
Bunched Logics
A Uniform Approach

Simon Robert Docherty

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
of

University College London.

Department of Computer Science
University College London

May 2, 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/219541836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

I, Simon Robert Docherty, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that this
has been indicated in the work.

Abstract

Bunched logics have found themselves to be key tools in modern computer science,
in particular through the industrial-level program verification formalism Separation
Logic. Despite this—and in contrast to adjacent families of logics like modal and
substructural logic—there is a lack of uniform methodology in their study, leaving
many evident variants uninvestigated and many open problems unresolved.

In this thesis we investigate the family of bunched logics—including previ-
ously unexplored intuitionistic variants—through two uniform frameworks. The
first is a system of duality theorems that relate the algebraic and Kripke-style inter-
pretations of the logics; the second, a modular framework of tableaux calculi that are
sound and complete for both the core logics themselves, as well as many classes of
bunched logic model important for applications in program verification and systems
modelling. In doing so we are able to resolve a number of open problems in the lit-
erature, including soundness and completeness theorems for intuitionistic variants
of bunched logics, classes of Separation Logic models and layered graph models;
decidability of layered graph logics; a characterisation theorem for the classes of
bunched logic model definable by bunched logic formulae; and the failure of Craig
interpolation for principal bunched logics. We also extend our duality theorems to
the categorical structures suitable for interpreting predicate versions of the logics,
in particular hyperdoctrinal structures used frequently in Separation Logic.

Impact Statement

As a work of formal logic this thesis’ impact is primarily academic. We identify a
number of different logic communities to which we believe this research will be of
benefit.

• For the mathematical logic community, this work resolves a number of open
problems in the bunched logic literature and situates this branch of logic in a
mathematically substantial framework.

• For the proof theory community, this work yields new insights about the con-
struction of tableaux calculi—in particular, the identification of tableaux sys-
tems with theories of coherent logic—that will undoubtably prove useful for
automated reasoning, the construction of new systems and our mathematical
and philosophical understanding of the tableau method.

• For the computational logic community, this work significantly broadens the
understanding of ‘resource semantics’, a central notion in modern program
verification. The new logics and the general mathematical techniques used
may find use in more bespoke verification formalisms and other application
areas suggested in the thesis (e.g., quantum information theory, rewriting sys-
tems and process algebra).

• For the program verification community, this work resolves an issue regard-
ing the incompleteness of bunched logic for the classes of ‘memory models’
typically used in separation logic-style program verification formalisms by
producing a modular framework of tableaux proof systems that are sound and
complete for any choice of class of memory model.

This impact is witnessed by publications in top conference venues [78, 79, 80,
81], with two further journal papers [82, 83] (both invited submissions following
the top ranking of [78] and [80] at their respective conferences). In particular, [79]
was an invited submission to the top ranking AI conference IJCAI as part of their

Impact Statement 5

Sister Conferences programme showcasing the best papers at more specialised con-
ferences to a wider audience.

Potential impact outside of the academic community lies with the modular
proof systems for memory models constructed in Part III of the thesis. These are
proved correct but not implemented; however, their implementation could form the
basis for a program verification tool that is parametric in choice of memory model.

Acknowledgements

First and foremost I would like to thank my supervisor David Pym for his support
and guidance over the past four years. David has been a great scientific inspira-
tion, and not just for co-creating the branch of logic that this thesis is dedicated to
investigating. In the course of my studies he has imparted on me a philosophical
understanding of logic that has substantially deepened my appreciation of the field,
as well as broadened my perception of its applicative possibilities.

He has also been a great help in navigating the world of academia as a fledging
researcher. This has taken many forms, from teaching me about the precision erad-
ication of whitespace for punishing conference paper page restrictions, to guiding
me through my first grant proposal. More than anything, I thank him for the many
times he set me straight when the amorphous task of completing a PhD began to
overwhelm or caused me to lose confidence.

I extend these thanks to the whole PPLV group for creating a stimulating and
supportive environment to do research in. Being so close to the research of aca-
demics like Alexandra Silva and James Brotherston has been a great source of in-
spiration, while the support, solidarity and friendship of my fellow PhD students
has made many a long day shorter. I also thank UCL and the EPSRC for funding
the studentship that made my work possible.

I would also like to thank my examiners Samson Abramsky and Peter O’Hearn
for their dilligent and thoughtful examination of this thesis. Their comments have
greatly improved the presentation of this work.

My final thanks go to my partner Maya. Doing a PhD can be a lonely en-
terprise, but her love has made it substantially less so. Thanks to her I remained
(somewhat) human through the arduous task of writing up, and I hope to be able to
repay that to her long into the future.

I dedicate this thesis to my parents Caroline and Robert. I have them to thank
for the curiosity and determination that has led me through my entire education up
to this point. Without their material and emotional support this work wouldn’t be
possible.

Contents

1 Introduction 12
1.1 From Classical to Non-Classical Logic 12
1.2 Bunched Logics . 18
1.3 Road Map for the Thesis . 22

I A Family of Bunched Logics 27

2 Layered Graph Logics 29
2.1 Syntax and Semantics . 30
2.2 Layered Graphs . 34

3 Logics of Bunched Implications 40
3.1 Syntax and Semantics . 42
3.2 Separation Logic . 50
3.3 Examples of (B)BI Frames . 54

4 Extensions of the Logics of Bunched Implications 61
4.1 De Morgan Bunched Logics . 62
4.2 Sub-Classical Bunched Logics . 66
4.3 Separating Modal Logics . 69
4.4 Concurrent Kleene Bunched Logic 72

Summary of Part I 75

II Algebra and Duality for Bunched Logics 76

5 Algebraic and Topological Preliminaries 78
5.1 Algebra . 78
5.2 Topology . 82

Contents 8

5.3 Esakia Duality . 84

5.4 Stone Duality . 91

6 Dualities for Propositional Bunched Logics 94
6.1 Layered Graph Logics . 94

6.2 Logics of Bunched Implications 103

6.3 De Morgan Bunched Logics . 107

6.4 Other Variants . 112

7 Metatheory for Propositional Bunched Logics 121
7.1 Completeness . 121

7.2 Decidability . 123

7.3 Expressivity . 126

7.4 Interpolation . 138

8 Dualities for Predicate Bunched Logics 142
8.1 Categorical Structures for Predicate Bunched Logics 143

8.2 Bunched Logic Models as Indexed Frames 147

8.3 Duality for Bunched Logic Hyperdoctrines 150

Summary of Part II 161

III Proof Theory for Bunched Logics 162

9 Modular Tableaux Calculi for Bunched Logics 164
9.1 Logical Rules for Bunched Logic Tableaux Calculi 166

9.2 Tableau Rule Generation from Coherent Axioms 171

9.3 Frame Rules for Bunched Logic Tableaux Calculi 173

9.4 The Tableaux Calculi . 178

9.5 Parametric Soundness and Completeness 181

10 Tableaux Calculi for Applications of Bunched Logics 192
10.1 Separation Logics . 192

10.2 Layered Graph Models . 201

Summary of Part III 215

Contents 9

IV Conclusions & Further Work 216

Appendix 222

A Category Theory 222

Bibliography 226

List of Figures

1.1 The bunch ((ϕ ; ψ) ,χ) ; η . 19

2.1 Hilbert rules for layered graph logics. 31

2.2 Satisfaction for (I)LGL. 33

2.3 Layered graph representation of Schneier’s gate. 35

2.4 The graph composition H @E K. 36

2.5 Place and link graphs. 38

2.6 Bigraph. 38

3.1 Hilbert rules for logics of bunched implications. 42

3.2 Satisfaction for (B)BI. 43

3.3 Satisfaction for Separation Logic. 53

3.4 A team as a database. 57

4.1 Hilbert rules for De Morgan bunched logics. 63

4.2 Satisfaction for DMBI/CBI. 65

4.3 Hilbert rules for basic Bi(B)BI. 67

4.4 Hilbert rules for subclassical bunched logics. 68

4.5 Satisfaction for Bi(B)BI. 68

4.6 Hilbert rules for separating modal logic. 70

4.7 Satisfaction for SML . 71

4.8 Rules for ASL−−. 72

4.9 Hilbert rules for concurrent Kleene bunched logic. 73

4.10 Satisfaction for CKBI. 74

6.1 Algebraic axioms for subclassical bunched logics. 113

8.1 Satisfaction on indexed L frames. 147

8.2 Satisfaction for bigraph models of predicate ILGL. 150

9.1 Logical expansion rules for bunched logics with classical additives. . 169

List of Figures 11

9.2 Logical expansion rules for bunched logics with intuitionistic addi-
tives. 170

9.3 Tableau rules for equality and order. 174
9.4 BBI frame expansion rules. 174
9.5 BI frame expansion rules. 174
9.6 DMBI and CBI frame expansion rules. 175
9.7 Bi(B)BI frame expansion rules. 175
9.8 Frame expansion rules for extensions of BiBBI. 176
9.9 Frame expansion rules for extensions of BiBI. 176
9.10 CKBI frame expansion rules. 176
9.11 Tableau proof of (ϕ−∗χ)∧ (ψ−∗χ)→ ((ϕ ∨ψ)−∗χ). 180
9.12 CKBI tableau proof of ((ϕ ∗χ);(ψ ∗θ))→ ((ϕ;ψ)∗ (χ;θ)). 180
9.13 Tableau proof of the weak distributivity axiom. 181
9.14 Logical coherent axioms for bunched logics with classical additives. 183
9.15 Logical coherent axioms for bunched logics with intuitionistic ad-

ditives. 184
9.16 Coherent axioms for equality and order. 184
9.17 Frame coherent axioms for BBI. 184
9.18 Frame coherent axioms for BI. 185
9.19 Frame coherent axioms for DMBI and CBI. 185
9.20 Frame coherent axioms for Bi(B)BI. 185
9.21 Frame coherent axioms for extensions of BiBBI. 185
9.22 Frame coherent axioms for extensions of BiBI. 185
9.23 Frame coherent axioms for CKBI. 186
9.24 Coherent axioms for closure conditions. 186

10.1 Separation properties. 195
10.2 Separation theory frame expansion rules. 198
10.3 Divisibility frame expansion rules. 199
10.4 Tableau proof of φ ∗ψ → ψ in the BI + Increasing system. 199
10.5 Tableau proof in the BBI + Total system. 200
10.6 Rules for closure of constraints. 203
10.7 Tableau rules for ILGL. 204
10.8 ILGL tableau proof of (ϕ−∗χ)∧ (ψ−∗χ)→ ((ϕ ∨ψ)−∗χ). 205

Chapter 1

Introduction

This thesis is about a species of non-classical logic called bunched logic. Bunched
logics are curious systems, with their strong semantic motivation and full set of
standard propositional connectives aligning them with modal logic, despite their
proof theory being strongly rooted in considerations particular to substructural log-
ics, which typically diverge radically from classical logic in their interpretation of
the standard connectives.

In this introductory chapter we outline some of the concepts that led to the
formulation of the principal bunched logic, BI, as well as its most characteristic
features. We then highlight some of the gaps in the theory of bunched logics more
generally, and explicate the purpose of the thesis: the specification of a uniform
methodology for bunched logics, capable of resolving a number of open problems
in the literature. We close the chapter with a road map for the rest of the thesis.

1.1 From Classical to Non-Classical Logic
1.1.1 Substructural Logics
While, classically, mathematical logic concerned itself with the formal analysis of
the principles of sound reasoning and truth in an absolute sense, the study of mod-
ern logic is dominated by an application-driven approach that looks to alternative
logical systems designed for specialised reasoning tasks. For example, modal logic
[27] provides an analysis of qualified truths—for example, what is possibly true and
what is necessarily true—while fuzzy logic [222] generalises the binary notions of
true and false to a continuum of truth values in order to capture vagueness and ap-
proximate reasoning—for example, given fuzzy information ϕ , ψ is more likely to
be true than false. These systems, distinct as they are from the propositional and
predicate logic advanced as the formal language of mathematics, are designated
non-classical logics.

A particularly interesting class of such systems are those that have come to

1.1. From Classical to Non-Classical Logic 13

be known as substructural logics [193]. These logics arise through an analysis
of Gentzen’s [103, 104] formulation of classical and intuitionistic logic as sequent
calculi. Gentzen designed the sequent calculus to analyse logical consequence, rep-
resented in his proof system by sequents Γ ` ϕ , where Γ is a finite list of formulae
ϕ0, . . . ,ϕn, called here a context, to be read as: ϕ is a consequence of the assump-
tions ϕi in Γ. The calculus is specified by rules for the valid derivation of new
sequents and these rules can broadly be categorised two ways. First, are the logical
rules, specifying how to introduce each of the connectives on the left and the right
side of sequents. For example, for conjunction ∧, there are the rules

〈L∧〉
Γ,ϕi ` ψ

Γ,ϕ0∧ϕ1 ` ψ
〈R∧〉

Γ ` ϕ Σ ` ψ

Γ,Σ ` ϕ ∧ψ
,

where i = 0 or 1 in 〈L∧〉. In contrast, the structural rules specify the manner in
which the contexts Γ can be manipulated. Explicitly, these rules are

〈W〉
Γ ` ψ

Γ,ϕ ` ψ
〈E〉

Γ,ϕ,ψ,Σ ` χ

Γ,ψ,ϕ,Σ ` χ
〈C〉

Γ,ϕ,ϕ ` ψ

Γ,ϕ ` ψ
,

where W stands for Weakening, E for Exchange, and C for Contraction. Each of
these rules has an intuitive operational reading: weakening states that the addition
of extra assumptions preserves consequence, exchange states that the order of as-
sumptions does not affect consequence, and contraction states that the number of
instances of a particular assumption do not affect consequence.

While these are suitable assumptions to make for consequence in mathematics,
it began to be understood that these rules were responsible for some of the quirks
that make these logics ill-suited for other reasoning domains like natural language.
Of the many paradoxes of material implication, fallacies of relevance are often the
most perplexing for the novice student of logic. Our pre-theoretic understanding
of implication strongly inclines us to believe the antecedent of a if ...then statement
should have some connection to the consequent, which leads us to regard proposi-
tions like “if it is raining then I will get wet” as sensical, and propositions like “if
green is purple then pigs can’t fly” as nonsensical. From the perspective of classical
logic, however, these are both true propositions.

Fallacies of relevance occur at the level of validity: for example, ϕ→ (ψ→ ϕ)

is a valid formula of classical and intuitionistic logic, where ψ can be an arbitrary
formula that has nothing to do with ϕ . From the perspective of the sequent calcu-
lus, the mechanism facilitating the derivation of formulae like this is the structural
rule of weakening, which allows one to add irrelevant assumptions. Such consid-
erations naturally motivate the investigation of relevant logics [9] in which Γ ` ϕ

is interpreted as a valid logical consequence iff the assumptions in Γ are just those

1.1. From Classical to Non-Classical Logic 14

necessary to entail ϕ . In such systems, it is of course necessary to exclude the
structural rule of weakening.

Similar considerations arise in the use of formal logic in linguistics. Here,
propositional atoms are types of grammatical atoms—for example, determiners
(e.g., the), adjectives (e.g., good) and nouns (e.g., dog)—which can be combined
with the connectives to form types of sentences. Thus a sequent Γ ` ϕ is now read
as a typing judgement: a string is of type ϕ iff it is obtained as the concatenation
of strings of the types in Γ. Simple considerations of how sentences of natural lan-
guage are formed immediately brings such an enterprise into conflict with the struc-
tural rules of Gentzen’s calculus: in particular, the order of words in a sentence
is of vital importance to its meaning and well-formedness. Categorial grammar
[145, 147] (known in its proof-theoretic form as the Lambek calculus) reflects this
fact by dropping the structural rule of exchange, as well as weakening and contrac-
tion.

Substructural logics can broadly be thought of as logics obtained through the
excision of one or more of the structural rules. Such systems include the aforemen-
tioned examples of the family of relevant logics and the Lambek calculus. While
the structural rules appear to be quite simple, their removal defines systems quite
unlike classical logic.

1.1.2 Linear Logic
One of the most influential analyses of the effect of removing structural rules is due
to Girard [105], in his landmark work defining linear logic. Girard’s contention
was that the constructive character of intuitionistic logic lay in its control over the
application of contraction and weakening: while in the classical sequent calculus,
contexts occur on either side of the turnstile, `, and the structural rules can be ap-
plied on both the left and the right, in the intuitionistic calculus, the structural rules
are restricted to the left, and it is this that allows the derivation of such characteris-
tic constructive features as the disjunction property. Girard sought to generalise this
further, by additionally disallowing weakening and contraction on the left.

In the presence of the contraction and weakening rules contexts are fairly mal-
leable entities, and it isn’t difficult to use them to show that the following alternative
right rule for ∧ is equivalent to the one previously given:

〈R∧′〉
Γ ` ϕ Γ ` ψ

Γ ` ϕ ∧ψ
.

Essentially, when the premises of 〈R∧〉 hold, the contexts Γ and Σ can always
be massaged into an identical context through repeated applications of weakening
and contraction to give premises allowing the application of 〈R∧′〉. As such, the

1.1. From Classical to Non-Classical Logic 15

sequent calculus could just as well have been defined with 〈R∧′〉 as a primitive rule.
Without contraction and weakening, however, these two rules become distinct, and
this begs the question: which should have priority as a basic rule in a substructural
system? Girard’s innovative answer was both. This results in a splitting of con-
junction into an additive component, &, governed by a rule of the same form as
〈R∧′〉

〈R&〉
Γ ` ϕ Γ ` ψ

Γ ` ϕ & ψ
,

and a multiplicative component, ⊗, governed by a rule of the same form as 〈R∧〉

〈R⊗〉
Γ ` ϕ Σ ` ψ

Γ,Σ ` ϕ⊗ψ
.

A similar analysis sees disjunction split into an additive and a multiplicative con-
nective.

In relevant logics the lack of weakening demands that the formulae in the an-
tecedent are all relevant to the entailment of the consequent; in a system without
both contraction and weakening, this is strengthened further to enable a resource-
sensitive reading of sequents. Now, not only are the formulae that occur in the con-
text precisely the formulae required for the consequent, the number of occurences
of each formula also matters.

Perhaps the most innovative feature of linear logic is the use of the exponentials
! and ? to allow contraction and weakening to be applied locally. Informally, if the
occurence of ϕ in a context is read as the availability of one ϕ to be used to derive
a consequence, !ϕ is read as the availability of as many ϕ’s as we want. This is
enforced by ‘local’ weakening and contraction rules that only apply to formulae
marked with !:

〈!W 〉
Γ ` ψ

Γ, !ϕ ` ψ
〈!C〉

Γ, !ϕ, !ϕ ` ψ

Γ, !ϕ ` ψ
.

The presence of the exponentials recovers a lot of expressivity lost from the
removal of the structural rules. In particular, intuitionistic logic can be faithfully
encoded in linear logic using the exponentials, with intuitionistic implication ϕ→ψ

given by !ϕ (ψ , where(is the multiplicative implication of linear logic. This
sets up a principled balance between expressivity and control: the use of weakening
and contraction is completely tracked by the exponentials.

Two major applications of linear logic utilise this operational reading of se-
quents. The first is in the use of logic as a goal-oriented programming language,
most famously implemented non-linearly in the language Prolog. In such languages

1.1. From Classical to Non-Classical Logic 16

a goal (e.g., a query to be answered) is specified by a sequent and computation is
given by “the process of building a cut-free sequent proof bottom-up” [161] for
it. The additional control over the dynamics of the sequent calculus that linear
logic provides offers a significant refinement on languages based on classical or
intutionistic logic. An overview of such linear logic programming languages is
given by Miller [161]. Miller also highlights the second major application of linear
logic in computer science: the use of linear logic as a type theory for programs, in
line with the Curry-Howard correspondence between intuitionistic proofs and pro-
grams. Abramsky [2] outlines the necessary ingredients for this: linear logic for-
mulae give a language of types, allowing programs to be interpreted by linear logic
proofs and computation by a proof theoretic procedure known as proof normalisa-
tion. Resource-sensitivity and the additional control over the dynamics of proof are
related, for example, to the controlled use of arguments during computation and the
implementation of concurrent algorithms.

1.1.3 The Descriptive View vs the Intrinsic View
Abramsky [4] neatly characterises two views on the relation of logic to structure:

1. The descriptive view: in which logical formulae are understood as asser-
tions describing properties of structures. This might fruitfully be considered
a semantics-first view on logic, where the syntactic machinery of logic is del-
egated to reason about a semantic structure of interest;

2. The intrinsic view: in which the syntactic machinery of logic embodies struc-
ture. Here Abramsky uses the example of intuitionistic logic in the Curry-
Howard correspondence: logical formulae are not assertions about some se-
mantic model of functional programming, instead logical formulae together
with proof theory provides an instance of functional programming.

The applications of linear logic in computer science that we have just dis-
cussed fall quite cleanly into the second of these characterisations. In modern logic,
the example par excellence of the descriptive view is the many ways in which the
semantics of modal logic have been put to use modelling a range of philosophical
and computational phenomena.

In essence, the Kripke semantics for modal logic is based on a set of possible
worlds, where accessibility between worlds is represented by relations. In the most
basic example, we have a set of worlds X with a binary accessibility relation R. The
truth of formulae formed with the possibility operator ♦ is defined as follows:

x � ♦ϕ iff there exists y such that Rxy and y � ϕ.

1.1. From Classical to Non-Classical Logic 17

That is, ♦ϕ is true at the world x iff there is a world y accessible from x where ϕ

holds. The terminology “possible worlds” is an artefact of modal logic’s philosoph-
ical origins, as its original intended purpose was to analyse the notion of possible
and necessary truth. However we might usefully think of the possible worlds as
states of a system (e.g., a labelled transition system), with the accessibility relation
determined by computation steps. This idea has been massively influential in com-
puter science in the past forty years, with particular varieties of modal logic like
CTL [58] and dynamic logic [114] providing the means to verify that systems meet
their specification and do not fault through essentially semantic means.

Resource, be it memory or CPU time, is a central notion in computer science,
and for this reason it may seem that linear logic would be well-suited to play a
similar modelling role to these modal logics. Unfortunately, despite the resource-
sensitive operational reading of linear logic’s proof theory, none of the semantic
approaches to linear logic really reflect the notion of resource.

The standard treatment of linear logic’s semantics is known as phase semantics
[106], and involves the interpretation of linear logic formulae in structures called
phase spaces: pairs (M,⊥) in which M is a commutative monoid and⊥ an arbitrary
set. An operation on subsets A⊆M is defined by A⊥ := {m ∈M | ∀n ∈ A : mn ∈⊥}
and all formulae can be interpreted by closed subsets A ⊆M, satisfying A = A⊥⊥,
called facts. For example, the multiplicative implication ϕ(ψ is interpreted, given
facts JϕK and JψK interpreting ϕ and ψ , by the fact Jϕ(ψK= {m∈M | ∀n∈ JϕK :
mn ∈ JψK}. While this restriction to closed subsets of a phase space allows one to
give a sound and complete interpretation of the logic (in particular, neatly handling
the non-distributive additive connectives and the notoriously tricky exponentials), it
has the unfortunate side effect of making meaningful models extremely difficult to
find. Moreover, it resists a natural interpretation in terms of resource.

For a long time it remained open if there even was a Kripke-style semantics for
the full logic, although Kripke models for the fragment without exponentials were
given by Allwein & Dunn [8] early on. It was only recently that Coumans et al.
[67] gave a Kripke semantics for which the exponentials could also be interpreted,
but for soundness to hold a number of artificial conditions must be imposed on the
relational structure, and, once again, it remains open if any real-world phenomenon
of independent interest can be found that satisfies their definition.

What, then, would a logic with a resource-sensitive semantics look like? One
answer is the logic of bunched implications, the principal member of a family of
logics that this thesis is dedicated to investigating. This logic is formulated in a
similar fashion to linear logic, but also has a sound and complete Kripke-style se-
mantics arising out of a simple analysis of the abstract notion of resource—that is,

1.2. Bunched Logics 18

objects that can be composed and compared.

1.2 Bunched Logics
1.2.1 The Logic of Bunched Implications
Formulated by O’Hearn & Pym [177], the logic of bunched implications (BI) is a
logic that captures many of the salient features of linear logic’s proof theory while
enjoying a set-theoretic semantics that allows it to be used to make declarative as-
sertions about resource in much the same way modal logic can be used vis-à-vis
computation systems. It also arises through considerations relating to the seman-
tics of ALGOL-like programming languages [194, 195] and category theoretic con-
structions [74], but is perhaps most clearly understood through a continuation of
our proof theoretic analysis. Directly, it is obtained as the free combination of in-
tuitionistic propositional logic and multiplicative intuitionistic linear logic, and this
requires some interesting adjustments to the sequent calculus.

As discussed when introducing substructural logics, the structural rules of the
sequent calculus specify the legal ways in which contexts can be restructured. In
effect, these rules can be seen as axioms governing the behaviour of the context for-
mer , when seen as an operation on formulae. For example, the Exchange rule 〈E〉
specifies that the comma is commutative, while the Contraction rule 〈C〉 specifies
that it is idempotent. In Linear Logic, certain properties of the context former do not
universally hold (because of the absence of the corresponding structural rules) but
the exponentials allow the specification of instances where the properties do hold.

BI departs from this set-up by enforcing this distinction at the level of structural
rules rather than at the level of formulae. To facilitate this, a natural generalisation
is required: from one context former to two. The original context former , lacks
Weakening and Contraction, just as with Linear Logic, but it is now joined by a new
context former ; for which all of the structural rules hold. Of course, this increases
the structural complexity of contexts. While before contexts were lists of formulae
separated by commas, now contexts have a tree structure, with internal nodes given
by the context formers and formulae as leaves. Such tree-structured contexts origi-
nate in relevant logic [18] and are called bunches (hence bunched implications). As
an example, Figure 1.1 shows the bunch ((ϕ ; ψ) ,χ) ; η represented in tree form.

Using bunched contexts to facilitate it, BI arises as the combination of the se-
quent calculus for intuitionistic logic (giving the additives of BI) and the sequent
calculus for the multiplicative fragment of intuitionistic linear logic. Letting Γ(∆)

denote a bunch in which ∆ occurs as a subbunch, the rules governing additive con-
junction ∧ and multiplicative conjunction ∗ are given as follows.

1.2. Bunched Logics 19

Figure 1.1: The bunch ((ϕ ; ψ) ,χ) ; η .

〈L∧〉
Γ(ϕ ; ψ) ` χ

Γ(ϕ ∧ψ) ` χ
〈R∧〉

Γ ` ϕ Γ ` ψ

Γ ` ϕ ∧ψ

〈L∗〉
Γ(ϕ ,ψ) ` χ

Γ(ϕ ∗ψ) ` χ
〈R∗〉

Γ ` ϕ Σ ` ψ

Γ ,Σ ` ϕ ∗ψ

The move to two context formers also indicates a further splitting of connec-
tives that was not considered by Girard. Consider the rules for implication in the
standard sequent calculus,

〈L→〉
Γ ` ϕ Σ,ψ ` χ

Σ,Γ,ϕ → ψ ` χ
〈R→〉

Γ,ϕ ` ψ

Γ ` ϕ → ψ
.

These rules induce the multiplicative implication(of linear logic when the struc-
tural rules are missing, through which intuitionistic implication can only be recov-
ered with the use of the exponential ! . The use of two context formers is suggestive,
however, of two coexisting implications, given by analogues of the standard rules
for each context former: the standard intuitionistic implication→ and a multiplica-
tive implication −∗ (hence bunched implications).

〈L→〉
Γ ` ϕ Σ(Σ′;ψ) ` χ

Σ(Σ′;Γ;ϕ → ψ) ` χ
〈R→〉

Γ;ϕ ` ψ

Γ ` ϕ → ψ

〈L−∗〉
Γ ` ϕ Σ(Σ′,ψ) ` χ

Σ(Σ′,Γ,ϕ−∗ψ) ` χ
〈R−∗〉

Γ,ϕ ` ψ

Γ ` ϕ−∗ψ
.

Similarly to linear logic, BI can be given a type theoretic presentation [174, 62]
and used as a logic programming language [13]. There are major differences be-
tween the logics, however, and this can be seen at this proof theoretic level. For one,

1.2. Bunched Logics 20

the “additives” of BI specify precisely intuitionistic logic, whereas for the additives
of linear logic many properties of intuitionistic logic (such as the distributive law
for conjunction and disjunction) fail. This is arguably quite a superficial compari-
son, however, as the additives of linear logic are still linear. Perhaps more forceful
is the fact that distinctions are maintained even with the embedding of intuitionistic
logic into linear logic. For example, in linear logic intuitionistic implication arises
as !ϕ(ψ and the sequent !ϕ(ψ ` ϕ(ψ is provable; however ϕ→ψ ` ϕ−∗ψ

is not provable in BI.

The starkest difference can be seen with BI’s semantics however: unlike linear
logic, the notion of resource is instantiated at the level of a simple Kripke-style
set theoretic semantics. Models for BI are given by a set X of resources with a
commutative, monoidal operation ·—interpreted as the composition of resources—
and an order<—allowing the comparison of resources. The Kripke-style semantics
on such structures can straightforwardly be seen as the extension of Kripke’s [142]
preorder semantics for intuitionistic logic with Urquhart’s [213] semantics for the
multiplicative fragment of intuitionistic linear logic. In particular, at a resource r
we can evaluate the truth of formulae of the form ϕ ∗ψ and ϕ−∗ψ as follows.

r � ϕ ∗ψ iff there exists s, t such that r < s · t,s � ϕ and t � ψ

This states that ϕ ∗ψ is true of a resource r if part of r can be decomposed into
separate resources s and t such that ϕ is true of s and ψ is true of t. Note that this
clause directly corresponds to the decomposition of the bunch Γ,Σ in the rule 〈R∗〉
when read bottom-up.

r � ϕ−∗ψ iff for all s, if s � ϕ then r · s � ψ

This states that ϕ −∗ψ is true of a resource r if every composition of r with a
resource for which ϕ holds results in a resource for which ψ holds. Note that this
is of precisely the same form as the semantics for(: however, in the case of BI,
we do not have the semantically ad hoc restriction to any special subsets of X . It
should also be noted that these clauses diverge from even the operational reading
of linear logic sequents, in which the principal idea is that of the number of uses
of a resource. BI’s semantics is instead based on a sharing interpretation, in which
the truth of the multiplicatives is witnessed by the ability to split up or put together
resources for a particular goal. This idea has been wildly impactful, with the logic
(and in particular, these semantic ideas) forming the core of the industrial-level
program verification formalism Separation Logic [129, 197, 221].

1.2. Bunched Logics 21

1.2.2 From BI to a Family of Bunched Logics
BI has inspired a number of logics that can broadly be grouped under the name
bunched logics. Though for mathematical reasons most are not presented as
bunched sequent calculi, they all are formed by a similar guiding principle: the
extension of intuitionistic or classical propositional logic with fragments of sub-
structural logics, in particular linear logics. A key motivation behind these logics is
their resource interpretation, elucidating the somewhat mysterious meaning of the
multiplicative connectives that appear in substructural and linear logics, and sug-
gesting innovative uses of logic as a modelling technology.

While the formulation and widespread application in program verification of
Boolean BI (the variant of BI in which the intuitionistic propositional logic frag-
ment is replaced with classical propositional logic) indicated the usefulness of go-
ing beyond BI, the idea of a family of bunched logics was first proposed by Pym
[187], who suggested that two further bunched logics, De Morgan BI and Classical
BI, could be obtained by extending BI and BBI (respectively) with a multiplicative
negation. In the case of CBI, this idea was executed by Brotherston & Calcagno
[39], who motivated the logic with a resource semantics based on dualisable re-
source and a display calculus proof theory. A further group of bunched logics were
given by Brotherston & Villard [45], who considered subclassical bunched logics
obtained by extending BBI with multiplicative disjunction and falsum together with
axioms governing their interactions. These logics also have a strong semantic mo-
tivation, obtained by considering sets of resources that both compose and intersect.
Taking a different perspective, Collinson et al. [63] weakened the multiplicative
structure of BBI to obtain layered graph logic (LGL), motivated by a semantics
given on structured directed graphs of the sort utilised in complex systems mod-
elling. Alongside these, a large number of extensions of BI and BBI with modal
and hybrid operators have also been defined [44, 68, 98].

Much is missing from the theory of these logics, however. Perhaps most stark,
given bunched logics’ origin in BI, is the lack of metatheory for the evident intu-
itionistic variants of the logics just outlined. In the cases of Classical, Hybrid and
Subclassical bunched logics, this has much to do with the methodology behind their
soundness and completeness theorems, which rely on an indirect argument utilising
translations into modal logic that only work for logics extending classical proposi-
tional logic. This has seemingly prevented the formulation of resource semantics
for these logics. Beyond this, much typical logical theory—decidability results, du-
ality theory, expressivity limits, Craig interpolation—is missing from the bunched
logic literature.

This thesis is about addressing this gap. Our guiding philosophy is uniformity

1.3. Road Map for the Thesis 22

and modularity: in short, to what extent can this family of logics be presented in a
uniform/modular framework, and what new metatheory can be proved by doing so?
To this end we rationally reconstruct the family of bunched logics (previously un-
considered intuitionistic variants included) as a family of extensions of a new basic
bunched logic: the intuitionistic variant of layered graph logic. This presentation
is systematised in two ways: first, by a uniform duality theory that relates alge-
braic and Kripke-style presentations of the logics, through which the soundness and
completeness of resource semantics is obtained as a corollary; second, by a modular
tableaux proof theory suitable for both consequence and validity in the base logics
and restrictions to classes of models used in applications.

In doing so we’re able to prove a number of other results: decidability for
layered graph logics, a characterisation theorem for the classes of bunched logic
model definable by bunched logic formulae, the failure of Craig interpolation for
principal bunched logics and the extension of duality to the categorical structures
that interpret predicate versions of the logics. The techniques used are sufficiently
general and extendable to be easily applied to specify new bunched logics. As an
example, we define a new bunched logic inspired by concurrent Kleene algebra
[178] for which the duality theoretic and tableaux-based approach to soundness and
completeness is applied.

1.3 Road Map for the Thesis
This thesis is split into four parts for the purpose of organisation. The first part, A
Family of Bunched Logics introduces the bunched logics that the rest of the thesis
is dedicated to investigating. While this part is introductory in nature, due to its
substantial size we advise that the core of the thesis (Parts II and III) can effectively
be understood after reading Chapter 2 on weak bunched logics, with Chapters 3
and 4 used as a reference if necessary. Throughout this part a number of examples
of applications of bunched logics are given for the interested reader – it should be
noted that, with the exception of Separation Logic in Chapter 3, these are inessential
for the comprehension of the core of the thesis, and should simply be understood as
demonstrative of the utility of bunched logics themselves.

In Chapter 2 we begin with the layered graph logics, the bunched logics with
the ‘weakest’ multiplicative structure. In particular, we introduce Intuitionistic Lay-
ered Graph Logic, from which the existent Layered Graph Logic can be obtained
as an extension. In doing so we give Hilbert-style proof systems and Kripke se-
mantics for both logics, and these form the basis of the Hilbert systems and Kripke
semantics for every other logic examined in the thesis. We pay particular attention
to the layered graph models that give the logics their name, explaining how they

1.3. Road Map for the Thesis 23

arise for both logics and indicating potential applications for them. This chapter is
based on material from the publications Intuitionistic Layered Graph Logic [78],
Intuitionistic Layered Graph Logic (Abridged Version) [79] and the journal paper
Intuitionistic Layered Graph Logic: Semantics and Proof Theory [82].

In Chapter 3 we introduce BI and BBI as extensions of layered graph logics.
In particular, we introduce our version of resource semantics (generalising that of
O’Hearn & Pym [177] and inspired by the work of Coecke et al. [60] and Fritz [94]
in quantum information theory) and explain the logical relationship between our
models and those found in the literature. We also take an opportunity to introduce
Separation Logic, a program verification formalism based on (B)BI. While this is
not a thesis about Separation Logic, many concerns particular to Separation Logic
inspire our work: for example, the logic CKBI introduced in Chapter 4, the duality
theory for predicate (B)BI given in Chapter 8 and the tableaux calculi for Separation
Logic-like models given in Chapter 10. We finish this chapter by highlighting a
range of examples from computer science that yield models of the logics. Parts of
this chapter are based on material from the journal paper Stone-Type Dualities for
Separation Logics [83].

In Chapter 4 we introduce a range of logics that extend BI and BBI, finishing
our summary of the bunched logics under investigation. We begin with DMBI and
CBI, logics obtained by extending BI and BBI (respectively) with a multiplicative
negation. Similarly to Chapter 2, we focus on the previously unexplored intuition-
istic variant DMBI’s resource semantics, obtaining CBI as a particular extension.
Next we consider Subclassical Bunched Logics, extending BI and BBI with multi-
plicative disjunction and falsum. Once again, the variant extending BI is new, and
is the focus of this section. We finish the chapter with logics extending BBI. First,
a class of modal logics we call—after Courtault et al.’s [68] Logic of Separating
Modalities—separating modal logics. We explain how the connectives of BBI can
be used together with a single modal operator to obtain a range of normal modali-
ties interpreted by a notion of accessibility offset by the composition of resources.
We also discuss the problems with defining separating modal logics extending BI.
Second, a new bunched logic we call Concurrent Kleene BI, or CKBI. This logic is
inspired by work [178] relating Concurrent Separation Logic to concurrent Kleene
algebra and acts as something of a test case for the methods of the thesis. For
simplicity we do not consider the evident intuitionistic variant, though note that its
specification is straightforward using the techniques of the thesis. Parts of this chap-
ter are based on material from the journal paper Stone-Type Dualities for Separation
Logics [83].

The second part, Algebra and Duality for Bunched Logics, is something of

1.3. Road Map for the Thesis 24

a rejoinder to a comment of O’Hearn & Pym [177] in their paper introducing BI.
There they state

“We are not looking for an algebraic semantics here, where one takes
(say) a Heyting algebra with enough structure to model the multiplica-
tives; this would just be a collapsed version of the [categorical] seman-
tics and would not be very informative”

before defining BI’s Kripke-style resource semantics. In contrast to this, we con-
sider just such an algebraic semantics and show via duality theory that the resource
semantics of bunched logics is in fact encoded within it, in much the same way that
the Kripke semantics of modal logic were anticipated by Jónsson & Tarski’s dual-
ity theory for Boolean algebras with operators. Moreover, we are able to use this
perspective to resolve a number of open problems in bunched logic. This indicates
that while, just as in the case of modal logic, having the Kripke-style semantics
provides the catalyst for identifying potent applications, the algebraic perspective is
still incredibly important.

In Chapter 5 we provide the necessary preliminaries for our duality theoretic
approach: an overview of basic notions from algebra and topology, as well as a
presentation of the Esakia and Stone duality theorems connecting the algebraic and
topological semantics of intuitionistic and classical propositional logic. As bunched
logics extend these logics, naturally our duality theorems must extend these theo-
rems, and so we give them in full as a preliminary step. Of particular importance in
this chapter is the notion of prime predicate, a technical device we introduce (gen-
eralising one of Galmiche & Larchey-Wendling [99]) that we will repeatedly use
throughout the rest of this part of the thesis.

In Chapter 6 we get to work setting up duality theory for bunched logics. For
each logic this comes in two steps. First, we relate an algebraic semantics that
we introduce to the Kripke semantics given in Part I by producing functors that
transform one into the other and give representation theorems for bunched logic
algebras that are based on them. This is sufficient for many of the applications we
then go on to consider, but in order to obtain true duality we must introduce topology
to the Kripke semantics; and thus we do so as a second step, introducing bunched
logic spaces. Reflecting the structure of Part I, we start with duality theory for
layered graph logics, and then extend these results to each logic by introducing the
additional required structure that corresponds to the manner in which each bunched
logic arises as an extension of the basic bunched logics. This chapter is based on
the publication A Stone-Type Duality Theorem for Separation Logic [80] and the
journal paper Stone-Type Dualities for Separation Logics [83].

1.3. Road Map for the Thesis 25

We apply the duality theory of Chapter 6 in Chapter 7, resolving a number
of open problems in bunched logic. First, we obtain the soundness and complete-
ness of the Kripke semantics of each logic simultaneously as a corollary of the
previous chapter’s work. In particular, this gives the first completeness theorem for
the resource semantics of the range of intuitionistic variants of bunched logics that
had previously not been investigated. It also highlights duality theory as a power-
ful technique for proving soundness and completeness, reobtaining results for the
classical variants of bunched logics that had previously been given through lengthy
translations into equivalent modal logics. Second, we prove the decidability of the
layered graph logics by proving a finite model property for the algebraic seman-
tics and discuss the non-extension of the results to other bunched logics. Next, we
investigate the expressivity of bunched logics by proving a bunched logic variant
of the Goldblatt-Thomason theorem for modal logic. That theorem outlines pre-
cisely the classes of modal logic model that can be captured by a set of modal logic
formulae—that is, the classes C of modal logic model such that there exists a set of
formulae Σ such that a model X is in C iff the formulae of Σ are valid in X —and
we prove an analogous classification for bunched logics. Finally, we consider Craig
Interpolation for bunched logics, proving that it fails for BBI and CBI, and reducing
the problem for BI and DMBI to a much simpler one. Parts of this chapter are based
on material from the journal papers Stone-Type Dualities for Separation Logics [83]
and Intuitionistic Layered Graph Logic: Semantics and Proof Theory [82].

In the final chapter of this part, Chapter 8, we extend the dualities of Chapter 6
from propositional bunched logics to predicate bunched logics. This is of particular
interest because Separation Logic is actually based on predicate (B)BI, not propo-
sitional (B)BI. First we outline categorical structures suitable to interpret predicate
versions of the logic: ‘algebraic’ structures called bunched logic hyperdoctrines and
new ‘Kripke-style’ structures called indexed bunched logic frames. We show that
the standard model of Separation Logic is an instance of an indexed frame, and use
this as inspiration for an example of a predicate ILGL model. Finally we extend
the propositional dualities to these structures. This chapter is based on the publica-
tion A Stone-Type Duality Theorem for Separation Logic [80] and the journal paper
Stone-Type Dualities for Separation Logics [83].

Part III, Proof Theory for Bunched Logics, is entirely concerned with proof
theory: in particular, setting up a modular tableaux calculus framework sufficient
for all of the logics under investigation. Our work here is particularly motivated by
the fact that many of the classes of bunched logic model used in applications are
in fact incomplete for standard bunched logic proof systems. Our goal is to give
a uniform proof theory that also specifies proof systems for which these classes of

1.3. Road Map for the Thesis 26

model are complete.
In Chapter 9 we set up the basic tableaux calculi for the propositional logics

introduced in Part I. These are given by specifying logical rules that relate to the way
formulae decompose into subformulae and frame rules that encode the structure of
Kripke models that makes resource semantics sound. The frame rules are given by a
uniform translation schema that converts axioms defining Kripke models into proof
rules, taking advantage of the fact that all such axioms belong to a special fragment
of first-order logic called coherent logic. Tableaux calculi for each logic can then
be build modularly by adding or removing the appropriate logical and frame rules.
We show that the tableaux calculi themselves can be given as theories of coherent
logic—something that in fact holds for tableaux systems more generally—and use
metatheory particular to that fragment to prove them sound and complete. Material
in this chapter is based on the publication Modular Tableaux Calculi for Separation
Theories [81].

In Chapter 10 we specify tableau calculi for classes of bunched logic model
of interest in applications. First, we consider the classes of bunched logic model
specified by separation theories: first-order axioms that encode properties of the
memory models used in Separation Logic. We show that these are all specified by
coherent formulae, and so can be modularly added to the tableaux calculi frame-
work defined in Chapter 9 to give sound and complete proof systems for classes
of memory models. We finish by considering the class of layered graph models of
ILGL. Since the states of these models are graphs and thus have internal structure
that can’t be specified by coherent axioms, the method used for separation theories
does not work. Instead, we build a new tableaux calculus from scratch that controls
the structure added in derivations in such a way that the failure to find a tableau
proof of a formula generates a layered graph countermodel. This countermodel
extraction is then used to prove the system is sound and complete for the class of
layered graph models. This chapter is based on the publications Modular Tableaux
Calculi for Separation Theories [81] and Intuitionistic Layered Graph Logic [78].

We finish with Part IV, Conclusions & Further Work. As its name suggests,
this part summarises the contents of the thesis and suggests a range of further re-
search inspired by its results. In particular, we suggest the use of the new bunched
logics as modelling technologies, the application of duality theory to prove further
metatheoretic results and the implementation of the proof systems given in Part III.

Throughout the thesis some basic category theoretic notions are used without
definition. These can all be found in any introductory text on category theory (e.g.,
[15, 154]), but we collect them in the Appendix for ease of reference.

Part I

A Family of Bunched Logics

27

28

Introduction to Part I
This part is dedicated to setting up the logics that will be investi-

gated in this thesis. While some of these systems are well investigated,
some have only been postulated previously and others are new. We or-
ganise the introduction of the logics systematically, starting with the
bunched logic with the weakest multiplicative structure in Chapter 2.
In Chapter 3 we explain how the well-known logic of bunched impli-
cations can be obtained as an extension of that weak logic while giving
an overview of its metatheory and applications. In Chapter 4 we sur-
vey a range of bunched logics, both investigated and new, that can be
obtained as extensions of bunched implication logics, corresponding to
the addition of multiplicative counterparts to disjunction, falsum, nega-
tion and modality.

While this part is introductory in nature, due to its substantial size
we advise that the core of the thesis (Parts II and III) can effectively
be understood after reading Chapter 2 on weak bunched logics, with
Chapters 3 and 4 used as a reference if necessary. Throughout this part
a number of examples of applications of bunched logics are given for
the interested reader – it should be noted that, with the exception of
Separation Logic in Chapter 3, these are inessential for the compre-
hension of the core of the thesis, and should simply be understood as
demonstrative of the utility of bunched logics themselves.

Chapter 2

Layered Graph Logics

We begin our investigation of the family of bunched logics with the most basic sys-
tems: layered graph logics. These logics extend classical or intuitionistic additives
with the weakest possible multiplicative conjunction and its associated implications.

Consider again the analysis of the sequent calculus outlined in Chapter 1 for
BI. In order to obtain coexisting additives and multiplicatives we moved to a system
with two types of context former, each axiomatised differently. This yields tree-
structured contexts called bunches. For the additive context former “;” (henceforth
semi-colon) the structural properties that determine intuitionistic logic hold: asso-
ciativity of context formation, together with Contraction—in the bunch Γ(ϕ ;ϕ) the
‘extraneous’ instance of ϕ can be removed to give the bunch Γ(ϕ))—Weakening—
Γ(ϕ) can be ‘weakened’ with an extra assumption ψ to obtain the bunch Γ(ϕ ;ψ)—
and Exchange—Γ(ϕ ; ψ) is identical to Γ(ψ ; ϕ). In addition there is a unit for
semi-colon given by the empty additive bunch. In contrast, the multiplicative con-
text former “,” (henceforth comma) only satisfies associativity and exchange, and
has its own unit given by the empty multiplicative bunch.

For layered graph logic, the context former comma fails to satisfy all of the
structural properties—thus additionally dropping associativity and exchange—and
has no unit. This is reflected in a multiplicative conjunction that fails to be asso-
ciative, commutative and idempotent. Importantly, as in the case for Contraction,
removing the structural rule of Exchange causes another splitting of connectives.
The introduction rule for implication is given by

〈R−∗〉 Γ ,ϕ ` ψ

Γ ` ϕ−∗ψ
.

Of course, in the presence of Exchange this is equivalent to

〈R−∗′〉 ϕ ,Γ ` ψ

Γ ` ϕ−∗ψ
,

2.1. Syntax and Semantics 30

but this equivalence collapses when Exchange is removed. Accordingly, the ab-
sence of Exchange naturally suggests two implications should be associated with
the multiplicative conjunction, corresponding to the two possible rules: −∗ and ∗−,
respectively. Taken on its own, the multiplicative conjunction and it’s two implica-
tions define the non-associative Lambek calculus [146].

The variant of layered graph logic with classical additives was introduced and
investigated by Collinson et al. [63]. In that work the emphasis was on possible
applications of the logic, with soundness and completeness of the logic with respect
to sequent calculus, natural deduction, Hilbert and display calculus systems only
proved for an algebraic semantics of which the intended semantics generates a par-
ticular case. Moreover, the evident variant with intuitionistic additives (à la BI) is
new, and so this chapter is dedicated to its introduction. In Part II we will fill in
some of the metatheoretic gaps in the literature for both of these systems.

Every other logic we consider in this thesis can be obtained as an extension of
the layered graph logics that is obtained by adding axioms and/or connectives. In
turn, we can develop metatheory for the layered graph logics, and then systemat-
ically extend it to this additional structure to obtain it for the rest of the bunched
logic family. While this is a strong mathematical motivation for the formulation of
the logics, there is also a principled semantic justification in the form of the lay-
ered graph models that give them their name. In these models the multiplicative
conjunction is interpreted by the separating of directed graphs into layers; one layer
above another. As we will see, this interpretation is naturally non-commutative (in
fact, the composition of layers is contra-commutative), non-associative and cannot
be given a unit, so the dropping of the additional structural properties of the sequent
calculus is well motivated semantically.

This chapter is based on the papers Intuitionistic Layered Graph Logic [78], In-
tuitionistic Layered Graph Logic (Abridged Version) [79] and Intuitionistic Layered
Graph Logic: Semantics and Proof Theory [82].

2.1 Syntax and Semantics
We now specify the logics LGL and ILGL. LGL stands for Layered Graph Logic
and is the variant with classical additives introduced by Collinson et al. [63, 64].
Appropriately, ILGL stands for Intuitionistic Layered Graph Logic and is the variant
with intuitionistic additives.

Let Prop be a set of atomic propositions, ranged over by p. The set of all
formulae of layered graph logic FormLGL is generated by the grammar

ϕ ::= p | > | ⊥ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ϕ ∗ϕ | ϕ−∗ϕ | ϕ ∗−ϕ,

2.1. Syntax and Semantics 31

0. ¬¬ϕ ` ϕ
1.

ϕ ` ϕ
2.

ϕ ` >

3. ⊥ ` ϕ
4.

η ` ϕ η ` ψ

η ` ϕ ∧ψ
5.

ϕ ` ψ1∧ψ2

ϕ ` ψi

6.
ϕ ` ψ

η ∧ϕ ` ψ
7.

η ` ψ ϕ ` ψ

η ∨ϕ ` ψ
8.

ϕ ` ψi

ϕ ` ψ1∨ψ2

9.
η ` ϕ → ψ η ` ϕ

η ` ψ
10.

η ∧ϕ ` ψ

η ` ϕ → ψ
11.

ξ ` ϕ η ` ψ

ξ ∗η ` ϕ ∗ψ

12.
η ∗ϕ ` ψ

η ` ϕ−∗ψ
13.

ξ ` ϕ−∗ψ η ` ϕ

ξ ∗η ` ψ
14.

η ∗ϕ ` ψ

ϕ ` η ∗−ψ

15.
ξ ` ϕ ∗−ψ η ` ϕ

η ∗ξ ` ψ

Figure 2.1: Hilbert rules for layered graph logics. i = 1 or 2 for 5. and 8.

with additive negation defined by ¬ϕ := ϕ →⊥.

We note that our notation differs here compared from that found in the work of
Collinson et al. [63, 64] and our previous work [78, 79, 82]. There, the multiplica-
tive conjunction is given byI, with the associated implications written−I andI−.
While this notation has the benefit of directly presenting the non-commutativity of
the conjunction, we use the ∗ notation associated with the logic of bunched impli-
cations uniformly across all logics we consider. This allows us to present rules,
algebras, and constructions that instantiate the same structure independently of the
logic under consideration uniformly across this thesis.

Hilbert-style rules for LGL and ILGL are given in Figure 2.1. Rules 0− 10
specify classical propositional logic, 1−10 intuitionistic logic and 11−15 the non-
associative Lambek calculus. Accordingly, 0− 15 gives a proof system for LGL,
while 1−15 gives a proof system for ILGL.

