[A we show that:

2E.g, f is in seconds (resp. Hz) for frequency (resp. TOA) estimmatio 3We can show thafs(6) = _Rs(67 0O) if Es(0) is independent frond.
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Figure 2. Normalized ACRR(0 — ©) and 1000 realizations OM[[@,X((:))] per SNR p = 10, 15 and 20 dB); Gaussian pulse modulatedfby® = 0
ns,Tw = 0.6 ns, Dg = [—1.5,1.5|T (a) fe = 0 GHz (b) fc =4 GHz (c) f. = 8 GHz.
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in (@8). In fact, for a signal occupying the whole band from ‘ Je

3.1 to 10.6 GH3 (fe = 62.85 GHz, bandwidthB = 7.5 10 76 123 1.61 1000 0
GHz), we obtaing? = TE- ~ 185 GHZ, 47%f? ~ 102, 0] 15 43 46 1.10 1000 0
2 ~ 1152 andc ~ ¢=. Therefore, the estimation performance 2 e e Lo 1000 0
g5 = 115; ande ~ 3. ore, Imation p 10 12 | 196 | 15.81 T3 59
seriously deteriorates at relatively low SNRs when the EBRL 4] 15 7 31 4.47 985 8
is achieved instead of the CRLB due to ambiguity. 20 4 4 1.01 1000 0
10 6.3 198 31.56 481 199

8 | 15 3.5 50 14.35 838 75

I11. THRESHOLD AND AMBIGUITY PHENOMENA 20 2 14 7.14 987 7

In this section we explain the physical origin of the thresh-

- . . . . Table |
ol_d and ambiguity phenomena by considering TOA e_stlmat|0r¢R|_B SQRTZ (PS), SIMULATED RMSE /25 (PS), RMSETO CRLB
with UWB pulsed as an example. The transmitted signal SQRTRATIO /5, AND NUMBER (Np, N1) OF THE M SAMPLES
E, —ant2 FALLING AROUND THE MAXIMA NUMBER O AND 1,FOR f. = 0, 4 AND 8
s(t) = 25qrtT_e TE cos(2m fot) (21) GHz, AND p = 10, 15AND 20DB.

w

is a Gaussian pulse of widffi, modulated by a carrief.. We
consider three values of. (f. = 0, 4 and 8 GHz) and three

values of the SNR/(= 10, 15 and 20 dB) per consideregd. the CRLB is approximately achieved fpr= 20 and 15 dB,
We take® = 0, T\, = 0.6 ns, andDg = [—1.5, 1.5]|T,. but not for p = 10 dB. Based on this observation, we can

In Figs. F2(@) we show the normalized ACR(® — describe the threshold phenomenon as follows. For sufflgien
0) = Rs!g;% for f. — 0 (baseband pulse), 4 and 8high SNRs (resp. relatively low SNRs), the maximum of the

s : o CCR falls in the vicinity of the maximum of the ACR (resp.
?I\-l' é (gfatshs : ?gﬁﬂjﬁ;&{gﬁgﬁgﬁeg& ?r? : r} grorg ar"ezaelljaggr;es spreads along the ACR) so the CRLB is (resp. is not) achieved.
X(0) = X229 Denote byN,,, (n = ny,--- ,ny), (N is the _ Consider now the pulse withf. = 4 GHz. Fig.[2(B) and
number of local maxima iDe), (1 < 0, ny > 0), (n = 0 1ablell show that forp = 20 dB all the samples of\/ fall
corresponds to the global maximum) the number of sampf@&@und the global maximum ak(6 — ©) and the CRLB is

of M falling around thenth local maximum (i.e. between the@chieved, whereas fg5 = 15 and 10 dB they spread along

In Table[], we show w.r.t.f. and p the number of samples larger than the CRLB. Based on this observation, we can de-

falling around the maxima number 0 and 1, the CRLB squapéribe the ambiguity phenomenon as follows. For sufficientl
root (SQRT)+/c of ©, the root MSE (RMSE),/e5 obtained high SNRs (resp. relatlv_ely Iow_SNRs) the noise component
by simulation and the RMSE to CRLB SQRT ratjgs. w(t) in the CCRX, ,(9) in (20) is not (resp. is) sufficiently
Consider first the baseband pulse. We can see in[Fig 2K§h to fill the gap between the global maximum and the local
' . ' xima of the ACR. Consequently, for sufficiently high SNRs
that the samples of\/ are very close to the maximum of . .
.~ (resp. relatively low SNRs) the maximum of the CCR always
R(6—©) for p = 20 dB, and they start to spread progressivel .
along R(6 — ©) for p — 15 and 10 dB. Tabl@ I shows that alls .around the global maximum (re§p. sprea_ds along thﬂ loc
' maxima) of the ACR so the CRLB is (resp. is not) achieved.
4 The ultra wideband (UWB) spectrum authorized for unlicensee by Obviously, the ambiguity phenomenon affects the threshold
the US federal commission of communications in May 2002 .[49] phenomenon because the SNR required to achieve the CRLB

