98 research outputs found

    Get my pizza right: Repairing missing is-a relations in ALC ontologies (extended version)

    Full text link
    With the increased use of ontologies in semantically-enabled applications, the issue of debugging defects in ontologies has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Debugging consists of the phases of detection and repairing. In this paper we focus on the repairing phase of a particular kind of defects, i.e. the missing relations in the is-a hierarchy. Previous work has dealt with the case of taxonomies. In this work we extend the scope to deal with ALC ontologies that can be represented using acyclic terminologies. We present algorithms and discuss a system

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    LDS - Labelled Deductive Systems: Volume 1 - Foundations

    No full text
    Traditional logics manipulate formulas. The message of this book is to manipulate pairs; formulas and labels. The labels annotate the formulas. This sounds very simple but it turned out to be a big step, which makes a serious difference, like the difference between using one hand only or allowing for the coordinated use of two hands. Of course the idea has to be made precise, and its advantages and limitations clearly demonstrated. `Precise' means a good mathematical definition and `advantages demonstrated' means case studies and applications in pure logic and in AI. To achieve that we need to address the following: \begin{enumerate} \item Define the notion of {\em LDS}, its proof theory and semantics and relate it to traditional logics. \item Explain what form the traditional concepts of cut elimination, deduction theorem, negation, inconsistency, update, etc.\ take in {\em LDS}. \item Formulate major known logics in {\em LDS}. For example, modal and temporal logics, substructural logics, default, nonmonotonic logics, etc. \item Show new results and solve long-standing problems using {\em LDS}. \item Demonstrate practical applications. \end{enumerate} This is what I am trying to do in this book. Part I of the book is an intuitive presentation of {\em LDS} in the context of traditional current views of monotonic and nonmonotonic logics. It is less oriented towards the pure logician and more towards the practical consumer of logic. It has two tasks, addressed in two chapters. These are: \begin{itemlist}{Chapter 1:} \item [Chapter1:] Formally motivate {\em LDS} by starting from the traditional notion of `What is a logical system' and slowly adding features to it until it becomes essentially an {\em LDS}. \item [Chapter 2:] Intuitively motivate {\em LDS} by showing many examples where labels are used, as well as some case studies of familiar logics (e.g.\ modal logic) formulated as an {\em LDS}. \end{itemlist} The second part of the book presents the formal theory of {\em LDS} for the formal logician. I have tried to avoid the style of definition-lemma-theorem and put in some explanations. What is basically needed here is the formulation of the mathematical machinery capable of doing the following. \begin{itemize} \item Define {\em LDS} algebra, proof theory and semantics. \item Show how an arbitrary (or fairly general) logic, presented traditionally, say as a Hilbert system or as a Gentzen system, can be turned into an {\em LDS} formulation. \item Show how to obtain a traditional formulations (e.g.\ Hilbert) for an arbitrary {\em LDS} presented logic. \item Define and study major logical concepts intrinsic to {\em LDS} formalisms. \item Give detailed study of the {\em LDS} formulation of some major known logics (e.g.\ modal logics, resource logics) and demonstrate its advantages. \item Translate {\em LDS} into classical logic (reduce the `new' to the `old'), and explain {\em LDS} in the context of classical logic (two sorted logic, metalevel aspects, etc). \end{itemize} \begin{itemlist}{Chapter 1:} \item [Chapter 3:] Give fairly general definitions of some basic concepts of {\em LDS} theory, mainly to cater for the needs of the practical consumer of logic who may wish to apply it, with a detailed study of the metabox system. The presentation of Chapter 3 is a bit tricky. It may be too formal for the intuitive reader, but not sufficiently clear and elegant for the mathematical logician. I would be very grateful for comments from the readers for the next draft. \item [Chapter 4:] Presents the basic notions of algebraic {\em LDS}. The reader may wonder how come we introduce algebraic {\em LDS} in chapter 3 and then again in chapter 4. Our aim in chapter 3 is to give a general definition and formal machinery for the applied consumer of logic. Chapter 4 on the other hand studies {\em LDS} as formal logics. It turns out that to formulate an arbitrary logic as an {\em LDS} one needs some specific labelling algebras and these need to be studied in detail (chapter 4). For general applications it is more convenient to have general labelling algebras and possibly mathematically redundant formulations (chapter 3). In a sense chapter 4 continues the topic of the second section of chapter 3. \item [Chapter 5:] Present the full theory of {\em LDS} where labels can be databases from possibly another {\em LDS}. It also presents Fibred Semantics for {\em LDS}. \item [Chapter 6:] Presents a theory of quantifers for {\em LDS}. The material for this chapter is still under research. \item [Chapter 7:] Studies structured consequence relations. These are logical system swhere the structure is not described through labels but through some geometry like lists, multisets, trees, etc. Thus the label of a wff AA is implicit, given by the place of AA in the structure. \item [Chapter 8:] Deals with metalevel features of {\em LDS} and its translation into two sorted classical logic. \end{itemlist} Parts 3 and 4 of the book deals in detail with some specific families of logics. Chapters 9--11 essentailly deal with substructural logics and their variants. \begin{itemlist}{Chapter10:} \item [Chapter 9:] Studies resource and substructural logics in general. \item [Chapter 10:] Develops detailed proof theory for some systems as well as studying particular features such as negation. \item [Chapter 11:] Deals with many valued logics. \item [Chapter 12:] Studies the Curry Howard formula as type view and how it compres with labelling. \item [Chapter 13:] Deals with modal and temporal logics. \end{itemlist} Part 5 of the book deals with {\em LDS} metatheory. \begin{itemlist}{Chapter15:} \item [Chapter 14:] Deals with labelled tableaux. \item [Chapter 15:] Deals with combining logics. \item [Chapter 16:] Deals with abduction. \end{itemlist

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    Bunched logics: a uniform approach

    Get PDF
    Bunched logics have found themselves to be key tools in modern computer science, in particular through the industrial-level program verification formalism Separation Logic. Despite this—and in contrast to adjacent families of logics like modal and substructural logic—there is a lack of uniform methodology in their study, leaving many evident variants uninvestigated and many open problems unresolved. In this thesis we investigate the family of bunched logics—including previously unexplored intuitionistic variants—through two uniform frameworks. The first is a system of duality theorems that relate the algebraic and Kripke-style interpretations of the logics; the second, a modular framework of tableaux calculi that are sound and complete for both the core logics themselves, as well as many classes of bunched logic model important for applications in program verification and systems modelling. In doing so we are able to resolve a number of open problems in the literature, including soundness and completeness theorems for intuitionistic variants of bunched logics, classes of Separation Logic models and layered graph models; decidability of layered graph logics; a characterisation theorem for the classes of bunched logic model definable by bunched logic formulae; and the failure of Craig interpolation for principal bunched logics. We also extend our duality theorems to the categorical structures suitable for interpreting predicate versions of the logics, in particular hyperdoctrinal structures used frequently in Separation Logic
    • …
    corecore