Proofs in the system are constructed inductively: in the base case, an instance

of a zero premiss rule
ϕ ` ψ

is a proof of ϕ ` ψ . Given an instance of a rule

ϕ1 ` ψ1 · · ·ϕn ` ψn

ϕ ` ψ

together with proofs of each premiss ϕi ` ψi, we obtain a proof of ϕ ` ψ by con-
catenating the proofs of each premiss with the rule instance. If a proof exists of

2.1. Syntax and Semantics 32

ϕ ` ψ we say ϕ ` ψ is provable. If one exists of > ` ϕ we say ϕ is provable.
The following deduction theorem can be verified directly from the rules and

holds for all of the bunched logics we investigate. In particular, it enables us to
straightforwardly interpret sequents ϕ ` ψ as encodings of implications.

Theorem 2.1 (Deduction Theorem for Bunched Logics). For any bunched logic
formulae ϕ , ψ , ϕ ` ψ is provable iff ϕ → ψ is provable.

The most general semantics of LGL and ILGL is given on Kripke structures
we call (I)LGL frames.

Definition 2.2 ((I)LGL Frame). An ILGL frame is a triple X = (X ,<,◦) where X
is a set, < a preorder on X and ◦ : X2→P(X) a binary operation. An LGL frame
is an ILGL frame for which the order < is equality =.

ILGL frames are a simple combination of the structures appropriate for inter-
preting intuitionistic propositional logic [142] and the non-associative Lambek cal-
culus [86]—a preorder (X ,<) and a non-determinstic composition ◦ : X2→P(X)

respectively. This formal construction suffices to define a sound and complete se-
mantics for the logic, but we will see when presenting layered graph models of the
logic in Section 2.2 that meaningful examples of ILGL frames do in fact exist.

A valuation is a mapping V : Prop→P(X); if X carries an order < that val-
uation is persistent if x ∈ V (p) and y < x implies y ∈ V (p). To understand the
necessity of persistence requires some unpicking of the philosophical interpretation
of intuitionistic logic’s preorder semantics. In the Kripke semantics of intuitionistic
logic the order is interpreted temporally [142]. The judgement x � p is thus inter-
preted as stating “by state x, p has been verified”; similarly, x 6� p is interpreted “at
state x, p has yet to be verified”. One might consider p to range over mathematical
propositions, with verification supplied by the existence of a proof. It is understood
that once something has been verified (or proved) it remains so. Hence valuations
are necessarily persistent.

For intuitionistic logic persistence extends to the satisfaction of all formulae:
x � ϕ and y< x implies y � ϕ . This follows from the distinctive intuitionistic inter-
pretation of negation and implication: x�¬ϕ iff ϕ does not get verified at any future
state after x, and x � ϕ → ψ iff verification of ϕ at a future state after x will allow
verfication of ψ . Crucucially, the archetypal classical reasoning principle ϕ ∨¬ϕ

is not valid for this semantics: p∨¬p will not hold at a state x at which x 6� p but at
some future state y, y � p, as x � ¬p would contradict persistence.

This purely philosophical interpretation is thus mathematically sound: per-
sistence is in fact necessary to give the soundness of additive implication when it

2.1. Syntax and Semantics 33

x �V p iff x ∈ V (p)
x �V > always
x �V ⊥ never
x �V ϕ ∧ψ iff x �V ϕ and x �V ψ

x �V ϕ ∨ψ iff x �V ϕ or x �V ψ

x �V ϕ → ψ iff for all y< x, y �V ϕ implies y �V ψ

x �V ϕ ∗ψ iff there exists x′,y,z s.t. x< x′ ∈ y◦ z, y �V ϕ and z �V ψ

x �V ϕ−∗ψ iff for all x′,y,z s.t. x′ < x and z ∈ x′ ◦ y: y �V ϕ implies z �V ψ

x �V ϕ ∗−ψ iff for all x′,y,z s.t. x′ < x and z ∈ y◦ x′: y �V ϕ implies z �V ψ

Figure 2.2: Satisfaction for (I)LGL. LGL is given by the case where < is =.

cannot be decomposed using Boolean negation and prevents the validation of in-
tuitionistically unsound principles like the laws of double negation and excluded
middle.

The requirement of persistence should not be seen as a restriction on bunched
logics with intuitionistic additives. Instead, variants with intuitionistic additives
should be seen as being the right tools to reason about properties that are naturally
persistent. For example, properties of models that are naturally inherited from part
to whole—for example, the property of a path existing in a subsystem persists to
the whole system—or, in logics with resource interpretations, properties that only
need to be verified up to ‘having enough’—for example, having sufficient resource
to perform an action persists to greater amounts of resource.

An (I)LGL frame X together with a persistent valuation V : Prop→P(X)

gives a(n) (I)LGL model M = (X ,V). Given a(n) (I)LGL model M , the satisfac-
tion relation �V ⊆ X ×FormLGL is inductively generated by the clauses in Figure
2.2. The clauses for the standard connectives are straightforwardly the Kripke se-
mantics for intuitionistic propositional logic. The clauses for the multiplicatives are
guarded by ◦-statements to ensure the structural properties discussed earlier do not
hold for ∗ as well as the adjoint relationship between ∗,−∗ and ∗−. These clauses are
not quite the standard semantics for the non-associative Lambek calculus, however:
our clauses are additionally guarded by <-statements to ensure persistence holds.
Nonetheless, as we will see in Section 2.2 when we introduce layered graph models,
this can be given a clear spatial interpretation.

We now fix some notation. Given a frame X , the judgement X � ϕ asserts
that for every possible valuation V on X and every state x ∈ X , x �V ϕ . The
judgement ϕ �V ψ asserts that for every state x of the model M , whenever x �V ϕ ,
it follows x �V ψ . ϕ � ψ asserts that ϕ �V ψ holds for all models M . Finally, � ϕ

2.2. Layered Graphs 34

— read, ϕ is valid — asserts that> � ϕ . It is straightforward to prove that for all ϕ ,
ψ , whenever ϕ `ψ is provable in the Hilbert system, ϕ �ψ holds in the semantics.
First we must show that persistence extends to all formulae for any ILGL model.

Lemma 2.3. For any ILGL model M , the satisfaction relation is persistent. That
is, if x � ϕ and y< x then y � ϕ .

Proof. We give the case for ∗−: the others are similar. Suppose x � ϕ ∗−ψ and
y< x. We have that for all x′ < x, if w ∈ z◦ x′ and z � ϕ then w � ψ . Thus if y′ < y
and z ∈ w◦ y′ with z � ϕ , by transitivity y′ < x so w � ψ by the assumption. Hence
y � ϕ ∗−ψ .

This allows us to prove soundness by an inductive argument on (I)LGL proofs.

Theorem 2.4 (Soundness of (I)LGL). ϕ ` ψ is provable implies ϕ � ψ . Similarly,
ϕ is provable implies ϕ is valid.

Proof. Soundness follows by showing that validity of premisses leads to validity of
the conclusion for each rule. We demonstrate with the rule

15.
ξ ` ϕ ∗−ψ η ` ϕ

η ∗ξ ` ψ

for ILGL. Suppose ξ � ϕ ∗−ψ and η � ϕ . Let x be an arbitrary state in an ILGL
model such that x �V η ∗ξ . Then x< x′ ∈ y◦z with y � η and z � ξ . By assumption
y �V ϕ and z �V ϕ ∗−ψ so x< x′ ∈ y◦ z entails x � ψV by persistence, as required.

In Chapter 7 we will return to the opposite direction of completeness: ϕ � ψ

implies that ϕ ` ψ is provable.

2.2 Layered Graphs
The key motivation behind the formulation of layered graph logic is the modelling
of complex systems. Complex systems can be defined as the field of science that
studies, on the one hand, how it is that the emergent behaviour of a system, be it
natural or synthetic, derives from the behaviours of its constituent parts and, on the
other, how said system interacts with its environment. A commonly employed and
highly effective concept that helps to manage the difficulty in conceptualizing and
reasoning about complex systems is that of layering: the system is considered to
consist of a collection of interconnected layers each of which has a distinct, identi-
fiable role in the system’s operations. Layers can be informational or physical and
both kinds may be present in a specific system.

2.2. Layered Graphs 35

E

E
Outside

Inside

Outside

Inside

Security
layer

Routes
layer

Figure 2.3: Layered graph representation of Schneier’s gate.

In the work introducing LGL [63, 64] the systems under consideration were
graph models of physical architecture layered with the security policies intended to
apply to them. An illuminating example of the kind of mismatch that can arise when
such layering isn’t taken into account is highlighted by Schneier [205], recreated in
Figure 2.3. To access a car park a token must be input at a barrier on the road.
However, the space either side of the barrier is totally unsecured, with tiremark
tracks indicating that many drivers choose to simply drive around the barrier instead.
Here the intended security policy (a token-based barrier system) is undermined by
the architecture it is applied to (a road with driveable paths beside it).

Graphs provide a suitably abstract setting for a wide variety of modelling pur-
poses, and layered graphs already form a component of many existing systems mod-
elling approaches. For example, both social networks [35] and transportation sys-
tems [143], have been modelled by a form of layered graph in which multiple layers
are given by relations over a single set of nodes. A key feature of the TCP/IP con-
ceptual model of communications on the Internet [57] is its separation into layers.
This form of layering is not immediately represented in terms of graphs. However,
the form of its information flows may be captured quite naturally using layered
graphs [63]. Elsewhere layered graph models have been deployed to solve problems
related to telecommunications networks [111] and to aid the design of P2P systems
for businesses [219]. A bigraph [164] is a form of layered graph that superimposes a
spatial place graph of locations and a link graph designating communication struc-
ture on a single set of nodes. Such graphs provide models of distributed systems
and have been used to generalize process models like Petri nets and the π-calculus
[163]. Similar ideas have also been used to give layered models of biological sys-
tems [153]. More generally, multilayer networks have become ubiquitous in a range
of complex system modelling approaches (see [141] for a survey).

2.2. Layered Graphs 36

Figure 2.4: The graph composition H @E K.

2.2.1 The Layered Graph Construction
A notion of layered graph can be given that supplies a semantics to the layered graph
logics. Informally, two layers in a directed graph are connected by a specified set of
edges, each element of which starts in the upper layer and ends in the lower layer.
This definition contrasts with prior accounts in which the layering structure is left
implicit [92, 180], and generalises others which consider only a restricted class of
layered graphs [182]. Requiring the layering structure to be explicit is necessary for
it to be interpreted by multiplicative conjunction, while considering a more general
class of layered graphs permits the modelling of a wider variety of examples.

Given a directed graph, G , we refer to its vertex set by V (G). Its edge set is
given by a subset E(G)⊆V (G)×V (G), while its set of subgraphs is denoted Sg(G).
Here, H is a subgraph of G iff V (H)⊆V (G) and E(H)⊆V (G). We thus overload
set theoretic inclusion to also refer to the subgraph relation: H ⊆ G iff H ∈ Sg(G).
For a distinguished edge set E ⊆ E(G), the reachability relation E on subgraphs
of G is defined H E K iff there exist u ∈V (H) and v ∈V (K) such that (u,v) ∈ E .

This generates a partial composition @E on subgraphs. Let ↓ denote defined-
ness and ↑ denote undefinedness. For subgraphs H and K, H @E K ↓ iff V (H)∩
V (K) = /0,H E K and K 6 E H with output given by the graph union of the two
subgraphs and the E -edges between them. Formally, if H @E K ↓, then H @E K is
defined by V (H @E K) =V (H)∪V (K) and E(H @E K) = E(H)∪E(K)∪{(u,v) |
u ∈V (H),v ∈V (K) and (u,v) ∈ E }. Figure 2.4 shows a situation in which H @E K
is defined, as well as the composition itself.

A number of properties can be proved about @E that indicate that (I)LGL is
well suited for reasoning about it.

Proposition 2.5 (c.f. Proposition 2.3 [63]).

1. No (left or right) unit can exist for @E .

2.2. Layered Graphs 37

2. @E is not necessarily associative.

3. @E is anti-commutative.

Proof. For 1, suppose E is a right unit. Then for all subgraphs H, H @E E = H.
However H @E E ↓ implies H and E are disjoint. Thus E can only possibly be the
empty graph. However if this was the case, it would be impossible for H E E as E
contains no vertex to be the target of an E -arrow. Hence H @E E ↑, a contradiction.
A similar argument also suffices for the existence of a left unit.

For 2, consider the graph G defined V (G) = {x,y,z} and E(G) =

{(x,y),(x,z)} = E . Let {w} designate the graph consisting of the single vertex
w. Then ({x}@E {y})@E {z} ↓, but—because {y}@E {z} ↑—the composition
{x}@E ({y}@E {z}) is undefined. Hence @E is not associative.

Finally, 3. follows immediately from the defintion of @E .

We define a class of (I)LGL frames based on partial compositions @E called
(ordered) scaffolds. We first need the definition of admissible subgraph set: a subset
X ⊆ Sg(G) such that, for all G,H ∈ Sg(G), if G@E H ↓, then G,H ∈X iff G@E H ∈
X . Admissible subgraph sets specify the layers of the model and act as the carrier
of an (I)LGL frame. They are defined in order to exclude ‘degenerate’ cases of
layering from a modelling perspective. For example, two disjoint subgraphs G and
H may designate distinct, non-interacting regions in a systems model. However,
their disjoint union would be interpreted as layered over the subgraph K if G E K,
even if H 6 E K. The solution is to specify that G∪H 6∈ X .

Definition 2.6 ((Ordered) Scaffold). An ordered scaffold is a tuple (G ,E ,X ,<)

where G is a directed graph, E a distinguished edge set, X an admissible subgraph
set and < a preorder on X. It is a scaffold when < is =.

Clearly an ordered scaffold defines an ILGL frame (X ,@E ,4), thus ordered
scaffolds are suitable for interpreting ILGL; similarly, a scaffold gives an LGL
frame (X ,@E). There are a number of candidates for < for any scaffold (for exam-
ple, the subgraph relation or the preorder generated by layering); moreover, < can
be used to model additional structure. For now, assume < is simply the subgraph
ordering: K <H iff K ⊇H. We can give an extremely intuitive understanding of all
of the semantic clauses for ILGL from the perspective of a scaffold ordered by the
subgraph relation.

As a simple example, suppose all propositional atoms p state the existence of
particular paths and G �V p is read: G contains the path p. This is, of course,
persistent with respect to the order <: if G contains a path and H ⊇ G then H
also contains that path. Thus G �V p→ q is read: for any extension H of G, if H

2.2. Layered Graphs 38

Figure 2.5: Place and link graphs. Figure 2.6: Bigraph.

contains the path p, it must also contain the path q. G �V p∗q is read: G contains a
subgraph that can be split into layers H and K such that H contains the path p and
K contains the path q. The implications −∗ and ∗− express emergent properties of
the system being modelled by the scaffold. If G �V p−∗ q then for any extension
G′ of G, if G′ is layered over H and H contains the path p then the layered graph
G′@E H contains the path q. Here one might imagine the path q extends a path that
necessarily exists in any extension of G. ∗− is the same, except H is layered over
G′.

While the completeness theorem we will give in Chapter 7 is given for a wider
class of frames than scaffolds, in Chapter 10 we will show that a proof system that
is sound and complete for the layered graph semantics of ILGL can be given.

2.2.2 A Bigraph Model of ILGL
We now give an example of a layered graph model in which the order is given by
something distinct from a subgraph relation. At this juncture we emphasise that
the logic and its layered graph semantics is only really capturing static, structural
aspects of such systems. Realistic complex systems modelling requires a notion of
evolution or dynamics at the very least, if not also resources and processes. Such an
extension is outside of the scope of this thesis.

A bigraph [164] is comprised of a set of nodes on which a place graph and a
link graph are defined. The place graph has the structure of a disjoint union of trees
(a forest), while the link graph is a hypergraph on which one edge can connect many
nodes. The place graph denotes spatial relationships, while the link graph denotes
the communication structure of the system.

The link graph has additional structure: finite sets of labelled vertices
{x1, . . . ,xn}, {y1, . . . ,ym} denoting inner names and outer names respectively.
These act as interfaces to enable the composition of bigraphs: if the outer names
of a bigraph match the inner names of another, their link graphs may be connected
at these vertices. Bigraphs are thus ideal for modelling distributed systems, which
are similarly compositional. Bigraphical Reactive Systems (BRS) provide a dy-

2.2. Layered Graphs 39

namics for such models by defining transitions that reconfigure spatial relations and
connectivity through graph rewriting. Such systems generalise a wealth of process
calculi, including π-calculi and the CCS.

Figure 2.6 shows a bigraph and Figure 2.5 its consituent parts. The structure of
the place graph is visually realised in the bigraph by the containment of its nodes.
We now show how a system of composed bigraphs can be encoded as an ordered
scaffold. Given we work with directed graphs, we model directed bigraphs [112].

We begin with a single bigraph. First, consider the link graph G. We can
replace each hyperedge with a vertex attached to which we add an edge for each
connection of the hyperedge. This obtains a directed graph with the same path
information. For the place graph, note that a forest can straightforwardly be seen
as a partial order on its vertices. This gives an order < on the set of subgraphs
{{v} | v a vertex of the place graph}. We also specify G< G.

Now we consider a system of composed bigraphs. Given bigraphs (G,<),
(H,<′) where G has the same outer names as H’s inner names, we can connect the
outer name vertices of G to the inner name vertices of H with new edges. We collect
all such edges as E . Thus the composition G@E H denotes the composition of the
link graphs (G,<) and (H,<′), and we can take the disjoint union of the partial
orders to obtain a bigraph (G@E H,< t <′). In this way we obtain an ordered
scaffold with the admissible subgraph set given by the closure under composition
of the set {{v} | v a vertex of a place graph } together with each link graph G, and
order generated by the union of the partial orders defined by the place graphs.

A propositional theory for such models can be given by decorating nodes of
the bigraph with resources r. Intuitively, we interpret nodes of the place graph
as locations which contain these resources. Then if a node x is decorated with a
resource r, every place node that includes x is also interpreted as containing r. This
generates a persistent valuation, where G � r iff G contains the resource r. This can
be extended further with propositional atoms r 7→ r′ that are interpreted as stating
the existence of a path from a location containing r to a location containing r′.

Chapter 3

Logics of Bunched Implications

We now consider O’Hearn and Pym’s [177] logics of bunched implications, (B)BI.
These variants are the most well investigated of all the bunched logics, owing in
part to the incredible success of program verification techniques based on their se-
mantics.

Much work has been done on the proof theory of these logics. BI enjoys a
proof theory based on the bunched sequent calculus (sketched in Chapter 1) and
a natural deduction system both formulated by O’Hearn & Pym [177, 187], as
well as a labelled tableaux calculus (used to prove decidability of the logic) due
to Galmiche et al. [101] and a display calculus due to Brotherston [38]. BI has
been proved complete with respect to these systems for a number of different se-
mantics: a topological semantics based on Grothendieck sheaves due to O’Hearn et
al. [189], a Kripke style semantics based on composable resources due to O’Hearn
& Pym [177] (generalised to coalgebra by Dahlqvist & Pym [70]) and an algebraic
semantics given by extending Heyting algebras with the structure of a residuated
commutative monoid, again due to O’Hearn & Pym [177]. This class of algebras
has recently been investigated in more detail by Galatos & Jipsen [97].

The bunched sequent calculus is sufficiently well behaved that proofs in the
calculus can be modelled by a categorical semantics in doubly closed categories
(DCCs). DCCs are categories carrying two symmetric monoidal closed structures:
one Cartesian (for the interpretation of the intuitionistic fragment) and one not (for
the multiplicative connectives). This categorical interpretation motivates a corre-
sponding bunched type system, the αλ -calculus, introduced by Pym [187] and
O’Hearn [174]. This system has been extended further to encorporate polymor-
phism by Collinson et al. [62]. A further computational application is provided
by Armelı̀n & Pym’s [13] formulation of bunched logic programming, a logic pro-
gramming language based on a fragment of BI.

The proof theory of BBI is no less investigated than BI, although complications

41

arise when trying to formulate a bunched sequent calculus with good computational
properties like cut elimination, something that Brotherston [38] speculates may not
exist based on his analysis of the relation between BI’s bunched sequent and dis-
play calculi. Brotherston [38] gives a display calculus and Park et al. [181] give
a nested sequent calculus, both satisfying cut elimination, while other proof theory
for BBI relies on the direct representation of the semantics via labels: examples
include Larchey-Wendling’s [148] labelled tableau calculus for BBI interpreted on
models with a partial monoidal composition and Hóu et al.’s [127] labelled sequent
calculus. All of these systems are proved complete with respect to the Kripke-style
semantics and many of these proofs are obtained by encoding the Hilbert system for
BBI in the respective calculus, a system proved complete by Galmiche & Larchey-
Wendling [99]. It is not known if a proof system for BBI exists in which proofs can
be interpreted categorically, however.

In contrast to BI, BBI is known to be undecidable. An algebraic proof of unde-
cidability (in the context of residuated Boolean algebras) was given by Kurucz et al.
[144], but remained unknown to the bunched logic community until the publication
of Brotherston & Kanovich [42, 43] and Larchey-Wendling & Galmiche’s [149] un-
decidability proofs. Undecidability appears to stem from the fact that BBI is highly
expressive, something indicated by Galmiche & Larchey-Wendling’s faithful em-
beddings of intuitionistic propositional logic, the modal logic S4 and BI itself into
BBI. Its expressivity allows the encoding of models of computation like Minsky
machines in its semantics. Brotherston & Villard [44] have also investigated the
limits of BBI’s expressivity, highlighting a number of properties common to mem-
ory models of the logic that cannot be defined by BBI formulae.

It is the resource semantics of the logic which have had the most impact, how-
ever. The key application of the logic is Separation Logic, a program verification
formalism based on the theory of a particular model of (B)BI initially developed by
Reynolds [196, 197], Ishtiaq & O’Hearn [129], and O’Hearn et al. [179]. We dis-
cuss Separation Logic in more detail in Section 3.2. Pym & Tofts [190], Collinson
& Pym [61] and Anderson & Pym [10] have developed an approach to process al-
gebra encorporating resource semantics for the use in systems and simulation mod-
elling. In another direction, Abramsky & Väänänen [7] show that the semantics of
BI naturally encapsulates the semantics of the dependence-sensitive logic IF: we
discuss this example further in Section 3.3. Of course, the interpretation of multi-
plicative connectives as operations on resources has stimulated much research into
the formulation of other bunched logics that we will discuss in Chapter 4.

For the most part, this chapter is concerned with understanding bunched im-
plication logics as extensions of layered graph logics. In particular, the semantic

3.1. Syntax and Semantics 42

16.
(ϕ ∗ψ)∗ξ ` ϕ ∗ (ψ ∗ξ)

17.
ϕ ∗ψ ` ψ ∗ϕ

18.
ϕ ∗>∗ a` ϕ

Figure 3.1: Hilbert rules for logics of bunched implications.

structures we consider (directly extending the frames and semantics for layered
graph logics) are defined slightly different to those typically found in the literature.
We explain how these semantic approaches are related and show that our approach
generates the same class of valid formulae as prior approaches. We also take an
opportunity to introduce Separation Logic and highlight some other (optional, for
the interested reader) models of bunched implication logic that can be found in
computer science. Parts of this chapter are based on the journal paper Stone-Type
Dualities for Separation Logics [83].

3.1 Syntax and Semantics
Let Prop be a set of atomic propositions, ranged over by p. The set of all formulae
of the logics of bunched implications FormBI is generated by the grammar

ϕ ::= p | > | ⊥ | >∗ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ϕ ∗ϕ | ϕ−∗ϕ,

with additive negation defined by ¬ϕ ::= ϕ →⊥.

Figure 3.1 gives the rules that need to be added to the Hilbert systems of the
layered graph logics to obtain systems for (B)BI. To obtain a system for BI—the
system with intuitionistic additives—we add these rules to the system for ILGL,
and for BBI—the system with classical additives—we add the rules to the system
for LGL. These rules represent additional structural rules of the sequent calclulus:
16. is associativity of the multiplicative context former, 17. is the Exchange rule
and 18.—with a` indicating that the judgement can be read in either direction—
represents the addition of a unit for the multiplicative context former. One simple
consequence of adding these rules is that the connectives −∗ and ∗− become equiv-
alent, exactly inverting the splitting of multiplicative implication into two connec-
tives when Exchange does not hold. Hence we do not consider ∗− in the grammar
of (B)BI.

The most general semantics of BI and BBI is given on Kripke structures we
call (B)BI frames. Appropriately, these structures extend LGL and ILGL frames.

Definition 3.1 ((B)BI Frame). A BI frame is a triple X = (X ,<,◦,E) where
(X ,<,◦) is an ILGL frame, E ⊆ X and the following conditions are satisfied (with

3.1. Syntax and Semantics 43

x �M >∗ iff x ∈ E

Figure 3.2: Satisfaction for (B)BI.

outermost universal quantification omitted for readability):

(Commutativity) z ∈ x◦ y→ z ∈ y◦ x (Closure) e ∈ E ∧ e′ < e→ e′ ∈ E
(Unit Existence) ∃e ∈ E(x ∈ x◦ e) (Coherence) e ∈ E ∧ x ∈ y◦ e→ x< y
(Associativity) t ′ < t ∈ x◦ y∧w ∈ t ′ ◦ z→∃s,s′,w′(s′ < s ∈ y◦ z∧w< w′ ∈ x◦ s′)

A BBI frame is a BI frame for which the order < is equality =.

A (B)BI frame X together with a persistent valuation V gives a (B)BI model
M , and for such a model the satisfaction relation �M⊆ X ×FormBI is inductively
generated by the satisfaction clauses for layered graph logic, extended with the con-
dition for>∗ given in Figure 3.2. By Closure this clause clearly satisfies persistence,
so persistence of satisfaction is a corollary of the case for layered graph logic.

To expound the meaning of these structures we outline an interpretation that is
strictly more general than the O’Hearn & Pym [177] analysis sketched in Chapter
1. Recent work by Coecke et al. [60] and Fritz [94] outlines an algebraic frame-
work for resource theories inspired by notions from quantum information theory.
Such theories are represented by ordered commutative monoids in which compo-
sition straightforwardly represents the composition of resources but the order < is
generated by a background theory of the conversion of resources: for example, the
conversion of chemical substances into others via chemical reactions.

Our version of resource semantics can be seen as a synthesis of the original
resource semantics of O’Hearn & Pym [177] together with this later analysis. The
benefits of this synthesis are twofold: on the one hand it expands the convertibil-
ity analysis to account for partiality, a property that has been crucial for both the
metatheory and application of bunched logic; on the other, it broadens our view of
the kind of phenomena bunched logic can reason about by considering a strictly
more general interpretation of the necessary semantic structures for BI. Crucially,
the mathematical and logical content for both is identical.

The carrier set X of a BI frame is considered to be a set of resources, ordered
by a conversion ordering <. We distinguish between two different interpretations
of the order and name them for the kind of propositional atoms each viewpoint is
suitable for reasoning about. The first is the invariant interpretation. In the invari-
ant interpretation we read x 4 y as “x converts to y”. Persistence of the valuation
V has the consequence that propositional atoms must be invariants of conversion:

3.1. Syntax and Semantics 44

if p is true at x and x converts to y then p is true at y. In contrast, the sufficiency
interpretation reads y< x as “y converts to x”. Persistence here means that proposi-
tional atoms are judgements of sufficiency: if p is true at x then any resource y that
converts into x is also sufficient to make p true.

Let’s pause to consider some simple examples exemplifying these perspec-
tives. We consider the chemical reaction model of Coecke et al. [60] and the money
model of Pym et al. [189] in their respective analyses of resource. The first, cor-
responds to the invariant interpretation. The basic idea is that, given a particular
experimental set up, it is possible to convert chemical substances into others. For
example, the chemical equation describing the conversion of one methane and two
oxygen molecules into one carbon dioxide and two water molecules is given by

CH4 +2O2→CO2 +2H2O.

We can consider the resource set X to be the set of all chemical substances and <
to be the conversion ordering generated by chemical reactions using the invariant
interpretation. That is, the above chemical equation is witnessed as CH4 + 2O2 4

CO2 + 2H2O. One of the simplest facts about chemical reactions is that the num-
ber and types of atoms are necessarily preserved by conversion. For example,
CH4 +2O2 is comprised of 9 atoms—1 carbon atom, 4 hydrogen atoms and 4 oxy-
gen atoms—and so too is CO2 + 2H2O. We can thus give a persistent valuation
witnessing this invariant by defining V : N×Periodic→P(X) where x ∈ V (n,y)
if the substance x contains n y-atoms.

For an example of a sufficiency interpretation we can consider O’Hearn &
Pym’s [177] original motivating example for BI. Consider the natural numbers N or-
dered by the standard≥. We interpret n ∈N as designating the cash value £n, while
the ordering can be seen as that generated by the notion of conversion “spending
some money elsewhere” under the sufficiency interpretation. For example, £10< £6
because £10 converts to £6 via spending £4 elsewhere. Now propositional atoms
are given by items one might purchase with their money. Suppose an apple costs
£1. Then any amount of money over £1 is sufficient to purchase an apple. The
valuation V defined by £x ∈ V (Item) iff £x is enough to buy Item is thus persistent
and witnesses the sufficiency of the amount of resource to perform a given task.

Every frame comes equipped with a notion of resource composition ◦. We
do not commit to some aspects of the composition at this stage (e.g. partial vs to-
tal, deterministic vs non-deterministic) for two reasons: first, it is known that the
Hilbert system for (B)BI is incomplete when restricted to total and/or deterministic
composition [150]; second, well-motivated BI models can be found for all com-

3.1. Syntax and Semantics 45

binations of these properties. Hence we state that the composition is an operation
◦ : X2→P(X), which is sufficient to subsume all possible variations. What is en-
forced is that this composition is commutative (given by the axiom Commutativity)
and that it satisfies a generalised notion of associativity (given by the axiom Asso-
ciativity) that is compatible with partiality and the ordering. As we progress further
we will explain the conditions under which this axiom can be replaced with a more
familiar looking one, For now we simply state that such conditions hold for our run-
ning example, and thus our interpretation of both the + in chemical equations and
the + given by addition on N as ◦ follows from the standard associativity property
x+(y+ z) = (x+ y)+ z.

The readings of the semantic clauses for ∗ and−∗ are subtly different depending
on whether our BI frame is interpreted for invariance or sufficiency. Recall that the
semantic clause for ϕ ∗ψ is given by

x �M ϕ ∗ψ iff there exists x′,y,z s.t. x< x′ ∈ y◦ z,y �M ϕ and z �M ψ.

Under the invariance interpretation, this is read as “there is a resource x′ made up
of a ϕ-resource y and a ψ-resource z such that x′ converts to x. In the chemistry
example, we have that CO2 +2H2O �M (1C∧4H)∗4O because CH4 �M 1C∧4H
(is made up of 1 carbon atom and 4 hydrogen atoms), 2O2 �M 4O (is made up of 4
oxygen atoms) and the chemical equation CH4 +2O2→CO2 +2H2O holds. Thus
∗ formulae witness the conversion invariant given by the distribution of properties
across the components required to obtain the resource currently at hand through
composition and conversion.

Under the sufficiency interpretation, this is read as “x can be converted into
a resource x′ that is sufficient to be split into separate resources, y and z such that
y is a ϕ-resource and z is a ψ-resource. In the money example, if apples cost £1
and a bunch of bananas cost £2 then £5 �M apple ∗ banana because we can spend
£2 elsewhere and still have sufficient cash to buy an apple for £1 and separately a
bunch of bananas with our remaining £2. Thus ∗ formulae witness the sufficiency
of the current resource at hand to be split to perform two parallel tasks, modulo a
conversion freely available in the system.

The semantic clause for ϕ−∗ψ is given by

x �M ϕ−∗ψ iff for all x′,y,z s.t. x′ < x and z ∈ x′ ◦ y : y �M ϕ implies z �M ψ.

Under the invariance interpretation, this is read as “for any x′ that the resource x
converts into, a successful composition with a ϕ-resource y gives a ψ-resource z. In

3.1. Syntax and Semantics 46

the chemistry example we have CO2 �M 2H−∗ (C∧ 2O∧ 2H): anything that CO2

converts to still has 1 carbon atom and 2 oxygen atoms. Thus if it is combined with
anything that contains 2 hydrogen atoms, the resulting composition of chemical
substances will contain the atoms that originated in CO2, as well as those hydrogen
atoms.

Under the sufficiency interpretation, this is read as “for any resource x′ that can
be converted to x, successfully composing with a ϕ-resource y gives a ψ-resource
z”. In the money example, £1 � apple−∗banana: for any amount of money greater
than or equal to £1, adding sufficient money to buy an apple (£1) gives you sufficient
money to buy a bunch of bananas.

We finally consider the E component of a BI frame. Under the invariance inter-
pretation, E is interpreted as the set of resources convertible from unit resources: the
free resources of the system. Free resources play an important role in the resource
theories of quantum information theory [60]. For example, when considering en-
tanglement as a resource that can be used for the quantum information processing
task of teleportation, the free resources are those given by classical communication
and local operations (e.g., those that do not increase entanglement). We thus inter-
pret x �M >∗ as simply stating x is a free resource: a property that is conversion-
invariant.

Under the invariance interpretation, the axiom Unit Existence states that all
resources have some compatible unit resource in E and Closure ensures that every-
thing convertible from a resource in E is also in E. The Coherence axiom has two
important roles. First, it (together with the other axioms governing E) ensures that
E is comprised of the free resources and only the free resources. Let e∈ E. Then by
unit existence there exists e′ ∈ E that is a unit for e: e ∈ e ◦ e′. By Commutativity,
e ∈ e′ ◦ e and by Coherence e < e′ so e is a free resource. That every free resource
is in E is a trivial consequence of Unit Existence and Closure. Second, it enforces a
minimal coherence property between ◦,< and E: if you can obtain x by composing
y with a free resource, then from the perspective of the system you can obtain x
by conversion from y alone. In the chemistry example, because of conservation of
mass only the empty chemical substance /0 is a free element. Thus E = { /0}.

Under the sufficiency interpretation, E is interpreted as the set of resources
that convert into unit resources. We call these the unit-convertible resources of the
frame. Intuitively, unit convertibles are simply the resources that can get used up
by conversion in the system, and we can interpret x �M >∗ as stating x is unit-
convertible. Like in the invariance interpretation, it follows from the BI frame ax-
ioms that E is comprised only of the unit-convertible resources. Coherence now
states that if x is obtained by composing y with a unit-convertible resource e, x con-

3.1. Syntax and Semantics 47

verts to y by the conversion of the e-component of x into a compatible unit for x.
In the money model, sadly any amount of money can be converted to nothing by
spending it all. Hence E = N.

We’ve yet to talk about BBI frames, but they have a very simple interpretation
as a specific case of the analysis just outlined. Essentially, BBI frames are an anal-
ysis of resource where conversion is either not possible or ignored, as demonstrated
by the order of a BBI frame being =. A lot is simplified for the definition of BBI
frame: Closure becomes redundant, the other E rules now simply specify that E
is the set of unit resources and Associativity collapses to the Simple Associativity
axiom

t ∈ x◦ y∧w ∈ t ◦ z→∃s(s ∈ y◦ z∧w ∈ x◦ s). (3.1)

The semantic clause for ∗ now witnesses the direct decomposition of a resource
while that for −∗ witnesses the direct composition of a resource with an arbitrary
one satisfying the antecedent.

Some of this simplification also holds for BI frames that satisfy special prop-
erties. To aid the understanding of how and why this is possible it is instructive to
examine the soundness proof for BI.

Theorem 3.2 (Soundness of (B)BI). ϕ ` ψ is provable implies ϕ � ψ . Similarly, ϕ

is provable implies ϕ is valid.

Proof. We focus on the case we will concentrate on for the rest of this section: ∗-
associativity for BI. Assume r � (ϕ ∗ψ)∗ξ . Then r < w ∈ t ′ ◦ z such that t ′ � ϕ ∗ψ

and z � ξ . It follows that t ′ < t ∈ x ◦ y with x � ϕ and y � ψ . From here we can
apply the BI frame axiom Associativity to obtain s,s′,w′ such that s′ < s ∈ y◦ z and
w< w′ ∈ x◦ s′. It follows that x � ϕ and s′ � (ψ ∗ξ) so w � ϕ ∗ (ψ ∗ξ), and thus by
persistence r � ϕ ∗ (ψ ∗ξ).

Now in most presentations of BI [177, 189, 101] the satisfaction clause for −∗
is given by

x � ϕ−∗ψ iff for all y,z : z ∈ x◦ y and y � ϕ implies z � ψ, (3.2)

with = instead of ∈ in presentations of BI models as monoids. This is precisely
what the semantic clause for −∗ works out as in our semantics for the special case
of BBI models. However this is not sound in general for our BI models (which are
defined in such a way to directly extend ILGL) as this clause does not always satisfy
persistence. In the original monoid models (where ◦ is total and deterministic)
an additional condition called bifunctorality is assumed. Bifunctorality is a very
natural condition relating the composition ◦ with the conversion ordering < and

3.1. Syntax and Semantics 48

dictates that given x′ < x and y′ < y it follows that x′ ◦ y′ < x ◦ y. Our running
examples of chemical reactions and money (the natural numbers) are bifunctorial:
if two different chemical reactions are possible they can be run in parallel and + is
straightforwardly monotone with respect to the ≤ on N.

For a bifunctorial (total deterministic) ordered monoid we have that the clause
(3.2) satisfies persistence: if x � ϕ −∗ψ and x′ < x, then for any y, x′ ◦ y < x ◦ y
by bifunctorality, and so y � ϕ implies x′ ◦ y � ψ by our assumption together with
persistence of satisfaction for ψ . Soundness of ∗-associativity also follows from the
standard associativity of ◦ in such a model: if x � (ϕ ∗ψ) ∗ ξ there exists y,z such
that x< y◦z with y � (ϕ ∗ψ) and z � ξ . Thus there exist w,v such that y<w◦v with
w � ϕ and v � ψ . By associativity of ◦ and bifunctorality, w◦ (v◦ z) = (w◦ v)◦ z4
y◦ z4 x so x � ϕ ∗ (ψ ∗ξ).

Generalising bifunctorality for partial ◦ in order to permit proofs of these prop-
erties is a delicate matter; the previous arguments can collapse without a guarantee
that certain compositions exist. Cao et al. [51] identify one such generalisation,
calling it the Downwards Closed property:

z ∈ x◦ y∧ x< x′∧ y< y′→∃z′(z< z′∧ z′ ∈ x′ ◦ y′). (3.3)

This is a stronger coherence property that the minimum required of a BI frame to
soundly interpret the logic. On either conversion interpretation of < the property
essentially says conversion of components lifts to conversion of compositions: a
very natural idea. What is perhaps less natural is the enforcement of the existence
of z′ ∈ x′ ◦ y′ as x′ and y′ may be incompatible in general.

By a similar argument to that for bifunctoral monoids, a model being Down-
wards Closed is sufficient to prove that the simpler semantic clause (3.2) satisfies
persistence, and in this case the two possible clauses for −∗ are equivalent. It
also entails that satisfaction of the Simple Associativity axiom (3.1) is sufficient
to prove soundness of ∗-associativity. Suppose x � (ϕ ∗ψ) ∗ ξ . Then there exists
v,w,x′,y,y′,z such that x< x′ ∈ y◦ z and y< y′ ∈ v◦w with v � ϕ , w � ψ and z � ξ .
By Downwards Closed (3.3) there exists x′′ ∈ y′ ◦ z such that x′ < x and by Simple
Associativity y′ ∈ v◦w and x′′ ∈ y′ ◦ z implies there exists t such that x′′ ∈ v◦ t and
t ∈ w◦ z. Hence x � ϕ ∗ (ψ ∗ξ) as required.

Similarly, the satisfaction clause for ∗ is occasionally (albeit rarely) given as

x � ϕ ∗ψ iff there exists y,z such that x ∈ y◦ z,y � ϕ and z � ψ (3.4)

in presentations of BI [129, 119]. Once again, this is both what our semantic clause

3.1. Syntax and Semantics 49

reduces to in the special case of a BBI model and also not sound in general for BI
models as persistence can fail. It is, however, satisfied on models that have what
Cao et al. call the Upwards Closed property:

z ∈ x◦ y∧ z′ < z→∃x′,y′(z′ ∈ x′ ◦ y′∧ x′ < x∧ y′ < y). (3.5)

The conversion interpretation of this property is that conversion drops from
composition down to components. This is perhaps less natural on our reading than
Downwards Closed is, given that conversion may only be possible because of the
combination of the resources x and y. Looking once again at the chemical reaction
CH4 + 2O2 → CO2 + 2H2O, we have CH4 6→ CO2, 2O2 6→ 2H2O, CH4 6→ 2H2O
and 2O2 6→CO2: atoms from both components of CH4 +2O2 are required for each
component CO2 and 2H2O. This property is satisfied by our money model, however.

Nonetheless, the property makes mathematical sense, and similarly to the case
for Downwards Closed and −∗, this condition makes the two possible satisfaction
clauses of ∗ equivalent. It also renders the Simple Associativity axiom sufficient to
prove soundness of ∗-associativity because of the direct decomposition in the sim-
pler satisfaction clause for ∗. A structure for modelling BI which is both upwards
and downwards closed can thus be defined with the Simple Associativity axiom
and has its semantics presented identically to BBI. This is the case for the original
BI model of Separation Logic presented by Ishtiaq and O’Hearn [129], a fact that
is commented upon, albeit without formulating the sufficient conditions for it to
always be the case.

Cao et al. show that any structure satisfying either Upwards or Downwards
Closed, together with Simple Associativity, can be conservatively transformed into
a sound model of BI satisfying all three. They note that applying each transfor-
mation in sequence from a structure satisfying only Simple Associativity does not
result in a sound Upwards and Downwards Closed BI model though. However it
is the case that any BI frame can be conservatively transformed into one satisfy-
ing all three properties: the key is starting with the more general BI frame axiom
Associativity, a possible BI model that the authors do not consider.

Proposition 3.3. Any BI frame X can be transformed into an Upwards and Down-
wards Closed, Simple Associative frame X ⇑⇓ with the same carrier such that for
any valuation V : Prop→P(X) every element x satisfies the same formulae in
X ⇑⇓ as it does in X .

Proof. Given a BI frame X = (X ,<,◦,E), define its upwards and downwards clo-
sure by X ⇑⇓ = (X ,<,◦⇑⇓,E) where x ∈ y ◦⇑⇓ z iff there exist x′,y′,z′ such that

3.2. Separation Logic 50

x< x′, y′ < y, z′ < z and x′ ∈ y′ ◦ z′ (cf. [51]). That this is Upwards and Downwards
Closed is straightforward. To see that Simple Associativity is satisfied, suppose
t ∈ x ◦⇑⇓ y and w ∈ t ◦⇑⇓ z. By definition this entails that there are t ′,x′,y′ such
that t < t ′ ∈ x′ ◦ y′ with x′ < x and y′ < y. Similarly there are w′, t ′′,z′ such that
w < w′ ∈ t ′′ ◦ z with t ′′ < t and z′ < z. Applying Associativity for ◦ we obtain
s,s′,w′′ such that s′ < s ∈ y′ ◦ z′ and w′ < w′′ ∈ x′ ◦ s′. We thus obtain s ∈ y ◦⇑⇓ z
immediately. To see that w ∈ x◦⇑⇓ s note that w< w′ < w′′ ∈ x′ ◦ s′ with x′ < x and
s′ < s. A straightforward inductive argument shows that the satisfaction relations
generated by any valuation V are equivalent for these models.

Not only this, but any structure satisfying all three properties also satisfies the
BI frame axiom Associativity.

Proposition 3.4. Let (X ,4,◦) satisfy Simple Associativity and Upwards and Down-
wards Closed. Then (X ,4,◦) also satisfies the BI frame axiom Associativity.

Proof. Assume all three properties hold and suppose t ′ < t ∈ x ◦ y and w ∈ t ′ ◦ z.
By Upwards Closed there exist x′ and y′ such that t ′ ∈ x′ ◦ y′, x′ < x and y′ < y. By
Simple Associativity we obtain s′ such that s′ ∈ y′ ◦z and w∈ x′ ◦s′. By Downwards
Closed we obtain s such that s′ < s∈ y◦z from s′ ∈ y′ ◦z and y′ < y. By Downwards
Closed again we obtain w < w′ ∈ x ◦ s′ from w ∈ x′ ◦ s′,x′ < x and s′ < s′. Hence
Associativity is satisfied.

Thus BI frames and the semantics extending the layered graph logic semantics
genuinely generalises the many different formulations of BI found in the literature.
In Part II we’ll see the mathematical reason for this in the form of topological dual-
ity. Most importantly, every sound choice one can make regarding the closure and
associativity properties defines the same set of valid formulae. This allows us to
prove theorems about BI and its intended models by straightforwardly extending
those we prove for ILGL. One might suppose we could choose one of the more
familiar presentations of BI just discussed and instead stipulate the ILGL frames
satisfy the same closure properties for ◦ and 4, but unfortunately this would have
the undesirable effect of excluding the intended models of ILGL.

3.2 Separation Logic
The principal application of (B)BI (and indeed, bunched logic more generally) is
the program verification formalism Separation Logic. Introduced by Reynolds [196,
197], Ishtiaq & O’Hearn [129], and O’ Hearn et al. [179], Separation Logic enabled
a paradigm shift in the application of formal methods to the verification of programs
that manipulate mutable data structures.

3.2. Separation Logic 51

The problem of verifying such programs occurs at the level of pointers, which
are programming language objects that store a memory address to be used in compu-
tations. Constructs that dynamically allocate memory (for example, lists and trees)
are typically defined through the use of pointers. A program may utilise many point-
ers, and aliasing occurs when multiple pointers store the same memory address. If
two pointers alias each other, an update of the value at the memory address they
both reference can have serious ramifications in distinct parts of the program, and
serious faults like buffer overflows and memory leaks can occur because of this hap-
pening. Traditional approaches to program verification (e.g., Hoare logic [118, 12])
are ill-equipped to identify these problems in a program because they are syntax-
directed, and these issues may arise in syntactically distinct expressions (see Bornat
[31] for an illustration of this issue).

This can be illustrated with a counterexample of Reynolds [198] to the validity
of the rule of constancy for Hoare logic in the presence of pointers. Hoare logic is a
proof system for deriving triples of the form {ϕ}C{ψ}, where ϕ,ψ are formulae of
predicate logic (the assertion language of Hoare logic) and C is a program. In such
a triple, ϕ is a precondition that holds of a state prior to the execution of C and ψ a
postcondition that must hold after execution. The rule of constancy is given by

{ϕ}C{ψ}
{χ ∧ϕ}C{χ ∧ψ},

where C does not affect any of the free variables of χ . It can be thought of as a
scalability rule, allowing the passage from a local specification of C to a global
specification by considering χ to be an assertion satisfied by the state that isn’t
touched by C. However this rule is not sound for pointer programs. Let [x] := n
denote the assignment of the memory address specified by x to the value n, x 7→ n
a predicate stating that the pointer named by x points to n and x 7→ − (defined
∃m.x 7→ m) a predicate stating that the address x is active. Then

{x 7→ −}[x] := 4{x 7→ 4}
{y 7→ 3∧ x 7→ −}[x] := 4{y 7→ 3∧ x 7→ 4}

can fail if y is aliased by x.

The resource semantics of (B)BI solves this issue by allowing the definition
of an assertion language that is able to express “ϕ , and separately in memory ψ”
with the multiplicative conjunction ϕ ∗ψ for a model in which memory is resource.
A heap is a partial allocation of memory addresses to values: formally, a partial
function h : N→ V , where V is a value-set (generally Z). Given heaps h and h′,

3.2. Separation Logic 52

h#h′ denotes that dom(h)∩dom(h′) = /0; h ·h′ denotes the union of functions with
disjoint domains, which is defined iff h#h′. The empty heap, [], is defined nowhere.

Let H denote the set of all heaps. Then HeapBBI = (H, ·,{[]}) is a BBI frame.
Letting h′ < h denote that h′ extends h, HeapBI = (H,<, ·,H) defines a BI frame.
These frames generate the standard classical and intuitionistic propositional models
of Separation Logic. In such models, atomic propositions are pointer assertions
x 7→ y which are satisfied by heaps h for which h(x) = y in the intuitionistic case
and by the singleton heap h = {(x,y)} in the classical case. In the case of HeapBI,
<may coarsely be thought of as the ordering generated by the notion of conversion
given by a garbage-collector (a mechanism that automatically deallocates addresses
when it determines them to be no longer in use) under the sufficiency interpretation.
A more fine-grained analysis of this idea can be found in the work of Calcagno
[48]. As everything can be converted into the empty heap in this fashion, the set of
unit-convertibles is the entire set of possible heaps.

The assertion language of Separation Logic arises as an extension of the in-
terpretation of (B)BI on this model to handle additional program constructs as well
as additive quantification. The formulae of the assertion language are given by the
following grammar, where the expressions E,E ′ are built using Booleans, variables,
cons cells and atomic expressions.

ϕ ::=E =E ′ |E 7→E ′ | > |⊥ |>∗ |ϕ∧ϕ |ϕ∨ϕ |ϕ→ϕ |ϕ ∗ϕ |ϕ−∗ϕ | ∃v.ϕ | ∀v.ϕ.

Denotations {{E}} ∈ V of expressions E are determined by the store s, a par-
tial function mapping variables to values a ∈ V . The store represents memory to
which the values of variables is automatically allocated, while the heap represents
dynamically allocated memory. Given a store s, [s | v 7→ a] is the store that is equal
to s except that v maps to a;

Figure 3.3 gives all of the semantic clauses of Separation Logic’s assertion
language except those pertaining to the pointer predicate 7→. The classical interpre-
tation of 7→ requires E to be the only active address in the current heap,

s,h � E 7→F iff {{E}}s = dom(h)and h({{E}}s) = {{F}}s,

whereas the intuitionistic interpretation is the weaker judgement that E is at least
one of the active addresses in the current heap

s,h � E 7→F iff {{E}}s ∈ dom(h)and h({{E}}s) = {{F}}s.

The judgement, s,h � ϕ states that the assertion ϕ holds for a given store and heap,

3.2. Separation Logic 53

s,h � E = E ′ iff {{E}}s = {{E ′}}s
s,h � >
s,h 6� ⊥
s,h � ϕ ∧ψ iff s,h � ϕ and s,h � ψ

s,h � ϕ ∨ψ iff s,h � ϕ or s,h � ψ

s,h � ϕ → ψ iff for all h′ < h, h′ � ϕ implies h′ � ψ

s,h � >∗ iff h< []

s,h � ϕ ∗ψ iff there exists h′,h′′ s.t. h#h′, h = h′ ·h′′, s,h′ � ϕ and s,h′′ � ψ

s,h � ϕ−∗ψ iff for all h′ such that h#h′,s,h′ � ϕ implies s,h ·h′ � ψ

s,h � ∃v.ϕ iff there exists a ∈ V, [s | v 7→ a],h � ϕ

s,h � ∀v.ϕ iff for all a ∈ V, [s | v 7→ a],h � ϕ

Figure 3.3: Satisfaction for Separation Logic. Classical Separation Logic is the case where
< is =.

assuming that the free variables of ϕ are contained in the domain of s. Note that the
clauses for ∗ and−∗ are identical in both the BI and BBI heap model: this is because
the BI heap frame is both Upwards and Downwards Closed.

A sound version of the rule of constancy, called the frame rule can be given for
this assertion language:

{φ }C{ψ }
{φ ∗χ }C{ψ ∗χ } ,

where χ does not include any free variables modified by the program C. The coun-
terexample to the rule of constancy does not hold in this case, as if y and x are
aliased the precondition y 7→ 3 ∗ x 7→ − does not hold. The frame rule enables the
characteristic local reasoning of Separation Logic: it is possible to reason about just
the bit of memory a program affects, and carry through that reasoning to the global
memory state.