5 We chose UWB pulses because they can achieve the CRLB aveblat depends on the gap between the global and the local maxima
low SNRs thanks to their relatively high fractional bandthigbandwidth to P 9 p. 9 ) '
central frequency ratio). Let us now examine the RMSE achieved at= 20 dB



for f. = 4 and8 GHz; it is 3.5 times smaller wittf. = 4 as a testpoint. For both oscillating and non-oscillatingR&C
GHz than with f. = 8 GHz whereas the CRLB SQRT is 2D, contains the global maximum arfg is equal t00O.

times smaller with the latter. In fact, the samplesMfdo  The testpoints are chosen as the roots of the ACR (except for
not fall all around the global maximum fgf. = 8 GHz. This 0, = ©) in [18,[36,[37[ 40-42), as the local extrema abscissa

amazing result (observed i [50] from experimental rejpults, ], and as the local maxima abscissalinl [15, [41,[48, 44].
exhibits the significant loss in terms of accuracy if the CRLB

is not achieved due to ambiguity. It also shows the necessity
to design our system such that the CRLB be attained. A Computation of the interval probability
We consider here the computation of the approximate inter-
IV. MIE-BASED MLE STATISTICS APPROXIMATION val probability P, in (?7?).

We have seen in SeE_Jlll that the threshold phenomenonl) Numerical approximation: To the best of our knowledge
is due to the spreading of the estimates along the ACR. titere is no closed form expression for the integral %) (
characterize this phenomenon we split thepriori domain for correlatedX,,. However, it can be computed numerically
De into N intervals D,, = [d,,dpy1), (n = ny,--- ,ny), using for example the MATLAB function QSCMVNV (written
(n1 <0, ny > 0) and write the PDF, mean and MSE ©fas by Genz based 0rﬂb|£—|54]) that computes the multivariate

normal probability with integration region specified by a se

p(60) = ZN Popn(6) of linear inequalities in the formy, < B(X — ux) < ba.
P Using QSCMVNYV, P, can be approximated by:
©2 S (1) —
[ / Op(0)d6 — Z Pojin PV = QSCMVNV(N,, Cx, b1, B, bs) (26)
o = where N,, is the number of points used by the algorithm

nN

©
2 .g, N, = 3000), by = (—o00--- —oc0)T andby = px, —
_ 9 i 6 2 9 d9 _ Pn 6 — 2 2 (e g P 1 n
‘ /@1 NULEDY [( pn) +U”} (M, X0y X o )T WO (N — 1)-column vec-

n=mni
(22) tors, andB = gl Bs g“ an(N —1) x N matrix
2 5
where with By = I(n — ny), By = zero§N +n; —n—1,n —ny),
oA B; = —onesN —1,1), By = zerogN —ny+n—1,ny —n)
P = P{@ € Dn} (23) and Bs = I(TLN — nﬁ

= P16 € Dn: X (8) > Xor (6), V6 € Unrn Do} 2) Analytic approximation: Denote by Q(y) =
denotes the interval probability (i.e. probability thatfalls in \/% [ e‘§d§ the Q function. AsP{A4; N A;} < P{A;},
D), andp,(0), jim = E{0,} and o} = E{(On — 1)’} we can upper bound®, in (??) by:

represent, respectively, the PDF, mean and variance of the

interval MLE (© given® € D,,) P _ { P(#y,01) n=0 27

L n P(6n,00) n#0
6, =066 ¢ D,. (24) (0n,00) m #

where
Denote by#, a testpoint selected iD,, and let X,, =

X,.(0,) = aR, + w, with R, = R,(6,,0) and w, = P(0,0) = P{X,(0) > X, (6)}

w(fy,). Using ?), P, in (??) can be approximated by B /_)R(HI’G) — R(0,0)
+o0 Zn =Q 2 1— R(6,0) (28)
P, = P{X, > X,,Vn' #n} = / dxn/ dzp, - '
o o P - with R(6,0) = %:9) denoting the normalized ACR.
/ d:vn_l/ dxpay - / px (x)dxy, (25) P(6,0) is obtained ??) from (??) and (??) by noticing that
-0 —o0 -0 Xsr(0) — X (0") ~ N(a[Rs(0,0) — Rs(0',0)], No[Es —
where R.(6,0))M1. If N approaches infinity, then both, '~ p?
1 @onx)Cx @nx)T and the MSEA in ??) will approach infinity.
px (@) = (gﬁ)% ICxl% € ’ Using (?7?), we propose the following approximation:
represents the PDF ok = (X,,, --- X,)7 with ux = P2

B3 - -n
(ux,, - #x, )" = a(Rp, --- Rny)" being its mean and P = Sy pl)

- . . = n

Cx =22 [Rs(0n,00)],, ... .my IS COVariance matrix. _ _ e _ N

The accuracy of the approximation i3 depends on the P In_ th'i subsecglon we hqve tseder;)th(zla)t t.he J)ntervallD%?l.aylbmt
choice of the intervals and the testpoints. For an oscilati 7" in (??) can be apprOX|ma2e_ f" in (22) or Py in
ACR we consider an interval around each local maximufi?): @nd upper bounded bi™ in (?%).
and choose the abSCISS.a O.f the local maXImum. asa teStpOIr.g\’/\/e denote byl (k) the identity matrix of rankk, and zerogk1, k2) and
Whereas for a non-oscillating AC§ V\(’ie splize |nt0_ equal  onegky, ko) the zero and one matrices of dimension x ko.
intervals and choose the centgr= % of each interval ~ "A/(m,v) stands for the normal distribution of meam and variancev.

(29)



L is upper bounded by the variance of uniform distribution
in D,, = [dy,d,+1]. Therefore, the interval mean,, and
> 08 variances? can be approximated by
k= ——pPY dp +d
] 0 n n+1
S 06 e e p® Py = o (30)
g' theseEaEE== ?S) (d —d )2
.g O4DDDDDDDDDDDDD o P ‘7721 gy = n+112 n) (31)
AT = @ | '
S <P . . - .
?g (12) For intervals with local minima (not considered here), the
9 02 P ACR decreases then increasessgois upper bounded by the
variance of a Bernoulli distribution of two equiprobableras:
dpy1 —dp)?
40 0-727,711'18,)( = % > 0121,U' (32)

In [|ﬂ] it is assumed that? is upper bounded by? pin 1)
Figure 3. Simulated interval probabilius?,gs), the approximationsﬂ(ll) and even for intervals with Iocal minima. Sdaﬂ 56] for funthe
Py, and the AUBP,®) for n =0, 1 wrt. the SNR. information on the maximum variance.
The CCRX () in (??) can be approximated inside,, by
The UB P? is adopted lnmlﬂﬂﬂ@ﬂ'mw'th minorits Taylor series expansion abajt limited to second order:
modlflcat|0ns in factP, is approximated by one in/[1] and by
1-— Zn#) ) in [IE 141.[43] 44]. In the special case where Xar(0) = aRs(8,0) +w(6)
Xy, X_l, .-, X, are independent and identically
distributed such as nm' 40-42] thanks to the catdi (0 —6,)*
sine ACR, thenP,, = N Az, Vn # 0, andPy =1- P, (PA 2
is the approximate probability of ambiguity); consequentl\yherew,, = w(6,,), 1w, = 1w (6,), Ry = Ry(0n,©) and R,
the MSEA in (??) can be written as the sum of two termsy; (9, ©). Letw, be the correlation coefficient af,, andwn

e~ Paey+Pyc(©); Py can be calculated by performing one-Then, from @?), we can show that
dimensional integration. 1, ~ N (aFs, 52 E) and X,, ~

N(0, Be By, ¥n # 0, like in [18,]3¢ ..@21] ther, can be W, ~ N(0,0%) (34)

upper bounded using the union bouhd|[36]. W, ~ N(0,0% ) (35)
As an example, to evaluate the accuratenes@,lb)f in(??)  with

and P¥ in (??) and to compare them t®'? in (??), we

~ (R, +w,) + (aRn + wp,) (0 — 6,,)

+ (R, + i) (33)

Jr

consider the pulse if(21) withf. = 6.85 GHz, T}, = 2 ns, 0% = %/ §%(t;0,,)dt = Mo —E:(0,)  (36)
© =0 and Dg = [-2,1.5]T,,. In Fig.[3 we show form = 0 2 *j:o 2

and 1, the interval prob?ll;;ilitylig()s) obtai(rgl,ged by simulation ok = %/ Ooéz(t-en)dt NoE (0,) 37)
based on 10000 trialsP,”, P,” and P,”, all versus the " 2 ) 2

_Slt\lR. VIVe r(ian see thtaz@ converize? :?}vhats lﬁ\g SEISRS fgrg:gll V E{ i, 0, } fjof 5(t;0,,)5(t; 0,,)dt (38)
intervals; however, it converges taat hi spy =0. n = = -

g v 0 G O, T (00)Es (0,,)

for p ~ 30 dB) for n =0 Sprobabilitg/ of non-ambiguity) and
to 0 for n # 0. Both p and p7§3 are very accurate and Let us first consider an interval with monotone ACR. By
closely follow P\, The UB P is not tight at low SNRs; nheglectingi,, and R, in (??) (linear approximation), we can
it converges t00.5 Vn instead of+ due to 7). However, approximate the interval MLE by:

it converges to 1 (resp. 0) fat = 0 (resp.n # 0) at high 6,, — argmax (X, (0))
SNRs simultaneously witR(LS) so it can be used to determine " 0eD,, .
accurately the asymptotic region. dn R, + i, <0
~ dpy1 Ry, + 1, >0 (39)
B. Statistics of the interval MLE Inatdnz G R, + i, = 0.