Further work by Calcagno et al. [49] develops abduction-based procedures to
automatically infer suitable frame formulas χ to enable the scalability of this local
reasoning to large code bases. As a result the Infer tool based on this formalism
is implemented at industrial level, automatically fixing memory bugs for Facebook
and Spotify. O’Hearn [175] and Brookes [36] famously extended Separation Logic
to Concurrent Separation Logic, a formalism for the verification of parallel pro-
grams.

Since this landmark work, a veritable zoo of separation logics have been de-
signed for bespoke reasoning tasks, all of which are given by considering variations
of memory model and Hoare logic (for just a selection, see [11, 14, 32, 46, 53]). In

3.3. Examples of (B)BI Frames 54

Chapter 10 we discuss further the variety of different models in the wild as well as
proof theoretic techniques to organise and reason about them.

3.3 Examples of (B)BI Frames
We now describe a number of (B)BI frames beyond memory models that can be
found throughout computer science. Some of these (like the examples generated
by the notion of resource theory) are not investigated applications of (B)BI, and
as such should be understood as potential connections to be made with bunched
logic. We note that this Section is fairly substantial, and it should be emphasised,
is not essential for the understanding of the core of the thesis. We include it for
the interested reader in order to demonstrate the scope of (B)BI beyond Separation
Logic, and to indicate possible new directions for research.

3.3.0.1 Traces
A very simple model of parallel computation can be given via traces. Straightfor-
wardly, traces represent a sequence of computations, and a program can be asso-
ciated to a set of traces, representing possible behaviour upon execution. Given
two traces, there is a non-deterministic choice of interleavings of the sequences,
which can be seen to correspond to possible behaviours of parallel execution. More
complicated notions of interleaving can be given that correspond to more intri-
cate notions of parallel computation—for example, fair interleaving that ensures
that computations from one trace are not unduly privileged over the other—and a
resource-sensitive version of the variant of the simple notion outlined here provides
semantics for Concurrent Separation Logic [36].

Let Σ be an alphabet representing actions. The set of traces over Σ is given by
the finite and infinite strings over Σ. Formally, Tr(Σ) = Σ∗∪Σω . In particular there
exists the empty trace ε given by the empty string. Let α,β ∈ Tr(Σ) be given by α =

α0α1α2... and β = β0β1β2.... An interleaving of α and β is a trace λ = λ0λ1λ2...

such that α and β occur as subsequences—i.e. for some im and ik, α = λi0λi1λi2...,
β = λ j0λ j1λ j2..., where i0 < i1 < i2 < · · · and j0 < j1 < j2 · · ·—and for all n, λn =αi

or βi for some i.

A BBI frame can be given by the set of traces, together with α ◦β defined to be
the set of interleavings of α and β . It’s immediate from the definition that ◦ satisfies
Commutativity. Associativity is only slightly more complicated: suppose λ ∈ α ◦β

and µ ∈ λ ◦ γ . Then we can obtain the required ν ∈ β ◦ γ such that µ ∈ α ◦ ν by
taking the trace obtained by deleting the subsequence corresponding to α from µ . E
is given by {ε}. Clearly α ◦ε = {α} for all α , giving satisfaction of Unit Existence
and Coherence.

3.3. Examples of (B)BI Frames 55

To obtain a BI frame, we consider the subsequence ordering—α < β iff β

occurs as a subsequence of α—and take E to be the set of all traces. This ordering
satisfies Downwards Closed with respect to interleaving, meaning the verification
that this defines a BI frame is simpler: suppose λ ∈ α ◦β with α ′ a subsequence of
α and β ′ a subsequence of β . Then the required trace λ ′ ∈ α ′ ◦β ′ with λ < λ ′ is
found as the subsequence corresponding to the α ′ and β ′ subsequences of λ . Hence
for soundnesss of ∗-associativity we need only check Simple Associativity, which
follows from our consideration of the BBI frame. Closure is trivially satisfied while
Coherence is straightforward: for any trace α , if γ is an interleaving of α and β

then β occurs as a subsequence of γ by definition.

3.3.0.2 Rewriting Systems
A more sophisticated model of computation defined on strings is given by semi-
Thue systems. Thue systems were invented by Thue in 1914 [212] in an attempt
to positively resolve the word problem for finitely presented semigroups, a prob-
lem finally proved undecidable by Post [185] and Markov Jr. [158] in 1947. A
Thue system is defined by an alphabet and a set of bi-directional rewriting rules
for transforming words over that alphabet into other words. A semi-Thue system
only permits rewriting rules in one direction, although any Thue system can be rep-
resented as a semi-Thue system which replaces each bi-directional rule with two
one-directional rules. It can be shown that this simple idea is powerful enough
to encode Turing machines [73] and as such many problems involving semi-Thue
systems can be shown to be undecidable.

Formally (cf. [159]), a semi-Thue system over an alphabet Σ is a subset S ⊆
Σ∗×Σ∗. An element (u,v) ∈ S is called a rewriting rule, and S defines a one-step
rewriting relation→S as follows:

f →S g iff ∃u,v, p,q ∈ Σ
∗((u,v) ∈ S∧ f = puq∧g = pvq)

Intuitively, the rewriting rule (u,v) states that the system can rewrite a word f in
which u occurs as a subword by replacing u with v. The rewriting relation →∗S is
given as transitive and reflexive closure of the one-step rule→S and relates words
to those that can be obtained from a finite sequence of one-step rewritings.

A set of words over an alphabet Σ∗ together with semi-Thue system defined
upon it can easily be seen to generate a non-commutative BI frame suitable for
modelling non-commutative BI. The composition ◦ is given by concatenation of
words (which naturally fails Commutativity) while the order is given by the rewrit-
ing relation→∗S. Finally the set of unit-convertibles is given by E = { f | f →∗S ε}.

We can show that this structure satisfies Downwards Closure, making the ver-

3.3. Examples of (B)BI Frames 56

ification that this is indeed a non-commutative BI frame simpler. Suppose h = f g,
f →∗S f ′ and g→∗S g′. Then clearly h→∗S f ′g′ by performing the rewrites on the f
component and then the rewrites on the g component. Hence we need only check
Simple Associativity for the soundness of ∗-associativity, which follows from the
associativity of concatenation. E is defined to satisfy Closure, f ε = f = ε f for all
f so the frame satisfies the non-commutative version of Unit Existence. Finally, if
h = f g and g→∗S ε holds then h→∗S f holds by rewriting the g component of h to
the empty word, thus showing that the frame satisfies Coherence. One might also
consider term rewriting systems where the composition of strings is partial (due to
a grammar determining legitimate terms) which forms a non-commutative BI frame
in a similar manner.

Consider Prop = Σ and set V (a) = { f | f →∗S a}. Then f �M a0 ∗ · · · ∗an iff f
can be rewritten to a0 . . .an by the semi-Thue system S. The problem of determining
whether f →∗S g for an arbitrary f ,g and S is called the accessibility problem for
semi-Thue systems and is undecidable. Hence the satisfaction relation �M is in
general undecidable and in some situations even the set of unit-convertibles E will
be non-computable. While this undermines the ability to use BI to reason about term
rewriting, we conjucture decision problems in bunched logic may be determined by
considering models of rewriting systems.

3.3.0.3 Databases and Dependence
Our next example is given by Abramsky and Väänänen’s [7] reformulation of
Hodges’ semantics [121, 122] for the independence-friendly logic IF [117] and
Väänänen’s Dependence Logic [216] as a model of BI. It should be emphasised
that this subsection closely follows the material in the original paper. These log-
ics are extensions of first-order logic with quantifiers and predicates suitable for
reasoning about the (in)dependence of variables on (from) each other. This idea
originates with branching quantifiers, often known as Henkin quantifiers in honour
of their inventor Leon Henkin [115]. A simple example of a branching quantifier is(

∀x ∃y
∀z ∃w

)
ϕ(x,y,z,w),

to be read: for all x there exists a y dependent on x and independent of z, and,
independently, for all z, there exists w dependent on z and independent of x,
such that ϕ(x,y,z,w) holds. With branching quantifiers, formulae can be de-
fined that characterise properties that are not definable in first-order logic; for
example, infinite cardinality of domain. And indeed, the second-order character
of these quantifiers is clearly exposed by their rendering with Skolem functions:

3.3. Examples of (B)BI Frames 57

x0 x1 x2 x3
s1 s1(x0) s1(x1) s1(x2) s1(x3)
s2 s2(x0) s2(x1) s2(x2) s2(x3)
s3 s3(x0) s3(x1) s3(x2) s3(x3)

Figure 3.4: A team as a database.

∃ f∃g∀x∀zϕ(x, f (x),z,g(z)).
Dependence logic permits the definition of branching quantifiers and allows the

expression of (in)dependence at the level of atomic formulae. They can be given a
compositional semantics by generalising the Tarskian semantics of first-order logic
from a single variable assignment to a set of variable assignments called a team.
A team can equivalently be seen as a database, in which the rows are given by the
assignments (with the condition that identical rows of the database are identified)
and columns are given by variables, with each entry in the database thus determined
by the action of the assignment on the variable.

We begin with an overview of dependence logic and team semantics before
presenting the model of BI. Let A = (A,I) be a model of a first-order language L ,
where A is a carrier set and I assigns each n-ary predicate symbol in L to a subset
R⊆ An. Given a set of variables X , an assignment is given as a function t : X → A.
This enables the definition of the Tarskian truth definition on literals L (atomic L -
formulae or negations of atomic L -formulae) whose free variables occur in X , with
A , t �X L denoting that the assignment t of variables in L is sufficient to make L
hold in A . A team is a set T ∈P(AX) of assignments of the variables in X . The
basic semantic clause for IF is given on literals L with respect to teams:

A ,T �X L iff ∀t ∈ T : A , t �X L.

That is, a literal L is satisfied in team semantics if it is true simultaneously of all
the assignments in the team (rows in the database). This idea can then be used
to express the (in)dependence between variables in calculating the truth value of
formulae by considering a team where the assignment of a variable is varied while
the others stay fixed. The dependence predicate D(W,x) (where W is a subset of
variables W ⊆ X and x a variable) is defined as follows. The equivalence relation
'W on assignments is defined by s'W t iff ∀w ∈W : s(w) = t(w). Then

A ,T �X D(W,x) iff ∀s, t ∈ T : s'W t implies s(x) = t(x)

Intuitively, this encodes the idea that the variable x is dependent on the variables in
W by stating that equal assignments of W -variables leads to an equal assignment of

3.3. Examples of (B)BI Frames 58

x for the assignments in the team. Next we give semantic clauses for ∧ and ∨:

A ,T �X ϕ ∧ψ iff A ,T �X ϕ and A ,T �X ψ

A ,T �X ϕ ∨ψ iff there exists U,V s.t. T =U ∪V,A ,U �X ϕ and A ,V �X ψ.

For the quantifiers, recall the notation [t | x 7→ a], which is the update of the assign-
ment t that is equal to t everywhere except for at x, at which it has the value a. Then
for a function f : T → A and a set B ⊆ A, we define [T | x 7→ f] = {[t | x 7→ f (t)] |
t ∈ T} and [T | x 7→ B] = {[t | x 7→ b] | b ∈ B}. Then

A ,T �X ∃x.ϕ iff there exists f : T → A s.t A , [T | x 7→ f] �X∪{x} ϕ

A ,T �X ∀x.ϕ iff A , [T | x 7→ A] �X∪{x} ϕ.

Intuitively, the existential clause states that there is some update of the x-column of
the database that makes ϕ true; the universal clause states that any possible update
of the x-column makes ϕ true.

A model of BI subsuming the team semantics can easily be identified. Consider
the frame (P(AX),<,∪,{ /0}) where P(AX) is the set of A-valued teams on X—
equivalently, the set of databases with attributes from X and entries from A—< is
defined T < T ′ iff T ⊆ T ′, ∪ is set union and /0 is the empty set. < is Upwards
and Downwards Closed with respect to ∪ so it is sufficient to check for Simple
Associativity, which follows from the associativity of set union. Closure is trivial as
only /0 < /0, and Unit Existence is easily shown. Finally, suppose T =U ∪ /0. Then
clearly T =U so T <U , satisfying Coherence.

Let Prop be given by the literals of L . Then the valuation defined V (L) =
{T | ∀t ∈ T : A , t �X L} can be seen to be both persistent with respect to < and an
encoding of the satisfaction clauses for literals in team semantics. The standard BI
semantics generated from this model pick up the predicate- and quantifier-free team
semantics clauses, with dependence logic and BI’s ∧ coinciding and dependence
logic’s ∨ given by ∗: in a sense, BI is the propositional logic of dependence.

Abramsky and Väänänen show that the presence of BI’s additional connec-
tives is very natural from the point-of-view of dependence logic. Intuitionis-
tic implication can be used to define a new dependence-friendly universal quan-
tifier (∀x\x1, . . . ,xn)ϕ := ∀x(D(x1, . . . ,xn,x) → ϕ), joining the already-definable
dependence-friendly existential quantifier (∃x\x1, . . . ,xn)ϕ := ∃x(D(x1, . . . ,xn,x)∧
ϕ), both of which arise as adjoints. Further, they show that the dependence predicate
can be defined using an unary predicate C(x) := D(/0,x), called constancy (straight-
forwardly read as dependence on nothing), together with intuitionistic conjunction
and implication: D(W,v) := (

∧
w∈W C(wi))→C(v).

3.3. Examples of (B)BI Frames 59

3.3.0.4 Resource Theories
We finish our examples with a method for generating BI frames derivable from
Coecke et al.’s [60] categorical definition of resource theory, a formalisation of a
concept ubiquitous throughout quantum information theory. The basic idea is that
quantum properties (e.g., entanglement) can be considered as resources that can be
used to perform information processing tasks (e.g., teleportation of a quantum state
over a distance). This idea can be formalised in a way that captures more than just
quantum phenomena.

Mathematically, a resource theory is a symmetric monoidal category (SMC)
(see Appendix) (C ,⊗,I), where C is a small category with resources as objects
and resource conversions as morphisms, ⊗ is a functor ⊗ : C ×C → C satisfying
appropriate monoidal properties and I an object (the unit resource) suitably com-
patible with ⊗. For our purposes, a resource theory provides the background infor-
mation required to compute the conversion ordering < for a BI frame by explicitly
representing the possible conversions as morphisms in the category. This ordering
is defined on a commutative monoid obtained from the monoidal structure of the
resource theory and it is easily seen that this structure generates a BI frame.

To obtain a BI frame, we take equivalence classes of the objects of C as the
set of resources, setting A ≡ B iff there exists morphisms f : A→ B and g : B→
A. The order < is defined according to the invariance interpretation: [x] < [y] iff
there exists an arrow f in C such that f : y→ x. We represent conversion this
way in the frame to ensure E characterises the free resources, an important aspect
of a resource theory. Due to the existence of identity arrows and closure under
composition of arrows, this defines a preorder. Accordingly E = {x | ∃ f : f : I→ x}.
◦ is straightforwardly ⊗, and unlike the general case of BI frames, this is total and
deterministic, due to its origin as a tensor on a category. Since the tensor ⊗ is a
functor it is bifunctorial/downwards-closed with respect to<: f : x→ x′ and g : y→
y′ give the existence of the arrow f ⊗g : x⊗y→ x′⊗y′. Simple Associativity is then
immediate from the associativity of ⊗. Closure holds by definition and Coherence
is shown by noting that given f : I→ y we obtain idx⊗ f : x = x⊗ I→ x⊗ y.

A monotone for a resource theory is a function M : X→R satisfying ∃ f : a→ b
implies M(a)≥M(b). This is interpreted as assigning a ‘cost’ to every resource in
a way that reflects conversion: if a converts into b then a has a higher cost than b.
A monotone on a resource theory generates a persistent valuation on its induced BI
frame by considering upper bounds for the cost of each resource: for each r ∈R set
x ∈ VM(r) iff r ≥M(x).

Coecke et al. [60] and Fritz [94] describe a range of resource theories, in-
cluding randomness, communication channels and a wide array of examples from

3.3. Examples of (B)BI Frames 60

quantum information theory, and these all generate BI frames by this method. This
provides interesting new potential application areas for BI outside of Separation
Logic.

Chapter 4

Extensions of the Logics of Bunched
Implications

In this chapter we give an overview of a number of bunched logics that are obtained
by extending (B)BI. These extensions are obtained by considering multiplicative
versions of more connectives than just ∧ and >. We begin with the De Morgan
bunched logics, which are obtained with the addition of a multiplicative negation,
which allows the definition of multiplicative disjunction and falsum. Of these, only
Classical BI (the variant extending BBI) has been investigated in any depth. Broth-
erston & Calcagno [39] introduced CBI and proved it sound and complete with
respect to a display calculus. In later work, Brotherston & Kanovich [43] proved
CBI undecidable by the same methods used for BBI and propositional Separation
Logic. De Morgan BI (the variant extending BI) has not been well studied. The
possibility of a system like DMBI was postulated (and named) by Pym [187], but
it has only been treated proof theoretically, as part of Brotherston’s [38] uniform
display calculus proof theory for bunched logics.

Lying intermediate between bunched implication logics and De Morgan
bunched logics are Brotherston & Calcagno’s [45] subclassical bunched logics, in
which multiplicative disjunction and falsum are given as primitives in systems lack-
ing a multiplicative negation. These logics arise as a framework of axiomatic exten-
sions obtained by enforcing particular relationships between multiplicative conjunc-
tion, disjunction and falsum. Like with the De Morgan bunched logics, these have
only been investigated for the variants extending BBI, with Brotherston & Calcagno
giving a modular semantic and proof theoretic treatment. The evident subclassical
extensions of BI are new.

Separating modal logics add a diamond modality to BBI, which can be used
to define modalities that are off-set by resource composition. This idea has been
implemented in resource-sensitive generalisations of the modal logics S4 and S5 by

4.1. De Morgan Bunched Logics 62

Courtault et al. [68] and Galmiche et al. [98] respectively, and we give a general
schema for produing separating modal logics extending BBI. It is currently not clear
how to extend the schema to obtain similar logics extending BI, as Boolean negation
is used in an essential way.

Finally, we consider a new bunched logic we call Concurrent Kleene BI,
or CKBI. This logic is a formalisation of a system extending BBI postulated by
O’Hearn [176] in the context of work connecting Concurrent Separation Logic to
concurrent Kleene algebra. CKBI acts as a test case for the applicability of the
frameworks we set up throughout this thesis: not only do we produce metatheory
systematically for existing bunched logics, we are also able to easily output the
same metatheory for novel extensions of existing logics. As CKBI is included as
a simple test case, we defer the investigation of the evident intuitionistic variant to
another occasion.

Section 4.4 is based on material from the journal paper Stone-Type Dualities
for Separation Logics [83].

4.1 De Morgan Bunched Logics
In this section we define DMBI and CBI as extensions of BI and BBI respectively,
and give a semantics on frames. Intuitively, the logics are designed to reason about
the duality between positive and negative resource. In the context of the money
model, we can reason about not just the size of our credit, but also the size of
our debt. More generally, it can be thought of as a logic of dualisable resource,
with the multiplicative negation interpreted by an involutive ‘dualising’ operation
on resources.

4.1.1 Syntax and Semantics
Let Prop be a set of atomic propositions, ranged over by p. The set of all formulae
of the De Morgan bunched logics FormDMBI is generated by the grammar

ϕ ::= p | > | ⊥ | >∗ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ¬∗ϕ | ϕ ∗ϕ | ϕ−∗ϕ,

where additive negation is given by ¬ϕ := ϕ →⊥, multiplicative falsum is given
by ⊥∗ := ¬∗>∗ and multiplicative disjunction is given by ϕ ∨∗ ψ := ¬∗ (¬∗ϕ ∗¬∗ψ).

Figure 4.1 gives Hilbert rules that need to be added to the proof systems of the
bunched implication logics to obtain systems for the De Morgan bunched logics: to
get DMBI, the Hilbert system for BI is extended with 19. and 20.; to get CBI, 19.
and 20. are instead added to the Hilbert system for BBI. These rules enforce the two
simple properties of the new multiplicative negation: 19. gives the multiplicative
double negation law, dictating that¬∗ is an involution on formulae, while 20. codifies

4.1. De Morgan Bunched Logics 63

19. ¬∗ ¬∗ ϕ a` ϕ
20. ¬∗ϕ a` ϕ−∗⊥∗

Figure 4.1: Hilbert rules for De Morgan bunched logics.

the relationship between ¬∗ , −∗ and ⊥∗, mirroring the fact that for additive negation
¬ϕ is syntactic sugar for ϕ →⊥.

At first sight it seems that something contradictory is going on here: we have an
‘intuitionistic’ logic DMBI with a classical-looking negation satisfying an analogue
of the double negation law for ¬, the presence of which is the difference between
defining intuitionistic and classical additives. Is it possible that our ¬∗ somehow
collapses DMBI logic into classical logic? For our Hilbert systems, the intuition-
istically invalid principles are derived upon adding the double negation rule for ¬

because of the rule corresponding to the principal of explosion: ⊥ ` ϕ
. Since there

is no such analogue for ⊥∗, ¬∗ is strictly weaker than Boolean negation, and so the
logic has two coexisting negations of differing strengths.

The structures for interpreting De Morgan bunched logics are called DMBI
and CBI frames. In much the same way that BBI (BI) frames can be seen as
the partial/non-deterministic analogues of (ordered) commutative monoids, CBI
(DMBI) frames are the partial/non-deterministic analogues of (ordered) abelian
groups.

Definition 4.1 (DMBI/CBI Frame). A DMBI frame is a tuple X = (X ,<,◦,E,−)
where (X ,<,◦,E) is a BI frame and − : X → X is an operation satisfying the fol-
lowing conditions (with outermost universal quantification omitted for readability):

(Dual) x< y→−y<−x (Involutive) −− x = x
(Compatibility) z ∈ x◦ y→−x ∈ −z◦ y.

A CBI frame is a DMBI frame for which the order < is equality =.

A DMBI/CBI frame X together with a persistent valuation V gives a
DMBI/CBI model M , and for such a model the satisfaction relation �M⊆ X ×
FormDMBI is inductively generated by the satisfaction clauses for BI/BBI, extended
with the condition for ¬∗ϕ given in Figure 4.2. This clause is that for the Routley
star negation operation of relevant logic [192]. In the case for DMBI, it is easy to
see that the frame property Dual ensures persistence for this clause. If x �M ¬∗ϕ

and y < x, then by Dual −x < −y. Since −x 6�M ϕ , necessarily −y 6�M ϕ by per-
sistence. Hence the persistence of satisfaction follows a corollary of the case for

4.1. De Morgan Bunched Logics 64

BI.

Let’s unpack this definition. The Compatibility axiom is best understood as
enforcing that − returns something like inverses for composition, in a sense that
takes into account partiality and non-determinism. To see this, consider the case
where ◦ is a total deterministic composition. In this setting Compatibility states
that −x = −(x ◦ y) ◦ y. In an Abelian group (where − returns inverses) this holds
because −(x ◦ y) = −x ◦−y, with associativity allowing us to cancel the y with
−y to be left with −x. Nothing in the definition of DMBI/CBI frame enforces
either the distribution of − over ◦ nor that x◦−x ‘cancels’, but Compatibility does
allow us to make something like the same deduction from −(x ◦ y) ◦ y to −x in
the nondeterministic setting. The analogy with inverses is further bolstered by the
Involutive axiom stating that − is an involution (a function that is its own inverse).

Dual is best understood with an example. Our general resource theoretic inter-
pretation of BI frames from Chapter 3 does not extend straightforwardly to DMBI
frames, since in many cases there is prima facie no involutive operation that reverses
conversion. To return to the chemistry example,−might be read as converting mat-
ter to antimatter, but it is extremely unlikely that antimatter chemical reactions are
the perfect mirror of standard chemical reactions. The standard resource semantics
of BI (generalised by our sufficiency interpretation) does make sense for DMBI,
however. We can think of frames in which all resources occur as both credit x and
debt and −x. Take the money model: this can be seen as a DMBI frame by extend-
ing N to Z. Now positive integers n represent credit £n and negative integers −n
represent debt−£n: if £n< £m then−£m<−£n. The unit convertibles E are again
given by N: if you’re in debt, no amount of spending can get you out of it. Suppose
again that the price of a bunch of bananas is £2. Then −£1 � ¬∗ banana witnesses
that the size of our debt is less than the price of a bunch of bananas. Another useful
intuition is to think of the resources of a DMBI frame as processes in which the
inputs and outputs can be switched to give a dual process.

We should also note that the definition of CBI frame here looks different to
the notion given by Brotherston & Calcagno [39] but is in fact equivalent. There, a
(multi-unit) CBI model is a tuple (X ,◦,E,−,∞) such that (X ,◦,E) is a BBI frame,
with − : X → X and ∞ ⊆ X satisfying, for all x ∈ X , −x is the unique element
such that ∞∩ (−x ◦ x) 6= /0. The frame properties Involutive and Compatibility are
then proved as consequences of this definition in their Proposition 2.3 (1) and (3).
As they discuss, the choice of ∞ is fixed by the choice of −, and it can easily be
seen that defining ∞ = {−e | e ∈ E} on our CBI frames yields their CBI models.
We choose this presentation as it simplifies the proofs of duality in Chapter 6 and
allows a more straightforward construction of tableaux calculi in Chapter 9.

4.1. De Morgan Bunched Logics 65

x �M ¬∗ϕ iff −x 6�M ϕ

Figure 4.2: Satisfaction for DMBI/CBI.

4.1.2 Examples of De Morgan bunched logic frames
We now state a number of examples of DMBI/CBI frames found that can be found
in mathematics and computer science. Other CBI frames considered by Brotherston
& Calcagno [39] include bit arithmetic, deny-guarantee permissions and generalised
heaps.

4.1.2.1 Effect Algebras
A simple example which once again connects bunched logic to quantum mechanics
is Foulis & Bennett’s [93] effect algebras. Effect algebras formalise the algebraic
structure of the effects of a quantum mechanical system, and have been suggested
as a framework for reasoning about unsharp quantum measurements.

Formally, an effect algebra is a structure (X ,⊕,(−)⊥,0,1) such that ⊕ is a
binary partial function that is commutative and associative (up to definedness),
0,1 ∈ X , 0 a unit for ⊕, and for every x ∈ X , x⊥ the unique element such that
x⊕ x⊥ = 1 and x⊕ 1 ↓ implies x = 0. An order can be defined on any effect alge-
bra by setting x < y iff there exists z such that x = y⊕ z. This defines a CBI frame
(X ,⊕,{0},(−)⊥) and a DMBI frame (X ,<,⊕,{0},(−)⊥) because of the following
properties of effect algebras (cf. [93, Lemma 2.3, Theorem 2.4]):

• ((x)⊥)⊥ = x;

• x⊕ y ↓ implies (x⊕ y)⊥⊕ y ↓ and x⊥ = (x⊕ y)⊥⊕ y;

• x< y implies y⊥ < x⊥.

Other examples of effect algebras include regular languages with disjoint union
and complement, and CCS-style [162] communicating actions [39].

4.1.2.2 Dualisable Resource Theories
In Chapter 3 we described how Coecke et al.’s [60] category theoretic formalisa-
tion of resource conversion could be used to generate BI frames. That construction
was based on the fact that conversions were morphisms in a symmetric monoidal
category: by taking an equivalence relation on objects based on mutual convertibil-
ity we obtain an ordered commutative monoid, a particular instance of BI frame.
The equivalent algebraic structure in the case of DMBI would be an ordered abelian
group, but what kind of category determines such a structure when we quotient with
respect to its morphisms?

4.2. Sub-Classical Bunched Logics 66

One answer is compact closed categories. Extensively studied by Kelly and
Laplaza [139], such structures have more recently been used as the basis for a cat-
egorical treatment of quantum mechanics by Abramsky & Coecke [6]. We suggest
that the notion of resource theory might be extended to a notion of dualisable re-
source theory by considering compact closed categories. The idea of representing
resource debt in such categories can be traced to Martı́-Oliet & Mesegeuer’s work
relating Petri nets and linear logic [152, 5], an idea that is further expanded upon in
recent work by Genovese & Herold [102].

Formally, a compact closed category (cf. [3]) is a SMC (C ,⊗,I) such that for
every object A of C there exists an object A∗ (the dual of A), a ‘unit’ morphism
ηA : I→ A∗⊗A and a ‘counit’ morphism εA : A⊗A∗ → I satisfying the triangle
equalities IdA = (εA⊗ IdA)◦ (IdA⊗ηA) and IdA∗ = (IdA∗⊗εA)◦ (ηA⊗ IdA∗). Some
consequences of these definitions are as follows:

• The assignment A 7→ A∗ defines a contravariant endofunctor: given any f :
A→ B in a compact closed category, we may form the morphism f ∗ : B→ A
as f ∗ = (1A∗⊗ εA)◦ (1A∗⊗ f ⊗1B∗)◦ (ηA⊗1B∗);

• A∼= A∗∗;

• (A⊗B)∗ ∼= A∗⊗B∗.

Consequently, when we perform the construction that obtains a BI frame from a
SMC we are able to define −[A] = [A∗]. By 1., the DMBI frame axiom Dual is
satisfied, by 2. the axiom Involutive, and by 3. the axiom Compatibility. Some
characteristic examples of compact closed categories are the category of Sets with
relations as morphisms, and the category of Conway games [134].

4.2 Sub-Classical Bunched Logics
Next we consider the sub-classical bunched logics introduced by Brotherston & Vil-
lard [45]. These logics give an alternative way to extend the logics of bunched im-
plications with multiplicative disjunction ∨∗ and falsum ⊥∗: in De Morgan bunched
logics, these connectives are defined using multiplicative negation, whereas in the
subclassical bunched logics they occur as primitives of the language. The principal
motivation for this is that heap-like (B)BI frames cannot be extended with an involu-
tion satisfying the DMBI/CBI frame properties; however, intersection operations on
heaps are suggestive of an interpretation of ∨∗ . Formally, they can be seen as com-
binations of classical/intuitionistic propositional logic with fragments of Hyland &
De Paiva’s [128] full intuitionistic linear logic. While Brotherston & Villard con-

4.2. Sub-Classical Bunched Logics 67

21.
η ` ϕ ∨∗ ψ

η \∗ϕ ` ψ
22.

η \∗ϕ ` ψ

η ` ϕ ∨∗ ψ

23.
ξ ` ϕ η ` ψ

ξ ∨∗ η ` ϕ ∨∗ ψ
24.

ϕ ∨∗ ψ ` ψ ∨∗ ϕ

Figure 4.3: Hilbert rules for basic Bi(B)BI.

sider only the subclassical bunched logics extending BBI, we additionally consider
the evident variant extending BI.

Let Prop be a set of atomic propositions, ranged over by p. The set of all
formulae of the subclassical bunched logics FormBiBI is generated by the grammar

ϕ ::= p | > | ⊥ | >∗ | ⊥∗ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ϕ ∗ϕ | ϕ ∨∗ ϕ | ϕ−∗ϕ | ϕ \∗ϕ,

where additive negation is defined by ¬ϕ := ϕ →⊥.
The simplest subclassical bunched logics are called basic bi-intuitionistic

(B)BI, or basic Bi(B)BI. Figure 4.3 gives Hilbert rules for basic Bi(B)BI: for ba-
sic Bi(B)BI these rules should be added to the system for (B)BI. In this basic case,
very little is enforced for the new connectives: rules 21. and 22. enforce that the
new disjunctive implication \∗ (magic slash) is adjoint to ∨∗ , in a similar manner to
∗ and −∗; 23. enforces montonicity of ∨∗ ; and 24. enforces that ∨∗ is commutative.
We could of course consider an even more basic system in which 24. was dropped,
but this increases the complexity of the semantics to such an extent that it does not
seem to be well-motivated from a modelling point of view.

The reason for this simplicity is that the most basic subclassical logics drop
all the De Morgan-like correspondences between ∗, ∨∗ and ¬∗ (which can be defined
as ¬∗ϕ := ϕ −∗⊥∗). Including them all collapses the logics back to DMBI/CBI, ex-
cluding the heap models once more. Instead, a number of these correspondences
can be added as axioms without collapsing the logic to a De Morgan bunched logic,
but with the benefit of retaining heap-like models. In Figure 4.4 these axioms are
given as Hilbert-style rules which can be added to the system for basic Bi(B)BI. The
most interesting of these is Weak Distributivity, a way of enforcing a relationship
between ∗ and ∨∗ that is strictly weaker than the analogous De Morgan law through
which ∨∗ was defined in the De Morgan bunched logics.

Basic Bi(B)BI is interpreted on structures extending (B)BI frames called basic
Bi(B)BI frames.

Definition 4.2 (Basic Bi(B)BI Frame). A basic Bi(B)BI frame is a structure X =

(X ,<,◦,E,O,U) such that (X ,<,◦,E) is a (B)BI frame, O : X2→P(X) and U ⊆

4.2. Sub-Classical Bunched Logics 68

Associativity
ϕ ∨∗ (ψ ∨∗ χ) ` (ϕ ∨∗ ψ)∨∗ χ

⊥∗Weakening
ϕ ` ϕ ∨∗ ⊥∗

⊥∗Contraction
ϕ ∨∗ ⊥∗` ϕ

∨∗ Contraction
ϕ ∨∗ ϕ ` ϕ

Weak Distributivity
ϕ ∗ (ψ ∨∗ χ) ` (ϕ ∗ψ)∨∗ χ

Figure 4.4: Hilbert rules for subclassical bunched logics.

x �M ⊥∗ iff x 6∈U

x �M ϕ ∨∗ ψ iff for all s, t,u, x4 s ∈ tOu implies t �M ϕ or u �M ψ

x �M ϕ \∗ψ iff there exist s, t,u such that x< s, u ∈ tO s, u �M ϕ and t 6�M ψ

Figure 4.5: Satisfaction for Bi(B)BI. BiBBI is the case where < is =.

X, satisfying (with outermost universal quantification omitted for readability):

(Commutativity) z ∈ xO y→ z ∈ yO x; (U-Closure) u ∈U ∧u< u′→ u′ ∈U.

A basic Bi(B)BI frame X together with a persistent valuation V gives a
basic Bi(B)BI model M , and for such a model the satisfaction relation �M⊆
X × FormBiBI is inductively generated by the satisfaction clauses for (B)BI, ex-
tended with the clauses for ⊥∗, ∨∗ and \∗ given in Figure 4.5. Persistence for the ⊥∗
clause is ensured by the frame property U-Closure, while persistence of the ∨∗ and
\∗ clauses can be shown in a similar manner to the cases for ∗ and −∗.

Importantly, each of the optional subclassical axioms can be witnessed by a
corresponding frame property on the frames interpreting basic Bi(B)BI. As usual,
the case for BiBBI is obtained as the special case where< is =. We will prove these
correspondences in Chapter 6.

Definition 4.3 (Subclassical Frame Properties).

(Associativity) t ′ 4 t ∈ xO y∧w ∈ t ′O z→∃s,s′,w′
(⊥∗ Weakening) u ∈U ∧ x ∈ yOu→ x4 y
(⊥∗ Contraction) ∃u ∈U(w ∈ wOu)
(∨∗ Contraction) x ∈ xO x
(Weak Distributivity) t ′ < t ∈ x1 ◦ x2∧ t ′ 4 t ′′ ∈ y1O y2→

∃w(y1 ∈ x1 ◦w∧ x2 ∈ wO y2)

Basic Bi(B)BI frames are somewhat artificial constructions that resist an in-

4.3. Separating Modal Logics 69

tuitive reading at the level of abstract resource, perhaps reflecting the somewhat
specific motivation of obtaining some of the features of De Morgan bunched logics
for heap models. One way to think ofO is as an intersection operation, with z∈ xOy
if z is a shared portion of the resources x and y. The clause for ∨∗ can then be read
as stating that ϕ ∨∗ ψ holds of a resource x if every time x is obtained through the
conversion of a shared part of resources t and u, one of t or u satisfies ϕ or ψ .

This idea is explicitly realised by the heap models of BiBBI given by Brother-
ston & Villard [45]. They give two possible heap intersection operations: one which
outputs the compatible part of two heaps, and another which is defined only when
the two heaps agree on the intersection of their domains. Explicitly, these are

h∩1 h′(l) =

h(l) if l ∈ dom(h)∩dom(h′) and h(l) = h′(l)

↑ otherwise

h∩2 h′ =

h∩h′ if h(l) = h′(l) for all l ∈ dom(h)∩dom(h′)

↑ otherwise

When U is taken to be the set of all heaps, ∩1 suffices to turn the standard
heap model into a model of BiBBI satisfying associativity, ∨∗ contraction and weak
distributivity, while ∩2 suffices for a model satisfying ∨∗ contraction and weak dis-
tributivity. The standard heap ordering is sufficient to make both of these models
of BiBI satisfying the same properties. A heap model of BiBBI satisfying all of the
axioms is given by Brotherston & Villard by taking states to be pairs (h,x) where h
and x are heaps for which there exists a heap h′ such that h = x · h′, interpreted as
a piece of local memory together with an environment reflecting the wider machine
state.

4.3 Separating Modal Logics
Next we consider separating modal logics. These logics extend BBI with resource
modalities ♦r and include Courtault et al.’s [68] logic of separating modalities and
Galmiche et al.’s [98] epistemic resource logic. In these papers the logics are intro-
duced semantically and given a tableau proof theory with countermodel extraction.
In models of these logics, for each ♦r in the signature, a resource brc is assigned
to r. ♦rϕ is then interpreted as stating that there exists a resource x that can be
composed with the local resource brc to access a state satisfying ϕ . We generalise
this to a schema for defining separating modal logics.

Let Prop be a set of atomic propositions, ranged over by p. The set of all

4.3. Separating Modal Logics 70

25.
♦(ϕ ∨ψ) ` ♦ϕ ∨♦ψ

26.
♦⊥ ` ⊥

Figure 4.6: Hilbert rules for separating modal logic.

formulae of separating modal logic FormSML is generated by the grammar

ϕ ::= p | > | ⊥ | >∗ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ϕ ∗ϕ | ϕ−∗ϕ | ♦ϕ

where additive negation is defined by ¬ϕ := ϕ →⊥ and the necessity modality is
defined by �ϕ := ¬♦¬ϕ . For each formula ϕ of SML, a separating modality ♦ϕ

is defined by ♦ϕψ := ¬(ϕ −∗¬♦ψ). The idea of formula-labelled modalities can
be traced back to Chellas’ [54] relative necessity modalities for conditional logic
(themselves interpreted as a form of implication, cohering somewhat with the use
of −∗ in defining ♦ϕ), and the separating modal logics can usefully be thought of as
a substructural reconstruction of that idea.

Figure 4.6 gives Hilbert rules to be added to the system for BBI to obtain one
for SML. These are simply axioms specifying that ♦ is interpreted as a normal
modality. Further axioms may be added to specify that ♦ is a particular kind of
modality: in the logic of separating modalities ♦ is an S4 modality, thus satisfying
the axioms ϕ ` ♦ϕ and ♦♦ϕ ` ♦ϕ , whereas in epistemic resource logic ♦ is an S5
modality, thus satisfying the S4 axioms plus ♦�ϕ `�ϕ .

SML is interpeted on structures that extend BBI frames with an accessibility
relation that we call SML frames.

Definition 4.4 (SML Frame). An SML frame is a structure X = (X ,◦,E,R) such
that (X ,◦,E) is a BBI frame and R a binary relation on X.

If ♦ is axiomatised by modal axioms with frame correspondents, the SML
frame must also satisfy those frame correspondents. For example, for an S4 modal-
ity, R must be reflexive and transitive; for an S5 modality, R must additionally be
symmetric. A SML frame together with a valuation V gives a SML model M , and
for such a model the satisfaction relation �M⊆ X × FormSML is inductively gen-
erated by the clauses for BBI, together with the clause for ♦ given in Figure 4.7.
This figure also includes the satisfaction clause for ♦ϕ , obtained directly from the
definition ♦ϕψ := ¬(ϕ −∗¬♦ψ). Intuitively, this clause states that ♦ϕψ is true at
a resource x iff x can be composed with a resource satisfying ϕ , with that compo-
sition having access to a state at which ψ is true. If Prop contains atoms r that are
interpreted by V to be true at a single state brc ∈ X , the clause for ♦r is precisely
that given in the primitive satisfaction clauses for the logic of separating modalities

4.3. Separating Modal Logics 71

x �M ♦ϕ iff there exists y such that Rxy and y �M ϕ

x �M ♦ϕψ iff there exists w,y,z such that z ∈ x◦ y, y � ϕ , Rzw and w � ψ .

Figure 4.7: Satisfaction for SML

and epistemic resource logic.

Typical examples of SML frames can be found by considering frames in which
states are pairs (r,x), where r is a resource and x is a possible world, understood as
being a state of a system. Broadly speaking, the BBI component of the logic is
interpreted purely on the resource component, whereas the modal component is
interpreted on resources together with states. Courtault et al. [68] give producer-
consumer and timed petri nets models of the logic of separating modalities based
on this notion of frame, while Galmiche et al. [98] give a range of such frames for
epistemic resource logic suitable for security modelling.

The separating modalities ♦ϕ inherit the property of being normal from ♦, and
are thus well behaved. This is most easily seen semantically. First note that x�♦ϕ⊥
never holds, as there is no state at which w � ⊥. It is thus equivalent to ⊥. For the
distribution of ♦ϕ over ∨, we note that (cf. Chapter 6, Proposition 6.2), ϕ−∗ (ψ1∧
ψ2) is equivalent to (ϕ −∗ψ1)∧ (ϕ −∗ψ2). By applying De Morgan laws and the
distribution of ♦ over ∨, it is easily seen that ♦ϕ(ψ1∨ψ2) := ¬(ϕ−∗¬♦(ψ1∨ψ2))

is logically equivalent to ¬(ϕ −∗¬♦ψ1)∨¬(ϕ −∗¬♦ψ2), or, ♦ϕψ1∨♦ϕψ2. They
do not, however, necessarily inherit any additional axioms from ♦: for example, ♦
being an S4 modality does not entail that ♦ϕ is an S4 modality.

These kinds of considerations help to understand why we do not consider the
evident intuitionistic variant of SML. For one, our definition of ♦ϕ uses Boolean
negation, something that we do not have access to if we begin from BI. When us-
ing intuitionistic negation, the semantic clause for ♦ϕ is not equivalent to anything
capturing the idea of combining a local resource with a new resource to reach a
new state. It follows that the modalities ♦ϕ must be defined primitively. However,
intuitionistic modalities requires a certain amount of coherence between the order
< and the accessibility relation R in order to be interpreted naturally (see Simpson
[208] for a consideration of these issues). Unfortunately, none of the possible coher-
ence conditions between< and R appear to be inherited by the induced accessibility
relation that ♦ϕ would be required to be interpreted on to have its natural reading.
We leave open the possibility of defining the analogous system extending BI.

4.4. Concurrent Kleene Bunched Logic 72

Frame: {p}c{q}
{p∗ r}c{q∗ r}

Concurrency: {p1}c1{q1} {p2}c2{q2}
{p1 ∗ p2}c1 ‖ c2{q1 ∗q2}

Skip: {p}skip{p} Seq: {p}c1{q} {q}c2{r}
{p}c1;c2{r}

NonDet: {p}c1{q} {p}c2{q}
{p}c1 + c2{q}

Iterate: {p}c{p}
{p}Iterate(c){p}

Disjunction: {pi}c{q}, all i ∈ I
{∨i∈I p}c{q}

Consequence: p≤ p′ {p}c{q} q≤ q′

{p′}c{q′}

Figure 4.8: Rules for ASL−−.

4.4 Concurrent Kleene Bunched Logic
We finish this chapter with a new bunched logic, CKBI. It is motivated by work
by O’Hearn et al. [178] connecting a basic version of Concurrent Separation Logic
called ASL−− to concurrent Kleene algebra. We briefly recount the relevant defini-
tions here. Figure 4.8 gives the proof rules for ASL−−.

Definition 4.5 (Concurrent Kleene Algebra (cf. [178])).

1. A concurrent monoid (M,≤,‖, ; ,skip) is a partial order (M,≤), together with
two monoids (M,‖,skip) (with ‖ commutative) and (M, ; ,skip) satisfying the
exchange law

(p ‖ r);(q ‖ s)≤ (p;q) ‖ (r;s).

It is complete if (M,≤) is a complete lattice.

2. A concurrent Kleene algebra (CKA) is a complete concurrent monoid where
‖ and ; preserve joins in both arguments.

3. A weak CKA is a complete concurrent monoid together with a subset A⊆M
(the assertions of the algebra) such that i) skip ∈ A; ii) A is closed under ‖
and all joins; iii) ‖ restricted to A preserves all joins in both arguments; iv)
for each a ∈ A, a;(−) : M→M preserves all joins; and v) for each m ∈M,
(−);m : A→M preserves all joins.

4. A CKA or weak CKA is Boolean if the underlying lattice is a Boolean algebra
and intuitionistic if the underlying lattice is a Heyting algebra.

In concurrent Kleene algebra, p ‖ q is interpreted as giving the parallel execu-
tion of programs p and q while p ;q is interpreted as giving the sequential execution
p, then q. One of the key aspects of this definition is the exchange law, which en-
forces a “soften[ing of] true concurrency” [138]: it states that a program that runs p

4.4. Concurrent Kleene Bunched Logic 73

27.
ξ ` ϕ η ` ψ

ξ ; η ` ϕ ; ψ
28.

η ; ϕ ` ψ

η ` ϕ−.ψ
29.

ξ ` ϕ−.ψ η ` ϕ

ξ ; η ` ψ

30.
η ; ϕ ` ψ

ϕ ` η .−ψ
31.

ξ ` ϕ .−ψ η ` ϕ

η ; ξ ` ψ
32. >∗ ; ϕ a` ϕ

33.
ϕ ;>∗ a` ϕ

34.
ϕ ; (ψ ; χ) a` (ϕ ; (ψ ; χ)

35.
(ϕ ∗ψ) ; (χ ∗ξ) ` (ϕ ; χ)∗ (ψ ; ξ)

Figure 4.9: Hilbert rules for concurrent Kleene bunched logic.

and r in parallel, followed by q and s in parallel can be implemented as a program
that runs p then q in parallel to r then s.

O’Hearn et al. show that ASL−− is sound and complete for weak CKAs when
Hoare triples {p}c{q} are interpreted as inequalities p;c ≤ q (where p,q ∈ A and
c ∈M) and ∗ is interpreted as ‖ restricted to A. This is achieved via the construction
of a predicate transformer model over ASL−− propositions. They also show that a
trace model of ASL−− generates a Boolean CKA.

Elsewhere, O’Hearn [176] suggests that the structures involved could be used
as inspiration for a bunched logic extending BBI. We define such a logic and call it
Concurrent Kleene BI or CKBI. CKBI acts as a case study for the methods of this
thesis, demonstrating the applicability of the duality and proof theoretic approaches
to new extensions of bunched logics. We leave the evident intuitionistic variant
extending BI to another occasion.

Let Prop be a set of atomic propositions, ranged over by p. The set of all
formulae of the concurrent Kleene bunched logic FormCKBI is generated by the
grammar

ϕ ::= p | > | ⊥ | >∗ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ϕ ∗ϕ | ϕ ; ϕ | ϕ−∗ϕ | ϕ−.ϕ | ϕ .−ϕ

where additive negation is defined by ¬ϕ := ϕ →⊥.
Figure 4.9 gives rules that can be added to the system for BBI to obtain a

system for CKBI. These rules essentially dictate that the (∗,−∗)-free fragment of
CKBI is non-commutative BBI, with >∗ both the left and right unit for ;. The non-
commutativity of ; ensures that it has two associated implications, just as in the
case for the layered graph logics, and these are related to ; by proof rules enforcing
adjointness. Finally, the exchange law relating the two multiplicative conjunctions
∗ and ; is axiomatised directly by 35.

CKBI is interpreted on structures extending BBI frames called CKBI frames.

Definition 4.6 (CKBI Frame). A CKBI frame is a structure X = (X ,◦,E,.) such
that (X ,◦,E) is a BBI frame and . : X2→P(X) a binary operation satisfying (with

4.4. Concurrent Kleene Bunched Logic 74

x �M ϕ ; ψ iff there exists y,z s.t. x ∈ y. z, y �M ϕ and z �M ψ

x �M ϕ−.ψ iff for all y,z s.t. z ∈ x. y: y �M ϕ implies z �M ψ

x �M ϕ .−ψ iff for all y,z s.t. z ∈ y◦ x: y �M ϕ implies z �M ψ

Figure 4.10: Satisfaction for CKBI.

outermost quantification omitted for readability):

(Unit ExistenceL) ∃e ∈ E(x ∈ e. x);
(Unit ExistenceR) ∃e ∈ E(x ∈ x. e);
(CoherenceL) e ∈ E ∧ x ∈ e. y→ x = y;
(CoherenceR) e ∈ E ∧ x ∈ y. e→ x = y;
(Associativity) ∃t(t ∈ x. y∧w ∈ t . z)↔∃t ′(t ′ ∈ y. z∧w ∈ x. t ′)
(Exchange) t ∈ w◦ y∧ s ∈ x◦ z∧u ∈ t . s→

∃r,v(r ∈ w. x∧ v ∈ y. z∧u ∈ r ◦u)

A CKBI frame X together with a valuation V gives a CKBI model M , and for
such a model the satisfaction relation �M⊆ X×FormCKBI is inductively generated
by the satisfaction clauses for BBI, together with the clauses for ;,−.,.− given in
Figure 4.10.

A CKBI frame is straightforwardly interpreted as having a concurrent compo-
sition ◦ and a sequential composition . that are related by the Exchange frame prop-
erty. In Chapter 6 we will show this frame property corresponds to the exchange
law: in particular, CKBI frames generate Boolean CKAs extended with residuals
for ‖ and ;. The traces model of ASL−− can be seen as an algebra generated by
a CKBI frame, where ◦ is interleaving, . is concatenation and E is the singleton
set containing the empty trace (cf. the examples of Section 3.3). Another example
is given by pomsets [107], with ◦ given by the parallel pomset composition, . the
series pomset composition, and E the singleton set containg the empty pomset.

4.4. Concurrent Kleene Bunched Logic 75

Summary of Part I
In this part we introduced the family of bunched logics as extensions of the new ba-
sic bunched logic ILGL. This begins with the layered graph logics ILGL and LGL
in Chapter 2, for which we specify Hilbert-type proof systems, Kripke semantics
and a special class of models based on graphs carrying a structure of layers. In
Chapter 3 those logics are extended to obtain the principal bunched logics BI and
BBI. There we compared our Kripke semantics from those in the literature, intro-
duced Separation Logic and gave a raft of examples of (B)BI models found in the
computer science literature. Chapter 4 introduced the bunched logics obtained by
extending BI and BBI. These include the previously explored CBI, as well as the
previously uninvestigated DMBI, the subclassical bunched logics extending BI and
BBI, a schema for defining a range of separating modal logics and the new bunched
logic CKBI based on the interpretation of Concurrent Separation Logic in concur-
rent Kleene algebra.

Part II

Algebra and Duality for Bunched
Logics

76

77

Introduction to Part II
This part of the thesis is dedicated to setting up a duality theo-

retic framework for understanding the semantics of bunched logics. In
Chapter 5 we outline the necessary preliminaries to prove the duality
theorems for bunched logics: basic algebraic and topological notions,
together with the proofs of the duality theorems for classical and in-
tutionistic propositional logic. In Chapter 6 we systematically give
duality theorems for the structures associated with all of the bunched
logics defined in Part I: A Family of Bunched Logics. This is applied
in Chapter 7 to a range of metatheoretic problems: uniform soundness
and completeness for the breadth of bunched logics, decidability results
for layered graph logics, an analogue of the Goldblatt-Thomason theo-
rem characterising classes of frames definable in bunched logic and the
failure of Craig interpolation. In Chapter 8 we extend the duality theo-
rems to the predicate case, capturing in particular (B)BI hyperdoctrines,
which are widely invoked in the theory of higher-order separation logic.

Chapter 5

Algebraic and Topological
Preliminaries

In this chapter we lay the necessary groundwork for the family of duality theorems
that relate the syntax and semantics of bunched logics. To do so we first require
some basic algebraic and topological material. Naturally, the dualities for bunched
logics extend the dualities of Stone and Esakia for classical and intuitionistic propo-
sitional logics, so the remainder of the chapter is dedicated to the proofs of these
results which we give in full detail in order to streamline the presentation of the
bunched logic duality theorems.

5.1 Algebra
We begin with the basic lattice structure underlying all algebras of bunched logics.

Definition 5.1 (Distributive Lattice). A distributive lattice is an algebra A =

(A,∧,∨) where∧ and∨ are associative and commutative binary operations—called
meet and join respectively—on a set A satisfying, for all a,b,c ∈ A,

∧ Absorption a∨ (a∧b) = a
∨ Absorption a∧ (a∨b) = a
Distributive Law a∧ (b∨ c) = (a∧b)∨ (a∧ c).

A distributive lattice is bounded if there exist elements ⊥ 6= > that are units for ∨
and ∧ respectively: for all a ∈ A, a∨⊥ = a and a∧> = a. This makes ⊥ and >
the minimum and maximum (respectively) of the partial order defined

a≥ b iff a∨b = a iff a∧b = b

We specify that > 6= ⊥ to exclude the degenerate single element algebra. We
refer to elements of algebras by the variables a,b,c,d. We also abuse notation and

5.1. Algebra 79

write a ∈ A to mean a ∈ A, where A is the carrier set of the algebra A. The key
lattice-theoretic concepts we require for our work is that of filters and ideals.

Definition 5.2 (Filters and Ideals). A filter on a distributive lattice A is a non-empty
subset F ⊆ A satisfying

1. Upwards Closure: a ∈ F and b≥ a implies b ∈ F;

2. Meet Closure: a,b ∈ F implies a∧b ∈ F.

A filter is proper if it additionally satisfies ⊥ 6∈ F, and a proper filter is prime if it
further satisfies a∨b ∈ F implies a ∈ F or b ∈ F. An ideal is the order dual notion
to a filter: a non-empty subset I ⊆ A satisfying

1. Downwards Closure: a ∈ I and a≥ b implies b ∈ I;

2. Join Closure: a,b ∈ I implies a∨b ∈ I.

It is proper if it additionally satisfies > 6∈ I, and a proper ideal is prime is it further
satisfies a∧b ∈ I implies a ∈ I or b ∈ I.

We use the variables F,G to refer to filters, I,J for ideals and H to refer to
either, and we denote the set of all proper filters of an algebra by FA; likewise the
set of proper ideals by IA. Filters and ideals can be understood intuitively from a
variety of different directions, as they arise naturally in fields as diverse as topology
and social choice theory. From a logician’s perspective, a filter is a propositional
theory, closed under a simple form of logical consequence. If⊥ is in the theory then
that theory is ‘improper’ as it is inconsistent and thus contains every proposition.

Proposition 5.3. The complement F of a prime filter F is a prime ideal; the com-
plement I of a prime ideal I is a prime filter.

Given a non-empty subset X of an algebra A, we define [X) := {a ∈ A |
∃b1, . . . ,bn ∈ X : a ≥ b1 ∧ ·· ·bn} to be the filter generated by X . It is easily seen
that this is the least filter (with respect to set theoretic inclusion) containing the set
X . Dually, we obtain the ideal generated by X as (X] := {a ∈ A | ∃b1, . . . ,bn ∈ X :
b1∨ ·· · ∨ bn ≥ a}, and this is the least ideal containing X . For a singleton {a} we
write [a) and (a] for [{a}) and ({a}]. The next proposition uses the closure proper-
ties of filters and ideals to give useful identities for the generation of new filters and
ideals from old ones.

5.1. Algebra 80

Proposition 5.4 (cf. [89]). Let F be a filter on A, I an ideal on A, c ∈ A and
f : A→ A′ a homomorphism. Then

[F ∪{c}) = {a ∈ A | ∃b ∈ F : a≥ b∧ c} (I∪{c}] = {a ∈ A | ∃b ∈ I : b∨ c≥ a}
[f (F)) = {a ∈ A′ | ∃b ∈ F : a≥ f (b)} (f (I)] = {a ∈ A′ | ∃b ∈ I : f (b)≥ a}

We will frequently need to prove the existence of prime filters/ideals satisfying
certain properties in order to prove our duality theoretic framework captures the
structures associated with bunched logics. To this end we generalise a concept of
Galmiche & Larchey-Wendling [99] that gives a systematic method for showing
such prime filters/ideals exist. First some terminology: a ⊆-chain is a sequence of
sets (Xα)α<λ such that α ≤ α ′ implies Xα ⊆ Xα ′ . A basic fact about proper filters
(ideals) is that the union of a⊆-chain of proper filters (ideals) is itself a proper filter
(ideal). We lift the terminology to n-tuples of sets by determining (X1

α , . . . ,X
n
α)α<λ

to be a ⊆-chain if each (X i
α)α<λ is a ⊆-chain.

Definition 5.5 (Prime Predicate). A prime predicate is a map P : Fn
A× Im

A→{0,1},
where n,m≥ 0 and n+m≥ 1, such that

a) Given a ⊆-chain (F0
α , . . . ,F

n
α , I

0
α , . . . , I

m
α)α<λ of proper filters/ideals,

min{P(F0
α , . . . , I

m
α) | α < λ} ≤ P(

⋃
α F0

α , . . . ,
⋃

α Im
α);

b) P(. . . ,H0∩H1, . . .)≤ max{P(. . . ,H0, . . .),P(. . . ,H1, . . .)}.

A prime predicate is a property that can hold of an (n+m)-tuple of proper
filters and ideals that is evaluated to true or false. The two simple conditions it must
satisfy to be a prime predicate are that the truth of the property persists from a chain
of tuples of proper filters and ideals to their component-wise union and that if an n-
tuple of proper filters and ideals for which one component is an intersection H0∩H1

is evaluated true, at least one of the tuples of prime filters and ideals obtained by
replacing that intersection with either H0 or H1 is also evaluated true. Our definition
differs from that of Galmiche & Larchey-Wendling in two ways: first, our notion
of prime predicate takes an argument of tuples of proper filters and ideals rather
than a single filter, as we frequently need to prove the simultaneous existence of
prime filters and ideals satisfying a particular condition; second, we build into the
definition that we only consider proper filters and ideals, removing the need for their
clause stating that the prime predicate evaluates to false for improper filters/ideals.

To justify the existence of prime filters we require throughout the next few
chapters we give a Prime Extension Lemma, stating when the existence of appro-
priate proper filters and ideals allows us to determine the existence of prime filters

5.1. Algebra 81

and ideals. It is a strict generalisation of Galmiche & Larchey-Wendling’s Prime
Extension Lemma ([99], Lemma 1) and also plays a similar role to the various
‘Squeeze Lemmas’ (traced to Routley & Meyer [200] by Dunn [88]) used to prove
representation and duality theorems for relevant logics. The lemma requires the use
of Zorn’s lemma.

Lemma 5.6 (Zorn’s Lemma). If (S,≥) is a partial order in which every totally-
ordered subset has an upper bound, there exists a maximal element s: that is, for
all s′ ∈ S, s≤ s′ implies s = s′.

Zorn’s lemma is equivalent to the axiom of choice, which itself entails the law
of excluded middle for the set theoretic universe we’re doing mathematics in. In
short, our metatheory is classical. More philosophically-minded logicians might
balk at the idea of giving ‘classical’ metatheory for ‘intuitionistic’ logics, but we
reaffirm the message outlined in Chapter 2: we are interested in these logics for
their use as a modelling technology, not necessarily because of their constructive
interpretation. Recent work by Negri [172] investigates constructive reformulations
of representation theorems through the use of analytic proof calculi, but the exten-
sion of this idea to bunched logics would represent substantial further work and
would necessarily build on the present results.

Lemma 5.7 (Prime Extension Lemma). If P is an (n + m)-ary prime predicate
and F0, . . . ,Fn, I0, . . . , Im an (n + m)-tuple of proper filters and ideals such that
P(F0, . . . ,Fn, I0, . . . , Im) = 1 then there exists a (n+m)-tuple of prime filters and
ideals F pr

0 , . . . ,F pr
n , Ipr

0 , . . . Ipr
m such that P(F pr

0 , . . . ,F pr
n , Ipr

0 , . . . Ipr
m) = 1.

Proof. Consider the set Z = {(F0, . . . ,Fn, I0, . . . , Im) | P(F0, . . . ,Fn, I0, . . . , Im) = 1}.
This is ordered by component-wise inclusion and by assumption is non-empty. By
a) in the definition of prime predicate, any totally-ordered subset of this partial
order has an upper bound given by taking the union in each component. Hence by
Zorn’s lemma there exists a maximal element (Fmax

0 , . . . ,Fmax
n , Imax

0 , . . . Imax
m) of Z.

We claim that each Fmax
k is a prime filter and each Imax

k a prime ideal.

We concentrate on the case of Fmax
k , as the argument for Imax

k is essentially
dual. Suppose a∨b ∈ Fmax

k . We must show a ∈ Fmax
k or b ∈ Fmax

k . Consider the two
filters [Fmax∪{a}) and [Fmax∪{b}). There are two cases. First, suppose (wolog)
that [Fmax

k ∪{a}) is improper. Then there exists x ∈ Fmax
k such that ⊥ = x∧ a by

Proposition 5.4. Thus by distributivity x∧ (a∨b) = (x∧a)∨ (x∧b) = x∧b≤ b so
b ∈ Fmax

k and we’re done. Next, suppose instead that both [Fmax
k ∪{a}) and [Fmax

k ∪
{b}) are proper. We show that Fmax

k = [Fmax
k ∪{a})∩ [Fmax

k ∪{b}). The left-to-right

5.2. Topology 82

inclusion is trivial. For the right-to-left, suppose x ∈ [Fmax
k ∪{a})∩ [Fmax

k ∪{b}).
Then there exist y,z ∈ Fmax

k such that x≥ y∧a,z∧b. It follows that

x≥ (y∧a)∨ (z∧b)≥ (y∧ z∧a)∨ (y∧ z∧b) = (y∧ z)∧ (a∨b),

and since y∧ z,a∨b ∈ Fmax
k , we have that x ∈ Fmax

k . Now by b) in the definition of
prime predicate we have that either P(. . . , [Fmax

k ∪{a}), . . .) = 1 or P(. . . , [Fmax
k ∪

{b}), . . .) = 1. Thus either Fmax
k = [Fmax

k ∪{a}) and a ∈ Fmax
k or Fmax

k = [Fmax
k ∪

{b}) and b ∈ Fmax
k as otherwise the maximality of (Fmax

0 , . . . ,Fmax
n , Imax

0 , . . . Imax
m) in

Z is contradicted.

One application of the prime extension lemma is what is often called the prime
filter theorem, which states that a filter disjoint from an ideal I can be extended to a
prime filter disjoint from I.

Theorem 5.8 (Prime Filter Theorem). If F a filter and I an ideal such that F∩ I = /0
then there exists a prime filter F ′ ⊆ F with F ′∩ I = /0.

Proof. We show that the property F ′∩ I = /0 and F ⊆ F ′ of proper filters F ′ defines
a prime predicate. We first note that F ∩ I = /0 means ⊥ 6∈ F and so F is proper
and can thus be a subset of a proper filter. First it is clear that if we have a ⊆-
chain (F ′α)α<λ for which the property holds then it neccessarily holds of

⋃
i∈I F ′i .

Now suppose F ′0 ∩F ′1 ∩ I = /0 and F ′0 ∩F ′1 ⊇ F . Clearly F ′0,F
′
1 ⊇ F so suppose for

contradiction that x ∈ F ′0 ∩ I and y ∈ F ′1 ∩ I. We then have x,y ≤ x∨ y ∈ F ′0 ∩F ′1 ∩ I
by upwards closure for F ′i and closure under joins of I; a contradiction. Hence one
of F ′0∩ I = /0 or F ′1∩ I = /0 must hold.

5.2 Topology
We now briskly recall the topological notions that we will use for our duality theo-
rems. These can all be found in any standard text on topology (e.g., [167]).

Definition 5.9. A topological space is a pair X = (X ,O) where X is a set and
O ⊆P(X), satisfying:

1. /0,X ∈ O;

2. Given any Oi ∈ O indexed by i ∈ I,
⋃

i∈I Oi ∈ O;

3. O0, . . . ,On ∈ O implies
⋂n

i=0 Oi ∈ O .

The sets O ∈ O are called open, the sets C with C ∈ O are called closed, and if a
set is both open and closed it is called clopen.

5.2. Topology 83

The correct notion of morphism for a topological space is a continuous map,
and topological spaces with continuous maps form a category Top.

Definition 5.10 (Continuous Map). A continuous map f : X →X ′ is a function
f : X → X ′ such that for any open O′ of X ′, the inverse image f−1[O′] is open in
X .

There are useful ways to characterise or generate a topology on a given set.

Definition 5.11 (Base). A base B for a topological space X = (X ,O) is a subset
B ⊆ O such that every O ∈ O can be expressed as the union

⋃
i∈I Bi of base ele-

ments Bi ∈B. We say X is zero-dimensional if the topology has a base of clopen
elements.

Definition 5.12 (Subbase). A subbase S for a topological space X = (X ,O) is a
set S ⊂O such that the set of finite intersections of elements of S together with X
forms a base for (X ,O).

While one can find a number of suitable subbases for a given topological space
X , any collection of sets S ⊆P(X) defines a base for a unique topology on X by
taking the finite intersections of elements of S . An important topological property
is compactness.

Definition 5.13 (Compact). A topological space X is compact if, for every open
cover of X (a collection of open sets Oi such that X =

⋃
i∈I Oi there exists a finite

subcover X =
⋃im

j=0 Oi j .

A useful equivalent definition of compact space is as follows. The finite inter-
section property (FIP) holds for a family of sets (Xi)i∈I if every finite intersection
of elements Xi is non-empty. A topological space is compact iff every family of
closed sets with the FIP has non-empty intersection. Compact spaces have the nice
property that any closed set C is also compact: that is, any open cover of a closed set
C has a finite subcover. An extremely useful technique to verify a space is compact
is Alexander’s subbase theorem.

Theorem 5.14 (Alexander Subbase Theorem). Let S be a subbase for a topolog-
ical space X . If every cover of X by subbase elements has a finite subcover then
X is compact.

We finish this section with a number of separation properties that the topolog-
ical spaces we examine will satisfy.

5.3. Esakia Duality 84

Definition 5.15 (Hausdorff). A topological space X is Hausdorff if any distinct
x,y∈ X can be separated by disjoint open sets: there exists O,O′ ∈O with O∩O′ =
/0, x ∈ O and y ∈ O′.

A useful property of maps between compact and Hausdorff spaces is as fol-
lows: if f : C →H is a continuous map between a compact space C and a Haus-
dorff space H then for any closed set C in C , the image f [C] will be closed in
H .

Definition 5.16 (Totally Disconnected). A topological space X is totally discon-
nected if any distinct x,y ∈ X can be separated by disjoint open sets O,O′ such that
X = O∪O′.

An ordered topological space is a topological space equipped with a partial
order< on its points. The following is a separation property for ordered spaces that
expresses coherence between the topological structure and the order.

Definition 5.17 (Priestley Separation Axiom). An ordered topological space (X ,<

) satisfies the Priestley separation axiom if, given any x,y ∈ X such that x 6< y, there
exists an upwards-closed clopen set U such that y ∈U and x 6∈U.

5.3 Esakia Duality
In this section we recount the duality theorem for Heyting algebras; the algebraic
structures that correspond to intuitionistic propositional logic in the same manner
as Boolean algebras for classical propositional logic.

Definition 5.18 (Heyting Algebra). A Heyting algebra is an algebra A =

(A,∧,∨,→,>,⊥) such that (A,∧,∨,>,⊥) is a bounded distributive lattice and
→ is a binary operation satisfying, for all a,b,c ∈ A: a∧b≤ c iff a≤ b→ c.

It can in fact be shown that distributivity need not be assumed, as it can be
proven from the residuation property of ∧ and →. We specify it for simplicity of
presentation. Interpretations of intuitionistic logic on a Heyting algebra work as fol-
lows: let V : Prop→ A be an assignment of elements of the algebra to propositional
variables; this is uniquely extended to an interpretation J−K of every intutionistic
logic formula by induction, with JpK = V (p),J>K => and J⊥K =⊥ as base cases:

Jφ ∧ψK = JφK∧ JψK Jφ ∨ψK = JφK∨ JψK Jφ → ψK = JφK→ JψK

It is well known that intuitionistic logic is sound and complete with respect to this
semantics.

5.3. Esakia Duality 85

Theorem 5.19 (Algebraic Soundness and Completeness). For all intutionistic logic
formulae ϕ and ψ , ϕ ` ψ is provable in the Hilbert system for intuitionistic logic
iff JϕK≤ JψK holds for all algebraic interpretations on Heyting algebras.

A homomorphism f : A→ A′ between algebras of the same type is a map
f : A→ A′ that commutes with the algebraic operations in the signature: for each
n-ary operation ♥, and all a1, . . . ,an ∈ A, f (♥(a1, . . . ,an)) =♥′(f (a1), . . . , f (an)).
The category HA is comprised of Heyting algebras and homomorphisms between
them.

We can also equip intuitionistic frames (preordered sets (X ,<)) with a no-
tion of morphism to obtain a category. These can be found in the literature by the
name bounded morphism or pseudo epi morphism, but we use the name intuition-
istic morphism in-keeping with the convention we will set for bunched logic frame
morphisms.

Definition 5.20 (Intuitionistic Morphism). An intuitionistic morphism g : (X ,<)→
(Y,<′) is a map g : X → Y satisfying

i) x< y implies g(x)<′ g(y);

ii) x′ <′ g(y) implies there exists x ∈ X such that x< y and g(x) = x′.

It is straightforward to see that the identity map id : X → X satisfies i) and
ii). Further, the composition of intuitionistic frame morphisms is once again an
intuitionistic frame morphism. Hence intuitionistic frames and intuitionistic mor-
phisms form a category Int.

Definition 5.21 (Intuitionistic Complex Algebra). Given an intuitionistic frame X ,
the intuitionistic complex algebra of X is given by Com(X) = (P<(X),∩,∪,⇒X

,X , /0) where

P<(X) = {A⊆ X | if a ∈ A and b< a then b ∈ A}
A⇒X B = {x | x′ < x and x′ ∈ A implies x′ ∈ B}

Lemma 5.22. The intuitionistic complex algebra of a intuitionistic frame is a Heyt-
ing algebra.

Proof. First, note that P<(X) is closed under ∩,∪ and⇒X , with X , /0 ∈P<(X)

trivially and the distributive laws holding for ∩ and ∪ straightforwardly. To prove
the adjointness property of Heyting implication, assume A∩ B ⊆ C and suppose
a ∈ A with b < a and b ∈ B. By upwards-closure of A, b ∈ A∩ B so b ∈ C as
required. In the other direction, assume A⊆ B⇒X C and suppose a ∈ A∩B. Then
by assumption a ∈C.

5.3. Esakia Duality 86

Definition 5.23 (Prime Filter Intuitionistic Frame). Given a Heyting algebra A, the
prime filter intuitionistic frame of A, Pr(A), is given by the set of prime filters on A
ordered by inclusion ⊇.

Henceforth we freely use Pr(A) to refer to both the set of prime filters of the
algebra A and the prime filter intuitionistic frame of A. ⊇ is a partial order, so
Pr(A) is an intuitionistic frame.

Lemma 5.24. The prime filter intuitionistic frame of a Heyting algebra is an intu-
itionistic frame.

Theorem 5.25 (Representation Theorem for Heyting Algebras (cf. [89])). Every
Heyting algebra is isomorphic to a subalgebra of a complex algebra. Specifically,
given a Heyting algebra A, the map θA : A→Com(Pr(A)) defined θA(a) = {F ∈
Pr(A) | a ∈ F} is an embedding.

Proof. We first show that the map θA is injective. Suppose a 6= b; wolog we may
suppose a 6≤ b. Consider the filter [a) and the ideal (b]. By assumption [a)∩(b] = /0,
so by Theorem 5.8 there exists a prime F ⊇ [a) with F∩(b] = /0. Then b 6∈F and a∈
F so θA(a) 6= θA(b). It remains to prove the map is a homomorphism. By upwards-
closure θA(>) = Pr(A) and by properness θA(⊥) = /0. θA(a∧b) = θA(a)∩θA(b)
since a∧ b ∈ F iff a,b ∈ F . Similarly, θA(a∨ b) = θA(a)∪θA(b) since—because
of primeness—a∨b ∈ F iff a ∈ F or b ∈ F .

To show θA(a→ b) = θA(a)⇒Pr(A) θA(b) is slightly more involved. First,
two corner cases. If a = ⊥ then both sides are Pr(A) as > = ⊥→ b. The same
holds if b = >, as > = a→>. We suppose a 6= ⊥ and b 6= >. Now, note that the
left-to-right inclusion follows immediately from the fact that a∧ (a→ b) ≤ b. For
the right-to-left, we assume a→ b 6∈ F and prove there exists G⊇ F such that a∈G
and b 6∈ G. That this is possible follows from the assumption a 6=⊥ and b 6=> and
the fact that b≤ a→ b entails b 6∈ F . We can easily see that

P(G) =

1 if G⊇ F,a ∈ G and b 6∈ G

0 otherwise

is a prime predicate. Given a⊆-chain (Gα)α<λ , P(Gα) = 1 for all α clearly implies
P(
⋃

α Gα) = 1. Further, if P(G∩G′) = 1 then G,G′ ⊇ F , a ∈ G,G′ and b 6∈ G or
b 6∈ G′, so P(G) = 1 or P(G′) = 1.

Consider the filter G = [F ∪{a}). Note that G is proper: if ⊥ ∈ α then there
exists x ∈ F such that ⊥= x∧a. Consequently a→⊥∈ F . Since ⊥→ b ∈ F and
(a→⊥)∧ (⊥→ b)≤ a→ b we have a contradiction. We have P(G) = 1, hence by

5.3. Esakia Duality 87

the prime extension lemma there exists a prime filter G such that P(G) = 1, which
is precisely what we need.

θ is in fact a natural transformation that forms one part of a dual equivalence of
categories between the category of Heyting algebras and a category of intuitionistic
frames carrying topological structure. In the first instance, we can take advantage of
the implicit topological structure on dual intuitionistic frames to lift the assignments
Pr and Com to contravariant functors. It is straightforward to specify what the action
on morphisms should be: Pr(f) = f−1 and Com(g) = g−1. Showing that this is
well-defined requires more care. We must first investigate the structure of prime
filter intuitionistic frames further. Our presentation of the remainder of this section
is based on Morandi [166].

The first thing to note is that, as it is a collection of subsets of Pr(A), S =

{θA(a) | a∈A}∪{θA(a) | a∈A} is a subbase for a topology OA on Pr(A). By The-
orem 5.25, the base B = {⋃n

i Si | Si ∈S }∪{Pr(A)} that this generates for OA has
a particularly straightforward form. For any a1, . . . ,an, θA(a1)∩·· ·∩θA = θA(a1∧
·· · ∧ an). Similarly, for b1, . . . ,bm, θA(b1)∩ ·· · ∩ θA(bm) = θA(b1∨·· ·∨bm). Fi-
nally θA(>)∩θA(⊥)) = Pr(A). Hence B = {θA(a)∩θA(b) | a,b ∈ A}.

Lemma 5.26. The topology OA on Pr(A) is 1. compact; 2. Hausdorff; and 3.
satisfies the Priestley separation axiom with respect to ⊆.

Proof. 1. By the Alexander subbase theorem we need only show that a cover
of Pr(A) by base elements has a finite subcover. So suppose Pr(A) =⋃

j∈J θA(a j)∪
⋃

k∈K θA(bk). Equivalently,
⋂

k∈K θA(bk) ⊆
⋃

j∈J θA(a j). De-
fine I = ({a j | j ∈ J}] and F = [{bk | k ∈ K}). If there exists x ∈ F ∩ I
then there must be a j0 , . . . ,a jn,bk0, . . . ,bkm such that bk0 ∧ ·· · ∧ bkm ≤ x ≤
a j0 ∨ ·· · ∨ a jn . Then θA(bk0 ∧ ·· · ∧ bkm) ⊆ θA(a j0 ∨ ·· · ∨ a jn) giving us our
finite subcover: Pr(A) =

⋃n
i=0 θA(a ji)∪

⋃m
i=0 θA(bki). Hence we assume for

contradiction that F ∩ I = /0. By Theorem 5.8 this entails a prime F ′ ⊇ F such
that F ′∩ I = /0. Necessarily F ′ ∈⋂k∈K θA(bk)⊆

⋃
j∈J θA(a j) so for some a j,

a j ∈ F ′ and F ′∩ I 6= /0.

2. Let F and G be distinct prime filters. Then there exists (wolog) a ∈ F ∩G.
Thus F ∈ θA(a) and G ∈ θA(a) with θA(a)∩θA(a) = /0.

3. If F 6⊆ G then there exists a ∈ F ∩G. Thus F ∈ θA(a) (a clopen up-set) and
G 6∈ θA(a).

Lemma 5.27. For any homomorphism f : A → A′, f−1 : Pr(A′) → Pr(A) is a
continuous map.

5.3. Esakia Duality 88

Proof. First we must verify that f−1 maps prime filters to prime filters. Let F be a
prime filter. For upwards closure, let a∈ f−1(F) with b≥ a. By definition f (a)∈ F
and f is order-preserving so f (a)≤ f (b)∈ F . Hence b∈ f−1(F). For meet closure,
if a,b ∈ f−1(F) then f (a), f (b) ∈ F , hence f (a)∧ f (b) = f (a∧b) ∈ F . f−1(F) is
proper because f (⊥) = ⊥ 6∈ F . Finally it is prime because a∨b ∈ f−1(F) implies
f (a∨ b) = f (a)∨ f (b) ∈ F so f (a) ∈ F or f (b) ∈ F . It is sufficient to verify
continuity on the subbase elements and this is straightforward: (f−1)−1(θA(a)) =
θA′(f (a)) and (f−1)−1(θA(a)) = θA′(f (a)).

We now introduce the following notation. Given a subset A⊆ X of an ordered
set (X ,<), we call ↑ A := {b | ∃a ∈ A(b< a)} the upwards closure of A. Similarly,
↓ A := {b | ∃a ∈ A(a< b)} is the downwards closure of A.

Lemma 5.28. For any clopen set C, and homomorphism f , (f−1)−1(↓ C) =↓
(f−1)−1(C).

Proof. Since B is a base for OA, any open set can be written as
⋃

i∈I θA(ai)∩θA(bi).
By compactness, this entails any clopen set can be written as

⋃m
i=0 θA(ai)∩θA(bi).

↓ commutes with union, so it suffices to verify the statement for C = θA(a)∩θA(b).
By the argument in the representation theorem, ↓ (θA(a)∩θA(b)) = θA(a→ b). We
thus have

(f−1)−1(↓ θA(a)∩θA(b)) = (f−1)−1(θA(a→ b))

= θA′(f (a)→ f (b))

=↓ (θA′(f (a))∩θA′(f (b)))

=↓ ((f−1)−1(θA(a)∩θA(b))

Lemma 5.29. For any closed set C of OA, the set ↑C is closed.

Proof. We first show that the graph of ⊆, G(⊆), is a closed set of the product
topology on Pr(A)×Pr(A). For any F 6⊆ G we have a clopen up-set C with F ∈C
and G ∈C, a clopen down-set. Thus (F,G) ∈C×C ⊆ G(⊆), thus the complement
of G(⊆), G(⊆), is open and G(⊆) is closed.

We now note that ↑C = π2((C×Pr(A))∩G(⊆)) where π2 is the projection in
the second component for the product space Pr(A)×Pr(A). (C×Pr(A))∩G(⊆)
is the intersection of closed sets, and thus closed. Since projections are continuous
and the product space is compact, ↑C is compact. Since (Pr(A),OA) is Hausdorff,
↑C is thus closed.

With these lemmas obtained we can show that the functors are well-defined.

Lemma 5.30. The functors Pr and Com are well-defined.

5.3. Esakia Duality 89

Proof. Given Lemmas 5.22 and 5.24 it just remains to show that, if f : A→ A′

is a homomorphism of Heyting algebras and g : X →X ′ an intuitionistic frame
morphism then f−1 : Pr(A′)→ Pr(A) is an intuitionistic frame morphism and g−1 :
Com(X ′)→Com(X) is a homomorphism of Heyting algebras.

We begin with f . By Lemma 5.27 we know f−1 maps prime filters to prime
filters, and it is easy to see it satisfies the first condition for intuitionistic frame mor-
phisms. For the second, suppose f−1(G) ⊆ F . For any clopen set C containing
F we therefore have G ∈ (f−1)−1(↓ C) =↓ (f−1)−1(C) by Lemma 5.28. Hence
↑ {G}∩ (f−1)−1(C) 6= /0 for any clopen C containing F . The family {(f−1)−1(C) |
C clopen and F ∈ C} has the FIP, hence so too does {↑ {G}} ∪ {(f−1)−1(C) |
C clopen and F ∈C}. Since OA is Hausdorff, {G} is closed, and by Lemma 5.29 so
too is ↑ {G}. Hence by compactness, the whole family has non-empty intersection.⋂{(f−1)−1(C) |C clopen and F ∈C}= (f−1)−1(

⋂{C | F ∈C}) = (f−1)−1({F}),
so this entails there exists some F ′ such that G⊆ F ′ and f−1(F ′) = F as required.

For g, we just need to verify that g−1 respects the structure of the com-
plex algebra. This is trivial in all cases but ⇒. Suppose x ∈ g−1(A ⇒X ′ B)
and assume y < x with g(y) ∈ A. By monotonicity of g, g(y) < g(x), and so by
our assumption g(y) ∈ B. Hence x ∈ g−1(A)⇒X g−1(B). Suppose instead that
x ∈ g−1(A)⇒X g−1(B) and assume y′ <′ g(x) with y′ ∈ A. By intuitionistic frame
morphism condition ii) there exists y such that y< x and g(y) = y′. g(y) = y′ ∈ A so
by assumption y′ ∈ B as required and x ∈ g−1(A⇒X ′ B).

The existence of these functors has significant ramifications for intuitionistic
logic. As we will investigate in detail in Chapter 7, the action on objects encodes the
soundness and completeness of the Kripke semantics via the algebraic presentation
of the proof system of intutionistic logic. Further, the action on morphisms allows
us to examine many semantical properties algebraically (and vice versa).

Can we give an analogous representation theorem for intuitionistic frames?
Unfortunately this is not possible: there exist intuitionistic frames X such that no
intuitionistic morphism exists between X and PrCom(X) (cf. Venema’s com-
ments [217, pg 352]). This means we cannot give a dual adjunction between these
categories based on the representation theorem for Heyting algebras. However, by
making the topological structure we’ve utilised explicit we can strengthen this rela-
tionship to a dual equivalence of categories. This is a particularly strong property:
many metatheoretic properties of a logic can be shown to have an equivalent al-
gebraic formulation; the dual equivalence then opens the door to the topological
investigation of these properties. For example, Priestley [186] lists a number of al-
gebraic properties of varieties of distributive lattices that have a dual formulation on

5.3. Esakia Duality 90

the topological side, while Sambin & Vaccaro [203] shows how to use the topolog-
ical side of a duality to prove Sahlqvist’s theorem on the correspondence between
modal axioms and frame properties.

We begin by abstracting the ordered topological space (Pr(A),OA,⊇) to a
category of spaces. These spaces are named for Esakia, the mathematician who
first discovered the duality [91], although Davey & Galati [72] note that Adams
independently discovered the duality (reported as folklore in Priestley [186]).

Definition 5.31 (Esakia Space). An Esakia Space is a compact, partially ordered
topological space X = (X ,O,<) satisfying both the Priestley separation axiom
and the property that for any clopen set C, the downwards closure ↓C is also clopen.

The clopen sets of an Esakia space being closed under downward closure is
closely connected to Heyting implication, a fact that is explicitly drawn out in the
proof that the prime filter space is an Esakia space. Removing this condition obtains
Priesley spaces, the topological duals of distributive lattices.

Lemma 5.32. For any Heyting algebra A, the ordered topological space Pr(A) =
(Pr(A),OA,⊇) is an Esakia space.

Proof. By Lemma 5.26 we only need to show the clopen sets are closed under
downward closure; however, in Lemma 5.28 we already saw that for any clopen C,
↓C is the finite union of clopen sets θA(a→ b), and thus a clopen set.

An Esakia morphism is a continuous intuitionistic morphism. Esakia spaces
together with Esakia morphisms form a category Esa. Lemmas 5.27 and 5.30 show
that for any Heyting homomorphism f :A→A′, f−1 : Pr(A′)→Pr(A) is an Esakia
morphism. Thus Pr is a functor from Heyting algebras to Esakia spaces.

In the other direction we need to construct a Heyting algebra from an Esakia
space. We do something similar to the complex algebra construction: define
C L <(X) = {C ∈P<(X) | C clopen}. We have already verified that upwards-
closed sets are closed under the complex algebra operations; we can easily see that
in addition the clopen upwards-closed sets of an Esakia space are closed under them.
Straightforwardly, the upwards-closed clopen sets are closed under finite union and
intersection, and /0 and X are both clopen and upwards-closed. Finally, it is easily
seen that A⇒ B = ↓ A∩B. If A and B are clopen then ↓ A and B are clopen, hence
so is their intersection, and so is the complement of that intersection.

We thus define the functor Clop< : Esa → HeyAlg by Clop<(X) =

(C L <(X),∩,∪,⇒,X , /0) and Clop<(g) = g−1. Continuity of g ensures g−1 maps
clopen sets to clopen sets, and the fact it is order-preserving means it maps upwards-
closed clopen sets to upwards-closed clopen sets. Finally Lemma 5.30 ensures g−1

5.4. Stone Duality 91

is a homomorphism of Heyting algebras. We now give the counterpart to θ on
the Esakia space side: ηX (x) = {C ∈ Clop<(X) | x ∈ C}. This yields a prime
filter: x ∈C and C ⊆C′ implies x ∈C′; x ∈C and x ∈C′ implies x ∈C∩C′; x 6∈ /0;
x ∈C∪C′ implies x ∈C or x ∈C′.

Theorem 5.33 (Esakia Duality). θ : IdHA → Clop<Pr and η : IdEsa → PrClopInt
<

form a dual equivalence of categories between HeyAlg and Esa.

Proof. We show that the components of θ and η are isomorphisms as naturality is
trivial. For θ we begin with injectivity. If a 6= b then either a 6≥ b or b 6≥ a: wolog
assume a 6≥ b. There exists a prime filter F containing a and not b by Theorem 5.8.
Hence θA(a) 6= θA(b).

For surjectivity, we know that for each a∈A, θ(a) is an upwards-closed clopen
set. We show for any upwards-closed clopen C, there exists a ∈ A such that C =

θA(a). Since C is upwards-closed, for any F ∈C,G ∈C, F 6⊆ G. There thus exists
a ∈ F ∩G. Then θA(a) and θA(a) separate F and G. We thus have C =

⋃
a θA(a),

where a ranges over all such a. By compactness there is a finite subcover C =⋃m
ai

θA(ai) = θA(a0∧·· ·∧am). Hence C = θA(a0∧·· ·∧am).
We now attend to η . ηX is clearly order-preserving, and the Priestley separa-

tion axiom guarantees injectivity as well as ηX (x)⊇ ηX(y) implies x< y. Continu-
ity follows from the fact that η

−1
X (θClop<(X)(C) =C. As an injective and surjective

order isomorphism is trivially a intuitionistic frame isomorphism, it only remains to
show surjectivity. Suppose for contradiction F ∈ ηX (X). We note that the image of
X under ηX is closed because X is compact, ηX is continuous and PrClop<(X)

is Hausdorff. Hence the complement ηX (X) is open and there exists a base ele-
ment θClop<(X)(U)∩θClop<(X)(V)⊆ ηX (X) containing F . We thus have that the
preimage of this base element with respect to ηX is /0. η

−1
X (θClop<(X)(C)) = C

means /0 =U ∩V so U ⊆V . But then θClop<(X)(U)∩θClop<(X)(V) = /0, a contra-
diction.

5.4 Stone Duality
Conventionally (and chronologically) the Stone duality theorem [210, 132] relating
Boolean algebras and compact Hausdorff spaces is presented prior to that for Heyt-
ing algebras and Esakia spaces. In keeping with our presentation of the bunched
logics with classical additives as special cases of intuitionistic bunched logics we
instead derive Stone duality as the special case of Esakia duality when < is =. The
idea here is that by presenting results for the ordered frames interpreting bunched
logics with intuitionistic additives we should automatically obtain the analogous
results for bunched logics with classical additives when the order is equality.

5.4. Stone Duality 92

Definition 5.34 (Boolean Algebra). A Boolean algebra is a Heyting algebra A =

(A,∧,∨,→,>,⊥) satisfying, where ¬a := a→⊥, a∨¬a =>.

This is, of course, not how Boolean algebras are standardly presented. If ¬
is instead given as a primitive complementation operation then a→ b := ¬a∨ b
defines a Heyting implication and a→⊥ = ¬a∨⊥ = ¬a, meaning it satisfies our
definition.

The structure of the prime filters on a Boolean algebra is greatly simplified by
the property a∨¬a =>. A maximal filter is a proper filter F such that for any other
proper filter G, F ⊆ G implies F = G. An ultrafilter is a proper filter F such that
for all a ∈ A, a ∈ F or ¬a ∈ F . The following proposition is an easy consequence
of the fact that a∨¬a =>.

Proposition 5.35. Let F be a filter on a Boolean algebra A. F is a prime filter iff F
is a maximal filter iff F is an ultrafilter.

Thus applying the prime filter frame construction for a Boolean algebra A re-
sults in a an intuitionistic frame in which the order is simply equality. The complex
algebra of this frame is thus simply the power set of prime filters on A. We obtain
the Stone representation theorem immediately.

Theorem 5.36 (Stone Representation Theorem for Boolean algebras [210]). Every
Boolean algebra is isomorphic to a subalgebra of a power set algebra. Specifically,
given a Boolean algebra A, the map θA : A→Com(Pr(A)) defined θA(a) = {F ∈
Pr(A) | a ∈ F} is an embedding.

Com and Pr lift to functors in the same way as the intuitionistic case. To
strengthen this to a dual equivalence of categories, topology enters the picture once
again. Now, the topology generated by θA is greatly simplified. Now, as θA(a) =
θA(¬a), we have that the base for OA is straightforwardly given by B = {θA(a) |
a ∈ A}. This is a base of clopen sets, making OA zero-dimensional. We have that
θA(a)∩θA(¬a) = /0 and θA(a)∪θA(¬a) = Pr(A) since prime filters are ultrafilters.
Hence for any distinct F and G we can find a ∈ F ∩G, meaning F ∈ θA(a), G ∈
θA(¬a) and θA(a)∪θA(¬a) = Pr(A), making the topology totally disconnected.

Definition 5.37 (Stone space). A Stone space is a compact, totally disconnected
topological space X = (X ,O). Equivalently, a Stone space is a compact, Haus-
dorff, zero dimensional topological space.

Lemma 5.38. For any Boolean algebra A, (Pr(A),OA) is a Stone space.

Proof. Immediate from Lemma 5.26 and the preceeding discussion.

5.4. Stone Duality 93

Lemma 5.39. (X ,O) is a Stone space iff (X ,O,=) is an Esakia space.

Proof. Assume (X ,O) is a Stone space. By definition this is compact. Further, for
any clopen set C, trivially ↓ C = C and so is clopen. For the Priestley separation
axiom, let x 6= y. Then we can use the Hausdorff property to find an open set O with
x ∈ O and y 6∈ O. Since the space is zero dimensional, there exists a clopen base
element B such that x ∈ B⊆ O. So (X ,O,=) is an Esakia space.

Now assume (X ,O,=) is an Esakia space. By assumption this is compact
and, by Lemma 5.26, Hausdorff. To see that it is zero dimensional, let O be an
open set. By Esakia duality, O = η

−1
X (O′) for O′ open in PrClop<(X)Clop<(X).

O′ =
⋃

i θClop<(X)(Ai)∪θClop<(X)(Bi) for some upwards-closed clopen sets Ai and
Bi of X . Since the order is =, these are simply clopen sets, and θClop<(X)(Bi) =

θClop<(X)(Bi). We can thus rewrite O′ as O′ =
⋃

j θClop<(X)(A j). Thus O =⋃
j η
−1
X (θClop<(X)(A j)) =

⋃
j A j, and so O has a clopen basis.

For morphisms between Esakia spaces carrying the trivial order the intuition-
istic frame conditions also become trivial and are simply continuous maps. We thus
have a category Stone of Stone spaces and continuous maps, and by Esakia duality,
it is dually equivalent to the category BA.

Theorem 5.40 (Stone Duality). θ : IdBA→ClopPr and η : IdStone→ PrClop form
a dual equivalence of categories between BA and Stone.

Chapter 6

Dualities for Propositional Bunched
Logics

In this chapter we extend Esakia and Stone duality to the algebras and Kripke struc-
tures interpreting the bunched logics introduced in Part I. Duality theorems of this
sort have a long history in non-classical logic, beginning with the landmark work of
Jónsson & Tarski [133] extending Stone duality to Boolean algebras with operators,
prefiguring Kripke’s modal logic semantics over a decade before it was proposed.
This was extended to distributive lattices with operators by Goldblatt [108], who
made explicit the connection with modal logic and was able to use the duality theo-
retic framework to prove the Goldblatt Thomason theorem that characterises modal
definability for logics interpreted on first-order definable frames.

One of the precursors to the present work is Urquhart’s [215] duality theory for
the structures interpreting relevant logics. As one might expect, given the similar-
ity between bunched logics and relevant logics, similar arguments come into play
for us. Urquhart’s duality was generalised to residuated algebras called gaggles by
Bı́mbo & Dunn [25], and it is their work that can be considered the foundation of
ours: indeed, duality for the algebras associated to LGL can be found as a specific
case of their result for Boolean gaggles. Our duality theoretic framework can help-
fully be seen as a combination of Bı́mbo & Dunn’s duality and modal logic-style
correspondence theory: the duality theory of gaggles is used to give a duality the-
ory for the most basic bunched logic algebras, and each extension of that logic is
obtained by adding appropriate operations and showing that frame properties and
the axioms defining the logics induce each other.

6.1 Layered Graph Logics
We begin our analysis with the weakest systems, LGL and ILGL. Each of the log-
ics we consider can be obtained by extending the basic structures associated with

6.1. Layered Graph Logics 95

these logics and so we are able to systematically extend the theory in each case by
accounting for just the extensions to the structure. First, we consider lattice-based
algebras suitable for interpreting (I)LGL.

Definition 6.1 ((I)LGL Algebra).

1. An ILGL algebra is an algebra A=(A,∧,∨,→,>,⊥,∗,−∗,∗−) such that
(A,∧,∨,→,>,⊥) is a Heyting algebra and ∗,−∗,∗− are binary operations
on A satisfying, for all a,b,c ∈ A,

a∗b≤ c iff a≤ b−∗ c iff b≤ a∗− c.

2. A LGL algebra is an ILGL algebra A= (A,∧,∨,→,>,⊥,∗,−∗,∗−) for which
(A,∧,∨,→,>,⊥) is a Boolean algebra.

Residuation of ∗, −∗ and ∗− with respect to the underlying lattice order entails
a number of useful properties that are utilised in what follows.

Proposition 6.2 (cf. [131]). Let A be an (I)LGL algebra. Then, for all a,b,a′,b′ ∈A
and X ,Y ⊆ A, we have the following:

1. If a≤ a′ and b≤ b′ then a∗b≤ a′ ∗b′;

2. If
∨

X and
∨

Y exist then
∨

x∈X ,y∈Y x∗y exists and (
∨

X)∗(∨Y)=
∨

x∈X ,y∈Y x∗
y;

3. If a =⊥ or b =⊥ then a∗b =⊥;

4. If
∨

X exists then for any z ∈ A,
∧

x∈X(x−∗ z) and
∧

x∈X(x∗− z) exist with

∧
x∈X

(x−∗ z) = (
∨

X)−∗ z and
∧
x∈X

(x∗− z) = (
∨

X)∗− z;

5. If
∧

X exists then for any z ∈ A,
∧

x∈X(z−∗ x) and
∧

x∈X(z∗− x) exist with

∧
x∈X

(z−∗ x) = z−∗ (
∧

X) and
∧
x∈X

(z∗− x) = z∗− (
∧

X); and

6. a−∗>= a∗−>=⊥−∗a =⊥∗−a =>.

Interpretations of (I)LGL on an (I)LGL algebra work as follows: let V :
Prop→ A be an assignment of elements of the algebra to propositional variables;

6.1. Layered Graph Logics 96

this is uniquely extended to an interpretation J−K of every (I)LGL formula by in-
duction, with JpK = V (p),J>K => and J⊥K =⊥ as base cases:

Jφ ∧ψK = JφK∧ JψK Jφ ∨ψK = JφK∨ JψK Jφ → ψK = JφK→ JψK
Jφ ∗ψK = JφK∗ JψK Jφ −∗ψK = JφK−∗ JψK Jφ ∗−ψK = JφK∗− JψK.

We prove that this is sound now, returning to completeness in Chapter 7.

Theorem 6.3 (Algebraic Soundness of (I)LGL). If ϕ ` ψ is provable in the Hilbert
system for (I)LGL, then for all interpretations J−K on (I)LGL algebras, JϕK≤ JψK.

Proof. The proof proceeds by an inductive argument on (I)LGL proofs. As with the
soundness theorem for frames, we demonstrate with the case for the rule

15.
ξ ` ϕ ∗−ψ η ` ϕ

η ∗ξ ` ψ

Suppose Jξ K ≤ Jϕ ∗−ψK and JηK ≤ JϕK. By residuation JϕK ∗ Jξ K ≤ JψK. Since ∗
is order preserving we have Jη ∗ξ K= JηK∗ Jξ K≤ JϕK∗ Jξ K≤ JψK as required.

The structure of what follows mirrors that of Chapter 5, and will be replicated
across each bunched logic. First, we equip the frames associated with the logic
with an appropriate notion of morphism to obtain a category. Next we set up the
dual functors Com and Pr for transforming algebras into frames (and vice versa) and
homomorphisms into frame morphisms (and vice versa), and prove a representation
theorem falls out of this relationship. Finally we add appropriate topological struc-
ture to the frames to obtain a category of topological spaces that is dually equivalent
to the category of algebras.

We begin with ILGL morphisms. These necessarily extend the definition of
intuitionistic morphism with back and forth conditions pertaining to ◦.

Definition 6.4 (ILGL Morphism). Given ILGL frames X and X ′, an ILGL mor-
phism is a intuitionistic morphism g : (X ,<)→ (X ′,<′) satisfying

1. x ∈ y◦ z implies g(x) ∈ g(y)◦′ g(z),

2. g(x)<′ w′ and w′ ∈ y′ ◦′ z′ implies there exists w,y,z ∈ X s.t. x< w, w ∈ y◦ z,
g(y)<′ y′ and g(z)< z′,

3. w′ <′ g(x) and z′ ∈ w′ ◦′ y′ implies there exists w,y,z ∈ X s.t. w< x, z ∈ w◦ y,
g(y)<′ y′ and z′ <′ g(z), and

4. w′ < g(x) and z′ ∈ y′ ◦′w′ implies there exists w,y,z ∈ X s.t. w< x, z ∈ y◦w,
g(y)<′ y′ and z′ <′ g(z).

6.1. Layered Graph Logics 97

LGL morphisms are the special case of ILGL morphisms where< is =, which
collapses the above definition to this simpler one.

Definition 6.5 (LGL Morphism). Given LGL frames X and X ′, a LGL morphism
is a map g : X →X ′ satisfying

1. x ∈ y◦ z implies g(x) ∈ g(y)◦′ g(z),

2. g(x) ∈ y′ ◦′ z′ implies there exists y,z ∈ X s.t. x ∈ y◦ z,g(y) = y′ and g(z) = z′,

3. z′ ∈ g(x)◦′ y′ implies there exists y,z ∈ X s.t. z ∈ x◦y,g(y) = y′ and g(z) = z′,
and

4. z′ ∈ y′ ◦′ g(x) implies there exists y,z ∈ X s.t. z ∈ y ◦ x,g(y) = y′ and g(z) =
z′.

A variant of this definition is used in the context of BBI by Brotherston &
Villard [44] to demonstrate that the logic is not sufficiently expressive to axiomatise
a number of properties common to models of separation logic. Urquhart [215]
defines similar maps in order to define dualities for relevant logic and Bı́mbo &
Dunn [25] generalise Urquhart’s definition further to give morphisms that respect
residuals on the dual algebras of frames for gaggles. Bunched logics can be seen to
be extensions of gaggles with extra operators and/or axioms.

Proposition 6.6. Given (I)LGL morphisms f : X →X ′ and g : X ′ →X ′′, the
composition g f : X →X ′′ is an ILGL morphism.

Proof. We verify property 4. in the definition of ILGL morphism: the others are
similar. Suppose g f (x) <′′ w′′ with w′′ ∈ y′′ ◦ z′′. Since g is an ILGL morphism
we obtain w′,y′,z′ ∈ X ′ such that f (x) <′ w′, w′ ∈ y′ ◦ z′, g(y′) <′′ y′′ and g(z′) <′′

z′′. Applying the property for f , we obtain w,y,z ∈ X such that x < w, w ∈ y ◦ z,
f (y) <′ y′ and g(z) <′ z′. Since g is order preserving, g f (y) <′′ g(y′) < y′′ and
g f (z)<′′ g(z′)<′′ z′′ and so the property holds.

We thus obtain the categories (I)LGL of (I)LGL frames and (I)LGL mor-
phisms.

Definition 6.7 (ILGL Complex Algebra). Given an (I)LGL frame X , the
(I)LGL complex algebra of X is given by Com(I)LGL(X) = (P4(X),∩,∪,⇒X

,X , /0,•X ,−−•X ,•−−X) where

A•X B = {x | there exists w,y,z s.t x< w,w ∈ y◦ z,y ∈ A and z ∈ B}
A−−•X B = {x | for all w,y,z, if w< x,z ∈ w◦ y and y ∈ A then z ∈ B}
A•−−X B = {x | for all w,y,z, if w< x,z ∈ y◦w and y ∈ A then z ∈ B}.

6.1. Layered Graph Logics 98

Lemma 6.8. For an (I)LGL frame X , the complex algebra Com(I)LGL(X) is a an
ILGL algebra.

Proof. The remaining verification is the residuation property of •X ,−−•X and
•−−X . We show one of the bi-implications. Suppose A •X B ⊆ C and let x ∈ A
with w,y,z are such that w < x, z ∈ w ◦ y and y ∈ A. Since A is upwards-closed,
by assumption, z ∈ A •X B ⊆ C. Hence x ∈ B−−•X C. Assuming A ⊆ B−−•X C
and x ∈ A •X B, we obtain w,y,z such that x < w, w ∈ y ◦ z, y ∈ A and z ∈ B. By
assumption, it follows that y ∈ B−−•X C, so w ∈C. By upwards-closure of C, x ∈C
as required.

Definition 6.9 (Prime Filter (I)LGL Frame). Given an (I)LGL algebra A, the prime
filter frame of A is given by Pr(I)LGL(A) = (Pr(A),⊆,◦A) where

F ◦A F ′ = {F ′′ ∈ Pr(A) | ∀a ∈ F,∀b ∈ F ′ : a∗b ∈ F ′′}.

Of course, because of the structure of prime filters on Boolean algebras, the
order ⊆ collapses to = for a prime filter LGL frame, as we would expect.

Lemma 6.10. The prime filter frame Pr(I)LGL(A) of an (I)LGL algebra A is an (I)LGL
frame.