o We approximate here the statistics of the interval ML'J:AS P{aR 44, = 0} = 0, the latter approximation follows
in (?? ; i n=U;=
O, in (?7. We have already mentioned in Sdc] IV thag two atoms Bernoulli distribution with probability, meanca

for an oscillating (resp. a non-oscillating) ACR we conmdq/ f 9 4 6) b
an interval around each local maximum (resp. split the ariance given from({9)[(34) anfi{6) by:

priori domain into equal intervals); the global maximum is P{d,} = 1-P{dyi1}=P{—w,>aRk,}
always contained irDy. Accordingly, the ACR inside a given : :
) S . . . X aR, pR2
interval is either increasing then decreasing or monotogee ( = Q( ) =Q —_— (40)
increasing, decreasing or constant). T, EsEs(0y)

As the distribution of©, should follow the shape of png = dpP{dy} + dpy1P{dni1}

the ACR in the considered interval, the interval variance ol B P{d,}P{dps1}(dni1 — dn)?



whereo. ; is upper bounded by; .. in (??) and reaches
it for P{d,} = 0.5; P{d,} = 0.5 just means tha®,, is
uniformly distributed inD,, (becaused,, can fall anywhere
inside D,,); therefore,u,, ando? can be approximated by:

(41)
(42)

Hn,1,c

2
Un,l,c

Hn,B
mln{UiU, 0’,,2173}.

By neglectingu,, in (??) and ?) (becauser? << (0 —pu,)?
for n #£ 0, see ??)) we obtain the following approximation:

dn R, <0
Hn2,c = dn+1 Rn >0 (43)
dn+dp >
-5 R,=0
072172,0 = 0. (44)

Consider now an interval with a local maximum. By new.rt. the interval numben = —G, - --

glecting w,, in (??), and taking into account thak, =
(local maximum),©,, can be approximated by:

0, = argmax {X, ,.(0)} ~ 0, — °
0cD,, Alvy

(45)

which follows a normal distribution whose PDF, mean and

variance can be obtained frofd (8], 134).1(36) aRa@){(

1 (0= )
n,N (0 ————e N 46
Pn,N(0) Vo (46)
N = i _ 2 ( ) _ O..S( ").(48)
’ Q2R o?R2 R2

Forn = 0, o—th is equal to the CRLB in[{8) since- R, =
E;(0y). To take into account thab,, is finite, we propose
from (48), [4T) and[(48) the following approximation:

dn+1
Hnlo = / 0pn1,0(0)dl ~ 0, (49)
dn
dn+1
0121,1,0 = / (0 — Nn-,lyo)Qpn-,l,O(o)do
dn
s min{ai,N, U,QI,U} (50)
wherep,, 1,,(0) = nfl” N(e)(e . By neglectingw(6) in (??)
p
and (??), we obtain the followmg approximation:
/Ln,Q,o on (51)
0721,270 = 0. (52)

For both oscillating and non-oscillating ACRB,, contains

€ a4 444 444448 ¥
o o
o
@ [+
Ia) a a
-
7]
£
©
=
§ [
(/37 10_11 o o o ns
< nU
o L] B 010
. . . 4. !
-6 -4 -2 0 2 4 6
n

Figure 4. Simulated interval STB,, s and approximations,  andon, 1,0
,6 for p =10 dB.

e oo in &3) ando, in (B4) forn = 0.

e finv in @0) ando? ;; in @), fin.1.c in @) ando? ;
in @2), or jin 2, in @3) ando? , . in (@A) for intervals
with monotone ACR.

o pnuando? U Hnlo |n @9) andan 10N @Q), o pin 2.0
in (&1) andan_“ in (52) for intervals with local maxima.

In L€, [36, (37,040 42] (resp 18, 41.143.] 443y, is
approximated byan y (resp. crn2 ,).- They all approximate
wn by 0, ando? by the asymptotic MSE (equal to the CRLB
if the considered estimator is asymptotically efficient).

To evaluate the accuratenessagf;; in 31) andoy , , in
(G0), we consider the pulse in(21) with = 8 GHz, T}, = 0.6
ns, De = [—1.5,1.5]T,, andp = 10 dB. In Fig.[4 we show
the approximate interval standard deviations (S®R), and
On1,, and the STDo,, ¢ obtained by simulation based on
50000 trials, w.r.t. the interval number = —6,--- ,6. We
can see that, g is upper bounded by, ;; as expected
and thato, ; , follows o, s closely. The smallest variance
corresponds ton = 0 because the curvature dt,(6,0)
reaches its maximum &= ©.

Before ending this section, we would like to highlight our
contributions regarding the MIE. We have proposed two ap-
proximations for the interval probability whel,,,,--- , X,
are correlated. We have shown in Hig. 3 how our approxima-
tions are accurate. To the best of our knowledge all previous
authors adopt the McAulay probability UB (except for theecas
where X,,,,---, X,, are independent thanks to the cardinal
sine ACR). We have proposed two new approximations for the

the global maximum. To guarantee the convergence of thnterval mean and variance, one for intervals with monotone

MSEA in (??) to the CRLB, uo and o2 should always be
approximated usind (#9) and{50) by:
Ho,0

e (53)

730 min{c, o3 ;/}. (54)

For TOA estimation, we can writ§ (40) arld (48) &&d,,} =
Q (vids)

R
andcrnN = CR2.