We can give a representation theorem for (I)LGL algebras using these con-
structions. For ILGL algebras this extends the representation theorem for Heyting
algebras, whereas for LGL algebras this extends Stone’s theorem. These results are
closely related to various representation theorems for algebras with operators (e.g.,
[133], [108]). The key difference is the use of a single operation ◦ for the operator
∗ and its non-operator adjoints −∗ and ∗−. The derived structure required to take
care of these adjoints was not investigated in the frameworks of Jonsson-Tarski or
Goldblatt but has been in the context of gaggle theory [25, 87]. There the result for
LGL algebras can be found as a particular case of that for Boolean gaggles ([25],
Theorem 1.4.16).

Theorem 6.11 (Representation Theorem for (I)LGL Algebras). Every (I)LGL al-
gebra is isomorphic to a subalgebra of a complex algebra. Specifically, given an
(I)LGL algebra A, the map θA : A→ Com(I)LGL(Pr(I)LGL(A)) defined θA(a) = {F ∈
Pr(I)LGL(A) | a ∈ F} is an embedding.

Proof. We prove the theorem for ILGL algebras; the case for LGL algebras can
be obtained by substituting < for = throughout. That θA is an embedding and
a homomorphism on the Heyting algebra operations is simply the representation

6.1. Layered Graph Logics 99

theorem for Heyting algebras. It thus remains to show that θA respects ∗,−∗ and ∗−.
We focus on the case for −∗; the others are similar.

We first note the corner cases: for all a,b ∈ A we trivially have that θA(a−∗
>) = θA(a)−−•Pr(A)θA(>) and θA(⊥−∗b) = θA(⊥)−−•Pr(A)θA(b) by Proposition
6.2 property 6. Hence it is sufficient to consider a−∗b where a 6=⊥ and b 6=>.For
the inclusion θA(a−∗ b) ⊆ θA(a)−−•Pr(A)θA(b), assume a−∗ b ∈ F with F0,F1,F2

such that F ⊆ F0, F2 ∈ F0 ◦A F1 and a ∈ F1. Then (a−∗ b) ∗ a ∈ F2 and so b ∈ F2,
since residuation entails (a−∗ b) ∗ a ≤ b and F2 is upwards closed. Hence F ∈
θA(a)−−•Pr(A)θA(b).

For the reverse inclusion, consider F such that a−∗b 6∈ F . We show, for proper
filter G and proper ideal I, that (abusing notation for ◦A)

P(G, I) =

1 if I ∈ F ◦A G,a ∈ G and b ∈ I

0 otherwise

is a prime predicate. We concentrate on the non-trivial verifications: suppose P(G∩
G′, I) = 1. Clearly, a ∈ G,G′ so suppose for contradiction that there exists c,c′ ∈
F , d ∈ G and d′ ∈ G′ such that c ∗ d,c′ ∗ d′ ∈ I. We have that c′′ := c∧ c′ ∈ F
and c′′ ∗ d,c′′ ∗ d′ ∈ I. This entails c′′ ∗ (d ∨ d′) = (c′′ ∗ d)∨ (c′′ ∗ d′) ∈ I. Since
d ∨ d′ ∈ G∩G′ we have c′′ ∗ (d ∨ d′) 6∈ I by assumption: a contradiction. Hence
either I ∈ F ◦A G or I ∈ F ◦A G′. If P(G, I ∩ I′) = 1 we clearly have b ∈ I, I′, so
suppose for contradiction there exist c,c′ ∈ F , d,d′ ∈ G such that c ∗ d ∈ I and
c′ ∗ d′ ∈ I′. c′′ = c∧ c′ ∈ F and d′′ = d ∧ d′ ∈ G so we have c′′ ∗ d′′ ∈ I ∪ I′. This
means c′′ ∗d′′ ∈ I or c′′ ∗d′′ ∈ I′, but c∗d,c′ ∗d′ ≥ c′′ ∗d′′ ∈ I∩ I′, a contradiction.
Thus either I ∈ F ◦A G or I′ ∈ F ◦A G.

Hence P is a prime predicate. By our assumption on a and b, [a) and (b] are
a proper filter and a proper ideal respectively, and P([a),(b]) = 1: if x ∈ F and
y≥ a then x∗y 6≤ b, otherwise by residuation and monotonicity of ∗ we would have
x ≤ a−∗ b ∈ F , a contradiction. Hence by Lemma 5.7 there exist prime G, and I
with P(F, I) = 1. Letting G′ = I, we have the prime filters we require.

We can also show that the assignment Pr(I)LGL(f) = f−1 and Com(I)LGL(g) = g−1

makes Pr(I)LGL and Com(I)LGL functorial.

Lemma 6.12. The functors Pr(I)LGL and Com(I)LGL are well defined.

Proof. We extend Lemma 5.30 to the additional properties of (I)LGL algebra ho-
momorphisms and (I)LGL morphisms. For Com(I)LGL we need to show g−1 respects
∗, −∗ and ∗−. We handle the case for ∗−. Assume x ∈ g−1(A•−−X ′ B) and suppose

6.1. Layered Graph Logics 100

w,y,z are such that w < x, z ∈ y◦w and g(y) ∈ A. By order preservation and prop-
erty 1. of ILGL morphism, g(w)<′ g(x) and g(z)∈ g(y)◦′g(w). By our assumption
this entails g(z)∈ B as required. Now assume x∈ g−1(A)•−−X g−1(B) and suppose
there exist w′,y′,z′ with w′ < g(x), z′ ∈ y′ ◦′w′ and y′ ∈ A. By ILGL morphism prop-
erty 4., there exist w,y,z such that w< x,z∈ y◦w,g(y)<′ y′ and z′<′ g(z). Upwards
closure of A implies g(y) ∈ A, so y ∈ g−1(A). By assumption this entails z ∈ g−1(B)
so g(z) ∈ B. By upwards closure of B, z′ ∈ B, as required.

For Pr(I)LGL we need to show f−1 satisfies the (I)LGL morphism properties 1.
to 4. We give the characteristic case of property 3. Suppose Fw′ ⊇ f−1(Fx) and
Fz′ ∈ Fw′ ◦A′ Fy′ . We show that the following map on proper filter/ideal pairs is a
prime predicate

P(F, I) =

1 if I ∈ Fx ◦A F, f−1(F)⊇ Fy′ and Fz′ ⊇ f−1(I)

0 otherwise

First, assume for all α < λ P(Fα , Iα) = 1 for a ⊆-chain (Fα , Iα)α<λ . Suppose
for contradiction a ∈ Fx and b ∈⋃α Fα with a∗b ∈⋃α Iα . Then for some β , b ∈ Fβ

and for some β ′, a∗b∈ Iβ ′ . There thus exists γ ≥ β ,β ′ such that b∈Fγ and a∗b∈ Iγ ,
but then P(Fγ , Iγ) = 0, a contradiction. If for all α , f−1(Fα) ⊇ Fy′ then clearly
f−1(

⋃
α Fα)⊇ Fy′ . Similarly, if for all α , Fz′ ⊇ f−1(Iα), for any a ∈ f−1(

⋃
α Iα) we

have f (a) ∈ Iα for all α , so a ∈ Fz′ .

Now consider P(F ∩F ′, I) = 1. Clearly f−1(F), f−1(F ′) ⊇ Fy′ . Suppose for
contradiction that there exists a,a′ ∈ Fx, b ∈ F and b′ ∈ F ′ such that a∗b,a′ ∗b′ ∈ I.
We have a′′ = a∧ a′ ∈ Fx and by downwards closure and montonicity of ∗, a′′ ∗
b,a′ ∗b′ ∈ I. Hence a′′ ∗ (b∨b′) = (a′′ ∗b)∨ (a′′ ∗b′) ∈ I. However b∨b′ ∈ F ∩F ′,
so a′′ ∗ (b∨ b′) 6∈ I, a contradiction. Similarly, if P(F, I ∩ I′) = 1, we have Fz′ ⊇
f−1(I ∪ I′), so Fz′ ⊇ f−1(I), f−1(I′). Assume for contradiction that there exists
a,a′ ∈ Fx and b,b′ ∈ F such that a∗b ∈ I and a′ ∗b′ ∈ I′. Then a′′ = a∧a′ ∈ Fx and
by downwards closure and monotonicity of ∗, a′′ ∗ b ∈ I and a′′ ∗ b′ ∈ I′. We have
b′′= b∧b′ ∈F , so a′′∗b′′ ∈ I∩ I′. However a′′∗b′′≤ a′′∗b,a′′∗b′ so a′′∗b′′ ∈ I∩I′,
a contradiction. P is a prime predicate.

We show that the filter F = [f [Fy′]) and ideal I = (f [Fz′]] are proper, with
P(F, I) = 1. First note that an equivalent characterisation of ◦A′ is

F ◦A′ F ′ = {F ′′ | ∀a,b : a ∈ F ′ and b 6∈ F ′′ implies a−∗b 6∈ F}.

Suppose ⊥ ∈ F . Then there exists a ∈ Fy′ such that f (a) = ⊥. Let b 6∈ Fz′ be
arbitrary. Then a−∗b 6∈Fw′ . However f (a−∗b) = f (a)−∗ f (b) =⊥−∗b=>∈Fx, so

6.1. Layered Graph Logics 101

a−∗b ∈ f−1(Fx)⊆ Fw′ , a contradiction. The case for I is similar. That f−1(F)⊇ Fy′

follows by the definition of F . For the other inclusion, assume a ∈ f−1(I) and
a 6∈ Fz′ . Then f (a) ∈ f [Fz′] ⊆ I so a 6∈ f−1(I), a contradiction. There hence exist
prime F and I with P(F, I) = 1 by the Prime Extension Lemma. Setting Fw = Fx,
Fy = F and Fz = I gives the prime filters required for property 3. to hold.

Finally, for LGL morphisms, the conditions hold because maximality of prime
filters makes all inclusions of prime filters into identities.

To obtain a dual equivalence of categories we introduce topology to (I)LGL
frames. Throughout this chapter we will define topological spaces correspond-
ing to bunched logic algebras by instantiating structures which are simultaneously
Stone/Esakia spaces and bunched logic frames, with the additional operations that
correspond to the multiplicative structure of the logic satisfying certain coherence
conditions with the underlying topology.

Definition 6.13 (ILGL Space). An ILGL space is a structure X = (X ,O,<,◦) such
that:

1. (X ,O,<) is an Esakia space;

2. (X ,<,◦) is an ILGL frame;

3. The upwards-closed clopen sets of (X ,O,4) are closed under •X ,−−•X ,•−−X ;

4. If x 6∈ y ◦ z then there exist upwards-closed clopen sets C1,C2 such that y ∈
C1,z ∈C2 and x 6∈C1 •X C2.

The coherence conditions on the composition ◦ are inspired by those found on
the topological duals of gaggles [25]. An LGL space is obtained as the special case
where < is =. This yields the following definition.

Definition 6.14 (LGL Space). An LGL space is a structure X = (X ,O,◦) such that

1. (X ,O) is an Stone space;

2. (X ,◦) is an LGL frame;

3. The clopen sets of (X ,O) are closed under •X ,−−•X ,•−−X ;

4. If x 6∈ y ◦ z then there exist clopen sets C1,C2 such that y ∈ C1,z ∈ C2 and
x 6∈C1 •X C2.

6.1. Layered Graph Logics 102

The morphisms of (I)LGL spaces are the continuous (I)LGL morphisms, and
this yields categories (I)LGLSp. We adapt the functor Clop< of the Esakia dual-
ity to obtain a functor ClopILGL

< : ILGLSp→ ILGLAlg by setting ClopILGL
< (X) =

(C L <(X),∩,∪,⇒X ,•X ,−−•X ,•−−X) and ClopILGL
< (g) = g−1. Abusing nota-

tion, PrILGL : ILGLAlg→ ILGLSp is defined PrILGL(A) = (Pr(A),OA,⊇,◦A) and
PrILGL(f) = f−1.

Lemma 6.15. The functors ClopILGL
< and PrILGL are well-defined.

Proof. To see ClopILGL(X) is an ILGL algebra, note that by Esakia duality it is a
Heyting algebra. By property 3. in the definition of ILGL space, the upwards-closed
clopen sets of X are closed under •X ,−−•X and •−−X , and the fact that they
satisfy the residuation property is proved in the same way as for complex algebras.
That ClopILGL(g) is a homomorphism of ILGL algebras follows from Esakia duality,
together with Lemma 6.12.

For PrILGL(A), considering Esakia duality we only need to verify conditions 3.
and 4. By Esakia duality, every upwards-closed clopen set is of the form θA(a)
for a ∈ A. The representation theorem for ILGL algebras gives that θA is a homo-
morphism, so the upwards-closed clopen sets are closed under •PrILGL(A),−−•PrILGL(A)
and •−−PrILGL(A). For the final condition, suppose F 6∈ F ′ ◦A F ′′. Then there exists
a ∈ F ′ and b ∈ F ′′ such that a ∗ b 6∈ F . We have F ′ ∈ θA(a) and F ′′ ∈ θA(b) with
F 6∈ θA(a) •PrILGL(A) θA(b). That PrILGL(f) is a morphism of ILGL spaces follows
from Esakia duality and Lemma 6.12.

The natural transformations we give are necessarily the same as that for Esakia
duality. θ is as already defined and ηX (x) = {C ∈ C L <(X) | x ∈C}. This gives
the duality theorem for ILGL algebras.

Theorem 6.16 (ILGL Duality). θ : IdILGLAlg → ClopILGL
< and η : IdILGLSp →

PrILGLClopILGL
< form a dual equivalence of categories between ILGLAlg and

ILGLSp.

Proof. The final verification required is that x ∈ y ◦ z iff ηX (x) ∈ ηX (y)◦ηX (z).
The left-to-right direction is trivial. For the right-to-left, suppose x 6∈ y◦ z. Then by
condition 4. of ILGL space there exist upwards-closed clopens C1 and C2 such that
y ∈C1, z ∈C2 and x 6∈C1 •ClopILGL

< (X)C2. The result then obtains immediately.

Just as in the case for Stone duality, the duality for LGL algebras then obtains
as an immediate corollary of ILGL duality. This is also obtainable as an instance of
Bimbó & Dunn’s duality theorem for Boolean gaggles ([25], Theorem 9.2.22).

Theorem 6.17 (LGL Duality). θ : IdLGLAlg → ClopLGL and η : IdLGLSp →
PrLGLClopLGL form a dual equivalence of categories between LGLAlg and LGLSp.

6.2. Logics of Bunched Implications 103

6.2 Logics of Bunched Implications
We next look to the logics of bunched implications (B)BI introduced in Chapter 3.
We begin with (B)BI algebras.

Definition 6.18 ((B)BI Algebra).

1. A BI algebra is an algebra A= (A,∧,∨,→,>,⊥,∗,−∗,>∗) such that
(A,∧,∨,→,>,⊥,∗,−∗,−∗) is an ILGL algebra and (A,∗,>∗) a commuta-
tive monoid: that is, ∗ is commutative and associative with >∗ a unit for
∗.

2. A BBI algebra is a BI algebra A=(A,∧,∨,→,>,⊥,∗,−∗,>∗) for which
(A,∧,∨,→,>,⊥) is a Boolean algebra.

Interpretations of (B)BI on a (B)BI algebra are given in the same way as for
(I)LGL algebras, with J>∗K =>∗. Noting that the additional axioms for (B)BI cor-
respond precisely to the equations corresponding to (A,∗,>∗) being a commutative
monoid we obtain a soundness theorem for algebraic interpretations.

Theorem 6.19 (Algebraic Soundness). If ϕ ` ψ is provable in the Hilbert system
for (B)BI, then for all interpretations J−K on (B)BI algebras JϕK≤ JψK.

Moving on to morphisms for (B)BI frames, we simply extend the definitions
of (I)LGL morphisms. First we recall the definition of (B)BI frame (Definition 3.1):
a BI frame is a tuple X = (X ,<,◦,E) where (X ,<,◦) is an ILGL frame, E ⊆ X
and the following conditions are satisfied (with outermost universal quantification
omitted for readability):

(Commutativity) z ∈ x◦ y→ z ∈ y◦ x (Closure) e ∈ E ∧ e′ < e→ e′ ∈ E
(Unit Existence) ∃e ∈ E(x ∈ x◦ e) (Coherence) e ∈ E ∧ x ∈ y◦ e→ x< y
(Associativity) t ′ < t ∈ x◦ y∧w ∈ t ′ ◦ z→∃s,s′,w′(s′ < s ∈ y◦ z∧w< w′ ∈ x◦ s′)

A BBI frame is a BI frame for which the order < is equality =.

Definition 6.20 ((B)BI Morphism). A (B)BI morphism f : X →X ′ is an ILGL
(LGL) morphism satisfying the additional property

5. e ∈ E iff f (e) ∈ E ′.

(B)BI frames together with (B)BI morphisms form a category (B)BI. In the
case for BBI, this gives precisely the BBI morphisms of Brotherston & Villard [44].

6.2. Logics of Bunched Implications 104

Definition 6.21 (Complex BBI Algebra). Given a (B)BI frame X , the complex
algebra of X , Com(B)BI(X) is given by extending ComILGL(X) (ComLGL(X)) with
E.

Lemma 6.22. Given a (B)BI frame X , Com(B)BI(X) is a (B)BI algebra.

Proof. We give the argument for BI frames; the case for BBI frames is obtained
from the specific case where < is =. Given Lemma 6.8, we just need to verify that
(P<(X),•X ,E) is a commutative monoid. First note that E ∈P<(X) by virtue of
the axiom Closure. Commutativity of •X is easily derived from the frame axiom
Commutativity. Further, the inclusion A ⊆ A •X E follows immediately from the
axiom Unit Existence. Slightly more involved is A •X E ⊆ A: let x ∈ A •X E.
Then there exists x′,y,e such that x < x′ with x′ ∈ y ◦ e, y ∈ A and e ∈ E. By the
frame axiom Coherence it follows that x′ < y, so by transitivity x < y. Since A is
upwards-closed, x ∈ A.

We finally come to associativity. We only need to verify the inclusion (A •X
B)•X C⊆A•X (B•X C) because of commutativity of •X . Let a∈ (A•X B)•X C.
Then there exists w, t ′,z such that a < w ∈ t ′ ◦ z with t ′ ∈ A •X B and z ∈ C. This
entails the existence of x,y, t such that t ′ < t ∈ x ◦ y with x ∈ A and y ∈ B. By the
frame axiom Associativity we thus have s,s′,w′ with s′< s∈ y◦z and w<w′ ∈ x◦s′.
Hence s′ ∈ B•X C and, because w′ 4 w4 a, a ∈ A•X (B•X C) as required.

Definition 6.23 (Prime Filter (B)BI Frame). Given a (B)BI algebra A, the prime
filter frame of A, Pr(B)BI(A), is given by extending PrILGL(A) (PrLGL(A)) with EA =

{F ∈ Pr(A) | >∗ ∈ F}.

In the BBI case, this definition is essentially contained in Galmiche & Larchey-
Wendling’s [99] completeness theorem for the relational semantics of BBI, although
they do further work to give a frame in which the set of units E is a singleton. The
next lemma follows a similar argument to theirs, although we generalise it to our BI
frames.

Lemma 6.24. Given a (B)BI algebra A, the prime filter frame Pr(B)BI(A) is a (B)BI
frame.

Proof. Commutativity of ◦A can be read off the definition, given that ∗ is com-
mutative for (B)BI. We also have that E satisfies Closure trivially. We are left to
verify Associativity, Unit Existence and Coherence. We note that in the case for
BBI, maximality of prime filters collapses all of the inclusions to equalities in what
follows, so we just give the argument for BI.

6.2. Logics of Bunched Implications 105

First, Associativity. Assume Ft ′ ⊇ Ft ∈ Fx ◦Fy and Fw ∈ Ft ′ ◦Fz. We show that

P(F) =

1 if F ∈ Fy ◦A Fz and Fw ∈ Fx ◦A F

0 otherwise

is a prime predicate. For a ⊆-chain (Fα)α<λ such that P(Fα) = 1 for all α , we
straightforwardly have P(

⋃
α Fα) = 1. If P(F ∩F ′) = 1, we have that F,F ′ ∈ Fy ◦Fz

immediately, so suppose for contradiction that there exists a,a′ ∈ Fx, b ∈ F , b′ ∈ F ′

such that a ∗ b,a′ ∗ b′ 6∈ Fw. We have that a′′ = a∧ a′ ∈ Fx and b∨ b′ ∈ F ∩F ′ so
a′′ ∗ (b∨ b′) = (a′′ ∗ b)∨ (a′′ ∗ b′) ∈ Fw. Since Fw is prime, either a′′ ∗ b ∈ Fw or
a′′ ∗b′ ∈ Fw. Thus a∗b ∈ Fw or a′ ∗b′ ∈ Fw because ∗ is monotone, a contradiction.

Now consider the set F = {a∈A | ∃b∈ Fy,c∈ Fz : a≥ b∗c}. We show this is a
proper filter satisfying P(F) = 1. First, suppose for contradiction that ⊥ ∈ F . Then
there exists b ∈ Fy and c ∈ Fz such that b ∗ c = ⊥. Letting a ∈ Fx be arbitrary, we
have that a∗b ∈ Ft ⊆ Ft ′ , so (a∗b)∗c = a∗ (b∗c) = a∗⊥=⊥∈ Fw, contradicting
that Fw is proper. F is clearly upwards-closed; to see it is closed under meets,
consider a,a′ ∈ F . Then there exists b,b′ ∈ Fy and c,c′ ∈ Fz such that a≥ b∗ c and
a′ ≥ b′ ∗ c′. We have that b∧ b′ ∈ Fy and c∧ c′ ∈ Fz, and by monotonicity of ∗,
(b∧b′)∗ (c∧ c′)≤ a∗b,a′ ∗b′. Hence (b∧b′)∗ (c∧ c′)≤ (a∗b)∧ (a′ ∗b′)≤ c∧ c′

as required.

We now verify that P(F) = 1. Let b ∈ Fy and c ∈ Fz. Clearly b ∗ c ∈ F , so
F ∈ Fy ◦A Fz. If a ∈ Fx and a′ ≥ b ∗ c for b ∈ Fy and c ∈ Fz, we have that a ∗ a′ ≥
a∗ (b∗ c) = (a∗b)∗ c ∈ Fw, since a∗b ∈ Ft ⊆ Ft ′ and c ∈ Fz. Thus a∗a′ ∈ Fw and
Fw ∈ Fx ◦A F as required. We thus obtain a prime F with P(F) = 1 by the Prime
Extension Lemma, which is precisely what is required to satisfy Associativity.

For Unit Existence, let F be an arbitrary prime filter. We show that

P(G) =

1 if F ∈ F ◦A G and >∗ ∈ G

0 otherwise

is a prime predicate. If P(Gα) = 1 for all Gα in a ⊆-chain (Gα)α<λ then clearly
F ∈ F ◦A

⋃
α Gα . Next, let P(G∩G′) = 1 and assume for contradiction that there

exists a,a′ ∈ F , b ∈G and b′ ∈G′ such that a∗b 6∈ F and a′ ∗b′ 6∈ F . b∨b′ ∈G∩G′

so for a′′ = a∧ a′ ∈ F we have a′′ ∗ (b∨ b′) = (a′′ ∗ b)∨ (a′′ ∗ b′) ∈ F . Since F is
prime, either a′′ ∗b ∈ F or a′′ ∗b′ ∈ F . Hence, by monotonicity of ∗, either a∗b ∈ F
or a′ ∗ b′ ∈ F , a contradiction. Now consider the filter [>∗). We note that this can
only fail to be proper when >∗ = ⊥, but in that case it can be shown that for all
a ∈ A, a =⊥, and thus A is degenerate and not a BI algebra. Given any a ∈ F and

6.2. Logics of Bunched Implications 106

b ≥ >∗, we have a ∗ b ≥ a ∗>∗ = a ∈ F , so a ∗ b ∈ F . Since P([>∗)) = 1, there
exists a prime filter F with P(F) = 1, and so Unit Existence is satisfied.

Finally, for Coherence, assume Fx ∈ Fy ◦Fe where>∗ ∈ Fe. Then for all a ∈ Fy,
a∗>∗ = a ∈ Fx, so Fy ⊆ Fx as required.

We now obtain the representation theorem for (B)BI algebras immediately by
noting that θA(>∗) = EA.

Theorem 6.25 (Representation Theorem for (B)BI Algebras). Every (B)BI algebra
is isomorphic to a subalgebra of a complex algebra. Specifically, given a (B)BI
algebra A, the map θA : A→Com(B)BI(Pr(B)BI(A)) defined θA(a) = {F ∈ Pr(B)BI(A) |
a ∈ F} is an embedding.

Lifting Com(B)BI and Pr(B)BI to functors is done in the standard way, and given
our results for (I)LGL we just need to check that the assignment of morphisms
interacts appropriately with >∗ and the (B)BI morphism condition on E. This is
straightforward though: property 5. of (B)BI morphism ensures that g−1(E ′) = E,
and f (>∗) =>∗ ensures that F ∈ EA′ iff f−1(F) ∈ EA.

Lemma 6.26. The functors Com(B)BI and Pr(B)BI are well-defined.

Once again, we topologise (B)BI frames to obtain a dual equivalence of cate-
gories.

Definition 6.27 (BI Space). A BI space is a structure X = (X ,O,<,◦,E) such that

1. (X ,O,<,◦) is an ILGL space,

2. (X ,<,◦,E) is a BI frame, and

3. E is clopen in (X ,O).

A morphism of BI frames is a continuous BI morphism, giving a category
BISp. In the particular case of BI spaces with a trivial ordering we obtain BBI
spaces.

Definition 6.28 (BBI Space). A BBI space is a structure X = (X ,O,◦,E) such
that

1. (X ,O,◦) is an LGL space,

2. (X ,◦,E) is a BBI frame, and

3. E is clopen in (X ,O).

6.3. De Morgan Bunched Logics 107

The duality theorems for (B)BI algebras then follows immediately from duality
for (I)LGL algebras, together with Lemmas 6.22 and 6.24. The only additional
structure that needs to be taken care of is the constant >∗ and E.

For BI we have PrBI : BIAlg→ BISp defined by PrSpBI(A) = (Pr(A),OA,⊇
,◦A,EA) and PrBI(f) = f−1; correspondingly, ClopBI

< : BISp→ BIAlg is given by
ClopBI

<(X) = (C L <(X),∩,∪,⇒X ,X , /0,•X ,−−•X ,E) and ClopBI
<(g) = g−1. η

is as given previously. Since E is clopen in a BI space by definition, and upwards
closed by the BI axiom Closure, E ∈ C L <(X). By the BI morphism property 5.
the components ηX are isomorphic on E. The duality theorem then obtains.

Theorem 6.29 (BI Duality). θ and η form a dual equivalence of categories between
BIAlg and BISp.

We note that Jipsen & Litak [130] independently proved the duality theorem
for BI concurrently with the writing of this thesis. The case for BBI algebras obtains
as a special case of BI duality.

Theorem 6.30 (BBI Duality). θ and η form a dual equivalence of categories be-
tween BBIAlg and BBISp.

6.3 De Morgan Bunched Logics
Next we consider the De Morgan bunched logics introduced in Chapter 4 Section
4.1, obtained by extending (B)BI with a multiplicative negation ¬∗ .

Definition 6.31 (DMBI/CBI Algebra). 1. A DMBI algebra is an algebra A=

(A,∧,∨,→,>,⊥,∗,−∗,>∗,⊥∗) such that (A,∧,∨,→,>,⊥,∗,−∗,>∗) is a BI
algebra and, defining ¬∗ a := a−∗⊥∗, ¬∗ ¬∗ a = a and ¬∗>∗ =⊥∗.

2. A CBI algebra is a DMBI algebra A=(A,∧,∨,→,>,⊥,∗,−∗,>∗,⊥∗) in which
(A,∧,∨,→,>,⊥,∗,−∗,>∗) is a BBI algebra.

We collect a number of useful properties of these algebras in the following
proposition.

Proposition 6.32. Let A be a DMBI or CBI algebra with a,b,c ∈ A and X ⊆ X.
Then the following hold.

1. If
∨

X exists, then
∧¬∗X exists and ¬∗ ∨X =

∧¬∗X;

2. If a≤ b then ¬∗ b≤ ¬∗ a;

3. If
∧

X and
∨¬∗X exist then ¬∗ ∧X =

∨¬∗X;

6.3. De Morgan Bunched Logics 108

4. a∗b≤ c iff b∗¬∗ c≤ ¬∗ a.

Proof. 1. If
∨

X exists we have ¬∗ ∨X =
∨

X−∗⊥∗=∧x∈X ¬∗ x by Proposition 6.2.

2. If a≤ b then a∨b = b. Hence ¬∗ b = ¬∗ (a∨b) = ¬∗ a∧¬∗ b so ¬∗ b≤ ¬∗ a.

3. Suppose
∧

X and
∨¬∗X exist. First note that by 2. ¬∗ ∧X ≤ ∨¬∗X iff

∧
X ≥

¬∗ ∨¬∗X . However by 1. we have ¬∗ ∨¬∗X =
∧¬∗ ¬∗ X =

∧
X , so the inequality

holds. In the other direction,
∨¬∗X ≤ ¬∗ ∧X iff ¬∗ ∧X ≥ ¬∗ a for all a ∈ a ∈ X .

The right hand side of this biconditional clearly holds by
∧

X ≤ a for all
a ∈ X .

4. First note that b ∗ (b−∗ c) ∗ (c−∗⊥∗) ≤ c ∗ (c−∗⊥∗) ≤ ⊥∗. By residuation we
have a ∗ b ≤ c iff a ≤ b−∗ c. By 2. ¬∗ (b−∗ c) = (b−∗ c)−∗⊥∗≤ ¬∗ a. Now
b ∗ (c−∗⊥∗) ≤ (b−∗ c)−∗⊥∗ iff b ∗ (b−∗ c) ∗ (c−∗⊥∗) ≤ ⊥∗, with the righthand
statement true. Hence b∗¬∗ c≤ ¬∗ a.

As a result of this proposition, we have that for any DMBI or CBI algebra A,
(A,∧,∨,¬∗ ,>,⊥) is a De Morgan algebra [165]. Thus ¬∗ is a dual automorphism on
the underlying bounded distributive lattice of A. Now an algebraic interpretation of
DMBI or CBI on a DMBI or CBI algebra extends one on the underlying BI or BBI
algebra by additionally setting J¬∗ aK = ¬∗ JaK. That this is sound follows straight-
forwardly from the additional De Morgan bunched logic Hilbert rules matching the
defining properties of ¬∗ .

Theorem 6.33 (Algebraic Soundness of DMBI/CBI). If ϕ ` ψ is provable in the
Hilbert system for DMBI (CBI), then for all interpretations J−K on DMBI (CBI)
algebras JϕK≤ JψK.

We recall the definition of DMBI/CBI frame (Definition 4.1): a DMBI frame
is a tuple X = (X ,<,◦,E,−) where (X ,<,◦,E) is a BI frame and − : X → X is an
operation satisfying the following conditions (with outermost universal quantifica-
tion omitted for readability):

(Dual) x< y→−y<−x (Involutive) −− x = x
(Compatibility) z ∈ x◦ y→−x ∈ −z◦ y.

A CBI frame is a DMBI frame for which the order < is equality =.

Definition 6.34 (DMBI/CBI Morphism). A DMBI (CBI) morphism g : X →X ′ is
a BI (BBI) morphism satisfying the additional property

6.3. De Morgan Bunched Logics 109

6. g(-x) = -g(x).

DMBI (CBI) frames together with DMBI (CBI) morphisms form a category
DMBI (CBI).

Definition 6.35 (Complex DMBI/CBI Algebra). Given a DMBI (CBI) frame X ,
the complex algebra of X , ComDMBI(X) (ComCBI(X)) is given by extending
ComBI(X) (ComBBI(X)) with the set U = {x ∈X | −x 6∈ E}.

Lemma 6.36. Given a DMBI (CBI) frame X , ComDMBI(X) (ComCBI(X)) is a
DMBI (CBI) algebra.

Proof. First we note that U is an upwards-closed set. Suppose u ∈ U and u′ <
u. Since −u 6∈ E, and E is upwards-closed, we must have that −u′ 6∈ E as −u <
−u′. On the complex algebra we define the multiplicative negation by ∼X A :=
A−−•X U , as guided by the definition of DMBI/CBI algebra. We must show that
∼X ∼X A = A and∼X E =U , and this follows immediately if∼X A = {a | −a 6∈
A}; we verify this identity.

First assume a ∈∼X A. Let e ∈ E be such that a ∈ a ◦ e by the frame axiom
Unit Existence. Then by Compatibility, −e ∈ a◦−a and if −a ∈ A, we would have
−e ∈ U , a contradiction as −− e = e ∈ E. Now assume a is such that −a 6∈ A.
Let a′ < a with b ∈ A and c ∈ a′ ◦b. We assume for contradiction that c 6∈U . Then
−c∈ E and by Compatibility we have−a′ ∈ b◦−c. By the frame axiom Coherence
−a′ < b, and by upwards-closure of A, −a ∈ A; a contradiction. Hence c ∈U .

Definition 6.37 (Prime Filter DMBI/CBI Frame). Given a DMBI (CBI) algebra
A, the prime filter frame of A, PrDMBI(A) (PrCBI(A) is given by extending PrBI(A)
(PrBBI(A)) with the operation −AF := ¬∗F.

Lemma 6.38. Given a DMBI (CBI) algebra A, the prime filter frame PrDMBI(A)
(PrCBI(A)) is a DMBI (CBI) frame.

Proof. We first note that −A is a well-defined operation. Since ¬∗ is a dual auto-
morphism, if F is a prime filter, it follows that ¬∗F is a prime ideal. Thus ¬∗F is
a prime filter. We must check that the three DMBI frame axioms hold. If F ′ ⊇ F
then ¬∗F ′ ⊇¬∗F and so ¬∗F ⊇¬∗F ′, as required for Dual. ¬∗ ¬∗ a = a straightforwardly
entails that Involutive is satisfied.

Finally we verify Compatibility. Assume Fz ∈ Fx ◦A Fy and let c ∈ −AFz and
d ∈Fy. For contradiction, suppose c∗d 6∈ −AFx. Then there necessarily exists a∈Fx

such that c∗d ≤ ¬∗ a. By Proposition 6.32 this entails a∗d ≤ ¬∗ c. Since a ∈ Fx and
d ∈ Fy we have a∗d ∈ Fz, and thus ¬∗ c ∈ Fz. However, c ∈ −AFz entails c 6∈ ¬∗Fz, so
¬∗ c 6∈ Fz, a contradiction. Thus c∗d ∈ −AFx as required.

6.3. De Morgan Bunched Logics 110

Theorem 6.39 (Representation Theorem for DMBI/CBI Algebras). Every DMBI
(CBI) algebra is isomorphic to a subalgebra of a complex algebra. Specifically,
given an DMBI (CBI) algebra A, the map θA : A→ComDMBI(PrDMBI(A)) (θA : A→
ComCBI(PrCBI(A)) defined θA(a) = {F ∈ Pr(A) | a ∈ F} is an embedding.

Proof. To obtain the theorem we simply have to show that θA(⊥∗) = {F | >∗ 6∈
−AF}. This follows immediately though: in one direction, we have that ¬∗>∗ =⊥∗
by definition, so ⊥∗∈ F implies >∗ ∈ ¬∗F , so >∗ 6∈ ¬∗F as required; in the other, if
>∗ 6∈ −AF then >∗ ∈ ¬∗F and so ¬∗>∗ =⊥∗∈ F .

Once again we lift the complex algebra and prime filter frame assignments to
functors by assigning the morphisms to their inverse image. We verify that this
assignment is functorial.

Lemma 6.40. The functors ComDMBI (ComCBI) and PrDMBI (PrCBI) are well-defined.

Proof. We first verify the inverse image of a DMBI (CBI) homomorphism f re-
spects the operation−A. We have that a∈ f−1(−A′F) iff f (a)∈−AF iff f (a) 6∈ ¬∗F
iff ¬∗ f (a) 6∈ F iff f (¬∗ a) 6∈ F iff a ∈ −A f−1(F).

Next, let g be a DMBI (CBI) morphism. By (B)BI morphism property 5. and
DMBI/CBI morphism property 6. we have x ∈ g−1(U ′) iff g(x) ∈U ′ iff −g(x) 6∈ E ′

iff g(−x) 6∈ E ′ iff −x 6∈ E iff x ∈U .

Topology now enters to obtain a dual equivalence of categories.

Definition 6.41 (DMBI Space). A DMBI space is a structure X = (X ,O,<

,◦,E,−) such that

1. (X ,O,<,◦,E) is a BI space,

2. (X ,<,◦,E,−) is a DMBI frame, and

3. − is a continuous map.

Definition 6.42 (CBI Space). A CBI space is a structure X = (X ,O,◦,E,−) such
that

1. (X ,O,◦,E) is a BBI space,

2. (X ,◦,E,−) is a CBI frame, and

3. − is a continuous map.

6.3. De Morgan Bunched Logics 111

As in previous cases, morphisms for these kinds of spaces are given by contin-
uous DMBI (CBI) morphisms. This gives us the category of DMBI spaces DMBISp
and the category of CBI spaces, CBISp. Just as the move from ILGL duality to BI
duality simply required us to verify everything works as it should with regards to E
and >∗, in light of Lemmas 6.36, 6.38 and 6.40, moving from BI duality to DMBI
duality just needs verifications on U and ⊥∗.

We have the functor PrDMBI : DMBIAlg→ DMBISp defined by PrDMBI(A) =
(Pr(A),OA,⊇,◦A,EA,−A) and PrDMBI(f) = f−1. Continuity of −A can be ver-
ified on the subbase elements of OA , and this holds because (−A)

−1[θA(a)] =
θA(¬∗ a) and (−A)

−1[θA(a)] = θA(¬∗ a). In the other direction, we have the functor
ClopDMBI

< : DMBISp→ DMBIAlg defined ClopDMBI
< (X) = (C L <(X),∩,∪,⇒X

,X , /0,•X ,−−•X ,E,U) and ClopDMBI
< (g) = g−1. That U ∈ C L <(X) follows from

the fact that U = −E. E is clopen, so −E is clopen by continuity and so too is
−E. Further, E is upwards-closed, so −E is downwards-closed, meaning −E is
upwards-closed. We once again consider the collection of maps ηX (x) = {C ∈
C L <(X) | x ∈C} to complete the duality.

Theorem 6.43 (DMBI Duality). θ and η form a dual equivalence of categories
between DMBIAlg and DMBISp.

Proof. The last remaining steps are to show that the components ηX are isomor-
phisms in DMBISp. The key step is to verify that −ClopDMBI

< (X)ηX (x) = ηX (−x),
as the rest obtains from BI duality. Unpacking the definition, we must check
{C′−−•X U |C′ ∈ ηX (x)} = ηX (−x). For the right-to-left inclusion, suppose
−x ∈ C and for contradiction C = C′−−•X U for some upwards-closed clopen C′

such that x∈C′. Then by Unit Existence there exists e∈E such that−x∈−x◦e, and
by Compatibility−e∈−x◦x. By assumption this entails−e∈U , but−−e= e∈E,
a contradiction. Hence C ∈ {C′−−•X U |C′ ∈ ηX (x)}.

For the left-to-right inclusion, note that

ηX (x) = {−C |C downwards-closed clopen and x ∈C}

holds; that this is the case is a consequence of − being continuous and the frame
axiom Dual. Now suppose we have −C such that C downwards-closed and clopen
and x 6∈C. Then x ∈C and we claim that −C =C−−•X U . First assume −y ∈ −C.
Suppose y′ < −y and z ∈ C such that w ∈ y′ ◦ z and assume for contradiction that
w 6∈U . Then −w ∈ E. By Compatibility, −y′ ∈ z◦−w, and by Coherence −y′ < z.
By Dual and our assumption, −z < y′ < −y, and by Dual again y < z. Thus by
upwards-closure of C we have y ∈ C, but y ∈ C by assumption; a contradiction.

6.4. Other Variants 112

Hence w ∈U and −y ∈C−−•X U . Now suppose −y 6∈ −C. Then y ∈C. By Unit
Existence there is e ∈ E such that y ∈ y◦ e, and by Compatibility −e ∈ −y◦ y. We
have y ∈C with −e 6∈U , so −y 6∈C−−•X U .

CBI duality is obtained as the particular case of DMBI duality when we restrict
to CBI algebras.

Theorem 6.44. θ and η form a dual equivalence of categories between CBIAlg
and CBISp.

6.4 Other Variants
We finish this chapter by considering the three other variants of propositional
bunched logic that were introduced in Chapter 4: subclassical bunched logics, con-
current Kleene bunched logic and separating modal logics. Given our analysis of
the separating modalities in terms of ♦, −∗ and ¬ we can immediately obtain the
respective results for separating logics by a straightforward combination of BBI du-
ality and modal duality (see, for example, [27, 217]). More work is required for the
other variants however.

6.4.1 Subclassical Bunched Logics
We begin with the subclassical bunched logics introduced in Chapter 4 Section 4.2.
These are obtained by extending (B)BI with primitive multiplicative disjunction and
falsum. We first give the algebraic structures corresponding to the basic subclassical
bunched logics.

Definition 6.45 (Basic Bi(B)BI Algebra). A basic Bi(B)BI algebra is an algebra
A = (A,∧,∨,→,>,⊥,∗,∨∗ ,−∗,\∗,>∗,⊥∗) such that (A,∧,∨,→,>,⊥,∗,−∗,>∗) is a
(B)BI algebra, ∨∗ a commutative binary operation, \∗ a binary operation, ⊥∗ a con-
stant, such that, for all a,b,c ∈ A, a≤ b∨∗ c iff a\∗b≤ c.

We note that the the generalisation of this structure with ∨∗ non-commutative
yields a second associated implication /∗ , but we do not consider this for simplicity.
The results for those structures hold as a simple generalisation of what follows
however. The residuation property of ∨∗ and \∗ ensures ∨∗ is monotone, as well as a
number of useful properties dual to those of Proposition 6.2.

Proposition 6.46. Let A be a basic Bi(B)BI algebra. Then, for all a,b,a′,b′ ∈ A
and X ,Y ⊆ A, we have the following:

1. If a≤ a′ and b≤ b′ then a∨∗ b≤ a′∨∗ b′;

6.4. Other Variants 113

Property Axiom Frame Correspondent

Associativity a∨∗ (b∨∗ c)≤ (a∨∗ b)∨∗ c t ′ 4 t ∈ xO y∧w ∈ t ′O z→∃s,s′,w′
(s′ 4 s ∈ yO z∧w4 w′ ∈ xO s′)

⊥∗Weakening a≤ a∨∗ ⊥∗ u ∈U ∧ x ∈ yOu→ x4 y

⊥∗Contraction a∨∗ ⊥∗≤ a ∃u ∈U(w ∈ wOu)

∨∗ Contraction a∨∗ a≤ a x ∈ xO x

Weak Distributivity a∗ (b∨∗ c)≤ (a∗b)∨∗ c t ′ < t ∈ x1 ◦ x2∧ t ′ 4 t ′′ ∈ y1O y2→
∃w(y1 ∈ x1 ◦w∧ x2 ∈ wO y2)

Figure 6.1: Bi(B)BI properties and axioms (cf. [45]). The BiBBI variants replace <with
=.

2. If
∧

X and
∧

Y exist then
∧

x∈X ,y∈Y x ∨∗ y exists and (
∧

X) ∨∗ (∧Y) =∧
x∈X ,y∈Y x∨∗ y;

3. If a => or b => then a∨∗ b =>;

4. If
∧

X exists then for any z∈A:
∨

x∈X(x\∗z) exists with
∨

x∈X(x\∗z)= (
∧

X)\∗z;

5. If
∨

X exists then for any z∈A:
∨

x∈X(z\∗x) exists with
∨

x∈X(z\∗x)= z\∗(∨X);
and

6. a\∗>=⊥\∗a =⊥.

We recall the definition of Bi(B)BI frame. A basic Bi(B)BI frame is a structure
X = (X ,<,◦,E,O,U) such that (X ,<,◦,E) is a (B)BI frame, O : X2→P(X) and
U ⊆ X , satisfying

(Commutativity) z ∈ xO y→ z ∈ yO x; (U-Closure) u ∈U ∧u< u′→ u′ ∈U.

Definition 6.47 (Bi(B)BI Morphism). A Bi(B)BI morphism is a map f : X →X ′

such that f is a (B)BI morphism satisfying the following additional properties:

7. x ∈ yO z implies g(x) ∈ g(y)Og(z);

8. g(x)4′ s′ ∈ t ′O′ u′ implies there exists s, t,u such that x4 s ∈ tOu, t ′ <′ g(t)
and u′ < g(u);

9. g(x) <′ s′,u′ ∈ t ′ O′ s′ implies there exists s, t,u such that x < s,u ∈ t O s,
g(u)<′ u′ and t ′ <′ g(t).

6.4. Other Variants 114

Figure 6.1 gives algebraic axioms directly corresponding to the defining ax-
ioms of subclassical bunched logics specified in Chapter 4, as well as the frame
properties that correspond to them. For any collection of subclassical axioms Σ, we
denote by Bi(B)BIAlg

Σ
the category of Bi(B)BI algebras satisfying Σ and Bi(B)BI

Σ

the category of Bi(B)BI frames satisfying the frame correspondents of Σ.
The algebraic interpretation of Bi(B)BI + Σ extends that for (B)BI. We now

additionally interpret ∨∗ , \∗ and ⊥∗ as follows:

Jφ ∨∗ ψK = JφK∨∗ JψK Jφ \∗ψK = JφK\∗JψK J⊥∗K =⊥∗.

Soundness follows once again by a Lindenbaum-Tarski construction.

Theorem 6.48 (Algebraic Soundness of Subclassical Bunched Logics). If ϕ ` ψ is
provable in the Hilbert system for Bi(B)BI + Σ, then for all interpretations J−K on
Bi(B)BI + Σ algebras, JϕK≤ JψK.

We now set up the basic duality theory for these structures.

Definition 6.49 (Complex Bi(B)BI Algebra). Given a Bi(B)BI frame X the com-
plex algebra of X , ComBi(B)BI(X), is given by extending Com(B)BI(X) with U, to-
gether with HX and \HX defined

AHX B = {x | for all s, t,u,x4 s ∈ tOu implies t ∈ A or u ∈ B}
A\HX B = {x | there exists s, t,u s.t. x< s,u ∈ tO s,u ∈ A and t 6∈ B}

Lemma 6.50. 1. Given a basic Bi(B)BI frame X , ComBi(B)BI(X) is a basic
Bi(B)BI algebra.

2. If X satisfies any frame property of Figure 6.1, ComBi(B)BI(X) satisifies the
corresponding axiom.

Proof. 1. is straightforward. For 2. we focus on the case of weak distributivity
for BiBI frames, which collapses to the BiBBI variant when < is =. Let t ′ ∈ A•X
(BHX C). Then t ′ < t ∈ x1 ◦ x2 for some x1 ∈ A and x2 ∈ BHX C. Suppose t ′ 4
t ′′ ∈ y1O y2. We must show y1 ∈ A •X B or y2 ∈C. Suppose y2 6∈C. By the weak
distributivity frame property, there exists w such that y1 ∈ x1 ◦w and x2 ∈ wO y2.
Since y2 6∈C and x2 ∈ BHX C it follows that w ∈ B. Hence y1 ∈ A•X B as required,
and so t ′ ∈ (A•X B)HX C.

Definition 6.51 (Prime Filter Bi(B)BI Frame). Given a Bi(B)BI algebra A, the
prime filter frame of A, PrBi(B)BI(A) is given by extending Pr(B)BI(A) with the op-

6.4. Other Variants 115

eration OA, defined

F OA F ′ = {F ′′ | ∀a,b ∈ A : a∨∗ b ∈ F ′′ implies a ∈ F or b ∈ F ′}

and the set UA = {F | ⊥∗ 6∈ F}.

Lemma 6.52. 1. Given a basic Bi(B)BI algebra A, PrBi(B)BI(A) is a basic
Bi(B)BI frame.

2. If A satisfies any axiom of Figure 6.1, PrBi(B)BI(A) satisfies the corresponding
frame property.

Proof. Once again we restrict ourselves to the non-trivial 2. We focus on the Weak
Distributivity property for BiBI. Suppose Ft ′ ⊇ Ft ∈ Fx1 ◦AFx2 and Ft ′ ⊆ Ft ′′ ∈ Fy1OA

Fy2 . We show that

P(F) =

1 if Fy1 ∈ Fx1 ◦A F and Fx2 ∈ F OA Fy2

0 otherwise

is a prime predicate. First suppose P(Fα) = 1 for all α in a⊆-chain (Fα)α<λ . Then
clearly Fy1 ∈ Fx1 ◦A

⋃
α Fα . Suppose a∨∗ b∈ Fx2 and b 6∈ Fy2 . Then necessarily a∈ Fα

for all α , so Fx2 ∈
⋃

α Fα OA Fy2 . Now let P(F ∩F ′) = 1. If Fx2 ∈ (F ∩F ′)OA Fy2 it
follows that Fx2 ∈ F OA Fy2 and Fx2 ∈ F ′OA Fy2 , so assume Fy1 6∈ Fx1 ◦A F,Fx1 ◦A F ′.
Then there exists a,a′ ∈ Fx1 , b ∈ F and b′ ∈ F ′ such that a∗b,a′ ∗b′ 6∈ Fy1 . We have
that a′′ = a∧a′ ∈ Fx1 and b∨b′ ∈ F ∩F ′ so a′′ ∗ (b∨b′) = (a′′ ∗b)∨ (a′′ ∗b′) ∈ Fx1 .
Fx1 is prime so a′′ ∗ b ∈ Fx1 or a′′ ∗ b′ ∈ Fx1 . By monotonocity of ∗ and upwards-
closure of Fx1 , a∗b ∈ Fx1 or a′ ∗b′ ∈ Fx1 , a contradiction. Hence either P(F) = 1 or
P(F ′) = 1.

Now consider the set F = {b | ∃y 6∈ Fy2(b∨∗ d ∈ Fx2)}. We prove F is a proper
filter. It is upwards-closed because ∨∗ is monotonic: if b ∈ F and b′ ≥ b we have
d 6∈ Fy2 such that b∨∗ d ∈ Fx2 and b∨∗ d ≤ b′ ∨∗ d ∈ Fx2 . To see it is closed under
meets, suppose b,b′ ∈ F . Then there exist d,d′ 6∈ Fy2 such that b∨∗ d, b′∨∗ d′ ∈ Fx2 .
Fy2 is prime so d∨d′ 6∈ Fy2 and by montonocity of ∨, b∨∗ (d∨d′),b′∨∗ (d∨d′)∈ Fx2 .
Let d′′ := d ∨ d′. By Proposition 6.46, (b∧ b′)∨∗ d′′ = (b∨∗ d′′)∧ (b′ ∨∗ d′′) ∈ Fx2 .
Finally, to see that F is proper, suppose ⊥ ∈ F . Then there exists d 6∈ Fx2 such that
⊥∨∗ d ∈ Fx2 . Letting a∈ Fx1 be arbitrary, by Weak Distributivity and our assumption
we have a ∗ (⊥∨∗ d) ≤ (a ∗⊥)∨∗ d = ⊥∨∗ d ∈ Ft ⊆ Ft ′ . Thus ⊥∨∗ d ∈ Ft ′ ⊆ Ft ′′ but
⊥ 6∈ Fy1 and d 6∈ Fy2 , contradicting that Ft ′′ ∈ Fy1 OA Fy2 .

We finish the proof by showing that P(F) = 1, yielding the existence of a prime
Fw satisfying the requirements of the frame property by the prime extension lemma.