ACRs and one for intervals with local maxima. We have seen
in Fig.[4 how our approximations are accurate. To the best
of our knowledge all previous authors either upper bound
the interval variance or neglect it. Thanks to the proposed
probability approximations our MSEAs (e.gs 1. in Fig.[6)

are highly accurate and outperform the MSE UB of McAulay
(e2,v in Fig.[@) and thanks to the proposed interval variance
approximations the MSEA is improved;(;; ande; 5 . out-

We have seen in this subsection that the interval mean gmetforme; ; . in Fig.[d). We have applied the MIE to non-

variance can be approximated by

oscillating ACRs. To the best of our knowledge this case is



not considered before. P&ja, (0) g 3 l,'% N P&|gy+¢(0)
1 \
P€<7g‘00+§ p 1 \
V. AN AUB AND AN MSEA BASED ON THE INTERVAL P g S ' Fes 100
PROBABILITY oo L IS
. o ol FTTT] > .
In this section we propose an AUB (Sdc. V-A) and an 1 o 0o +¢ 62

MSEA (Sec. IEB) both based on the interval probabilitlx__ . _ _
apprOX|mat|0nP in (97) igure 5. Decision problem with two equiprobable hypotkseds : © = 6y

and Hs : © = 0 + €.

A. An AUB
(3) . . . . VI. ALBs
As approximates the probability th& falls in D,,
the PDF of © can be approximated by the limit oﬂ(f) In this section we derive an ALB based on the Taylor series

as N (number of intervals) approaches infinity (so that thexpansion of the noise limited to second order ($ec. VI-A)
width of D,, approaches zero). Accordingly we can write thand a family of ALBs by employing the principle of binary
approximate PDF, mean and MSE ©fas detection which is first used by Ziv and Zakal [2] to derive
LBs for Bayesian parameters (SEc. VI-B).

P(0
pu0) = 1im PO = O g
N—o0 Jo” P(6,0)d6

O3 A. An ALB based on the second order Taylor series expansion
py = /o Opas (0)do (56)  of noise

©:2 From (??), the MLE of © can be approximated by:
e = [ (0-0 e (57)

(CF

N A wWo

. . = Xsr(0)} ~ =0 - —
We will see in Sec[Vll thate,; acts as an UB and also © arg;nax{ r(0)}~Oc =6 aRg +
converges to a multiple of the CRLB. In fagiy, (6) over-

estimates the true PDF @i in the vicinity of © because it is Where iy /(aly + 1) is a ratio of two normal variables.

obtained frompP,*) Wh|ch is in turn obtained from the interval Statistics of normal variable ratios are studied]in E'}’ 59]

(61)

probability UB P,” in (?9). Letsign(¢) = 1 (resp.—1) for £ > 0 (resp.£ < 0), 6*(0) =
Es(0)/Es, h = sign(vo)ou, /1 =15, a1 = 0, /0,
B. An MSEA az = Uwo/h as = aRoai/h, as = —aRo/oy, =

)/0%(©), 4(€) = (as€ +as)/\/1 + €. We can show

ﬁ2
To guarantee the convergence of the MSEA to the CRLﬁ[ ] that in (?7) is distributed as:

We apprOX|mate the PDF & inside D, ~ [0 — 91 ° 0+
6-9) by.pko( ) m/@E) © is the mean and(©) is the MSE) Oc ~O+a; +X (62)

and outsideDy by py,(0) = P(0,0)/ [}, p, P(0.©)d0 (the as

corresponding mean and MSE aug, = fDe\DO Oph,(0)do

5 where the PDF ofy is given by:
and ¢y, = fD DO — 0)%p),(0)dd), and propose the

following apprOX|mat|0n o a3+a4 1
- px(§) = 1+ vV2rg(©)e = (5 - Q[a(©)]) }-
pun(0) = (1= Pa)pon(0) + Paphr(6)  (58) m(1+¢2) { (2 [ ])(}63)
pun = (1= PA)® T PA“M (59) From (?7) we can approximate the PDF, mean, variance and
ey = (1—Pa)c(©)+ Pae)y, (60) MSE of ©¢ by
where P, = 2P(6,,0) approximates the probability th&d 0) — si 0_0— 64
falls outside Dy. With oscillating ACRs,f; is the abscissa pe(®) Slggz(yo)azp"[%( @) (64)
of the first local maximum after the global one; thds, ~ pe = / Opc(0)do (65)
(C] + 7 ( 3 With non-oscillating ACRs, the vicinity of the Ch
maximum |s not clearly marked off; so, we empirically take 2
Mo ot = [ O uerro® (66)
1= 4B (O) O,
The first contribution in this section is the AUB,; which ec = (uc—©)*+k. (67)

is very tight (as will be seen in FigEl 7 ahtl 9) and also very

easy to compute. The second one is the highly accurate MSHAte that the moment;ﬁ Eipy (6)dE, i = 1,2, - - - (infinite
emn (as will be seen in Figd]6 arld 8); to the best of owtomain) are infinite like with Cauchy dlstrlbutldﬂ58] Wallw
knowledge, this is the first approximation expressed as thee in Sed_Vl]I that- behaves as an LB; this result can be
sum of two terms whenX,,,---,X,, are correlated (see expected from the approximation iR%) where the expansion
[, (15,41, 4B[ 44)). of the noise is limited to second order.