6.4. Other Variants 116

First let a ∈ Fx1 and b ∈ F . Then there exists d 6∈ Fy2 such that b∨∗ d ∈ Fx2 . By
Weak Distributivity a ∗ (b∨∗ d) ≤ (a ∗ b)∨∗ d ∈ Ft ⊆ Ft ′ ⊆ Ft ′′ , and since d 6∈ Fy2 we
necessarily have that a ∗ b ∈ Fy1 . Now let b∨∗ c ∈ Fx2 and suppose c 6∈ Fy2 . Then
b ∈ F by definition.

Theorem 6.53 (Representation Theorem for Bi(B)BI + Σ Algebras). Every Bi(B)BI
+ Σ algebra is isomorphic to a subalgebra of a complex algebra. Specifically, given
an Bi(B)BI algebra A, the map θA : A→ComBi(B)BI(Pr(B)BI(A)) defined θA(a) = {F ∈
Pr(A) | a ∈ F} is an embedding.

Proof. The remaining verifications are that θA respects ∨∗ ,\∗ and ⊥∗. ⊥∗ follows
straightforwardly because θA(⊥∗) =UA, and we verify ∨∗ leaving the similar \∗ to the
reader. We must show θA(a∨∗ b) = θA(a)HPrBi(B)BI(A)θA(a). First suppose a∨∗ b ∈ F .
Then F ⊆ Fs ∈ FtOAFu means a∨∗ b ∈ Fs and so either a ∈ Ft or b ∈ Fu as required.

In the other direction, suppose a∨∗ b 6∈ F . We show that

P(I, I′) =

1 if F ∈ IOA I′,a ∈ I and b ∈ I′

0 otherwise

is a prime predicate for proper ideals I, I′. First suppose we have a⊆-chain (Iα , I′α)α

such that P(Iα , I′α)= 1 for all α . Clearly a∈⋃α Iα and b∈⋃α I′α . Suppose c∨∗ d ∈F
with c 6∈ ⋃α Iα and d 6∈ ⋃α I′α . Then there exists β ,β ′ such that c ∈ Iβ and d ∈ I′

β ′ .

By assumption we must have c ∈ Iβ ′ and d ∈ I′
β

, and wolog we may assume β ≤ β ′.
Then, because Iβ ⊆ Iβ ′ we have c ∈ Iβ ′ ⊆ Iβ , a contradiction.

Now suppose P(I0 ∩ I1, I′) = 1. We have that a ∈ I0, I1 and b ∈ I′ so suppose
both P(I0, I′) = 0 and P(I1, I′) = 0. Then there exists c∨∗ d,c′ ∨∗ d′ ∈ F such that
c 6∈ I0, d 6∈ I′, c′ 6∈ I1 and d′ 6∈ I′. It folows that d′′ := d∨d′ ∈ I′ and c∧c′ ∈ I0∩I1. By
upwards-closure and monotonicity of ∨∗ , c∨∗ d′′, c′∨∗ d′′ ∈ F . Hence by Proposition
6.46 (c∧ c′)∨∗ d′′ = (c∨∗ d′′)∧ (c′ ∨∗ d′′) ∈ F . However c∧ c′ 6∈ I0∩ I1 and d′′ 6∈ I′,
contradicting that F ∈ I0∩ I1OA I′. Thus P is a prime predicate.

Now consider the ideals (a] and (b]. These must be proper as if>= a or b then
a∨∗ b => ∈ F , contradicting our assumption. We also have that for any c∨∗ d ∈ F ,
if c≤ a and d ≤ b we have c∨∗ d ≤ a∨∗ b ∈ F , a contradiction. Hence F ∈ (a]OA (b]
and P((a],(b]) = 1, yielding the necessary prime filters by taking the complements
of the prime ideals guaranteed to exist by the prime extension lemma.

The assignment of objects by PrBi(B)BI and ComBi(B)BI lifts to functors in a way
that is now standard. That the assignment of morphisms gives morphisms in the
respective categories is proved in a similar way to previous cases.

6.4. Other Variants 117

Lemma 6.54. The functors PrBi(B)BI and ComBi(B)BI is well-defined.

We introduce topology with the following definitions. As in the case for the
topological separation property for ◦, property 5. of these definitions is specified by
Bı́mbo & Dunn’s topological separation properties for gaggles [25].

Definition 6.55 (BiBIΣ Space). Let Σ be a set of subclassical bunched logic axioms.
A BiBIΣ space is a structure X = (X ,O,<,◦,E,O,U) such that

1. (X ,O,<,◦,E) is a BI space,

2. (X ,<,◦,E,O,U) is a basic BiBI frame satisfying the frame correspondents
of Σ;

3. The upwards-closed clopen sets of (X ,O,<) are closed under HX and \HX ,

4. U is clopen; and

5. If x 6∈ yOz then there exists upwards-closed clopen sets C1,C2 such that y 6∈C1,
z 6∈C2 and x ∈C1HX C2.

Definition 6.56 (BiBBIΣ Space). Let Σ be a set of subclassical bunched logic ax-
ioms. A BiBBIΣ space is a structure X = (X ,O,◦,E,O,U) such that

1. (X ,O,◦,E) is a BBI space,

2. (X ,◦,E,O,U) is a basic BiBI frame satisfying the frame correspondents of Σ;

3. The clopen sets of (X ,O) are closed under HX and \HX ;

4. U is clopen; and

5. If x 6∈ yOz then there exists clopen sets C1,C2 such that y 6∈ C1, z 6∈ C2 and
x ∈C1HX C2.

Taking continuous Bi(B)BI morphisms as morphisms we obtain the categories
Bi(B)BISp

Σ
for each axiom set Σ. To see that the prime filter space associated to

a Bi(B)BI algebra A is a Bi(B)BI space it is sufficient to note that the topological
separation property 5. holds: if Fx 6∈ FyOA Fz we have that there exists a∨∗ b ∈ Fx

such that a 6∈ Fy and b 6∈ Fz. Then the upwards-closed clopen sets θA(a) and θA(b)
suffice to show the property holds. In the other direction, conditions 1. to 4. ensure
that the upwards-closed clopen sets carry the structure of a basic Bi(B)BI algebra
satisfying the subclassical axioms of Σ. Defining η as before we obtain the duality
theorem for BiBI algebras satisfying Σ.

6.4. Other Variants 118

Theorem 6.57 (Duality for BiBI + Σ Algebras). θ and η form a dual equivalence
of categories between BiBIAlgΣ and BiBISpΣ.

Proof. Once again, showing the components of η are isomorphisms is all that
remains, given our previous work. We simply have to show ηX is a relational
isomorphism for O. Let x ∈ yO z and suppose x ∈ CHX C′ for upward-closed
clopen sets C and C′. Since x ∈ yO z it follows that y ∈ C or z ∈ C′. Hence
ηX (x) ∈ ηX (y)OClopBi(B)BI

< (X) ηX (z). If x 6∈ yO z, by the separation property 5.
we have that ηX (x) 6∈ ηX (y)OClopBi(B)BI

< (X) ηX (z).

As a special case of this duality we obtain duality for BiBBI + Σ algebras.

Theorem 6.58 (Duality for BiBBI + Σ Algebras). θ and η form a dual equivalence
of categories between BiBBIAlgΣ and BiBBISpΣ.

6.4.2 Concurrent Kleene Bunched Logic
We finish by attending to CKBI, introduced in Chapter 4 Section 4.4. We begin
with the algebraic structures suitable for interpreting CKBI, which unsurprisingly
share some resemblence to concurrent Kleene algebra.

Definition 6.59 (CKBI Algebra). A CKBI algebra is an algebra A = (A,∧,∨,→
,>,⊥,∗,−∗,>∗, ; ,−.,.−) such that (A,∧,∨,→,>,⊥,∗,−∗,>∗) is a BBI algebra
and (A, ; ,>∗) a monoid, satisfying, for all a,b,c,d ∈ A,

1. a ; b≤ c iff a≤ b−. c iff b≤ a.− c, and

2. Exchange: (a∗b) ; (c∗d)≤ (a ; c)∗ (b ; d).

In effect, a CKBI algebra is a BBI algebra in which there are two coexisting
monoidal residuated structures sharing a unit: one commutative (corresponding to
concurrent execution) and one non-commutative (corresponding to sequential ex-
ecution). As such the corresponding properties of Proposition 6.2 hold for ; ,−.
and .−. In the terminology of O’Hearn et al. [178], a CKBI algebra is a Boolean
CKA extended with the residuals corresponding to ∗ and ; . Using the obvious ex-
tension of interpretations on BBI algebras to CKBI algebras, we have the following
algebraic soundness theorem.

Theorem 6.60 (Algebraic Soundness of CKBI). If ϕ ` ψ is provable in the Hilbert
system for CKBI, then for all interpretations J−K on CKBI algebras, JϕK≤ JψK.

We recall the definition of CKBI frame from Chapter 4: a CKBI frame is a
structure X = (X ,◦,E,.) such that (X ,◦,E) is a BBI frame and . : X2→P(X) a

6.4. Other Variants 119

binary operation satisfying (with outermost quantification omitted for readability):

(Unit ExistenceL) ∃e ∈ E(x ∈ e. x);
(Unit ExistenceR) ∃e ∈ E(x ∈ x. e);
(CoherenceL) e ∈ E ∧ x ∈ e. y→ x = y;
(CoherenceR) e ∈ E ∧ x ∈ y. e→ x = y;
(Associativity) ∃t(t ∈ x. y∧w ∈ t . z)↔∃t ′(t ′ ∈ y. z∧w ∈ x. t ′)
(Exchange) t ∈ w◦ y∧ s ∈ x◦ z∧u ∈ t . s→

∃r,v(r ∈ w. x∧ v ∈ y. z∧u ∈ r ◦u)

Let A be a CKBI algebra. Then the prime filter frame of A, PrCKBI(A), is given
by extending the prime filter frame of the underlying BBI algebra with the operation
.A, defined F .A F ′ = {F ′′ | ∀a ∈ F,∀b ∈ F ′ : a ; b ∈ F ′′}. In the other direction,
the complex algebra of a CKBI frame X , ComCKBI(X), is given by extending the
complex algebra of the underlying BBI frame with the operation A ; X B = {z |
∃x∈ A,y∈ B(z∈ x.y)} and its associated adjoints. The respective results for CKBI
algebras follow straightforwardly from the case for BBI: the key remaining step is
the correspondence between the algebraic Exchange axiom and the frame property
Exchange.

Lemma 6.61.

1. Given a CKBI algebra A, the prime filter frame PrCKBI(A) is a CKBI frame.

2. Given a CKBI frame X , the complex algebra ComCKBI(X) is a CKBI algebra.

Proof. We focus on the correspondence between the Exchange properties of the
respective structures.

1. Suppose we have prime filters of A satisfying Fwy ∈Fw◦AFy,Fxz ∈Fx◦AFz and
Ft ∈ Fwy .A Fxz. Using similar arguments to those given in previous results, it
can be seen that

P(F,G) =

1 if F ∈ Fw .A Fx,G ∈ Fy .A Fz and Ft ∈ F ◦A G

0 otherwise

is a prime predicate on proper filters F and G. Consider the sets F = {c |
∃a ∈ Fw,b ∈ Fx(a ; b ≤ c)} and G = {c | ∃a ∈ Fy,b ∈ Fz(a ; b ≤ c)}. Both
sets are obviously upwards-closed and closed under meets as monotonicity
of ; gives that a ; b ≤ c and a′ ; b′ ≤ c′ implies (a∧ a′) ; (b∧ b′) ≤ c∧ c′.
Hence F and G are filters. They are also proper: suppose for contradiction

6.4. Other Variants 120

that⊥∈F . Then there exists a∈Fw and b∈Fx such that a ; b=⊥. Let c∈Fy

and d ∈ Fz be arbitrary. By assumption we have that a ∗ c ∈ Fwy, b ∗ d ∈ Fxz

and so (a ∗ c) ; (b ∗ d) ∈ Ft . By Exchange and upwards-closure of filters,
(a ; b)∗ (c ; d) =⊥∗ (c ; d) =⊥ ∈ Ft , a contradiction. The same argument
suffices to show G is proper.

Clearly F ∈ Fw .A Fx and G ∈ Fy .A Fz. Further, Ft ∈ F ◦A G: let c≥ a ; b and
c′ ≥ a′ ; b′ for a ∈ Fw,b ∈ Fx,a′ ∈ Fy and b′ ∈ Fz. By monotonicity of ∗ and
Exchange, (a ∗ a′) ; (b ∗ b′) ≤ (a ; b) ∗ (a′ ; b′) ≤ c ∗ c′. It then follows that
c∗c′ ∈Ft , since by assumption a∗a′ ∈Fwy and b∗b′ ∈Fxz, so (a∗a′) ;(b∗b′)∈
Ft . Hence by the prime extension lemma there exist prime F and G satisfying
these properties, and so the frame property Exchange is satisfied on PrCKBI(A).

2. Suppose t ∈ (A •X C) ; X (B •X D). Then there exist w,x,y,z,wy,xz such
that wy ∈ w◦ y,xz ∈ x ◦ z and t ∈ wy. xz. The frame property Exchange then
ensures there are witnesses to the fact that t ∈ (A ; X B)•X (C ; X D).

We immediately obtain the following representation theorem from the repre-
sentation theorem for BBI algebras.

Theorem 6.62 (Representation Theorem for CKBI Algebras). Every CKBI algebra
is isomorphic to a subalgebra of a complex algebra. Specifically, given a CKBI
algebra A, the map θA : A→ComCKBI(PrCKBI(A)) defined θA(a) = {F ∈ PrCKBI(A) |
a ∈ F} is an embedding.

We also immediately obtain the lifting of these assignments to functors, by
defining a CKBI morphism to be a BBI morphism that also satisfies the correspond-
ing LGL morphism properties for the sequential composition .. To obtain a duality
we specify CKBI spaces and conclude from BBI duality and Lemma 6.61.

Definition 6.63 (CKBI Space). A CKBI space is a structure X = (X ,O,◦,.,E)
such that

1. (X ,O,◦,E) is a BBI space,

2. (X ,◦,.,E) is a CKBI frame,

3. The clopen sets of (X ,O) are closed under ; X , −.X and .−X , and

4. If x 6∈ y . z then there exists clopen sets C1,C2 such that y ∈ C1, z ∈ C2 and
x 6∈C1 ; X C2.

Theorem 6.64 (CKBI Duality). θ and η form a dual equivalence of categories
between CKBIAlg and CKBISp.

Chapter 7

Metatheory for Propositional
Bunched Logics

In this chapter we apply some of the theory of Chapter 6 to prove metatheory for
propositional bunched logics. First, we establish the completeness of the algebraic
and frame semantics of all the bunched logics treated in the thesis simultaneously
using the representation theorems and complex algebra constructions. The argu-
ment utilises the fact that the algebraic and frame semantics are equivalent, and
so we are able to freely transfer between proof theoretic, algebraic and semantic
arguments in what follows. A first application is the decidability of the layered
graph logics using an algebraic construction that produces finite countermodels to
invalid entailments. Next we give a characterisation of the classes of bunched logic
frames that can be defined by bunched logic formulae by using the duality theory
of Chapter 6 to prove an analogue of the Goldblatt-Thomason theorem. Using this
we prove that a number of interesting classes of bunched logic frames are undefin-
able in the corresponding bunched logics. Finally we consider the question of Craig
interpolation for bunched logics.

Sections 7.1 and 7.2 are comprised of material from the journal papers Stone-
Type Dualities for Separation Logics [83] and Intuitionistic Layered Graph Logic:
Semantics and Proof Theory [82].

7.1 Completeness
We begin with completeness of algebraic and frame semantics for bunched logics.
Throughout we use the notation L as a stand in for any of the propositional bunched
logics under consideration in this thesis. We first note that the constructions of
prime filter frame and complex algebra relate the two semantic approaches we have
considered in a particularly strong way.

Theorem 7.1 (Equivalence of Algebraic and Frame Semantics). Let A be a L

7.1. Completeness 122

algebra, X a L frame, J−K an algebraic interpretation on A and V a persistent
valuation on X . Define VJ−K : Prop→P(Pr(A)) by VJ−K(p) = θA(JpK) and J−KV

as the algebraic interpretation on ComL (X) generated by V . For all L formulae
ϕ the following hold.

1. x �V ϕ iff x ∈ JϕKV ;

2. JϕK ∈ F iff F �VJ−K ϕ .

Proof. To see that 1. holds, note that the defining clauses of the complex algebra op-
erations correspond precisely to the semantic clauses of L . The result then imme-
diately obtains, using the definition of V and by applying the inductive hypothesis
appropriately. For 2., note that the interpretation J−KVJ−K on ComL PrL (A) gener-
ated by VJ−K is precisely θA. We thus have that JϕK ∈ F iff F ∈ θA(JϕK) = JϕKVJ−K

iff F �VJ−K ϕ .

We are able to prove completeness of both semantics for all L simultaneously
by proving completeness of the algebraic semantics. This is done by utilising a
Lindenbaum-Tarski construction on the formuale of L . We define an equivalence
relation ≡ on L formulae built from by ϕ ≡ ψ iff ϕ ` ψ and ψ ` ϕ are prov-
able. Call the set of equivalence classes [ϕ]≡ of L formulae L −LT (Prop). This
can be given the structure of a L algebra by setting I = [I]≡ for all constants I,
♦[ϕ]≡ = [♦ϕ]≡ for all unary connectives ♦ and [ϕ]≡♥ [ψ]≡ = [ϕ ♥ψ]≡ for all
binary connectives ♥. That these operations are well-defined on the equivalence
classes and that the axioms of the respective L algebras are satisfied can be veri-
fied by direct examination of the Hilbert system rules.

Theorem 7.2 (Algebraic Completeness (cf. [189])). For all bunched logics L and
L formulae ϕ and ψ , if JϕK ≤ JψK holds for all algebraic interpretations then
ϕ ` ψ is provable in the Hilbert system for L .

Proof. We reason contrapositively: suppose ϕ ` ψ is not provable in the Hilbert
system for L . Consider the Lindenbaum-Tarski algebra over the propositional vari-
ables occurring in ϕ and ψ with the interpretation given by sending each formula to
its equivalence class. [ϕ]≡ ≤ [ψ]≡ iff [ϕ→ ψ]≡ = [>]≡ iff > ` ϕ→ ψ provable iff
ϕ ` ψ (using the definition of Heyting implication and the deduction theorem for
bunched logics), and so [ϕ]≡ 6≤ [ψ]≡.

Theorem 7.3 (Frame Completeness). For all bunched logics L and L formulae ϕ

and ψ , if ϕ � ψ then ϕ ` ψ is provable in the Hilbert system for L .

7.2. Decidability 123

Proof. Suppose ϕ � ψ and suppose for contradiction that ϕ ` ψ is not provable in
the Hilbert system for L . Then in the Lindenbaum-Tarski algebra over the propo-
sitional variables occuring in ϕ and ψ we have [ϕ]≡ 6≤ [ψ]≡. There thus exists a
prime filter F such that [ϕ]≡ ∈ F and [ψ]≡ 6∈ F by the prime filter theorem. Con-
sider the interpretation sending formulae to their equivalence class. From this we
obtain a valuation V on the prime filter frame, and by Theorem 7.1 we have that
F � ϕ and F 6� ψ , contradicting our assumption.

While completeness theorems have been given for the frame semantics of LGL
[136], (B)BI [101, 99], CBI [39] and the subclassical bunched logics with classical
additives [45] the completeness theorems for ILGL, DMBI, the separating modal
logics and the subclassical bunched logics with intuitionistic additives are new. The
completeness arguments for CBI and subclassical bunched logic with classical ad-
ditives proceeded by translations into equivalent Sahlqvist-definable [202] modal
logics in a manner that used Boolean negation in an essential way and as such could
not be relativised to the evident intuitionistic variants. The method utilised here
gives an argument suitable for either variants of bunched logic and as such should
streamline the production of completeness theorems for future extensions.

7.2 Decidability
In this section we prove the decidability of layered graph logics using algebraic
methods. To do so we exhibit a finite countermodel of a bounded size for every
consequence that does not hold in each logic. We can therefore decide the logic
by exhibiting every finite (I)LGL algebra (itself a finitely axiomatised structure) up
to a given size and checking if each interpretation on each algebra witnesses the
corresponding inequality or not. To prove the existence of such finite algebras we
utilise a method that is widespread in the study of substructural logic and universal
algebra: verification of the finite embeddability property [28].

Definition 7.4 (Finite Embeddability Property). A class of algebras K has the
finite embeddability property (FEP) if, for any algebra A∈K and any finite subset
B ⊆ A there exists a finite algebra C ∈K and an injective map g : B→ C such
that for all algebraic operations f , if b1, . . . ,bn ∈ B and fA(b1, . . . ,bn) ∈ B then
g(fA(b1, . . . ,bn)) = fC(g(b1), . . . ,g(bn)).

Intuitively, the FEP states that every finite partial subalgebra can be completed
as a finite algebra. If the class of (I)LGL algebras has the FEP then (I)LGL has
a finite model property and is thus decidable by the following argument. Suppose
the algebra A with interpretation J−K witnesses that ϕ ` ψ does not hold: that is,
JϕK 6≤A JψK. Set B = {JχK | χ a subformula of ϕ → ψ}∪{>A,⊥A}. By the FEP,

7.2. Decidability 124

we obtain a finite algebra C and injective map g : B→ C, yielding an interpretation
J̃−K generated by setting J̃pK = g(JpK) for all propositional atoms p occurring in
ϕ → ψ . As g is injective and preserves existing algebraic operations in B this gives
that ˜Jϕ → ψK <C >C. Since in (I)LGL algebras a ≤ b iff a→ b = >, we have a
finite algebra C and interpretation J̃−K such that J̃ϕK 6≤ J̃ψK, witnessing that ϕ ` ψ

does not hold. As (I)LGL algebras are finitely axiomatized this yields decidability
of the logic.

We adapt an argument given by Haniková & Horc̆ı́k [113] to prove the class
of bounded residuated distributive-lattice ordered groupoids – that is, the class of
partially ordered sets with a binary operation, such that the partial order is a dis-
tributive lattice and the binary operation has left and right residuals with respect to
the order – has the FEP. If such an algebra supports Heyting implication, then it is
a ILGL algebra. Thus we simply have to additionally account for Heyting impli-
cation to make the desired proof go through. Independently of this work, the finite
model property has recently been proved for (I)LGL in the guise of Lambek cal-
culus extended with (intuitionistic) classical propositional logic by Kaminski and
Francez [136, 137] by a filtration method. We also recently discovered that the
FEP has also been shown for (I)LGL algebras in the guise of (Heyting) Boolean
residuated algebras by Buszkowski [47]. That proof uses a long and complex proof
theoretic argument of which the Boolean and Heyting variants are not considered
as the primary case; in contrast, our proof is extremely simple and direct.

Theorem 7.5 (cf. [113]). The class of ILGL algebras has the FEP.

Proof. Let A be a ILGL algebra and B ⊆ A a finite subset that, wlog, contains
>A and ⊥A. Denote by (C,∧C,∨C,>C,⊥C) the distributive sublattice of the dis-
tributive lattice reduct of A generated by B. As B was finite, so too is C. Define
a→C b =

∨
C{c ∈ C | a∧C c ≤C b}. Since each join is finite this is well-defined,

and this makes (C,∧C,∨C,→C,>C,⊥C) a Heyting algebra. It can be shown that if
b,b′,b→A b′ ∈ B then b→A b′ = b→C b′.

The rest of the proof now proceeds as in [113]. Define operations λ ,σ : A→ A
by λ (a) =

∧
C{c ∈ C | a ≤A c} and σ(a) =

∨
C{c ∈ C | c ≤A a}. These are both

well-defined because C is finite. It follows that, for c∈C, λ (c) = c= σ(c). We then
define ∗C,−∗C,∗−C on C by c∗C c′ = λ (c∗A c′), c−∗C c′ = σ(c−∗A c′) and c∗−C c′ =
σ(c∗−A c′). The fact that λ is a closure operator and σ an interior operator can be
used to show that the required residuation properties hold for these operations. We
thus have a finite ILGL algebra C = (C,∧C,∨C,→C,>C,⊥C,∗C,−∗C,∗−C), with
the inclusion map of B into C satisfying the defining property of the FEP.

7.2. Decidability 125

Theorem 7.6 (Decidability of ILGL). The consequence relation ` for ILGL is de-
cidable.

The finite countermodel for an invalid consequence is bounded in size: for
ϕ → ψ with n subformulae, the cardinality of the finite algebra is bounded by 22n

.
Haniková & Horc̆ı́k improve upon this by showing such an algebra can be repre-
sented by a poset of join-irreducibles of cardinality m ≤ 2n− 2 and a composition
◦ whose graph has cardinality m3, where join-irreducibles are those elements that
are not equal to ⊥ and cannot be represented as the join of two distinct, non-⊥
elements.

The same argument also applies to LGL algebras, using the Boolean subalge-
bra generated from B rather than the generated distributive sublattice.

Theorem 7.7. The class of LGL algebras has the FEP.

Theorem 7.8 (Decidability of LGL). The consequence relation ` for LGL is decid-
able.

How much further can this argument be applied? It is noted by Haniková &
Horc̆ı́k [113] that their argument works for commutative ∗ but fails for associative ∗,
ruling out an extension to the other bunched logics we consider. This is necessarily
so, by the following result of Galatos & Jipsen [97].

Theorem 7.9 ([97]). The class of BI algebras does not have the FEP.

Intriguingly, BI is known decidable by a finite tableau countermodel argument
given by Galmiche et al [101]. An algebraic proof of decidability is claimed by
Galatos & Jipsen [97] although a counterexample to their argument has been given
by Ramanayake [191]. As such, it appears the existence of a syntactic/algebraic
proof of BI remains an open problem. BBI is known to be undecidable: an al-
gebraic proof was given by Kurucz et al [144] which remained unknown to the
bunched logic community until the publication of Brotherston & Kanovich’s [42]
and Larchey-Wendling & Galmiche’s [149] undecidability proofs. Kurucz et al’s
argument also highlights associativity of ∗ as a boundary for decidability. Brother-
ston & Kanovich went a step further than BBI undecidability, however, also show-
ing CBI and validity in a number of propositional models of Separation Logic to be
undecidable. As a corollary of the undecidability of BBI we have that the separating
modal logics (which are conservative extensions of BBI) are necessarily undecid-
able. We collect these results in the following theorem.

Theorem 7.10 (Decidability for Bunched Logics).

7.3. Expressivity 126

1. ILGL, LGL and BI are decidable.

2. BBI is undecidable.

3. CBI is undecidable.

4. The separating modal logics are undecidable.

We also note that various fragments of separation logic have been shown to
be decidable (for a survey, see [76]); in all cases this is by placing restrictions on
permitted valuations, the number of variables and/or the connectives involved. One
particularly important decidable fragment is the symbolic heap fragment, which
has just enough of the separation logic connectives to specify heaps by formulae.
This fragment has been utilised in program verification tools like Smallfoot [20],
SpaceInvader [220] and SLAyer [21].

Returning to bunched logics, given the decidability of BI, decidability of
DMBI is plausible given the weakness of the extended structure. It is not clear
how to extend the existing proof of BI’s finite model property to DMBI, however,
so a syntactic/algebraic proof is even more desirable for the purpose of examining
DMBI. Even more precise methods will be required to understand decidability of
the subclassical bunched logics.

7.3 Expressivity
In this section we examine the expressivity of bunched logics via a variant of the
celebrated Goldblatt-Thomason theorem for modal logic [109, 108]. That theorem
gives sufficient and necessary conditions for a given first-order property of frames
to be definable by a set of formulae; that is, any frame on which that set of formulae
is valid satisfies the first-order property, and vice versa. To get there we first need a
quick detour through universal algebra to collect the necessary notions.

Definition 7.11 (Equational Class). A class V of algebras of the same type is an
equational class if there exists a set of equational axioms Σ (the equational basis for
V) such that A ∈V iff every equation in Σ holds in A.

For any bunched logic L the class of L algebras is an equational class. This is
entirely clear except for the residuation property of ∗, −∗ and ∗−. It can be seen that
this can be expressed equationally, however, via the equational basis for residuated
lattices [29]. The defining equations for the residuation property are

a = a∧ (b−∗ ((a∗b)∨ c)) a∗ (b∨ c) = (a∗b)∨ (a∗ c) a = a∨ ((b−∗a)∗b)
b = b∧ (a∗− ((a∗b)∨ c)) (b∨ c)∗a = (b∗a)∨ (a∗ c) a = a∨ (b∗ (b∗−a)).

7.3. Expressivity 127

This can also be straightforwardly adapted for the residuation property of ∨∗
and \∗ in the case of subclassical bunched logics.

Lemma 7.12 (cf. Proposition 4.1 [29]). For each bunched logic L , the class of
L algebras is an equational class.

Birkhoff [26] proved a powerful classification theorem for equational classes
known as the HSP theorem, where H stands for Homomorphic image, S for Subal-
gebra, and P for Product.

Definition 7.13 (Variety). A class V of algebras of the same type is a variety if it is
closed under taking homomorphic images, subalgebras and products.

Theorem 7.14 (HSP Theorem [26]). For a class V of algebras of the same type,
V is a variety iff V is an equational class.

Of particular interest to us are varieties of complex algebras, a topic first in-
vestigated in the context of distributive lattices with operators by Goldblatt [108].
Given a class of L frames C, we can define a variety of complex algebras V (C)

using the equational basis ΣC = {s = t | for all X ∈ C,ComL (X) � s = t}. By
the HSP and representation theorems, this is closed under homomorphic images,
subalgebras and products. Crucially, V (C) witnesses the bunched logic formulae ϕ

that are valid in C, since necessarily ϕ => ∈ ΣC iff X � ϕ for all X ∈C.
Using this, together with the duality theory of L frames, we can use the HSP

theorem to give necessary and sufficient conditions for a class of L frames to be
definable by L -formulae. This directly corresponds to the analogous theorem of
modal logic [109], which can be relativised to the case of bunched logics using what
we’ve proved thus far together with a few extra definitions and results. We first give
a precise formulation of the notion of L -definability.

Definition 7.15 (L -definable (cf. [27]). For a class of L frames C, C is L -
definable if there is a set of L -formulae Γ such that X ∈ C iff X � ϕ for all
ϕ ∈ Γ.

As an example of the kinds of classes of frames we have in mind, we might
consider the class of (B)BI frames that correspond to particular memory models
utilised in Separation Logic, with properties like deterministic and cancellative
composition. We begin with some definitions that are adapted from Blackburn et
al. [27]. We first require the auxillary notion of an ultraproduct. First note that for
sets Xi indexed by I, the direct product ∏i Xi is defined ∏i Xi = { f : I→ ⋃

i Xi | ∀i :
f (i) ∈ Xi}.

7.3. Expressivity 128

Definition 7.16 (Ultraproduct). Let I be a non-empty set and F a prime filter on
P(I). Let Xi be non-empty sets indexed by I. The equivalence relation ∼F on
f ,g ∈∏i Xi is defined by f ∼F g iff {i | f (i) = g(i) ∈ F}. Then the ultraproduct of
Xi modulo F ∏F Xi is the set of equivalence classes of ∼F : ∏F Xi = {[f]∼F | f ∈
∏i Xi}. It is an ultrapower if all Xi are identical.

Given L frames Xi indexed by I we can define their ultraproduct. This can
straightforwardly be seen as precisely the same construction as the ultraproduct of
first-order models in classical model theory. The basic idea that an ultraproduct
of models Xi is an ‘averaging’ of the Xi using the prime filter F as a measure:
the ultraproduct witnesses the properties of the first-order models that occur ‘often
enough’ according to F .

Definition 7.17 (Ultraproduct Frame (cf. Definition [27]). Let Xi be L frames
indexed by I and F a prime filter on P(I). The ultraproduct L frame modulo F

∏F Xi is specified as follows (here we cover all of the frame structure an L frame
might have)

• The carrier of ∏F Xi is ∏F Xi.

• For L with intuitionistic additives, [f]∼F <F [g]∼F iff {i ∈ I | f (i)<i g(i)} ∈
F.

• For any binary frame operations ♥, [f]∼F ∈ [g]∼F ♥F [h]∼F iff {i ∈ I | f (i) ∈
g(i)♥i h(i)} ∈ F.

• [e]∼F ∈ E∼F iff {i ∈ I | e(i) ∈ Ei} ∈ F.

• −[f]∼F = [g]∼F where g(i) =− f (i) for all i ∈ I.

• For any binary relations R, RF [f]∼F [g]∼F iff {i ∈ I | Ri f (i)g(i)} ∈ F.

It is an ultrapower frame of X modulo F if Xi = X for all i.

That ultraproduct frames of L frames are themselves L frames follows from
Łos’ famous theorem.

Theorem 7.18 (Łos’ Theorem). Let ∏F Mi be the ultraproduct of first-order
models Mi, ϕ(x1, . . . ,xn) a first-order formula and f1, . . . , fn ∈ ∏i Mi. Then
ϕ([f1]∼F , . . . , [fn]∼F) is true in ∏F Mi iff the set of i such that ϕ(f1(i), . . . , fn(i))
is true in Mi is a member of F.

7.3. Expressivity 129

Since each of the first-order axioms ϕ(x1, . . . ,xn) defining an L frame is sat-
isfied by each L frame contributing to the ultraproduct, necessarily the set of i
such that ϕ(f1(i), . . . , fn(i)) is true in Mi is I ∈ F . Thus ultraproduct frames are
L frames. The other immediate corollary of Łos’ theorem is that ultrapowers of
a first-order model M satisfy the same first-order theory as M . We collect these
results in the following corollary.

Corollary 7.19.

1. Ultrapowers of a first-order model M satisfy the same first-order theory as
M .

2. Ultraproduct frames of L frames are themselves L frames.

Definition 7.20 (L Frame Constructions, Reflections and Closures).

1. For L frames X and X ′ we say X ′ is a bounded morphic image of X if
there exists a surjective L morphism g : X →X ′.

2. For L frames X and X ′ we say X is a generated subframe of X ′ if there
exists an injective L morphism g : X →X ′.

3. Given disjoint L frames Xi the disjoint union
⊎

i Xi is given by the disjoint
union

⊎
i Xi together with the union of the frame operations of each Xi.

4. Given a L frame X , the prime extension of X is PrL ComL (X). A class of
L frames C reflects prime extensions if PrL ComL (X) ∈C implies X ∈C.

5. A class of L frames C is closed under taking ultraproducts if, for any L

frame X ∈C and any ultrapower ∏F X of X , ∏F X ∈C.

The duality theory on L frames connects up some of these notions to algebraic
ones.

Lemma 7.21 (cf. [199, 27]). For disjoint L frames (Xi)i∈I ,

ComL (
⊎

i

Xi)∼= ∏
i∈I

ComL (Xi).

Proof. This follows immediately from categorical duality, but we can construct the
isomorphism explicitly. The isomorphism is given by noting that every element A of
ComL (

⊎
i X) is specified by an element {i}×Ai for Ai ∈ComL (Xi) correspond-

ing to the part of A that intersects with Xi in the disjoint union. The isomorphism
is thus given by sending each X to the element (Xi)i∈I in ∏i∈I ComL (Xi). It is a
homomorphism because each of the operations is calculated component-wise in the
product algebra and the frames are disjoint.

7.3. Expressivity 130

The next lemma is straightforward to prove, with 3, 4, 5 and 6 immediate
corollaries of 1 and 2.

Lemma 7.22 (cf. [27] Theorem 5.47). For any homomorphism of L algebras
f : A→ A′ and L morphism g : X →X ′

1. If f is injective (surjective) then f−1 : PrL (A′)→ PrL (A) is surjective (in-
jective).

2. If g is injective (surjective) then g−1 : ComL (X ′)→ComL (X) is surjective
(injective).

3. If X is a generated subframe of X ′ then ComL (X) is the homomorphic
image of ComL (X ′).

4. If X ′ is the bounded morphic image of X then ComL (X) is (isomorphic
to) a subalgebra of ComL (X ′).

5. If A is a subalgebra of A′ then PrL (A) is the bounded morphic image of
PrL (A′).

6. If A′ is the homomorphic image of A then PrL (A′) is a generated subframe
of PrL (A).

We now lift the Goldblatt-Thomason theorem of modal logic to bunched log-
ics; in both the modal and bunched cases the machinery used to prove it is essen-
tially the same. This generalises the results of Brotherston & Villard [44] showing
that failure to be closed under bounded morphic images and disjoint unions entails
the undefinability of a BBI frame property by a BBI formula. The basic idea is
to leverage the connections of the various frame constructions to the operations of
homomorphic image, subalgebra and product in the varieties generated by classes
of L frames.

Theorem 7.23 (Goldblatt-Thomason Theorem for Bunched Logics (cf. [108, 27])).
Given a class C of L frames closed under taking ultrapowers, C is L -definable
iff C is closed under bounded morphic images, generated subframes and disjoint
unions, and reflects prime extensions.

In particular, all classes of first-order definable L frames are closed under tak-
ing ultrapowers. This theorem has the key application of demonstrating that some
classes of frames relevant to applications of bunched logics are not L definable by
showing that these classes of L frames fail one of the closure/reflection criteria.
One direction can be obtained directly from the following proposition, which is the

7.3. Expressivity 131

bunched logic analogue to the same result for modal logic (see Blackburn et al [27]
Proposition 5.53).

Proposition 7.24 (Preservation of Validity for L Frames). For all L formulae ϕ ,
L frames X and X ′ and disjoint L frames (Xi)i∈I:

1. If X ′ is a bounded morphic image of X then X � ϕ implies X ′ � ϕ;

2. If X is a generated subframe of X ′ then X ′ � ϕ implies X � ϕ;

3. If X =
⊎

i Xi and for all i ∈ I, Xi � ϕ then X � ϕ;

4. If PrL ComL (X) � ϕ then X � ϕ .

Proof. 1. to 3. are essentially immediate consequences of the HSP theorem. For
1. consider the variety of complex algebras V (X) generated by X . Since X � ϕ

we have that ϕ = > is in the equational basis for V (X). By Lemma 7.22 and
the HSP theorem, ComL (X ′) ∈ V (X). Hence ϕ = > is valid in ComL (X)

and we can thus conclude that X � ϕ . Similarly for 2., X ′ � ϕ implies ϕ = >
is in the equational basis for V (X ′). By Lemma 7.22 and the HSP theorem
ComL (X) ∈ V (X ′) so X � ϕ . For 3. consider the variety V ({Xi | i ∈ I}) gen-
erated by the frames Xi. ϕ = > is in the equational basis for V ({Xi | i ∈ I}) and
since ComL (X) ∼= ∏i∈I ComL (Xi) by Lemma 7.21, the HSP theorem dictates
that ComL (X) ∈V ({Xi | i ∈ I}) and thus X � ϕ .

Finally, for 4. suppose that X 6� ϕ . Then there exists some valuation V and
element x ∈X such that x 6�V ϕ . Thus for ComL (X) with induced interpreta-
tion J−KV we have x 6∈ JϕKV by Theorem 7.1. There thus exists a prime filter of
ComL (X) for which JϕK 6∈ F . The induced valuation VJ−KV

then necessarily gives
F 6�VJ−KV

ϕ by Theorem 7.1 once more, so PrL ComL (X) 6� ϕ .

For the other direction we need some auxillary results. First we will need
the following model theoretic notion. For a first-order language L, a L-model M

and a subset A ⊆M we define the expanded language L[A] to be L expanded with
constants corresponding to the elements in A. This makes M an L[A] model when
these new constants are interpreted by their counterparts in A.

Definition 7.25 (Countably Saturated Model). Given a first-order language L, a
first-order L-model M is countably saturated if, for every subset A ⊆M with
|A| < ℵ0 and every set of L[A]-formulae Γ[x0, . . . ,xn] (in which only the variables
x0, . . . ,xn are free) that is consistent with the first-order theory of M , there exists
a0, . . . ,an ∈M such that Γ[a0/x0, . . . ,an/xn] is true in M .

7.3. Expressivity 132

We will require a ultrapower frame that is countably saturated when viewed as
a first-order model for our next lemma. Usefully, these are guaranteed to exist: the
details of the proof are beyond the scope of this thesis and can be found in Chang
& Keisler [52] Section 6.1.

Lemma 7.26. For any first-order language L and L-model M , there exists a count-
ably saturated ultrapower of M .

In particular, when we consider L frames X as L-structures for the first-order
language of L frames this construction yields a countably saturated ultrapower
frame of X . In this next crucial lemma, we extend an argument for intuitionistic
frames given by Rodenburg [199] (based on the work of Van Benthem [19] for
modal logic) that states that the prime extension of any intuitionistic frame X is
the bounded morphic image of an ultrapower of X . The proof essentially proceeds
by extending the signature of the first-order language of L frames with predicates
witnessing every element of ComL (X). We can then use the model theory of first-
order logic (in particular, Lemma 7.26 and Łos’ theorem) to ensure an ultrapower
frame and suitable surjective L morphism exist.

Lemma 7.27. Let X be an L frame. Then X has an ultrapower ∏F X such that
PrL ComL (X) is the bounded morphic image of ∏F X .

Proof. For a given X , consider the first-order language LX given by extending the
signature of the language of L frames with a predicate PA for each A∈ComL (X).
By interpreting the L frame signature with the structure of X and each PA as A,
we obtain a first-order model A of the language LX . By Lemma 7.26 there exists a
countably saturated ultrapower B of A . In particular, B is an ultrapower frame of
X together with an interpretation of the predicates PA, and by Łos’ theorem, A and
B satisfy the same first-order theory. We define a map η : B→ PrL ComL (X) by
η(x) = {X | PX x is true in B}. We claim this η is the required surjective bounded
morphism.

Lemma 15.2 of Rodenburg [199] gives that η is well-defined, surjective and,
in the case for L with intuitionistic additives, satisfies the conditions of an intu-
itionsitic morphism. We show that when L is DMBI, η is a DMBI morphism: this
characteristic example is enough to show the same holds for (I)LGL and (B)BI, and
the argument can be extended in an obvious way to the other bunched logics we
have considered.

First, suppose x∈ y◦B z. We must show η(x)∈η(y)◦ComDMBI(X)η(z). Suppose
Y ∈η(y) and Z ∈η(z). Then PY y and PZz hold in B. It is easy to see that the formula

7.3. Expressivity 133

∀x,y,z((PY y∧PZ ∧ x ∈ y◦ z)→ PY•X Zx) is true in A . Thus it is also true in B. We
thus obtain that PY•X Zx holds in B, so Y •X Z ∈ η(x) as required.

Next, suppose η(x) ⊇ Fw and Fw ∈ Fy ◦ComDMBI(X) Fz. Consider the set of for-
mulae Γ := {x < w,w ∈ y ◦ z} ∪ {PY y | Y ∈ Fy} ∪ {PZz | Z ∈ Fz}: we claim this
is consistent with the theory of B extended with constant x. Suppose for contra-
diction it is not: then there is a finite Γ0 ⊆ Γ witnessing this inconsistency. For
any Y ∈ Fy and Z ∈ Fz we have that Y •X Z ∈ Fw ⊆ η(x) so it follows that Γ0’s
inconsistency amounts to the sentence ∀w,y,z((x < w∧w ∈ y ◦ z∧PY y)→ ¬PZz)
holding in B for some Y ∈ Fy and Z ∈ Fz. By assumption, for this Y and Z we have
Y •X Z ∈ η(x), so PY•X Zx is true in B. The sentence ∀x(PY•X Zx→ ∃w,y,z(x <
w∧w ∈ y ◦ z∧PY y∧PZz)) is true in A , and thus is also true in B. We thus have
w,y,z ∈B with x< w∧w ∈ y◦ z∧PY y∧PZz: a contradiction. Hence Γ is consistent
with the theory of B extended with constant x. Since B is countably saturated Γ is
realised for some w,y,z∈B, and we thus obtain x<B w with w∈ y◦X z, η(y)⊇ Fy

and η(z)⊇ Fz.

Now we suppose that Fw ⊇ η(x) and Fz ∈ Fw ◦ComDMBI(X) Fy. Consider the set
of formulae Γ := {w< x,z ∈ w◦ y}∪{PY y | Y ∈ Fy}∪{¬PZz | Z 6∈ Fz}. We assume
again for contradiction that this is inconsistent with the theory of B extended with
constant x. This amounts to the sentence ϕ := ∀w,y,z(w < x∧ z ∈ w ◦ y∧PY y→∨

1≤ j≤m PZ jz) being true in B, where Y ∈ Fy and Z1, . . . ,Zm ∈ Fz. Thus it is also true
in A . Straightforwardly, ∀x(ϕ(x)→ PY −−•X

⋃
j Z jx) is true in A . Hence it is also

so in B, and we obtain that PY −−•X
⋃

j Z jx is true in B. Thus Y −−•X
⋃

j Z j ∈ Fw, so
Y •X (Y −−•X

⋃
j Z j) ∈ Fz by assumption. By upwards-closure of Fz,

⋃
j Z j ∈ Fz,

and by primeness, for one of the j (1 ≤ j ≤ m) we have Z j ∈ Fz: a contradiction.
Hence Γ is consistent with the theory of B extended with constant x and is once
again realised by some w,y,z ∈B. Thus w<B x and z ∈ w◦B y with η(y)⊃ Fy and
η(z)⊆ Fz as required.

For the condition e ∈ EB iff η(e) ∈ EPrDMBIComDMBI(X), note that ∀x(x ∈ E ↔
PEx) is true in A , and hence in B. Thus e ∈ EB iff PEe holds in B iff E ∈ η(e) as
required.

Finally we consider the condition η(−x) = −PrDMBIComDMBI(X)η(x). First note
that the sentence ϕ := ∀x(PCx ↔ ¬PC−−•X −E − x) is true in A for any C ∈
ComDMBI(X); this is proved in the same way as similar arguments in the duality
theory of DMBI in Chapter 6. Hence this is also true in B. The required identity
amounts to showing PX −x is true in B iff X 6=C−−•X −E for any C such that PCx
is true in B—but this is precisely ensured by the truth of ϕ in B.

We’re now ready to prove our version of the Goldblatt-Thomason Theorem for

7.3. Expressivity 134

bunched logics. Given what we have proved thus far, this follows by an identical
argument to that given in Blackburn et al [27] for modal logic, itself derived from
Goldblatt’s [108] algebraic reconstruction of the theorem. For completeness we
include the argument here.

Proof of the Goldblatt-Thomason Theorem for Bunched Logics. Let C be a class of
L frames that is closed under ultraproducts, bounded morphic images, generated
subframes and disjoint unions, and reflects prime extensions. It is sufficient to show
that for any frame X satisfying the theory of this class of models ({ϕ | ∀X ∈
C(X � ϕ)}), X ∈C. Let X be such a frame. Then ComL (X) is in the variety
of complex algebras generated by C, V (C). Since V (C) is a variety, it is closed
under HSP. There thus exist L frames Xi and L algebras A and B such that B =

∏iComL (Xi), A is a subalgebra of B and ComL (X) a homomorphic image of A.

By Theorem 7.21, B ∼= ComL (
⊎

i∈I Xi) and by closure under disjoint unions⊎
i∈I Xi ∈C. Taking the duals of these structures and homomorphisms, we have that

PrL ComL (X) is a generated subframe of PrL (A) and PrL (A) is the bounded
morphic image of PrL ComL (

⊎
i∈I Xi). By Lemma 7.27, PrL ComL (

⊎
i∈I Xi) is

the bounded morphic image of an ultrapower of
⊎

i∈I Xi, so by closure under ultra-
products PrL ComL (

⊎
i∈I Xi) ∈ C. Then PrL (A) ∈ C by closure under bounded

morphic images and so PrL ComL (X)∈C by closure under generated subframes.
Finally C reflects prime extensions so X ∈C as required.

Let’s pause to take account of what we’ve proved here. While satisfaction
of these conditions for a particular class C guarantees L -definability, the set of
defining formulae is possibly infinite: in the proof the set is taken to be the L

formulae that are valid for every member of C. This does not, therefore, give us a
correspondending L axiom we can use to distinguish membership in C and add in
a straightforward way to a proof system for L -validity on frames in C: to find such
correspondents requires further work [202]. In Part III we will show how to sidestep
this issue and define proof calculi for a large number of well-behaved classes of L

frames.

We can demonstrate the applicability of the theorem with some simple exam-
ples. First a negative (although expected) result. Recall that a L frame is Down-
wards Closed if ∀x,y,z(z ∈ x ◦ y∧ x < x′ ∧ y < y′ → ∃z′(z < z′ ∧ z′ ∈ x′ ◦ y′) holds
and Upwards Closed if ∀x,y,z(z∈ x◦y∧z′ < z→∃x′,y′(z′ ∈ x′ ◦y′∧x′ < x∧y′ < y)
holds. These classes of frames are not L -definable, which of course must be the
case following our discussion in Chapter 3: these classes all define the same set of
valid formulae as ordinary L frames.

7.3. Expressivity 135

Proposition 7.28. For L with intuitionistic additives, the class of Upwards (Down-
wards) [Upwards and Downwards] Closed L frames is not L -definable.

Proof. This follows immediately from the observation (cf. Cao et al. [51]) that for
any L frame X , the prime extension PrL ComL (X) is both upwards and down-
wards closed. If Fz ∈ Fx ◦ComL (X) Fy with Fx ⊇ Fx′ and Fy ⊇ Fy′ then straightfor-
wardly Fz ∈ Fx′ ◦ComL (X) Fy′ . Similarly, if Fz ∈ Fx ◦ComL (X) Fy with Fz′ ⊇ Fz then
Fz′ ∈ Fx ◦ComL (X) Fy. Since there exist L frames which are not Upwards and/or
Downwards Closed, these classes of frames fail to reflect prime extensions.

Now let’s look at a positive result. A L frame is Total if for all x,y ∈X there
exists z ∈X such that z ∈ x◦ y.

Proposition 7.29. The class of Total L frames is L -definable for L with classical
additives.

Proof. We show the class of Total L frames is closed under bounded morphic im-
ages, generated subframes and disjoint unions while reflecting prime extensions.
First suppose X ′ is the bounded morphic image of a Total L frame, say by sur-
jective L morphism g. Suppose g(x),g(y) ∈X ′. Since X is total, there exists
z ∈ x ◦ y. We thus obtain g(z) ∈ g(x) ◦′ g(y). Now suppose X is a generated sub-
frame of a Total L frame X ′, say by the injective L morphism g. For g(x),g(y)
we have z′ ∈ g(x)◦′g(y). Since g is an L morphism, there exists z,y′ ∈X such that
z ∈ x◦y′ with g(z) = z′ and g(y′) = g(y). By injectivity, y = y′ so g(z) ∈ g(x)◦g(y).
Closure under disjoint unions is straightforward, so we move to reflection of prime
extensions. Suppose PrL ComL (X) is total. Then for any prime filters Fx,Fy

there exists Fz ∈ Fx ◦ComL (X) Fy. Let x,y ∈X and consider the prime filters of
ComL (X) given by Fx = {A | x ∈ A} and Fy = {A | y ∈ A}. Then there exists
Fz ∈ Fx ◦ComL (X) Fy. We have {x} ∈ Fx and {y} ∈ Fy so {x}•X {y} ∈ Fz. Since Fz

is prime, {x}•X {y} 6= /0, so X is a Total L frame as required.

This same argument breaks down if we attempt it for L with intuitionistic
additives as we can’t use the same trick to prove reflection of prime extension: the
sets {x} and {y} are not necessarily upwards-closed so won’t always be in the prime
filters Fx and Fy.

Next we recall the separation theories collected by Brotherston & Villard [44]
on their work on BBI expressivity, which correspond to common properties of mem-
ory models of (B)BI (we will go into separation theories in greater detail in Chapter
10). These are

7.3. Expressivity 136

Partial Functional: w,w′ ∈ w1 ◦w2→ w = w′

Cancellativity: w◦w1∩w◦w2→ w1 = w2

Single Unit: e,e′ ∈ E→ e = e′

Indivisible Units: (w◦w′)∩E 6= /0→ w ∈ E
Disjointness: w◦w 6= /0→ w ∈ E
Divisibility: w 6∈ E→∃w1,w2 6∈ E(w ∈ w1 ◦w2)

Cross Split: (t ◦u)∩ (v◦w) 6= /0→∃tv, tw,uv,uw
(t ∈ tv◦ tw∧u ∈ uv◦uw∧ v ∈ tv◦uv∧w ∈ tw◦uw).