B. Binary detection based ALBs

Let © be an estimator 0B, ¢|§ = © — © the estimation
error given® = 6, p|s(&) the PDF ofle|, and P j~¢o the
probability that|e| > ¢. For © = 6, the MSE of® can be
written as [60]:

o= [ e, a2 [ep o ae
1 2€max
2 €max
~EP LI g [ Rt 68)

where e, = max{0; — 0y, 0y — ©1}. By assumingP. ><10
and P <510 constantvd € Dg, we can wnteﬁ

1

P> 510, =2 {§P€>590 + 5P 590} (69)
z2 P51:%P€> ‘90 §+2P€<7§‘90
P52 = 2P€>§\90 + 2P€<—7\00+£
Pmin(eo _5 90)
> 2 ’ 70
- { Payin(60, 0 + €) (70)

where P, and P.,
nearest decision rule

16— {0|H.}|  (71)

-]

SLICESCIENE

of the two-hypothesis decision problems (the decision lgrab

in (Z3) is illustrated in Fig[1):

. H12@:90—€ PH1:O5
o H12®:90 PH1:0.5
i = {H%@_%+gf@_05 (73)

and Ppin(60 — &,00) and Puin(fo, 00 + &) the minimum

probabilities of error obtained by the optimum decisiorerul,

based on the likelihood ratio teE[SB pp. 30I:

P,
~AO[H) zIn "2 (

o (Hy
H_{mﬁA@mﬁ -
with A(¢) denoting the log-likelihood function in?(). The
probability of error of an arbitrary detectdf is given by

Pe:PHlpﬁ:Hg\Hl+PH2PI§(:H1\H2' (75)
From (??) and (??) we obtain the following ALBs:
2 = [ Pl - €01 (76)
0
= [ €PunlOo b0+ (77)
0

Whereel = min{90 — @1, 2(@2 — 6‘0)} and € = min{@z —
00,2(0p — ©1)}. The integration limits are set tq ande, to
make the two hypotheses i {72) arld](73) fall insibe.

As P| >80 is a decreasing function, tighter bounds caapprOX|mat|onP

8The obtained bounds are “approximate” due to this assumptioe
assumption is valid whefi is not very close to the extremities @¥g .

denote the probabilities of error of the

be obtained by filling the valleys oF,i, (60 — &, 6p) and
Pin(0o,00 + &) (as proposed by Bellini and Tartara 0 [4)):

/0 eV (Paillo - €000} de (78)

/0 eV (Painl00. 00+ ©)}de (79)

whereV{f(£)} = max{f(¢ > &)} denotes the valley-filling
function. WhenP,,;, (0, 6") is a function of¢’ — 0 (e.g, TOA
estimation) we can write the bounds In}76)3(79)as (L, 2):

- /0 € P (€)1€
bi - Vv Pmin d€.
/0 EV{ Prin(€) £

If 0 —O1 > O9 — 0y, theney > e9; hence,z; andb; become
tighter thanz, andbs, respectively. From??), (??), (??) and
(??) we can write the minimum probability of error as

(80)

(81)

Pain(0,0") = 0.5[Paory>n(0)|0=6 + Pr(o)>a(6n)10=0']
=0.5 [P(G’, 0)|e—o + P(6, 9’)|@:9/}

— (/51 - r.0).

There are two main differences between our bounds (de-
terministic) and the Bayesian ones: i) with the former we
integrate along the error only whereas with the latter we
integrate along the error and tleepriori distribution of ©
(e.g, see (14) in@l]); i) all hypotheses (e@, = 6y and
O = Hp+¢in (Z3)) are possible in the Bayesian case thanks to
thea priori distribution whereas only one hypothests £ 6,)
is possible in the deterministic case. So in order to utilie
minimum probability of error we have approximated. _ ¢ 10,
in (??) by PE<7§|90+§ (see Fig.[(b)) .

In this section we have two main contributions. The first one
is the ALB e~ whereas the second one is the deterministic
ZZLB family. These bounds can from now on be used as
benchmarks in deterministic parameter estimation (like th
CRLB) where it is not rigorous to use Bayesian bounds.
Even though the derivation @f. was a bit complex, the final
expression is now ready to be utilized.

(82)

VII.

In this section we discuss some numerical results about
the derived MSEAs, AUB, and ALBs. We consider TOA
estimation using baseband and passband pulsesl’L et 2
ns, f. = 6.85 GHz, © = 0 and Dg = [-2,1.5]T,,. With the
baseband pulse we consideequal duration intervals. Let

N UMERICAL RESULTS AND DISCUSSION

N

Ci,j,x = P(l)ao o+ Z Pfgi) [(6 - Hn,j-,z)z + Gi,j,m}

n=ny,n#0
(83)
be the MSEA based or?®) and using the interval probability
(1 € {1,2,3}, see ©?), (?7?), (97)) and
interval mean and variance approximatigns; . ando
(0 D, D, ancl ) & (023 o) n -
@3), (29)5P)).
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Figure 6. Baseband: SQRTs of the max. M&FE, the CRLBc, the MSEAs Figure 7. Baseband: SQRTs of the max. M&k, the AUBse, 1 ande,y,
€1,U, €1,1,c, €1,2,c, €3,1,c andeps v, and the simulated MSEg, w.r.t. the the CRLBc, the BLB cp, the ALBsec andzi, and the simulated MSEg,
SNR. w.r.t. the SNR.

A. Baseband pulse the MLE uniformly distributed inD,, (overestimation of the

Consider first the baseband pulse. In Fily. 6 we show tR@ise), anc; » . usesoy, , . in (@4) neglecting the noise. The
SQRTSs of the maximum MSEy in (Id), the CRLBc in ), MSEA emn proFosed in Se¢_VJA based on our probability
five MSEAS: €1 17, €1.1.c, €1.2.0» €3.1.c IN (?7) and ey in approximationP,” is very accurate as well.

), and the MSEg obtaine_d by simulation based on 10000 The AUB e2.v proposed in[[1] is very tight and converges
trials, versus the SNR. In Figl 7 we show the SQRTs:0f g the asymptotic region simultaneously with. However, it
two AUBs: e;,; in (??) and ey in (B2), ¢, the BLB cp in s |ess tight in thea priori and threshold regions because it
(?9), two ALBs: e in (67) andz, in (??) (equal toby in (??)  yses the probability UBP'? which is not very tight in these
because a non-oscillating ACR), and. regions (see Fidl3). Moreoves, ;; — co whenN — oco. The

We can see fromes that, as cleared up in Sed. I, theAUB e, (Sec.[V-A) is very tight. However, it converges to
SNR axis can be divided into three regions: 1) theriori 2.68 times the CRLB at high SNRs. This fact was discussed
region whereey; is achieved, 2) the threshold region and 3h Sec[V-A and also solved in Sdc._ \-B by proposing v
the asymptotic region where is achieved. We define the (examined above). Neverthelegs; can be used to compute
priori and asymptotic thresholds tﬂ [7]: the asymptotic threshold accurately because it conveogis t

own asymptotic regime simultaneously witl.

— b elp) = amec (85) Both the BLB¢p and the ALBec (Sec[VI-A) outperform
Pas pep as™ the CRLB. Unlike the passband case considered bedgw,

We takea,, = 0.5 anda,,. = 1.1. Fromeg, we havep,, = 4 outperforms the BLB. The ALB:; (Sec.[VI-B) is very tight

dB andp,, = 16 dB. Thresholds are defined in literature w.r.tand converges to the CRLB simultaneously with

two magnitudes at least: i) the achieved MEE[[@ 21] like in

our case (which is the most reliable because the main concern

in estimation is to minimize the MSE) and ii) the probability3- Passband pulse

of non-ambiguity[[15[ 37] (for simplicity reasons). Consider now the passband pulse. In fiy. 8 we show the
The MSEASe; 7, €1.1,, €1.2., €31, Obtained from the SQRTs of the maximum MSEy, the CRLB¢, the ECRLB

MIE (Sec[IV) are very accurate and follow closely;e; 1. ce in (??) (equal to CRLB of the baseband pulse), three

is more accurate thaes ; . which slightly overestimatess MSEAS: e11, andes 1, in (??) andeyy in @0), and the

because; ; . uses the probability approximatidhgl) in (??) MSEs obtained by simulation for both the passbagdand

that considers all testpoints during the computation of tiiBe basebands s pulses. In Figlld we show the SQRTSs of

probability, whereass 1 . uses the approximatioR®) in (??7) €v» tWo AUBS:e;y in (??) andey in (1), ¢, c., the BLB

based on the probability UB2) in (??) that only considers ¢&: three ALBs:cc in (€1), =1 in (??) andb, in (?7), andes.

the Oth and thenth testpointsg; ; . iS more accurate than s By observingeg, we identify five regions: 1) the priori

which slightly overestimatess, and thare, » . which slightly  region, 2) thea priori-ambiguity transition region, 3) the ambi-

underestimates it, because; . uses the variance approxima-guity region where the ECRLB is achieved, 4) the ambiguity-

tion o2 , . in (@2) obtained from the first order Taylor seriessymptotic transition region and 5) the asymptotic region.