Brotherston & Villard proved the following undefinability results by exhibiting
the failure of closure under bounded morphic images and disjoint unions. As an
immediate corollary (exploiting the fact that all BBI frames (morphisms) are also
BI/LGL/ILGL frames (morphisms)) the analogous results obtain for BI/LGL/ILGL.

Theorem 7.30 ([44]). For L ∈ {BI,BBI,LGL, ILGL}:

1. The class of Partial Functional L frames is not L -definable;

2. The class of Partial Functional and Cancellative L frames is not L -
definable;

3. The class of Single Unit (B)BI frames is not (B)BI-definable (see also [99,
150]).

Extending this result to CBI and DMBI is complicated by Brotherston &
Calcagno’s [39] observation that any extension of a partial functional BBI model
with a CBI frame’s dual operator − will necessarily force the new model’s ◦ to be
nondeterministic in order to satisfy the CBI frame property x ∈ y◦ z→−y ∈−x◦ z.
We thus can’t extend the existing counterexample for BBI to obtain one for CBI
(and thus DMBI).

Let us consider the Cross Split property. Cross Split is an interesting property
because most meaningful bunched logic models seem to satisfy it, including most
memory models. It is also used in an essential way to show that memory models
with intersection operations form models of subclassical bunched logics that don’t
collapse into CBI models [45]. We can consider it for any bunched logic L as ◦
is in the signature of all L frames. Brotherston & Villard conjecture Cross Split
is BBI-undefinable and state that for BBI it is “seemingly preserved by bounded
morphic images, disjoint unions and by generated sub[frames]”. We can strengthen
this observation to a proof.

Lemma 7.31. For any bunched logic L with classical additives, Cross Split is
preserved by bounded morphic images, disjoint unions and generated subframes.

7.3. Expressivity 137

Proof. First suppose X is a L frame satisfying Cross Split and X ′ a bounded
morphic image of X ; say by the surjective L morphism g. Let g(x0) ∈ g(t) ◦′
g(u) and g(x1) ∈ g(v) ◦′ g(w) for g(x0) = g(x1). By surjectivity of g, if a cross
split exists for g(t),g(u),g(v),g(w) then X ′ satisfies Cross Split. Since g is a L

morphism we can find t0,u0,v0,w0 ∈X such that x0 ∈ t0◦u0, x∈ v0◦w0 and g(t0)=
g(t),g(u0) = g(u),g(v0) = g(v),g(w0) = g(w). Then there exists a cross split in
X : there exists tv, tw,uv,uw such that t0 ∈ tv ◦ tw, u0 ∈ uv ◦ uw, v0 ∈ tv ◦ uv and
w0 ∈ tw◦uw. Since g is a L morphism, g(t) = g(t0)∈ g(tv)◦′g(tw),g(u) = g(u0)∈
g(uv)◦′ g(uw),g(v) = g(v0) ∈ g(tv)◦′ g(uv) and g(w) = g(w0) ∈ g(tw)◦′ g(uw).

Now suppose X is a generated subframe of a L frame X ′ satisfying Cross
Split, say by the injective L morphism g. Suppose g(x) ∈ g(t) ◦′ g(u) and g(x) ∈
g(v) ◦ g(w). By the cross split property in X ′ there exist tv, tw,uv,uw such that
g(t) ∈ tv ◦′ tw,g(u) ∈ uv ◦′ uw,g(v) ∈ tv ◦′ uv and g(w) ∈ uw ◦′ tw. Since g is a
L morphism, there exist tvi, twi,uvi,uwi (i ∈ {0,1}) such that t ∈ tv0 ◦ tw0,u ∈
uv0 ◦uw0,v ∈ tv1 ◦uv1 and w ∈ uw1 ◦ tw1 with g(tvi) = tv,g(twi) = tw,g(uvi) = uv
and g(uwi) = uw for i ∈ {0,1}. By injectivity of g we have z0 = z1 for each z ∈
{tv, tw,uv,uw} and so Cross Split is satisfied.

Finally, preservation by disjoint unions is a trivial consequence of the fact that
any formation x∈ t ◦u,x∈ v◦w is necessarily contained in one of the disjoint frames
of the disjoint union, and thus the cross split can be found in that same frame.

Corollary 7.32. For L with classical additives, the class C of L frames satisfying
Cross Split is L definable iff C reflects prime extensions.

Hence proving the undefinability of Cross Split requires us to find a L frame
X that doesn’t satisfy Cross Split despite its prime extension satisfying it: a highly
non-trivial task! We can rule out one kind of L frame: if X is finite, then the
elements of the prime extension are all principal filters—that is, the set of all subsets
A such that x ∈ A for some x ∈ X . It is straightforward to then show that the
satisfaction of Cross Split in the prime extension of a finite frame X entails it in
X . This example shows that although we now have the criteria for definability
in bunched logics, verifying that criteria is still a complex matter. We leave this
problem open.

Problem 7.33. Is Cross Split L -definable for any bunched logic L ?

We end this section with a class of L frames that we can’t investigate with the
Goldblatt-Thomason theorem. Define the relation D by xDy iff there exists z such
that y ∈ x ◦ z or y ∈ z ◦ x. We say a L frame has well-founded decomposition if
the relation D is well-founded: there is no infinite sequence (xn)n∈N of distinct xn

7.4. Interpolation 138

such that xn+1Dxn for all n. Consider memory models of (B)BI: a heap is given as a
finite partial function defined on, say, n values, which can thus be decomposed into
at most n disjoint pointers xi 7→ yi. This property is essential to the application of
bunched logic in program verification as it entails a heap can be directly identified
with a formula of Separation Logic: x1 7→ y1 ∗· · ·∗xn 7→ yn. In using bunched logics
to model complex systems (say with layered graph logics), the property of being
able to directly represent the decomposition of the system as a formula seems to be
crucial. However we cannot apply our Goldblatt Thomason theorem to investigate
if such classes of models are L -definable: this property is not first-order definable
and not preserved by ultrapowers. We defer a full investigation of (un)definable
classes of bunched logic frames to another occasion.

7.4 Interpolation
We end this chapter by considering Craig interpolation for bunched logics. We be-
gin with a precise statement of the Craig Interpolation property. First some notation:
for a L formula ϕ , Prop(ϕ) is the set of propositional variables occuring in ϕ .

Definition 7.34 (Craig Interpolation). L has the Craig interpolation property (CIP)
if, whenever ϕ ` ψ is provable, there exists an interpolant ξ such that ϕ ` ξ and
ξ ` ψ are provable and Prop(ξ)⊆ Prop(ϕ)∩Prop(ψ).

Craig interpolation goes back to the landmark work of Craig [69], who first
formulated the property and proved it held for classical logic. Following Maksi-
mova’s pioneering work [156, 157, 96] on superintuitionistic and modal logics, it
has become well-known (cf. [160]) that various interpolation properties (CIP among
them) can be deduced or refuted for non-classical logics by the satisfaction or refu-
tation of amalgamation properties on the varieties of algebras that interpret them.
The key property related to the CIP is the super amalgamation property.

Definition 7.35 ((Super) Amalgamation Property). A class K of algebras of the
same type has the amalgamation property (AP) if, for any A, B0, B1 ∈K with embed-
dings e0 : A→ B0 and e1 : A→ B1 (we call this a V-formation), there exists C ∈ K
together with embeddings m0 : B0→C and m1 : B1→C such that m0◦e0 = m1◦e1.

If K is a class of partially ordered algebras, K has the super amalgamation
property (SAP) if it has both the AP and the additional property that for all bi ∈ Bi,
b j ∈ B j ({i, j} = {0,1}), if mi(bi) ≤ m j(b j) then there exists a ∈ A such that bi ≤
ei(a) and b j ≤ e j(a).

For many logics L with a suitable algebraic semantics, the satisfaction of the
SAP for the algebras interpeting L is equivalent to L having the CIP [160]. Given

7.4. Interpolation 139

a bunched logic L we can consider amalgamation for the category of L algebras:
in particular, we can show that the AP (and hence the SAP) fails for the category of
L algebras where L ∈ {BI,BBI,CBI,DMBI}. That this is the case can be deduced
from Urquhart’s work on the failure of interpolation for relevant logics [214]. We
begin with the semantic structures suitable for interpreting the relevant logic KR.

Definition 7.36 (KR Frame [214]). A KR frame is a triple K = (X ,R,e) where e∈X
and R a ternary relation on X satisfying

1. Reab iff a = b;

2. Raaa;

3. Rabc implies Rbac and Racb;

4. Rabc and Rcde implies there exists f such that Rad f and R f be.

Given that the semantics of bunched logics has its roots in relevant logic, it may
not be surprising that KR frames are also models of bunched logic. In particular, a
KR frame induces a CBI frame (and thus also a (B)BI and DMBI frame). Given a
KR frame K we define X (K) by setting a◦b = {c | Rabc}, E = {e} and −x = x.

Lemma 7.37. Given a KR frame K, X (K) is a CBI frame.

Proof. Commutativity of ◦ can be deduced from 3. Closure, Unit Existence and
Coherence can be deduced by the definition and 1. For Associativity, suppose t ∈
x◦y and w ∈ t ◦ z. Then by definition Rxyt and Rtzw hold. By 3. this gives Ryxt and
Rtzw, so applying 4. there exists f such that Ryz f and R f xw. This gives f ∈ y ◦ z
and w ∈ x◦ f as desired. Finally, −−x = x trivially, and the Compatibility property
z ∈ x ◦ y implies −x ∈ −z ◦ y follows from the definition of − and the symmetry
condition 3.

Urquhart also gives a notion of KR morphism that yields a CBI morphism
through our construction.

Definition 7.38 (KR Morphism). A map g : K→ K′ is a KR morphism if

1. g(a) = e′ iff a = e;

2. Rabc implies R′g(a)g(b)g(c);

3. R′g(a)b′c′ implies there exists b,c such that Rabc, g(b) = b′ and g(c) = c′.

Lemma 7.39. If f : K→ K′ is a KR morphism, then f : K(X)→ K(X ′) is a CBI
morphism.

7.4. Interpolation 140

Proof. Given the conditions in the definition and the fact that g(−x)= g(x)=−g(x)
we only have one condition to check: z′ ∈ g(x)◦′ y′ implies there exists y,z∈ X such
that z ∈ x ◦ y, g(y) = y′ and g(z) = z′. If z′ ∈ g(x)◦′ y′ it follows that g(x) ∈ z′ ◦′ y′.
Now using 3. we obtain x ∈ z◦ y with g(z) = z′ and g(y) = y′. This yields z ∈ x◦ y,
and so the condition. holds.

Urquhart shows that KR frames can be constructed from projective planes, and
using this construction proves the following.

Theorem 7.40 (Urquhart [214]). (S)AP fails for the category of distributive lattice-
ordered monoids.

The proof is too complex to give in full detail, but essentially works by giving
three KR frames X0,X1 and X2 based on projective geometries such that X0 is the
bounded morphic image of X1 and X2. Taking complex algebras, this obtains an
embedding of the complex algebra of X0 in the complex algebras of X1 and X2.
This V formation cannot be amalgamated however: a notion of non-associative
composition, · , internal to projective geometries can be encoded in the complex
algebras over these KR frames. Any amalgamation would necessarily identify the
elements corresponding to compositions A · (B ·C) in the complex algebra of X1

and the elements corresponding to compositions (A ·B) ·C in the complex algebra
of X2. However, this identification cannot hold, as this · fails to be associative.

In sum, any variety of distributive lattice ordered monoid that contains this
V-formation fails to have the AP. However, it is easily seen that this V-formation
exists in the categories of L algebras for L ∈ {BI,BBI,DMBI,CBI}: the com-
plex algebras Urquhart takes also carry the structure of a CBI algebra (and thus a
BI/BBI/DMBI algebra) by Lemma 7.37 and by Lemma 7.39, the embeddings are
CBI (and thus BI/BBI/DMBI) morphisms. Any amalgam found for this V-formation
would also be a V-formation in the category of distributive lattice-ordered monoids
and so AP (and thus SAP) fails for L algebras.

Theorem 7.41. For L ∈ {BI,BBI,DMBI,CBI}, (S)AP fails for the category of L

algebras.

Does this entail the failure of CIP for these bunched logics? This would con-
firm Brotherston & Goré’s [41] conjecture that interpolation fails for BI. Unfortu-
nately we haven’t quite shown that yet. The key remaining step is to show that the
SAP holds for L algebras iff L has CIP. A partial solution can be given. Madarász
[155] proved a more general version of the following theorem.

Theorem 7.42 (cf. Madarász [155] Theorem 3.7). Let L be an algebraizable logic
such that

7.4. Interpolation 141

1. L has a Boolean reduct;

2. Alg(L) forms a variety;

3. L has the local deduction property: ϕ ` ψ provable implies ϕ → ψ is prov-
able.

Then L has the CIP iff the variety of L algebras has the SAP.

This is the case for all bunched logics with classical additives, and so we obtain
the following result for BBI and CBI.

Theorem 7.43. BBI and CBI fail to have the CIP.

The condition of L having a Boolean reduct can be weakened (cf. Madarász
Theorem 3.9 [155]) to the variety of L algebras being a discriminator variety.
Hence to obtain the result for (DM)BI, it would be sufficient to show that the variety
of (DM)BI algebras is a discriminator variety. Another option would be to attack
the problem directly by considering (DM)BI as a substructural logic extending the
full Lambek calculus and applying the techniques of Kihara & Ono [140]. We defer
such an investigation to another occasion and leave this as an open problem.

Problem 7.44. For L with intuitionistic additives, is it true that the category of L

algebras has the SAP iff L has the CIP?

Chapter 8

Dualities for Predicate Bunched
Logics

In this chapter we utilise the dualities given in Chapter 6 to give duality theorems
for the categorical structures associated with predicate extensions of bunched log-
ics. The key structures we are concerned with here are BI hyperdoctrines [24], a
categorical structure formulated to give models of separation logic with abstract
predicates.

For the purpose of this thesis a general notion is given that is agnostic of the
particular bunched logic, which is a possibility because the BI hyperdoctrine struc-
ture interpreting quantification does not explicitly interact with the multiplicative
structure of the logic in question. It is instead defined with respect to the Heyting
or Boolean structure of the given logic. That this is all that is required for sepa-
ration logic attests to this being no major restriction when it comes to applications
of bunched logic, but we believe the work of this chapter lays a foundation for an
examination of multiplicative notions of quantification obtained by requiring the
structure in question to cohere with the multiplicative structure in appropriate ways.
Collinson et al [62] give an example of such a notion of quantification with a cor-
responding definition of hyperdoctrine in their work on bunched polymorphism.
Another notion of quantification given in the context of BI hyperdoctrines is the
dependence-friendly quantifiers of dependence logic that Abramsky & Väänänen
[7] show can be interpreted in models of predicate BI as quantification guarded by
a dependence predicate.

It is nonetheless non-trivial to prove the duality theorems even when restrict-
ing to an additive notion of quantification. Coumans [65] provides the foundational
work for this by describing how to extend Stone duality to classical existential quan-
tification by characterising the required dual properties on the topological side. This
work extends that of Coumans by additionally considering intuitionistic existential

8.1. Categorical Structures for Predicate Bunched Logics 143

and universal quantification, and the identity predicate. By slotting the propositional
bunched logic dualities into the right place, dualities are obtained for structures that
interpret predicate bunched logic; including BI hyperdoctrines as a particular case.

In Section 8.1 categorical structures that extend the algebras and frames that
interpret propositional bunched logics—hyperdoctrines and indexed frames—are
defined, together with the interpretation of predicate bunched logics upon them. In
Section 8.2 it is shown that the standard model of Separation Logic is given by
an indexed (B)BI frame (cf. Biering et al’s [24] demonstration that the standard
model of Separation Logic forms a (B)BI hyperdoctrine). A model of predicate
ILGL based on bigraphs is also given. In Section 8.3 the representation and duality
theorems of Chapter 6 are extended to these categorical structures.

This chapter is based on material from the conference paper A Stone-Type Du-
ality Theorem for Separation Logic via its Underlying Bunched Logics [80] as well
as the journal papers Intuitionistic Layered Graph Logic: Semantics and Proof The-
ory [82] and Stone-Type Dualities for Separation Logics [83].

8.1 Categorical Structures for Predicate Bunched
Logics

The first step is to specify the semantic structures of interest for predicate bunched
logics. As in the previous chapter, L will be used to refer to an arbitrary proposi-
tional bunched logic from Part I. Crucially, as only additive quantification is being
considered, the key aspect of L that affects what follows is the presence of classi-
cal or intuitionistic additives. As has been the case previously, generally speaking
the case for classical additives can be obtained as a corollary from the case for
intuitionistic additives by replacing order with equality and making an argument
with regards the maximality of prime filters on Boolean algebras. Where it guides
comprehension, the differences between L with classical additives and L with
intuitionistic additives will be explicitly spelled out.

We start on the algebraic side with L hyperdoctrines.

Definition 8.1 (L Hyperdoctrine (cf. [183, 24]). A L hyperdoctrine is a tuple

(P : Cop→ Poset,(=X)X in Ob(C),(∃XΓ,∀XΓ)X ,Γ in Ob(C))

such that

1. C is a category with finite products;

2. P : Cop→ Poset is a functor such that, for each object X in C, P(X) is a L

algebra, and, for each morphism f in C, P(f) is a L algebra homomorphism;

8.1. Categorical Structures for Predicate Bunched Logics 144

3. For each object X in C and each diagonal morphism ∆X : X → X ×X in C,
the element =X∈ P(X×X) is adjoint at >P(X). That is, for all a ∈ P(X×X),

>P(X) ≤ P(∆X)(a) iff =X≤ a ;

4. For each pair of objects Γ,X in C and each projection πΓ,X : Γ×X → Γ in C,
∃XΓ and ∀XΓ are left and right adjoint to P(πΓ,X). That is, they are monotone
maps ∃XΓ : P(Γ×X)→ P(Γ) and ∀XΓ : P(Γ×X)→ P(Γ) such that, for all
a,b ∈ P(Γ),

∃XΓ(a)≤ b iff a≤ P(πΓ,X)(b) and
P(πΓ,X)(b)≤ a iff b≤ ∀XΓ(a).

This assignment of adjoints is additionally natural in Γ: given a morphism
s : Γ→ Γ′, the following diagrams commute:

P(Γ′×X) P(Γ×X)

P(Γ′) P(Γ)

P(s×idX)

∃X
Γ′ ∃XΓ

P(s)

P(Γ′×X) P(Γ×X)

P(Γ′) P(Γ)

P(s×idX)

∀X
Γ′ ∀XΓ

P(s)

(B)BI hyperdoctrines were first formulated by Biering et al. [24] to prove
the existence of models of higher-order variants of Separation Logic. There it was
shown that the standard model of Separation Logic could be seen as a BBI hyper-
doctrine, and thus safely extended with additional structure in the domain Cop to
directly define abstract predicates like lists, trees, finite sets and relations inside the
logic. The present work strengthens this result to a dual equivalence of categories.
Other algebraic models of Separation Logic, like those based on Boolean quantales
[71] or formal power series [85], can be seen as particular instantiations of BBI hy-
perdoctrines. The general definition of hyperdoctrine for classical and intuitionistic
predicate logic that BI hyperdoctrines are derived from was formulated by Law-
vere [151] based on his insight that quantifiers are adjoints to substitution, with our
simplified presentation due to Pitts [183].

As these semantic structures support it, we consider many-sorted predicate
logics. Intuitively, the category C gives a category of types, which can be built
into contexts through the use of finite products. The functor assigns an indexing
of algebraic models of propositional L over contexts of variables, allowing an in-
terpretation of formulae in a context using the structure of the L algebra assigned
to that context. Quantification is interpreted by ∃XΓ and ∀XΓ, with the coherence

8.1. Categorical Structures for Predicate Bunched Logics 145

conditions in the definition ensuring that the move between contexts required of
quantification works as one would expect. Finally, the equality predicate =X inter-
prets equality for terms of type X .

Formally, an interpretation J−K of predicate L in a L hyperdoctrine is spec-
ified as follows. An object JXK of C is assigned to each type X , and for each con-
text Γ = {v1 : X1, . . . ,vn : Xn} the object JΓK = JX1K×·· ·× JXnK is assigned. Each
function symbol f : X1×·· ·×Xn→ X has a morphism J f K : JX1K×·· ·JXnK→ JXK
assigned to it. With this data, each term of type X in context Γ can be inductively
given a morphism JtK : JΓK→ JXK assigned to it in the standard way (for example,
[183]).

For each m-ary predicate symbol P of type X1, . . . ,Xm, an assignment JPK ∈
P(JX1K× ·· · × JXmK) is specified. The structure of the hyperdoctrine then per-
mits an extension of J−K to predicate L formulae ϕ in context Γ by first set-
ting JPt1 . . . tmK = P(〈Jt1K, . . . ,JtmK〉)(JPK) and Jt =X t ′K = P(〈JtK,Jt ′K〉)(=JXK). Ele-
ments of the L algebra P(JΓK) are then assigned inductively to formulae built from
the non-quantifier connectives in the same way as the propositional case. Finally
J∃v : X .ϕK = ∃JXKJΓK(JϕK) and J∀v : X .ϕK = ∀JXKJΓK(JϕK). Substitution of terms
is given by Jϕ(t/x)K = P(JtK)(JϕK).

ϕ in context Γ is satisfied by an interpretation J−K if JϕK = >P(JΓK), and ϕ is
valid if it is satisfied by all interpretations. A standard Lindenbaum-Tarski construc-
tion suffices to prove soundness and completeness of predicate L with respect to
interpretations on L hyperdoctrines.

Theorem 8.2 (cf. [183, 24]). For all predicate L formulas ϕ , ψ in context Γ,
ϕ `Γ ψ is provable iff, for all L hyperdoctrines P and all interpretations J−K,
JϕK≤P(JΓK) JψK.

It is also worth stating a simple lemma that can be obtained as an immedi-
ate consequence of the adjointness properties of ∃XΓ and ∀XΓ as it will be used
frequently in what follows.

Lemma 8.3. Given a L hyperdoctrine P : Cop → Poset, for all a,b ∈ P(Γ) the
following hold:

1. a≤ P(πΓ,X)(∃XΓ(a)) and ∃XΓ(P(πΓ,X)(b))≤ b;

2. b≤ ∀XΓ(P(πΓ,X)(b)) and P(πΓ,X)(∀XΓ(a))≤ a;

3. ∃XΓ(⊥) =⊥ and ∀XΓ(>) =>.

While hyperdoctrines are well researched structures, the predicate analogues
of L frames—indexed L frames—are new. This definition is adapted from the

8.1. Categorical Structures for Predicate Bunched Logics 146

notion of indexed Stone space presented by Coumans [65] as a topological dual
for Boolean hyperdoctrines. In contrast to the duality presented there, we prove
the duality for the more general intuitionistic case and additionally consider (typed)
equality and universal quantification. Indexed L frames may also be seen as a gen-
eralisation of Shirasu’s metaframes [207], another type of indexed frame introduced
to interpret predicate superintuitionistic and modal logics.

Definition 8.4 (Indexed L Frame). An indexed L frame is a functor R : C→L

such that

1. C is a category with finite products;

2. For all objects Γ,Γ′ and X in C, all morphisms s : Γ→ Γ′ and all product
projections πΓ,X , for the following commutative square

R(Γ×X) R(Γ)

R(Γ′×X) R(Γ′)

R(πΓ,X)

R(s×idX) R(s)

R(π
Γ′,X)

(a) (for L with intuitionistic additives) the Pseudo Epi property holds:
R(πΓ′,X)(y)4R(s)(x) implies there exists z such that: R(πΓ,X)(z)4 x
and y4R(s× idX)(z);

(b) (for L with classical additives) the quasi-pullback property holds: the
induced map R(Γ×X)→R(Γ)×R(Γ′) R(Γ′×X) is an epimorphism.

Indexed L frames work similarly to L hyperdoctrines, with frames substi-
tuted for algebras: C once again acts as a category of contexts, with R assigning
a L frame to each context. Although it may not look like it yet, condition 2. en-
sures that an interpretation of quantifiers based on the projections coheres correctly
with the appropriate changes in context. The relation between the definition for
intuitionistic additives and classical additives may not seem entirely clear at first,
but unpacking what it means for the square to be a quasi-pullback should clar-
ify: if R(πΓ′,X)(y) = R(s)(x) then there exists z such that: R(πΓ,X)(z) = x and
y = R(s× idX)(z). This then fits in with our past practice of treating bunched log-
ics with classical additives as the special case where the order in the frame semantics
is equality.

A Kripke-style semantics can be given for predicate L on indexed L frames.
For L with intuitionistic additives, an interpretation J−K is defined in precisely
the same way as for L hyperdoctrines, except for the key difference that each

8.2. Bunched Logic Models as Indexed Frames 147

x,J−K�Γ Pt1 . . . tm iff R(〈Jt1K, . . . ,JtmK〉)(x) ∈ JPK
x,J−K�Γ t =X t ′ iff R(〈JtK,Jt ′K〉)(x) ∈ Ran(R(∆JXK))

x,J−K�Γ ∃vn+1 : Xϕ iff there exists x′ ∈R(JΓK× JXK) s.t. R(πJΓK,JXK)(x′) = x and
x′,J−K �Γ∪{vn+1:X} ϕ

x,J−K�Γ ∀vn+1 : Xϕ iff for all x′ ∈R(JΓK× JXK), R(πJΓK,JXK)(x′)<R(JΓK) x, implies
x′,J−K �Γ∪{vn+1:X} ϕ

Figure 8.1: Satisfaction on indexed L frames. For L with classical additives, < is =.

m-ary predicate symbol P of type X1, . . . ,Xm an upwards closed subset JPK ∈
P<(R(JX1K×·· ·× JXmK)) is assigned. Similarly, an interpretation J−K for predi-
cate L with classical additives is given in the same way as it is for L hyperdoc-
trines, except that, for every m-ary predicate symbol P of type X1, . . . ,Xm, a subset
JPK ∈P(R(JX1K× ·· · × JXmK)) is assigned to P. Then for formulas ϕ of L in
context Γ with x ∈ R(JΓK) the satisfaction relation �Γ is inductively defined us-
ing the clauses in Fig 8.1, together with the usual satisfaction clauses for L for
the non-quantifier connectives, using the L frame structure of R(JΓK). There,
Ran(R(∆JXK)) = {y | ∃z(R(∆JXK)(z) = y)}. We note that bound variables are re-
named to be fresh throughout, in an order determined by quantifier depth.

Lemma 8.5. For L with intuitionistic additives, the satisfaction relation �Γ on
indexed L frames is persistent.

Proof. For atomic predicate formulas this is by design, with the assignment of up-
wards closed subsets to predicate symbols akin to a persistent valuation. For formu-
las of the form t =X t ′ this follows from the fact that R(∆X) is a L morphism and
hence order preserving. The rest of the clauses follow by an inductive argument,
the most involved of which is for formulae of the form ∃vn+1 : Xϕ .

Suppose x,J−K �Γ ∃vn+1 : Xϕ and y <R(JΓK) x. Then by definition there ex-
ists x′ such that R(πJΓK,JXK)(x′) = x 4R(JΓK) y and x′,J−K �Γ∪{vn+1:X} ϕ . Since
R(πJΓK,JXK) is a L morphism, and thus a intuitionistic morphism, there exists y′

such that y′ <R(JΓK×JXK) x′ and R(πJΓK,JXK)(y′) = y. By the inductive hypothesis,
y′,J−K �Γ∪{vn+1:X} ϕ and so y,J−K �JΓK ∃vn+1 : Xϕ .

8.2 Bunched Logic Models as Indexed Frames
Although at first sight it may not seem so, indexed frames and the semantics based
upon them are a generalisation of the standard store–heap semantics of Separation
Logic. A similar construction can also guide the definition of predicate models of
layered graph logic.

8.2. Bunched Logic Models as Indexed Frames 148

8.2.1 Separation Logic as an Indexed (B)BI Frame
Recall the BI frame HeapBI = (H, ·,<,H), where H is the set of heaps, < is heap
extension, and · is disjoint union. This is the BI frame corresponding to the par-
tial monoid of heaps. We define an indexed BI frame StoreBI : Set→ BIFr on ob-
jects by StoreBI(X) = (X×H, ·X ,vX ,X×H), where (x2,h2) ∈ (x0,h0) ·X (x1,h1) iff
x0 = x1 = x2 and h2 ∈ h0 · h1, and (x0,h0) <X (x1,h1) iff x0 = x1 and h0 < h1. On
morphisms, set StoreBI(f : X →Y)(x,h) = (f (x),h). It is straightforward to see this
defines a functor: for arbitrary X , Store(X) inherits the BI frame properties from
Heap and for arbitrary f : X → Y , Store(f) is trivially a BI morphism as it is iden-
tity on the structure that determines the back and forth conditions. The property
(Pseudo Epi) is also trivially satisfied so this defines an indexed BI frame.

For Separation Logic with classical additives, we instead start with the BBI
frame HeapBBI = (H, ·,{[]}) where [] is the empty heap. Then StoreBBI is de-
fined in essentially the same way, with StoreBBI(X) = (X ×H, ·X ,X × {[]}) and
StoreBBI(f)(x,h) = (f (x),h). This defines an indexed BBI frame.

We now describe the interpretations J−K on Store(B)BI that yield the standard
models of Separation Logic. We have one type Val and we set JValK = Z, with the
arithmetic operations J+K,J−K : JValK2→ JValK defined as one would expect. Term
morphisms JtK : JValKn→ JValK in context Γ = {v1, . . .vn} are then defined as usual,
with each constant n assigned the morphism JnK : JΓK {∗} JValK.n

As one would expect, the key difference between the two interpretations is in the
interpretation of the points-to predicate. For Intuitionistic Separation Logic, the
points-to predicate 7→ is assigned

J7→K = {((a,a′),h) | a ∈ dom(h) and h(a) = a′} ∈P<JValK2 (StoreBI(JValK2)).

This set is clearly upwards closed with respect to the order <JValK2 so this is a well-
defined interpretation. For Classical Separation Logic, 7→ is instead assigned

J 7→K = {((a,a′),h) | {a}= dom(h) and h(a) = a′} ∈P(StoreBBI(JValK2)).

In the indexed (B)BI frame Store(B)BI : Set→ ResFr with the interpretations just
defined, a store is represented as an n-place vector of values over JValK. That is, the
store s = {(v1,a1), . . . ,(vn,an)} is given by the element (a1, . . . ,an) ∈ JValKn. By a
simple inductive argument we have the following result:

Theorem 8.6. For all formulas ϕ of (B)BI pointer logic, all stores s =

{(v1,a1),. . .,(vn,an)} and all heaps h, s,h � φ iff ((a1, . . . ,an),h),J−K �Γ φ .

After verifying that terms are evaluated to the same elements as the standard

8.2. Bunched Logic Models as Indexed Frames 149

model in both representations, the equivalence of the clauses for atomic formulas
can be computed directly. The equivalence of the quantifier clauses is down to the
representation of stores as vectors and the action of the product projections under
the functor Store. The notions of indexed (B)BI frame and its associated semantics
are therefore a natural generalization of the standard Separation Logic model.

8.2.2 Bigraphs as Indexed ILGL Frames
We now give a bigraph model of predicate ILGL, inspired by Separation Logic. It
is based on the bigraph scaffolds defined in Chapter 2. These are ordered scaffolds
in which the order represents a place graph (interpreted spatially), non-E edges
represent the path information of the link graph and the layering structure represents
the composition of bigraphs.

We consider the following two predicates: an unary predicate Contains(−)
and a binary predicate − 7→ −. Informally, Contains(r) designates that a subgraph
contains a resource r and r 7→ r′ designates that a subgraph contains a path from
a resource r to a resource r′. Let X be a bigraph scaffold of the sort defined in
Chapter 2 Section 2.2.2. Denote by G the union of the place graphs of the system.
A resource assignment s is a finite partial function s : Res→P4(V (G)). As the
order is determined by the spatial containment encoded by the place graphs, that
a resource assignment maps resources to upwards closed sets just means that if a
location x contains a resource r, and x is contained in y then y also contains r. Given
a resource assignment s, together with r ∈ Res, we define s[r 7→ A] to be the resource
assignment that is equal to s everywhere except r, where it assigns r to the upward-
closed set of vertices A. We define a semantics on pairs (s,H) for this extended
language in Figure 8.2.

There are many design choices possible here. For example, we could addi-
tionally assign weights or permissions to edges, with satisfaction of the 7→ predi-
cate mediated by conditions on the path. Coupled with a notion of dynamics that
evolves assignments and the underlying graph theoretic structure we would have a
rich environment within which to model a variety of distributed systems. We defer
to another occasion an in-depth investigation of such a framework.

Similarly to the previous example, what we have defined corresponds to an
indexed ILGL frame. First, let (X ,◦,<) be the ILGL frame corresponding to the
bigraph scaffold X : L ∈H ◦K iff H @E K ↓ and H @E K = L. Set R : Set→ ILGL
by R(A) = (A×X ,◦A,<A) where (z,L) ∈ (x,H) ◦A (y,K) iff x = y = z, H @E K ↓
and H @E K = L, and (x,H)<A (y,K) iff x = y and H < K. For functions f : A→
B set R(f)(a,H) = (f (a),H). This defines a functor R which trivially satisfies
(Psuedo Epi). Hence R is an indexed ILGL frame.

8.3. Duality for Bunched Logic Hyperdoctrines 150

s,H � > always
s,H � ⊥ never
s,H � Contains(r) iff H contains a s(r)-vertex
s,H � r 7→ r′ iff there exists a path from a s(r)-vertex to a s(r′)-vertex in H
s,H � ϕ ∧ψ iff s,H � ϕ and s,H � ψ

s,H � ϕ ∨ψ iff s,H � ϕ or s,H � ψ

s,H � ϕ → ψ iff for all K < H, s,K � ϕ implies s,K � ψ

s,H � ϕ ∗ψ iff there exists K0 @E K1 ↓ s.t. H < K0 @E K1, s,K0 � ϕ and
s,K1 � ψ

s,H � ϕ−∗ψ iff for all K and L< H s.t. L@E K ↓: s,L � ϕ implies
s,L@E K � ψ

s,H � ϕ ∗−ψ iff for all K and L< H s.t. K @E L ↓: s,L � ϕ implies
s,K @E L � ψ

s,H � ∃rϕ iff there exists A s.t. s[r 7→ A],H � ϕ

s,H � ∀rϕ iff for all A, H 4 K implies s[r 7→ A],K � ϕ

Figure 8.2: Satisfaction for bigraph models of predicate ILGL.

We define the following interpretation. The single sort is interpreted as
P<(V (G)) where G is the graph union of the place graph vertices of the system
of bigraphs. The predicate symbols are interpreted as JContains(−)K = {(A,H) |
∃x ∈ A : x ∈V (H)} and

J7→K = {((A1,A2),H) | ∃x1 ∈ A1 and x2 ∈ A2 : H contains a path x1 to x2}.

Let ri be an enumeration of resources in Res and let ϕ be a formula with free vari-
ables amongst r1, . . . ,rn. Then

{(r1,A1), . . . ,(rn,An)},G � ϕ iff ((A1, . . . ,An),G),J−K �{r1,...,rn} ϕ.

8.3 Duality for Bunched Logic Hyperdoctrines
We now extend the duality results given for L algebras to L hyperdoctrines.
For this to make sense, both L hyperdoctrines and indexed L frames need to
be equipped with a notion of morphism to yield categories. The definition of L

hyperdoctrine morphism adapts that for coherent hyperdoctrines given by Coumans
[66].

Definition 8.7 (L Hyperdoctrine Morphism). Given a pair of L hyperdoctrines
P : Cop→ Poset and P′ : Dop→ Poset, a L hyperdoctrine morphism (K,τ) : P→ P′

8.3. Duality for Bunched Logic Hyperdoctrines 151

is a pair (K,τ) satisfying the following properties:

1. K : C→ D is a finite product preserving functor;

2. τ : P→ P′ ◦K is a natural transformation;

3. For all objects X in C: τX×X(=X) = =′K(X);

4. For all objects Γ and X in C, the following squares commute:

P(Γ×X) P′(K(Γ)×K(X))

P(Γ) P′(K(Γ))

τΓ×X

∃XΓ ∃′K(X)K(Γ)

τΓ

P(Γ×X) P′(K(Γ)×K(X))

P(Γ) P′(K(Γ))

τΓ×X

∀XΓ ∀′K(X)K(Γ)

τΓ

The composition of L hyperdoctrine morphisms (K,τ) : P→ P′ and (K′,τ ′) : P′→
P′′ is given by (K′ ◦K,τ ′K(−) ◦ τ). This forms a category L Hyp.

For indexed L frames the definition of morphism splits because of the weak-
ening of equality to a preorder on the intuitionistic side. It is straightforward to
show that the notion of indexed L frame morphism when L has intuitionistic ad-
ditives collapses to that for L with classical additives when the preorders < are
substituted for =.

Definition 8.8 (Indexed L Frame Morphism for intuitionistic L). Given indexed
L frames R : C→ L and R ′ : D→ L for L with intuitionistic additives, an
indexed L frame morphism (L,λ) : R→R ′ is a pair (L,λ) such that:

1. L : D→C is a finite product preserving functor;

2. λ : R ◦L→R ′ is a natural transformation;

3. (Lift Property) If there exists x and y such that R ′(∆X)(y) 4 λX×X(x) then
there exists y′ such that R(∆L(X))(y′)4 x;

4. (Morphism Pseudo Epi) If there exists x and y with R ′(πΓ,X)(x)4 λΓ(y) then
there exists z such that x4 λΓ×X(z) and R(πL(Γ),L(X))(z)4 y.

The composition of indexed L frame morphisms (L′,λ ′) : R ′ → R ′′ and (L,λ) :
R→R ′ is given by (L◦L′,λ ′ ◦λL′(−)). This yields a category IndL .

Definition 8.9 (Indexed L Frame Morphism for classical L). For indexed L

frames R : C→ L and R ′ : D→ L for L with classical additives, an indexed
L frame morphism (L,λ) : R → R ′ is a pair (L,λ) satisfying 1. and 2. of the
previous definition as well as

8.3. Duality for Bunched Logic Hyperdoctrines 152

(3′) (Lift Property′) if there exist x and y such that λX×X(x) = R ′(∆X)(y), then
there exists y′ such that R((∆L(X)))(y′) = x, and

(4′) (Quasi-Pullback) for all objects Γ and X in C, the following square is a quasi-
pullback:

R(L(Γ)×L(X)) R(Γ×X)

R(L(Γ)) R(Γ)

λΓ×X

R(πL(Γ),L(X))) R′(πΓ,X)

λΓ

The composition of indexed L frame morphisms (L′,λ ′) : R ′ → R ′′ and (L,λ) :
R→R ′ is given by (L◦L′,λ ′ ◦λL′(−)). This yields a category IndL .

Next we lift the complex algebra and prime filter frame constructions to the
level of indexed frames and hyperdoctrines. This can straightforwardly be achieved
by composing hyperdoctrines and indexed frames with the prime filter and complex
algebra functors respectively, and most of the required properties follow immedi-
ately from the results of Chapter 6. As was the case for the propositional bunched
logics, this yields a representation theorem for hyperdoctrines that proves complete-
ness of the indexed frame semantics, as well as assignments on objects that can be
made functorial.

Definition 8.10 (Complex L Hyperdoctrine). Given an indexed L frame
R : C → L for L with intuitionistic additives, the complex hyperdoctrine of
R, ComHypL (R), is given by ComL (R(−)) : Cop → L Alg, together with
Ran(R(∆X)) as =X , R(πΓ,X)

∗ as ∃XΓ, and R(πΓ,X)∗ as ∀XΓ, where

R(πΓ,X)
∗(A) = {x | there exists y ∈ A : R(πΓ,X)(y)4 x} and

R(πΓ,X)∗(A) = {x | for all y, if x4R(πΓ,X)(y) then y ∈ A}.

For L with classical additives, the definitions of R(πΓ,X)
∗ and R(πΓ,X)∗ are as

above, except with 4 replaced with =.

Given that the complex algebra operations thus far have matched the corre-
sponding semantic clauses on frames, one might have expected ∃XΓ to be given by
the direct image R(πΓ,X). Using the fact that R(πΓ,X) is an L morphism—and
thus an intuitionistic morphism—it can be shown that R(πΓ,X)

∗ is in fact identical
to R(πΓ,X) so this is indeed the case. We use its presentation as R(πΓ,X)

∗ as it
simplifies some proofs that follow.

Lemma 8.11. Given an indexed L frame R : C→L , the complex hyperdoctrine
ComHypL (R) is a L hyperdoctrine.

8.3. Duality for Bunched Logic Hyperdoctrines 153

Proof. We concentrate on the verifications relating to R(πΓ,X)
∗ and R(πΓ,X)∗ for

intuitionistic L . It is straightforward to see these map upwards-closed sets to
upwards-closed sets and are monotone with respect to the subset ordering⊆, mean-
ing they are well-defined. The adjointness properties follow from the definitions so
it just remains to prove naturality.

We give the case for ∃XΓ. Given a morphism s : Γ → Γ′ in C and an el-
ement A ∈ ComL (R(Γ′ × X)), we must show R(πΓ,X)

∗(R(s× idX)
−1(A)) =

R(s)−1(R(πΓ′,X)
∗(A)). Suppose x ∈R∗(πΓ,X)(R(s× idX)

−1(A)): then there ex-
ists y such that R(πΓ,X)(y) 4 x and R(s× idX)(y) ∈ A. We have R(πΓ′,X)(R(s×
idX)(y)) = R(s)(R(πΓ,X)(y)) 4 R(s)(x). Hence x ∈ R(s)−1(R(πΓ′,X)

∗(A)), as
required.

Conversely, assume x ∈ R(s)−1(R(πΓ′,X)
∗(A)). Then there exists y ∈ A

such that R(πΓ′,X)(y) 4 R(s)(x). Then by (Psuedo Epi), there exists z such that
R(πΓ,X)(z)4 x and y4R(s× idX)(z). By upwards-closure of A, R(s× idX)(z) ∈
A. Hence we have x ∈R(πΓ,X)

∗(R(s× idX)
−1(A)), as required.

The proof for L with classical additives follows immediately by substitut-
ing every instance of 4 with = in the above argument, where the quasi pullback
property allows us to assume the existence of z such that R(πΓ,X)(z) = x and
y = R(s× idX)(z) from R(πΓ′,X)(y) = R(s)(x) .

Definition 8.12 (Indexed Prime Filter Frame). Given a L hyperdoctrine P, the
indexed prime filter frame of P, IndPrL (P) is given by PrL (P(−)).

Lemma 8.13. Given a L hyperdoctrine P : Cop→ Poset, the indexed prime filter
frame IndPrL (P) is an indexed L frame.

Proof. We first show the Pseudo Epi property is satisfied when L has intuitionistic
additives. Assume we have objects Γ,Γ′ and X in C and a morphism s : Γ→ Γ′. Let
prime filters Fx and Fy be such that P(πΓ′,X)

−1(Fy) ⊆ P(s)−1(Fx). It is easy to see
that

P(F) =

1 if P(πΓ,X)
−1(F)⊆ Fx and Fy ⊆ P(s× idX)

−1(F)

0 otherwise

is a prime predicate. The only non-trivial verification is showing P(F ∩F ′) = 1
implies P(F) = 1 or P(F ′) = 1. Suppose P(F ∩F ′) = 1,P(F) = 0 and P(F ′) = 0.
Necessarily there exists a and b such that P(πΓ,X)(a) ∈ F , P(πΓ,X)(b) ∈ F ′ and
a,b 6∈ Fx. Then P(πΓ,X)(a)∨P(πΓ,X)(b) = P(πΓ,X)(a∨ b) ∈ F ∩F ′ so a∨ b ∈ Fx.
However Fx is prime, so a ∈ Fx or b ∈ Fx, a contradiction.

Consider the filter F = [P(s× idX)(Fy)) and suppose for contradiction it is not
proper. By Proposition 5.4 this entails there exists a ∈ Fy such that P(s× idX)(a) =

8.3. Duality for Bunched Logic Hyperdoctrines 154

⊥. By adjointness, ∃XΓ(⊥) = ⊥, so P(s)(∃XΓ′(a)) = ∃XΓ(P(s× idX)(a)) = ⊥ by
naturality. This entails ∃XΓ′(a) 6∈ P(s)−1(Fx) so ∃XΓ′(a) 6∈ P(πΓ′,X)

−1(Fy) by as-
sumption. However, by adjointness and filterhood, P(πΓ′,X)(∃XΓ′(a)) ∈ Fy, a con-
tradiction.

Clearly P(s × idX)
−1(F) ⊇ Fy. To see that the other required inclusion

holds, suppose a ∈ P(πΓ,X)
−1(F). Then there exists b ∈ Fy such that P(s×

idX)(b) ≤ P(πΓ,X)(a). By adjointness ∃XΓ(P(s× idX)(b)) ≤ a and so by nat-
urality P(s)(∃XΓ′(b)) ≤ a. Since P(πΓ′,X)(∃XΓ′(b)) ∈ Fy, we have ∃XΓ′(b) ∈
P(πΓ′,X)

−1(Fy) ⊆ P(s)−1(Fx). Thus by filterhood, a ∈ Fx. Thus P(F) = 1 and by
the prime extension lemma we have a prime F with P(F) = 1, as required.

For L with classical additives, we instead start with the assumption of prime
filters Fx and Fy such that P(πΓ′,X)

−1(Fy) = P(s)−1(Fx). This is sufficient to once
again prove the existence of a prime filter F satisfying P(s× idX)

−1(F) ⊇ Fy and
P(πΓ,X)

−1(F) ⊆ Fx. However, maximality of prime filters on Boolean algebras
collapses the inclusions to equalities — P(s× idX)

−1(F) = Fy and P(πΓ,X)
−1(F) =

Fx — so the quasi pullback property holds.

We now lift the representation theorem for L algebras to L hyperdoctrines,
making essential use of the natural transformation θ used in the duality theorems of
Chapter 6.

Theorem 8.14 (Representation Theorem for L Hyperdoctrines). Every L hyper-
doctrine P : Cop→ Poset can be embedded in a complex L hyperdoctrine. That is,
ΘP : P→ComL PrL (P(−)) defined (IdC,θP(−)) is a monomorphism.

Proof. Clearly, by the representation theorem for L algebras, each component of
ΘP is mono, and hence ΘP is mono. It remains to show that ΘP is a L hyperdoctrine
morphism. That IdC preserves finite products is immediate and that θP(−) : P→
ComL PrL (P(−)) is a natural transformation is given by L duality.

First we note that property 3. of L hyperdoctrine morphisms holds. We must
show that θP(X×X)(=X) = Ran(P(∆X)

−1) for any object X of C. First suppose
F = P(∆X)

−1(G) for some prime filter G. By adjointness of =X at > we have that
P(∆X)(=X) = > ∈ G. Hence =X∈ F . Conversely, assume =X∈ F . Straightfor-
wardly we have that

P(G) =

1 if P(∆X)
−1(G)⊆ F

0 otherwise

defines a prime predicate. By the adjointness property of =X we have that
P(∆X)

−1({>}) ⊆ F . Hence there exists prime G with P(∆X)
−1(G) ⊆ F by the

8.3. Duality for Bunched Logic Hyperdoctrines 155

prime extension lemma. For the case of L with intuitionistic additives, since
P(∆X)

−1 is an intuitionistic morphism there then exists G′⊇G with P(∆X)
−1(G′) =

F ; for the case of L with classical additives, maximality of prime filters means
P(∆X)

−1(G) = F . Either way, F ∈ Ran(P(∆X)
−1) as required.

For property 4. we verify the naturality diagram for ∃XΓ: the verification
of ∀XΓ is similar. The verification reduces to showing that, given a prime filter
F of P(Γ) and a ∈ P(Γ×X), ∃XΓ(a) ∈ F iff there exists G such that a ∈ G and
P(πΓ,X)

−1(G) ⊆ F . For L with intuitionistic additives this corresponds precisely
to computing commutativity of the diagram, and for L with classical additives we
can conclude P(πΓ,X)

−1(G) = F by maximality of prime filters, yielding commu-
tativity of the appropriate diagram for that case.

First assume ∃XΓ(a) ∈ F . It is straightforward to see that

P(G) =

1 if P(πΓ,X)
−1(G)⊆ F

0 otherwise

defines a prime predicate. Consider G = [a). This is proper, as otherwise a = ⊥,
which would entail ∃XΓ(a) = ⊥ ∈ F , contradicting that F is a prime (and thus
proper) filter. Let P(πΓ,X)(b) ≥ a. Then by adjointness, ∃XΓ(a) ≤ b ∈ F . Hence
P(G) = 1 and so there exists a prime filter G with P(G) = 1, as required. Now
assume a ∈ G and P(πΓ,X)

−1(G) ⊆ F . By adjointness a ≤ P(πΓ,X)(∃XΓ(a)) ∈ G,
so ∃XΓ(a) ∈ P(πΓ,X)

−1(G)⊆ F as required.

In much the same way as was shown in Chapter 7, the representation theorem
yields completeness for the indexed frame semantics. Given any interpretation on
an indexed L frame J−K, we automatically have an interpretation for the complex
hyperdoctrine as predicate symbols are interpreted as (upwards-closed) subsets; that
is, elements of complex algebras of L frames. A simple inductive argument shows
that satisfaction coincides for these models.

Proposition 8.15. Given an indexed L frame R and an interpretation J−K, for all
predicate L formulae ϕ in context Γ and x ∈R(JΓK), x,J−K �Γ φ iff x ∈ JφK.

Similarly, given an interpretation J−K on a L hyperdoctrine, we can define the
interpretation J̃−K by setting J̃PK = θP(JX1K×···×JXmK)(JPK) for each predicate sym-
bol of type X1, . . . ,Xm. As a corollary of the representation theorem we obtain the
following proposition.

Proposition 8.16. Given a L hyperdoctrine P and an interpretation J−K, for all
predicate L formulae ϕ in context Γ and prime filters F of P(JΓK), JϕK ∈ F iff
F, J̃−K �Γ ϕ .

8.3. Duality for Bunched Logic Hyperdoctrines 156

Theorem 8.17 (Soundness and Completeness for Indexed L frames). For all pred-
icate L formulae ϕ in context Γ, ϕ `Γ ψ is provable iff ϕ �Γ ψ .

From here it is straightforward to set an assignment of morphisms to make
the assignment of complex hyperdoctrines and indexed prime filter frames func-
torial. Given a L hyperdoctrine morphism (K,τ) : P → P′, IndPrL (K,τ) =

(K,τ−1). Similarly, given an indexed L frame morphism (L,λ) : R → R ′,
ComHypL (L,λ) = (L,λ−1).

Lemma 8.18. The functor ComHypL is well-defined.

Proof. Let (L,λ) be a indexed L frame morphism. First note that by definition
L is a finite product preserving functor. We also have that each component λX :
R(LX)→R ′(X) is a L morphism. Hence by functorality of ComL , each λ

−1
X :

ComL (R ′(X))→ ComL (R(LX)) is a L algebra homomorphism, and naturality
is inherited from λ .

Next we must verify that λ
−1
X×X(Ran(R ′(∆X))) = Ran(R(∆LX)). The right-to-

left inclusion follows immediately from naturality of λ . For the left-to-right, sup-
pose λX×X(x)∈ Ran(R ′(∆X)). Then there exists y such that λX×X(x) =R ′(∆X)(y).
In the case for L with intuitionsitic additives, by the lift property, there exists y′

such that R(∆LX)(y′) 4 x. Since R(∆LX) is an intuitionistic morphism, there thus
exists x′ such that y′ 4 x′ and R(∆LX)(x′) = x as required. For L with classical
additives we are given such an x′ immediately by the respective lift property.