n,l,c

expansion of noise, whereas ;s USESO'?Z,U in 31) assuming We define the begin-ambiguity and end-ambiguity thresholds

ppr = p i e(p) = apey (84
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Figure 8. Passband: SQRTs of the max. M§E the CRLBc, the ECRLB  Figure 9. Passband: SQRTs of the max. M§E the AUBses ; ande,y,
ce, the MSEAse1 1,0, €3,1,0 and epr, and the simulated MSEs of the the CRLB¢, the ECRLBc,, the BLB ¢p, the ALBsec, z1 andb;, and the

passabnts and basebands g pulses, w.r.t. the SNR. simulated MSEeg, w.r.t. the SNR.
marking the ambiguity region bﬂ[7] To summarize we can say that for a given nonlinear esti-
mation problem with an oscillating ACR, the MSE achieved
Pami = p : €(p) = amice (86) by the ACR below the end-ambiguity threshold is the same
Pamz = p ¢ e(p) = aamace. (87) as that achieved by its envelope. Between the begin-antpigui

We takea _ 9 anda — 0.5. Fromes we havep,, — 7 and end-ambiguity thresholds, the achieved MSE is.equal to

dB TiS 4B am2 23 dB and s o the ECRLB. Above the latter threshold, the MSE achieved by
» Pam1 = 1 Pam2 = and pas = : the ACR converges to the CRLB whereas that achieved by its
The MSEAse1 1,0, €3,1,0 (Sec.[I¥) andeyn (Sec.LV-B) envelope remains equal to the ECRLB.

are highly accurate and follows closely.

The AUB ez ¢y [Iﬂ] is very tight beyond the priori region. VIIl. CONCLUSION
The AUB ey (SecV-A) is very tight. However, it converges e have considered nonlinear estimation of scalar determin
to 1.75 times the CRLB in the asymptotic region. istic parameters and investigated the threshold and aritpigu

The BLB ¢ detects the ambiguity and asymptotic regionghenomena. The MIE is employed to approximate the statistic
much below the true ones; consequently, it does not determof the MLE. The obtained MSEAs are highly accurate and
accurately the thresholdg,1 = 5 dB, pum2 = 20 dB and follow the true MSE closely. A very tight AUB is proposed
pPas = 26 dB instead of 15, 28 and 33 dB). The ALB; (Sec. as well. An ALB tighter than the CRLB is derived using the
[VI-A) outperforms the CRLB, but is outperformed by the BLBsecond order Taylor series expansion of noise. The priacipl
(unlike the baseband case). The ALB (Sec.[VI-B) is very of binary detection is utilized to compute some ALBs which
tight, butd; (Sec[VI-B) is tighter thanks to the valley-filling are very tight.
function. They both can calculate accurately the asymptoti
threshold and to detect roughly the ambiguity region. APPENDIXA

Let us compare the MSEss zp and eg achieved by CURVATURES OF THEACR AND OF ITS ENVELOPE
the baseband and passband pulses (Big. 8). Both pulses apa this appendix we prove?). From [11) and[{1I3) we can
proximately achieve the same MSE below the end-ambiguityrite the FT of the complex envelopg;_ (9, ©) as
threshold of the passband pulse,.(> = 28 dB) and achieve S
the ECRLB between the begin-ambiguity and end-ambiguity Fen, (f) = 2T, [f + fe(O)] (88)
thresholds. The MSE achieved with the baseband pulsev\jﬁ (= {20 E i
slightly smaller than that achieved with the passband pulse erex”(f) { 0 y<o- Form [13) we can write
because with the former the estimates spread in continuous _ 27 (0—©) fo(O) [ .
manner along the ACR whereas with the latter they spread R(0,0) = %{e (747 e(©)er. (6,0)
around the local maxima. The asymptotic threshold of the +ép.(0,0) — 4 f2(O)en, (9,@)]} (89)
baseband pulse (16 dB) is approximately equal to the begin-
ambiguity threshold of the passband pulse (15 dB). Abovs from (I3) R {er,(0,0)} = R,(O©,0) = E,, (??) gives
the end-ambiguity threshold, the MSE of the passband pulse i ol 242
rapidly converges to the CRLB while that of the baseband one 1:(0,0) = R{én. (O, 6)} A fe(O)E,s
remains equal to the ECRLB. +dmf(©)R{jér. (0. 0)}. (90)



To prove @?) from (??) we must prove thalt{jé¢g,(0,0)}

[16]

is null. Using ??) and the inverse FT, we can write

S0 ¢, (0,0) = [F*° jan[f — f.(©)]Fr.(f)df. Using [I2)

[17]

+oo
¢r,(0,0) = / G327 [ Fer, ()€™ 0O df

—0o0
—+o0
/.
—+oo
/.

[ els — @), (e sON0-0gy
0

(18]

JATFFL [f + fo(©))e?? =) gf

[19]

JATLf = Fo @) F g (e ONO=gp oy

[21]

[22]

and the last equatio{jér.(©,0)} becomes

+oo
R{jér,(0,0)} = / 4 f — fo(@)R{Fr, ()}df = 0.

Hence, ?7?) is proved.

[23]
[24]

[25]
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