Finally we verify the commutative diagram for ∃XΓ, leaving the similar
verification for ∀XΓ to the reader. We must show that R(πLΓ,LX)

∗λ−1
Γ×X(A) =

λ
−1
Γ

R ′(πΓ,X)
∗(A) for A ∈ ComL (R ′(Γ×X)). First consider the case of L with

intuitionistic additives. Suppose x ∈R(πLΓ,LX)
∗λ−1

Γ×X(A). Then there exists y with
λΓ×X(y) ∈ A and R(πLΓ,LX)(y) 4 x. Since λ is a natural transformation and its
components are order-preserving we have R ′(πΓ,X)(λΓ×X(y))= λΓR(πLΓ,LX)(y)4
λΓ(x), so x ∈ λ

−1
Γ

R ′(πΓ,X)
∗(A). Conversely, suppose x ∈ λ

−1
Γ

R ′(πΓ,X)
∗(A). Then

R ′(πΓ,X)(y) 4 λΓ(x) for y ∈ A. By the Morphism Pseudo Epi property, there ex-
ists z such that y 4 λΓ×X(z) and R(πLΓ,LX)(z) 4 x. A is an upwards-closed set
so λΓ×X(z) ∈ A, hence x ∈ R(πLΓ,LX)

∗λ−1
Γ×X(A) as required. For the case where

L has classical additives the same argument applies, where 4 is substituted for =
and the other Morphism Pseudo Epi property is applied to find a sufficient z in the
right-to-left direction.

Lemma 8.19. The functor IndPrL is well-defined.

Proof. Let (K,τ) be a L hyperdoctrine morphism. As in the previous lemma, we
automatically obtain properties 1. and 2. for (K,τ−1) from the definition and the

8.3. Duality for Bunched Logic Hyperdoctrines 157

complex algebra functor ComL . For properties 3. and 4. we verify the case for L

with intuitionistic additives an obtain the case for L with classical additives as a
special case.

First we consider the Lift Property. Suppose P(∆X)
−1(G) ⊆ τ

−1
X×X(F). It is

simple to see that

P(G′) =

1 if P′(∆KX)
−1(G′)⊆ F

0 otherwise

is a prime predicate. By Theorem 8.14 we have that =X∈ P(∆X)
−1(G)⊆ τ

−1
X×X(F)

so τX×X(=X) ==′KX∈ F . By adjointness it then follows that P′(∆KX)
−1({>})⊆ F ,

as P(∆KX)(a) => entails =′KX≤ a. By the prime extension lemma there thus exists
prime G with P(G) = 1, as required. For the case of L with classical additives,
maximality entails P′(∆KX)

−1(G′) = F .

Next, the Morphism Pseudo Epi property. Suppose P(πΓ,X)
−1(F) ⊆ τ

−1
Γ

(G).
We can once again define a prime predicate

P(G′) =

1 if F ⊆ τ
−1
Γ×X(G

′) and P′(πKΓ,KX)
−1(G′)⊆ G

0 otherwise

that we can use to prove the existence of the appropriate prime filter. Consider
the filter G′ = [τΓ×X(F)). This is proper, otherwise there exists a ∈ F such that
τΓ×X(a) = ⊥. By property 4. of L hyperdoctrine morphism, this would entail
τΓ(∃XΓ(a) = ∃′KXKΓτΓ×X(a) = ∃′KXKΓ(⊥) = ⊥. Since a ∈ F , by adjointness
P(πΓ,X)(∃XΓ(a)) ∈ F . Hence τΓ(∃XΓ(a) = ⊥ ∈ G by assumption, contradicting
that G is a prime filter.

Clearly F ⊆ τ
−1
Γ×X(G

′). Further, let b ∈ P′(πKΓ,KX)
−1(G′). Then there ex-

ists a ∈ F such that P′(πKΓ,KX)(b) ≥ τΓ×X(a). By adjointness it follows that
∃KXKΓ(τΓ×X(a)) ≤ b, and by the property 4. of L hyperdoctrine morphisms we
have τΓ(∃XΓ(a)) ≤ b. Since a ∈ F we have that P(πΓ,X)∃XΓ(a) ∈ F by adjoint-
ness and upwards closure, hence ∃XΓ(a) ∈ P(πΓ,X)

−1(F)⊆ τ
−1
Γ

(G). It follows that
τΓ(∃XΓ(a)) ∈ G, and so b ∈ G. Thus P(G) = 1 and so there exists a prime filter G
with P(G) = 1 by the prime extension lemma. In the case for L with classical ad-
ditives, by maximality these inclusions become equalities, and this yields a witness
for the Quasi-Pullback property.

At this stage topology must be introduced to yield a duality.

Definition 8.20 (Indexed L Space). An indexed L space is a functor R : C→L Sp
such that

8.3. Duality for Bunched Logic Hyperdoctrines 158

1. U ◦R : C→L is an indexed L frame, where U : L Sp→L is the functor
that forgets topological structure.

2. For each object X in C, Ran(R(∆X)) is clopen;

3. For each pair of objects Γ and X in C, R(πΓ,X)
∗ and R(πΓ,X)∗ map

(upwards-closed) clopen sets to (upwards-closed) clopen sets.

In the case for L with classical additives it is possible to weaken condition
3. to R(πΓ,X)

∗ being an open map and R(πΓ,X)∗ a closed map. This is because
R(πΓ,X) is a continuous map between a compact and a Hausdorff space, and so
the direct image R(πΓ,X) = R(πΓ,X)

∗ is a closed map automatically. We also have
that R(πΓ,X)∗ is an open map by definition. In the intuitionistic case the same
reasoning applies for R(πΓ,X)

∗ (using its equivalence with the direct image) but
it is not clear how to make the analogous case for R(πΓ,X)∗. Nonetheless, this
definition of indexed L space gives us what we need.

Lemma 8.21. Given a L hyperdoctrine P, the indexed prime filter space
IndPrL (P) is a indexed L space.

Proof. Given Lemma 8.13 the only verifications left are of properties 2. and 3. We
immediately obtain 2. by noting once again that Ran(P(∆X)

−1) = θP(X×X)(=X),
a clopen set by L duality. Utilising L duality once more, we have that every
(upwards-closed) clopen set of PrL (P(Y)) is of the form θP(Y)(a) for some a ∈
P(Y). We thus demonstrate that (P(πΓ,X)

−1)∗(θP(Γ×X)(a)) = θP(Γ)(∃XΓ(a)) and
(P(πΓ,X)

−1)∗(θP(Γ×X)(a)) = θP(Γ)(∀XΓ(a)).
First assume F ∈ (P(πΓ,X)

−1)∗(θP(Γ×X)(a)). Then there exists F ′ such
that a ∈ F ′ and P(πΓ,X)

−1(F ′) ⊆ F . By adjointness a ≤ P(πΓ,X)(∃XΓ(a)) so
∃XΓ(a) ∈ P(πΓ,X)

−1(F ′) ⊆ F so F ∈ θP(Γ)(∃XΓ(a)) as required. Conversely, sup-
pose ∃XΓ(a) ∈ F . It is easy to see that

P(G) =

1 if P(πΓ,X)
−1(G)⊆ F and a ∈ G

0 otherwise

is a prime predicate. Consider the filter G = [a). F is proper as a 6= ⊥ (otherwise
∃XΓ(⊥) =⊥ ∈ F), and by adjointness, if a≤ P(πΓ,X)(b), it follows that ∃XΓ(a)≤
b ∈ F . Hence P(G) = 1 and by the prime extension lemma there exists a prime G
with P(G) = 1 as required. In the case for L with intuitionistic additives we’re
done; in the case for L with classical additives, maximality of prime filters makes
the inclusion an equality.

8.3. Duality for Bunched Logic Hyperdoctrines 159

For the other equality, first assume we have F with ∀XΓ(a) ∈ F and let F ⊆
P(πΓ,X)

−1(G). Then P(πΓ,X)(∀XΓ(a))∈G, and by adjointness and upwards closure
of G we have a ∈ G. In the other direction, assume ∀XΓ(a) 6∈ F . We show there
exists a prime filter G such that F ⊆ P(πΓ,X)

−1(G) and a 6∈ G. First note that for
proper ideals I,

P(I) =

1 if F ⊆ P(πΓ,X)
−1(I) and a ∈ I

0 otherwise

is a prime predicate. Consider I = (a]. This is proper as a 6= >, as otherwise
∀XΓ(a) => 6∈ F , contradicting that F is a filter. Suppose b∈ F . Then P(πΓ,X(b)) 6≤
a as otherwise by adjointness b≤ ∀XΓ(a) ∈ F . Thus P(I) = 1 and so there exists a
prime ideal I such that P(I) = 1. The prime filter G = I gives the required witness
to the inclusion. Once again, in the case with classical additives maximality ensures
the inclusion of prime filters is equality.

In the other direction, composing an indexed L space R with the clopen al-
gebra functor ClopL

< yields the clopen hyperdoctrine ClopHypL (R). Conditions
2. and 3. of indexed L space ensure that the assignment of Ran(R(∆X)) as =X ,
R(πΓ,X)

∗ as ∃XΓ, and R(πΓ,X)∗ as ∀XΓ is well-defined, and Lemma 8.11 suffices
to show that they satisfy the required properties. The definition of indexed L space
morphism is given by taking that for indexed L frames. Then the assignment of
morphisms given by the indexed prime filter frame and complex hyperdoctrine func-
tors works the same way as before.

It remains to specify the natural isomorphisms that form the dual equiva-
lence of categories. We already have Θ : IdL Hyp→ ClopHypL IndPrL from the
representation theorem. We also define H : IdIndL Sp → IndPrL ClopHypL by
HR = (IdC,ηR(−)), where η : IdL Sp → PrL ClopL

< is the natural isomorphism
given by L duality.

Theorem 8.22 (Duality for L Hyperdoctrines). Θ and H form a dual equivalence
of categories between L Hyp and IndL Sp.

Proof. The final verification is that Θ and H are natural isomorphisms. By Theorem
8.14 we have that each component of Θ is a L hyperdoctrine morphism, and as each
component is a natural isomorphism by L duality, so too is Θ. For H we must first
verify that each component is an indexed L space morphism.

We first attend to the Lift Property for L with intuitionistic additives. Suppose
(R(∆X)

−1)−1(F)⊆ ηR(X×X)(x). Let y be such that ηR(X)(y) = F ; such a y neces-
sarily exists by L duality. By naturality of η we thus have ηR(X×X)(R(∆X)(y)) =

8.3. Duality for Bunched Logic Hyperdoctrines 160

(R(∆X)
−1)−1(ηR(X)(y)) ⊆ ηR(X×X)(x) so for any upwards-closed clopen set C,

R(∆X)(y) ∈C implies x ∈C. If R(∆X)(y) 64 x the Priestley separation axiom con-
tradicts this, so R(∆X)(y)4 x as required. For L with classical additives, the same
argument applies, except using the fact that any distinct elements can be separated
by clopens. The Pseudo Epi Property is proved by essentially the same argument.

Now, since each ηR(−) is a natural isomorphism by L duality, we have that H
is a natural isomorphism, and so the dual equivalence holds.

8.3. Duality for Bunched Logic Hyperdoctrines 161

Summary of Part II
In this part of the thesis we set up a duality theoretic framework for investigat-
ing the metatheory of bunched logics. After the preliminaries given in Chapter 5
(including the important concept of prime predicate) we gave representation and
duality theorems for all of the bunched logics introduced in Part I in Chapter 6. In
Chapter 7 this framework was put to use to prove a raft of results concerning propo-
sitional logics. In particular these include a simultaneous completeness theorem for
all of the bunched logics of Part I, decidability theorems for the layered graph log-
ics, a characterisation theorem for the classes of bunched logic model definable by
bunched logic formulae and a resolution of the open problem of Craig interpolation
for a number of logics. We finished the part by extending duality to the structures
interpreting predicate bunched logic, inspired in part by the widespread use of BI
hyperdoctrines in Separation Logic.

Part III

Proof Theory for Bunched Logics

162

163

Introduction to Part III
In this part of the thesis we attend to the proof theory of bunched

logics. To do so we develop a modular framework of tableau calculi
that gives systems that are sound and complete for each propositional
bunched logic we have considered, as well as restrictions to particu-
lar classes of bunched logic model of interest: for example, classes of
models satisfying separation theories (properties common to memory
models of bunched logics) and the class of layered graph models of
ILGL. This is done through the observation that bunched logic frames
and satisfaction upon them can be encoded as special theories of first-
order logic called coherent theories. We show that these precisely cor-
respond to tableau calculi, and these systems can be proved sound and
complete by utilising existing results in the proof theory of coherent
logic. Our methods can be thought of as a strict generalisation of the
existing tableau calculi for bunched logics: existing systems can be in-
stantiated in our framework, but others can be expressed that were not
previously possible due to implicit restrictions in the way labels were
previously handled.

Chapter 9

Modular Tableaux Calculi for
Bunched Logics

Thus far we have considered the proof theory of bunched logics in a very light
way, utilising Hilbert systems which essentially correspond to the axiomatisation of
bunched logic algebras. Although they are sound and complete for the correspond-
ing logics, working with Hilbert systems is difficult for both humans and computers:
in a given proof attempt the shape of the rules/derivation gives no real guidance on
how to proceed at any given step and it follows that a high degree of trial and error is
necessary. In well-behaved sequent calculi (satisfying cut elimination and the sub-
formula property), proof search becomes tractable: one can start with the desired
conclusion and apply rules backwards, safe in the knowledge that every formula that
appears must be a subformula of the conclusion. A high degree of non-determinism
may still hold in such systems (particularly in systems involving a multiplicative ∗,
necessitating significant non-determinism in the way contexts are split up through
backwards proof search [120, 188]) but it is clear this is still hugely preferable to
Hilbert system proof search.

There is a reason, however, that we only mentioned sequent calculi as a moti-
vation and did not carry it through to the body of the thesis: of the bunched logics
we have considered, such well-behaved sequent calculi are not known to exist out-
side of ILGL and BI. The clearest way to augment BI’s bunched sequent calculus
to obtain a system for BBI is to add a rule corresponding to the double negation law
of classical propositional logic. However, this irreparably breaks cut elimination
and thus the subformula property. Adding multiplicative negation to obtain DMBI
is also problematic, as it requires a system in which bunches appear in both an-
tecedent and consequent position. Such systems are not well understood, let alone
one in which both Boolean and multiplicative negation coexist.

One generalisation of the sequent calculus that has been shown suitable for

165

bunched logics is the display calculus [17]. Brotherston [38] has shown that dis-
play calculi with cut elimination exist for BI, BBI, DMBI and CBI. Brotherston and
Villard [45] further show that such proof systems can be given for BiBBI and the
axiomatic extensions we have given. Ciabattoni and Ramanayake [55] completely
characterise the kinds of display calculi that can be safely extended with new rules
corresponding to Hilbert-style axioms of a certain syntactic form while maintaining
cut elimination, and the aforementioned display calculi satisfy all of their criteria
and so can be extended modularly in a way that corresponds to a large class of ax-
iomatic extensions of bunched logics. However there is an issue for the intended
applications of bunched logic: many of the classes of bunched logic frame of in-
terest do not correspond (cf. Chapter 7, [44]) to any Hilbert-style axioms! This is
compounded by the work of Brotherston & Villard [44] and Larchey-Wendling &
Galmiche [150] that shows that many simple properties like indivisibility of units,
partial deterministic composition and total deterministic composition determine dis-
tinct sets of valid formulae for bunched logic: if we consider (as is done in separa-
tion logic) bunched logics in the more general sense as logics specified by validity in
particular classes of models, even the extremely flexible display calculus approach
is insufficient to capture everything of interest.

Is it possible to build sound and complete proof systems for these classes? An-
swering this question affirmatively forms the remainder of the thesis. Our work is
inspired by (and generalises) a long line of work in labelled tableaux calculi for
bunched logics, which began with Galmiche et al.’s [101] system for BI. A num-
ber of similar systems have been given since: Galmiche & Méry [100] define a
tableau system for the standard store-heap semantics of Separation Logic, Larchey-
Wendling [148] for partial monoidal BBI, and a number of modal extensions of par-
tial monoidal (B)BI enjoy a sound and complete tableaux calculus [68, 98]. Such
systems have the flavour of backwards proof search in a cut-free sequent calculus
with the subformula property, with the derivation of a proof guided by the decom-
position of a formula into its subformulae. This is explicitly brought out in Hoú
et al.’s [127] labelled sequent calculus for BBI, which is constructed in a similar
manner to these tableau systems.

Our framework departs from previous work in a key way. Existing bunched
logic tableaux calculi work by explicitly representing states as labels and specify
that these labels form a commutative monoid, which can thus be seen as encoding
the composition and unit of a partial monoidal model of the logic. We abstract a
step further though. To facilitate modularity, we do not wish to encode properties
like partial functionality of composition or frames only having a single unit. We
therefore utilise labels that have no algebraic structure whatsoever (similarly to the

9.1. Logical Rules for Bunched Logic Tableaux Calculi 166

aforementioned BBI labelled sequent calculi), and formulate a systematic way to
add new tableau rules that correspond to particular properties. Our framework is
also distinct in that it extends the tableau method to bunched logics with connectives
other than those found in (B)BI and its modal extensions. It is also related to a
range of work for generically generating labelled proof systems for logics (for a
sampling, see Gabbay [95], Sernadas et al. [206] and Schmidt & Tishkovsky [204]).
Where our work differs is the utilisation of a well-behaved fragment of first-order
logic called coherent logic as an organising principle: our systems effectively arise
as theories of a coherent logic, and this uses the syntactic shape of the first-order
axiomatisation of bunched logic frames in an essential way.

In this chapter we define tableaux calculi that are sound and complete for the
frame semantics of bunched logics as they have been given throughout the thesis.
They are thus equipollant with the Hilbert systems which we have proved soundness
and completeness with respect to thus far. In the sequel we extend this to partic-
ular classes of frames. This chapter is based on material from the paper Modular
Tableaux Calculi for Separation Theories [81].

9.1 Logical Rules for Bunched Logic Tableaux Cal-
culi

We begin by explaining how the tableaux calculi of our framework will work. As
is standard for the tableau method, derivations in our calculi are implicit attempts
to construct a countermodel for the formula ϕ to be proved. This is done via the
derivation of syntactic expressions that give partial specifications of a model that can
be realized as a real model if the formula is invalid. If every possible countermodel
construction (i.e., every branch of a tableau) results in a contradiction, then we may
conclude that no countermodel exists and call such a tableau a proof of ϕ .

To understand this informal definition we must specify what exactly these
syntactic expressions are, and how exactly they supply a partial specification of
a model. We begin with the fundamental entities in our calculi: labelled formulae.
As before, L stands for any bunched logic introduced in Part I.

Definition 9.1 (Labelled L Formula). A labelled L formula Sϕ : x is given by a
sign S ∈ {T,F} together with a L formula ϕ and a label x ∈ {ci | i ∈ N}.

Labels are syntactic stand-ins for states of an L frame. A labelled formula
Tϕ : x should be interpreted as stating “the formula ϕ is true at the state represented
by x”; correspondingly, Fϕ : x is interpreted as stating “the formula ϕ is false at the
state represented by x”. The other syntactic entities manipulated by the calculi are
label constraints.

9.1. Logical Rules for Bunched Logic Tableaux Calculi 167

Definition 9.2 (Label Constraints). A label constraint is an expression Cx0 . . .xn for
some symbol C, where x0, . . . ,xn are labels. We call C a n-ary constraint symbol.

To specify a tableaux calculus in our framework we first have to specify the set
of constraint symbols for the system. For the tableaux calculus for a bunched logic
L , there will be constraint symbols corresponding to the first-order signature of L

frames together with a constraint symbol corresponding to equality.
Explicitly, in the basic systems we have the following constraint symbols:

unary constraint symbols CE and CU ; binary constraint symbols C=,C<,C− and
CR; and ternary constraint symbols C◦, CO and C..We define the set of constraint
symbols for the L tableaux calculus, ConSym(L), as follows: for a symbol ♥,
C♥ ∈ConSym(L) iff ♥ is = or ♥ is in the first-order signature of L frames. A la-
bel constraint C♥x0 . . .xn can be read as stating that on the countermodel the tableau
is attempting to build, at the states w0, . . . ,wn corresponding to the labels x0, . . .xn,
♥(w0, . . . ,wn) holds. For example, C◦x0x1x2 is read as stating that, at the states
w0,w1,w2 corresponding to the labels x0,x1,x2 respectively, w2 ∈ w0 ◦w1. Thus the
constraints form a partial specification of the structure of the countermodel.

All of these definitions come together in the notion of a constrained set of
statements, which generalises the notion of a branch in standard presentations of
tableaux.

Definition 9.3 (CSS (cf. [148])). A constrained set of statements (CSS) for L is
a pair 〈F ,C 〉 where F is a set of labelled L formulae and C is a set of label
constraints over ConSym(L).

Tableau rules in our framework dictate how CSSs can be expanded. The pre-
miss gives a condition on CSSs, and the conclusion dictates how any CSS satisfying
that condition should be expanded (possibly in multiple ways, witnessed by branch-
ing). That is, they are of the following general form:

Cond(〈F ,C 〉)
〈F1,C1〉 | . . . | 〈Fk,Ck〉

.

In all of the rules we consider, Cond(〈F ,C 〉) will always be a statement
on the existence of particular labelled L formulae in F and/or label con-
straints in C . A tableau T for a collection of such rules R is a finite list
of CSSs separated by semi-colons “;”, T = [〈F0,C0〉; . . . ;〈Fn,Cn〉], con-
structed according to the rules, in the following precise sense. Here ⊕ de-
notes concatenation of lists: [〈F0,C0〉; . . . ;〈Fn,Cn〉]⊕ [〈F ′

0,C
′
0〉; . . . ;〈F ′

n,C
′
m〉] =

[〈F0,C0〉; . . . ;〈Fn,Cn〉;〈F ′
0,C

′
0〉; . . . ;〈F ′

n,C
′
m〉].

9.1. Logical Rules for Bunched Logic Tableaux Calculi 168

Definition 9.4 (Tableau [148]). Given a set of tableau rules R and a finite CSSs
〈F0,C0〉, a R-tableau for 〈F0,C0〉 is a list of CSS constructed according to the
following inductive definition.

1. The one branch list [〈F0,C0〉] is a R-tableau for 〈F0,C0〉;

2. If the list Tm⊕ [〈F ,C 〉]⊕Tn is a R-tableau for 〈F0,C0〉 and

Cond(〈F ,C 〉)
〈F1,C1〉 | . . . | 〈Fk,Ck〉

is a rule from R for which a concrete instance of Cond(〈F ,C 〉) is fulfilled
by 〈F ,C 〉, then the list Tm⊕ [〈F ∪F1,C ∪C1〉; . . . ;〈F ∪Fk,C ∪Ck〉]⊕Tn

is a R-tableau for 〈F0,C0〉.

The idea here is that each of the CSSs in the list represents a ‘branch’ in a
tree (with the semi-colon “;” indicating branching) that is inductively constructed
according to the rules R. The inductive definition guarantees the tree structure:
all ‘branches’ extend the ‘root’ 〈F0,C0〉, and branching occurs whenever the rules
dictate that a branch should be extended in multiple ways.

What are the correct rules R for each bunched logic? We specify this in a
stepwise fashion: first, we specify the rules corresponding to the decomposition of
formulae into subformulae. Then, in the next section we specify the additional rules
that operate on constraints. Each primitive connective ♥ in each logic L has two
associated decomposition rules for formulae in which ♥ is the outermost connec-
tive: one for such labelled L formulae signed with T and one for such labelled L

formulae signed with F. These rules directly correspond to the semantic clauses
associated with each connective. We also have a rule for each of the constants >∗
and ⊥∗; we return to the ‘missing’ rule for these constants when we consider the
conditions under which a tableau is deemed ‘inconsistent’.

Figure 9.1 lists the tableau rules for the bunched logics with classical additives;
Figure 9.2 for the bunched logics with intuitionistic additives. For each logic L ,
the logical expansion rules, LogRules(L), are given by the rules 〈S♥〉 from the
appropriate figure for each ♥ that is a primitive symbol in the grammar of L . The
condition on fresh labels simply means labels which have not yet occurred in the
tableau: this is always possible because we have an infinite set of labels and start
from a finite CSS.

The rules should be understood as follows: suppose in the countermodel that
one is attempting to build through the tableau procedure (corresponding to the par-
tial specification given by the branch 〈F ,C 〉) the information corresponding to the
premiss holds; then it would necessarily follow by the semantic clauses of the logic

9.1. Logical Rules for Bunched Logic Tableaux Calculi 169

〈T∧〉 Tϕ ∧ψ : x ∈F

〈{Tϕ : x,Tψ : x}, /0〉 〈F∧〉 Fϕ ∧ψ : x ∈F

〈{Fϕ : x}, /0〉 | 〈{Fψ : x}, /0〉

〈T∨〉 Tϕ ∨ψ : x ∈F

〈{Tϕ : x}, /0〉 | 〈{Tψ : x}, /0〉 〈F∨〉 Fϕ ∨ψ : x ∈F

〈{Fϕ : x,Fψ : x}, /0〉

〈T→〉 Tϕ → ψ : x ∈F

〈{Fϕ : x}, /0〉 | 〈{Tψ : x}, /0〉 〈F→〉 Fϕ → ψ : x ∈F

〈{Tϕ : x,Fψ : x}, /0〉

〈T∗〉 Tϕ ∗ψ : x ∈F

〈{Tϕ : ci,Tψ : c j},{C◦cic jx}〉
〈F∗〉 Fϕ ∗ψ : x ∈F and C◦yzx ∈ C

〈{Fϕ : y}, /0〉 | 〈{Fψ : z}, /0〉

〈T−∗〉 Tϕ−∗ψ : x ∈F and C◦xyz ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : z}, /0〉 〈F−∗〉 Fϕ−∗ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},{C◦xcic j}〉

〈T∗−〉 Tϕ ∗−ψ : x ∈F and C◦yxz ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : z}, /0〉 〈F∗−〉 Fϕ ∗−ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},{C◦cixc j}〉

〈T∨∗ 〉 Tϕ ∨∗ ψ : x ∈F and COyzx ∈ C

〈{Tϕ : y}, /0〉 | 〈{Tψ : z}, /0〉 〈F∨∗ 〉 Fϕ ∨∗ ψ : x ∈F

〈{Fϕ : ciFψ : c j},{COcic jx}〉

〈T\∗〉 Tϕ \∗ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},COcixc j〉
〈F\∗〉 Fϕ \∗ψ : x ∈F and COyxz ∈ C

〈{Fϕ : z}, /0〉 | 〈{Tψ : y}, /0〉

〈T¬∗ 〉 T¬∗ ϕ : x ∈F and C−xy ∈ C

〈{Fϕ : y}, /0〉 〈F¬∗ 〉 F¬∗ ϕ : x ∈F and C−xy ∈ C

〈{Tϕ : y}, /0〉

〈T;〉 Tϕ ; ψ : x ∈F

〈{Tϕ : ci,Tψ : c j},{C.cic jx}〉
〈F;〉 Fϕ ; ψ : x ∈F and C.yzx ∈ C

〈{Fϕ : y}, /0〉 | 〈{Fψ : z}, /0〉

〈T−.〉 Tϕ−.ψ : x ∈F and C.xyz ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : z}, /0〉 〈F−.〉 Fϕ−.ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},{C.xcic j}〉

〈T.−〉 Tϕ .−ψ : x ∈F and C.yxz ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : z}, /0〉 〈F.−〉 Fϕ .−ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},{C.cixc j}〉

〈T�〉 T�ϕ : x ∈F

〈{Tϕ : ci},{CRxci}〉
〈F�〉 F�ϕ : x ∈F and CRxy

〈{Fϕ : y}, /0〉

〈T>∗〉 T>∗ : x ∈F
〈 /0,{CEx}〉 〈F⊥∗〉 F⊥∗ : x ∈F

〈 /0,{CU x}〉

with ci, c j fresh labels.

Figure 9.1: Logical expansion rules for bunched logics with classical additives.

9.1. Logical Rules for Bunched Logic Tableaux Calculi 170

〈T∧〉 Tϕ ∧ψ : x ∈F

〈{Tϕ : x,Tψ : x}, /0〉 〈F∧〉 Fϕ ∧ψ : x ∈F

〈{Fϕ : x}, /0〉 | 〈{Fψ : x}, /0〉

〈T∨〉 Tϕ ∨ψ : x ∈F

〈{Tϕ : x}, /0〉 | 〈{Tψ : x}, /0〉 〈F∨〉 Fϕ ∨ψ : x ∈F

〈{Fϕ : x,Fψ : x}, /0〉

〈T→〉 Tϕ → ψ : x ∈F and C<yx ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : y}, /0〉
〈F→〉 Fϕ → ψ : x ∈F

〈{Tϕ : ci,Fψ : ci},{C<cix}〉

〈T∗〉 Tϕ ∗ψ : x ∈F

〈{Tϕ : ci,Tψ : c j},{C◦cic jck,C<xck}〉
〈F∗〉 Fϕ ∗ψ : x ∈F and C◦yzw,C<xw ∈ C

〈{Fϕ : y}, /0〉 | 〈{Fψ : z}, /0〉

〈T−∗〉 Tϕ−∗ψ : x ∈F and C◦wyz,C<wx ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : z}, /0〉
〈F−∗〉 Fϕ−∗ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},{C◦ckcic j,C<ckx}〉

〈T∗−〉 Tϕ ∗−ψ : x ∈F and C◦ywz,C<wx ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : z}, /0〉
〈F∗−〉 Fϕ ∗−ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},{C◦cickc j,C<ckx}〉

〈T∨∗ 〉 Tϕ ∨∗ ψ : x ∈F and COyzw,C<wx ∈ C

〈{Tϕ : y}, /0〉 | 〈{Tψ : z}, /0〉
〈F∨∗ 〉 Fϕ ∨∗ ψ : x ∈F

〈{Fϕ : ciFψ : c j},{COcic jck,C<ckx}〉

〈T\∗〉 Tϕ \∗ψ : x ∈F

〈{Tϕ : ci,Fψ : c j},COcickc j,C<xck〉
〈F\∗〉 Fϕ \∗ψ : x ∈F and COywz,C<xw ∈ C

〈{Fϕ : z}, /0〉 | 〈{Tψ : y}, /0〉

〈T¬∗ 〉 T¬∗ ϕ : x ∈F and C−xy ∈ C

〈{Fϕ : y}, /0〉 〈F¬∗ 〉 F¬∗ ϕ : x ∈F and C−xy ∈ C

〈{Tϕ : y}, /0〉

〈T>∗〉 T>∗ : x ∈F
〈 /0,{CEx}〉 〈F⊥∗〉 F⊥∗ : x ∈F

〈 /0,{CU x}〉

with ci,c j,ck fresh labels.

Figure 9.2: Logical expansion rules for bunched logics with intuitionistic additives.

9.2. Tableau Rule Generation from Coherent Axioms 171

that the countermodel would also satisfy one of the conclusions of the rule. Our
partial specification of the model is then extended in each of the ways (possibly
finitely branching) the conclusion of the rule dictates it can be extended.

9.2 Tableau Rule Generation from Coherent Axioms
The rules we have given thus far are insufficient to give sound proof systems for
all of the bunched logics of interest. For example, if we tried to use just the log-
ical rules corresponding to the grammar of (B)BI we would not be able to prove
ϕ ∗ψ → ψ ∗ϕ . Essentially, we are missing the mediation that the structure on L

frames provides to ensure the correct L algebra identities hold when taking com-
plex algebras. How do we lift this structure into our tableaux calculi? The solution
to this is to once again take seriously L frames as first-order structures, somewhat
similarly to what we did for the Goldblatt-Thomason theorem for bunched logics in
Chapter 7. The technical overhead in this case is much lighter though: we’re sim-
ply interested in the syntactic shape of the first-order axioms that define L frames,
which leads us to coherent logic.

Coherent logic1 is the fragment of first-order logic consisting of sequents ϕ `ψ

in which ϕ and ψ are built solely from ∧,∨,∃,> and ⊥. These sequents can be
given a normal form in first-order logic by

A1(⇀x)∧·· ·∧An(⇀x)→∃⇀y1B1(⇀x,⇀y1)∨·· ·∨∃⇀ymBm(⇀x,⇀ym),

for n,m≥ 0, where each Ai is an atomic formula involving only variables from the
vector ⇀x, and each Bi is the conjunction of atomic formulae involving only variables
from the vectors ⇀x and ⇀yi. We will henceforth call these normal form formulae
coherent formulae. In a coherent formula, the variables ⇀x are implicitly universally
quantified (with scope the whole formula) and both ⇀x and ⇀yi may be empty. The
case n = 0 is a consequent that is always true:

>→ ∃⇀y1B1(⇀x,⇀y1)∨·· ·∨∃⇀ymBm(⇀x,⇀ym).

Similarly, the case m = 0 is an antecedent that is always false:

A1(⇀x)∧·· ·∧An(⇀x)→⊥.

The case m = 1 with empty ⇀y1 gives the Horn clause fragment of first-order logic
1What we refer to here as coherent logic is sometimes given as the definition of geometric logic

[218]. This ambiguity is unfortunate: geometric logic commonly refers to the generalisation of
coherent logic in which infinitary disjunctions are permitted in the consequent. Following prior
literature we maintain this distinction.

9.2. Tableau Rule Generation from Coherent Axioms 172

utilised in logic programming and first-order theorem provers based on the res-
olution method—one might usefully think of coherent logic as a strict generali-
sation of the Horn fragment. Like that fragment, coherent logic has a construc-
tive/computational flavour, as it forms a Glivenko class [170], in the sense that any
coherent axiom classically derivable from a set of coherent axioms is also intuition-
istically derivable.

We call a set of coherent formulae Φ a coherent theory. Models of coherent
theories are given in a way standard for first-order logic: a Tarskian model of Φ is a
non-empty set X together with an interpretation I , which assigns to every n-ary re-
lation symbol R in the signature a set RI ⊆ Xn such that for each coherent formulae
in Φ, for all ⇀x ∈ X , the consequent ∃⇀y1 ∈ X(BI (⇀x,⇀y1))∨ ·· ·∨∃⇀ym ∈ X(BI (⇀x,⇀ym))

is true whenever the antecedent AI
1 (⇀x)∧·· ·∧AI

n (⇀x) is true.

Many common mathematical structures are axiomatized by coherent theories.
For example, algebraic structures like groups, rings, lattices and fields, as well as
total, partial, and linear orders. Further examples from computer science can be
found in the theory of confluence for term rewriting systems [211]. Of interest for
our purposes, all bunched logic frames are axiomatised by finite coherent theories,
something that can be easily verified by direct examination of the definitions.

Our aim is to generate tableau rules from coherent formulae. Generating proof
rules from coherent formulae is not a new idea in proof theory: it was first con-
sidered by Simpson [208] to provide natural deduction systems for intuitionistic
modal logics, an idea later adapted by Braüner [33] for natural deduction sys-
tems for hybrid logics. It has been extensively developed by Negri [169, 171] to
provide labelled sequent calculi for modal and intermediate logics. In this work
Negri provides a schema for extracting (systems of) sequent calculi rules from
modal/intermediate Kripke frame properties axiomatised by (generalised) coherent
formulae.

It would also be possible to formulate our proof systems as labelled sequent
calculi in the style of Negri. However, we are interested in the application of these
ideas to the tableau method: to our knowledge, this is the first time this has been
done. Bezem & Coquand’s [22] encode the standard tableaux system for classi-
cal first-order logic in coherent logic, but our work is strictly more general, and
involves the generation of proof rules from the coherent theories defining Kripke
models. Working with tableaux systems also gives us the advantage, as we will
shortly see, of formalising the proof systems themselves as coherent theories, lead-
ing to a particularly elegant parametric completeness proof.

Let
A1(⇀x)∧·· ·∧An(⇀x)→∃⇀y1B1(⇀x,⇀y1)∨·· ·∨∃⇀ymBm(⇀x,⇀ym)

9.3. Frame Rules for Bunched Logic Tableaux Calculi 173

be a coherent axiom in the first-order language of L frames with equality. We first
straightforwardly translate this into our language of label constraints by replacing
instances of operations ♥ with the constraint symbol C♥. Then, for each conjunc-
tion Bi(⇀x,⇀ym) = Bi

0(
⇀x,⇀yi)∧ ·· · ∧Bi

k(
⇀x,⇀ym) we define CBi(

⇀x,⇀ym) := CBi
0
(⇀x,⇀yi)∧ ·· · ∧

CBi
ki
(⇀x,⇀ym). Then the coherent axiom is translated to

CA1(
⇀x)∧·· ·∧CAn(

⇀x)→∃⇀y1CB1(
⇀x,⇀y1)∨·· ·∨∃⇀ymCBm(

⇀x,⇀ym).

When n,m 6= 0, this generates the following tableau rule

CA1(
⇀x), . . . ,CAn(

⇀x) ∈ C

〈 /0,{CB1
0
(⇀x,⇀c1), . . . ,CB1

k1
(⇀x,⇀c1)}〉 | . . . | 〈 /0,{CBm

0
(⇀x,⇀c1), . . . ,CBm

km
(⇀x,⇀cm)}〉

where the ⇀ci are fresh labels. The procedure is simple: the antecedent of the coher-
ent axiom becomes the premiss of the tableau rule, and the consequent the conclu-
sion; existential quantification is handled with fresh labels, and the disjunction is
witnessed by branching. In the case n = 0 we have the coherent axiom

>→ ∃⇀y1CB1(
⇀x,⇀y1)∨·· ·∨∃⇀ymCBm(

⇀x,⇀ym).

However we wish to have some control over when the tableau rule this translates to
can be triggered: it should only be applied for labels ⇀x that have already occurred in
the branch. Let ⇀x = x0, . . . ,xs. We obtain the following tableau rule

Expression(x0), . . . ,Expression(xs) ∈F ∪C

〈 /0,{CB1
0
(⇀x,⇀c1), . . . ,CB1

k1
(⇀x,⇀c1)}〉 | . . . | 〈 /0,{CBm

0
(⇀x,⇀c1), . . . ,CBm

km
(⇀x,⇀cm)}〉

Here Expression(x) refers to any labelled formula or label constraint in which the
label x occurs. Essentially, the premiss holds whenever the labels ⇀x already occur
on the branch. What we have described thus far is sufficient for the axioms defining
L frames: we will describe how to handle the case m = 0 when we require it in
Chapter 10.

9.3 Frame Rules for Bunched Logic Tableaux Calculi
We now explicitly state the frame expansion rules in each tableau system. First we
give rules governing how equality and substitution work for the constraint symbol
C=. These are joined by the direct translatation of the coherent axiomatisation of
L frames for each L using the method described in the previous section.

Figure 9.3 gives the rules governing the equality and order constraints.〈=Re f 〉,
〈= Sym〉 and 〈= Trans〉 ensure C= is an equivalence relation on labels. Further,
〈Sub〉 provides a mechanism for substituting C=-equivalent labels occurring in label

9.3. Frame Rules for Bunched Logic Tableaux Calculi 174

〈= Re f 〉 Expression(x) ∈F ∪C

〈 /0,{C=xx}〉
〈= Trans〉 C=xy,C=yz ∈ C

〈 /0,{C=xz}〉

〈= Sym〉 C=xy ∈ C

〈 /0,{C=yx}〉 〈Sub〉 Expression(x),C=xy ∈ C

〈 /0,{Expression(y/x)}〉

〈< Re f 〉 Expression(x) ∈F ∪C

〈 /0,{C<xx}〉
〈< Trans〉 C<xy,C<yz ∈ C

〈 /0,{C<xz}〉

Figure 9.3: Tableau rules for equality and order.

〈Commutativity〉 C◦xyz ∈ C

〈 /0,{C◦yxz}〉 〈Unit Existence〉 Expression(x) ∈F ∪C

〈 /0,{CEci,C◦xcix}〉

〈Coherence〉 CEz,C◦yzx ∈ C

〈 /0,C=xy〉 〈Associativity〉 C◦xyt,C◦tzw ∈ C

〈 /0,C◦yzci,C◦xciw〉

with ci a fresh label.

Figure 9.4: BBI frame expansion rules.

〈Commutativity〉 C◦xyz ∈ C

〈 /0,{C◦yxz}〉 〈Closure〉 CEx,C<yx ∈ C

〈 /0,{CEy}〉

〈Unit Existence〉 Expression(x) ∈F ∪C

〈 /0,{CEci,C◦xcix}〉
〈Coherence〉 CEz,C◦yzx ∈ C

〈 /0,C<xy〉

〈Associativity〉 C<t ′t,C◦xyt,C◦t ′zw ∈ C

〈 /0,C<cs′cs,C◦yzcs,C<wcw′,C◦xcs′cw′〉

with ci,cs,cs′,cw′ fresh labels.

Figure 9.5: BI frame expansion rules.

9.3. Frame Rules for Bunched Logic Tableaux Calculi 175

〈Function〉 C−xy,C−xy′ ∈ C

〈 /0,{C=yy′}〉
〈Total〉 Expression(x) ∈F ∪C

〈 /0,{C−xci}〉

〈Dual〉 C<xy,C−xx′,C−yy′ ∈ C

〈 /0,{C<y′x′}〉
〈Involutive〉 C−xx′,C−x′x′′ ∈ C

〈 /0,C=xx′′〉

〈Compatibility〉 C◦xyz,C−xx′,C−zz′ ∈ C

〈 /0,C◦z′yx′〉

with ci a fresh label.

Figure 9.6: DMBI and CBI frame expansion rules.

〈Commutativity〉 COxyz ∈ C

〈 /0,{COyxz}〉 〈U Closure〉 CU x,C<xy ∈ C

〈 /0,{CU y}〉

Figure 9.7: Bi(B)BI frame expansion rules.

9.3. Frame Rules for Bunched Logic Tableaux Calculi 176

〈Associativity〉 COxyt,COtzw ∈ C

〈 /0,{COyzci,COxciw}〉
〈⊥∗ Weak〉 CU z,COyzx ∈ C

〈 /0,{C=yx}〉

〈⊥∗ Contract〉 Expression(x) ∈F ∪C

〈 /0,{CU ci,COxcix}〉
〈∨∗ Contract〉 Expression(x) ∈F ∪C

〈 /0,{COxxx}〉

〈Weak Dist〉 C◦x1x2t,COy1y2t ∈ C

〈 /0,{C◦x1ciy1,COciy2x2}〉

with ci a fresh label.

Figure 9.8: Frame expansion rules for extensions of BiBBI.

〈Associativity〉 C<t ′t,COxyt,COt ′zw ∈ C

〈 /0,{C<cscs′,COyzcs,C<cw′w,COxcs′cw′}〉
〈⊥∗ Weak〉 CU z,COyzx ∈ C

〈 /0,{C<yx}〉

〈⊥∗ Contr〉 Expression(x) ∈F ∪C

〈 /0,{CU ci,COxcix}〉
〈∨∗ Contr〉 Expression(x) ∈F ∪C

〈 /0,{COxxx}〉

〈Weak Dist〉 C<t ′t,C◦x1x2t,C<t ′′t ′,COy1y2t ′′ ∈ C

〈 /0,{C◦x1ciy1,COciy2x2}〉

with ci a fresh label.

Figure 9.9: Frame expansion rules for extensions of BiBI.

〈Unit ExistenceL〉 Expression(x) ∈F ∪C

〈 /0,{CEci,C.cixx}〉
〈Unit ExistenceR〉 Expression(x) ∈F ∪C

〈 /0,{CEci,C.xcix}〉

〈CoherenceL〉 CEz,C.zyx ∈ C

〈 /0,C=xy〉 〈CoherenceR〉 CEz,C.yzx ∈ C

〈 /0,C=xy〉

〈AssociativityL〉 C.xyt,C.tzw ∈ C

〈 /0,C.yzci,C.xciw〉
〈AssociativityR〉 C.yzt,C.xtw ∈ C

〈 /0,C.xyci,C.cizw〉

〈Exchange〉 C◦wyt,C◦xzs,C.tsu ∈ C

〈 /0,C.wxci,C.yzc j,C◦cic ju〉

with ci,c j fresh labels.

Figure 9.10: CKBI frame expansion rules.

9.3. Frame Rules for Bunched Logic Tableaux Calculi 177

constraints. One might also expect substitution of C=-equivalent labels in labelled
formulae as well but (usefully for the simplicity of tableau derivation) this is not
neccessary for the soundness and completeness of the calculi. Analogously, 〈<
Re f 〉 and 〈< Trans〉 ensure C< is a preorder on labels.

Next we give the rules corresponding to the L frame axioms for each logic
L . We define FrRules(L) as the rules for equality (and when L has intuitionistic
additives, the rules for order) together with the tableau rules from the corresponding
Figure. Figure 9.4 gives the rules associated with BBI and Figure 9.5 gives those
associated with BI; Figure 9.6 gives those that should be added to the BI rules and
BBI rules to get rules for DMBI and CBI respectively. In the case for DMBI all
the rules in the figure are required, while in the case for CBI the rule 〈Dual〉 is
redundant.

Each rule corresponds directly to a coherent axiom that defines the respective
frame for the logic. For example, a BI frame is defined as a set-theoretic structure
(X ,◦,E) satisfying the axioms

(Commutativity) z ∈ x◦ y→ z ∈ y◦ x (Closure) e ∈ E ∧ e′ < e→ e′ ∈ E
(Unit Existence) ∃e ∈ E(x ∈ x◦ e) (Coherence) e ∈ E ∧ x ∈ y◦ e→ x< y
(Associativity) t ′ < t ∈ x◦ y∧w ∈ t ′ ◦ z→∃s,s′,w′(s′ < s ∈ y◦ z∧w< w′ ∈ x◦ s′)

and the rules in Figure 9.5 are directly translated from each of these axioms in the
manner previously described.

It’s worth briefly mentioning the rules 〈Function〉 and 〈Total〉 that don’t di-
rectly correspond to DMBI/CBI frame axioms as presented in the thesis: these en-
sure that C− corresponds to a total function on labels, just like − is a total function
on DMBI/CBI frames. An alternative would be to directly represent − as a func-
tion on labels, but this would affect the uniformity of the presentation and would
complicate the soundness and completeness argument we give in the next section.

Next, Figure 9.7 gives tableau rules corresponding to basic Bi(B)BI: for BiBI
we require both 〈Commutativity〉 and 〈U Closure〉, while for BiBBI 〈U Closure〉
is redundant. The rules in Figure 9.9 are rules that can be added to obtain the
‘subclassical’ extensions of BiBI; similarly, the rules in Figure 9.8 correspond to
those that can be added for the ‘subclassical’ extensions of BiBBI. Finally, the rules
in Figure 9.10 are those associated with CKBI.

Note that we haven’t mentioned frame rules corresponding to separating modal
logics. In this thesis we have left the exact axiomatisation of the modality added to
BBI open; in the cases from the literature the modality is an S4 [68] or S5 [98]
modality. In these cases we can add analogous rules to those from Fig 9.3, corre-

9.4. The Tableaux Calculi 178

sponding to the fact that S4 is complete for frames where the accessibility relation
is a preorder, and S5 for frames where the accessibility relation is an equivalence
relation. Many other modal logics are axiomatised by finite coherent theories [173],
and this provides a schema for defining a plethora of separating modal logics with
tableaux calculi.

9.4 The Tableaux Calculi
We now specify the tableaux calculus for each logic L . For each logic L CSSs are
defined over labelled L formulae and label constraints over ConSymb(L). The set
of tableau rules for each logic is given by R(L) = LogRules(L)∪FrRules(L).
There is a final ingredient: the closure conditions that dictate when a branch is
determined to be inconsistent.

Definition 9.5 (Closure Conditions). A CSS 〈F ,C 〉 is closed if it satisfies one of
the following closure conditions:

1. Fϕ : y,Tϕ : x ∈F and C=yx ∈ C ;

2. Fϕ : y,Tϕ : x ∈F and C<yx ∈ C ;

3. F> : x ∈F ;

4. T⊥ : x ∈F ;

5. F>∗ : x ∈F and CEx ∈ C ;

6. T⊥∗ : x ∈F and CU x ∈ C .

This definition reveals the reason behind the asymetry in the specification of
logical tableau rules pertaining to >∗ and ⊥∗: the corresponding F>∗ and T⊥∗ rules
actually show up as closure conditions. Closure conditions directly correspond to
the ways in which a CSS can give an inconsistent partial specification of a L model.
This allows us to define when a tableau is a proof.

Definition 9.6 (Tableau Proof). For a L formula ϕ , a tableau for ϕ is a R(L)

tableau for 〈{Fϕ : c0}, /0〉. A tableau proof of ϕ is a tableau for ϕ in which every
CSS is closed.

The existence of a tableau proof for ϕ witnesses that every attempt to build a
countermodel for ϕ will fail: it will always result in an inconsistency. The idea is
that this shows the formula is valid, as no models in which it doesn’t hold can exist.

9.4. The Tableaux Calculi 179

Tableau proofs are necessarily finite constructions. The closure conditions wit-
nessing the proof will become satisfied at a particular stage in the inductive con-
struction of the tableau for ϕ , and, by design, at each inductive step the tableau is
comprised of finite CSS since we start with a finite CSS, and each rule adds only
finitely many expressions and can only branch finitely. Crucially, once a tableau for
ϕ is closed, no application of expansion rules can change that fact. In the case that
the tableau cannot be closed, the construction of the tableau can go on infinitely.
This entails that we don’t obtain a finite model property leading to decidability, as
the possible countermodels represented by the branches in a never-closing construc-
tion may be infinite.

It is instructive to now give some examples of tableau proofs in this framework.
To sharpen the intuition of how tableau construction works, these are presented
traditionally as finitely branching trees in which nodes are labelled with finite CSSs.
To understand how they relate to our formal definition, note that by taking the union
of the CSSs on each branch we obtain a branch CSS 〈F ,C 〉. The list of these branch
CSSs directly corresponds to the list of CSSs constructed by the tableau procedure
given in Definition 9.4. To the right of each step in the construction we state the rule
that was applied, and from where in the branch we obtain that the premiss of that
rule holds. The symbol ⊗ denotes that the CSS generated by a branch is closed.

We begin with a tableau proof of (ϕ −∗ χ)∧ (ψ −∗ χ)→ ((ϕ ∨ψ)−∗ χ) for
any bunched logic L with classical additives. This corresponds to the algebraic
equation 4. of Proposition 6.2 that determines the conversion by −∗ of meets into
joins. The proof is shown in Figure 9.11. At steps 5. and 6. the rule 〈T−∗〉 is
used. Doing so requires the existence of not only a labelled formula with outermost
connective −∗, but also the existence of a label constraint Coxyz that already occurs
on the branch. This is provided by the label constraint C◦c0c1c2 introduced at step
3. The closure of the left most branch is because Fϕ : c1 occurs at step 5. and
Tϕ : c1 at step 7.; the center left branch is closed because Fψ : c1 occurs at step
6. and Tψ : c1 occurs at step 7.; the centre right branch is closed becuse Fχ : c2

occurs at step 3. and Tχ : c2 occurs at step 6.; finally, the rightmost branch is closed
because Fχ : c2 occurs at step 3. and Tχ : c2 occurs at step 5.

Next we see a tableau proof that requires the use of a frame expansion rule.
Figure 9.12 shows a CKBI tableau proof for the Exchange law ((ϕ ∗χ);(ψ ∗θ))→
((ϕ;ψ) ∗ (χ;θ)). Closure of the leftmost branch is witnessed by the occurence of
the labelled formulae Tϕ : c3 at step 4. and Fϕ : c3 at step 8.; the center left branch
is closed because of the occurence of Tψ : c5 at step 5. and Fψ : c5 at step 8.; the
center right branch is closed because of the occurence of Tξ : c4 at step 4. and
Fξ : c4 at step 8.; finally, the rightmost branch is closed because of the occurence

9.4. The Tableaux Calculi 180

1.
2.
3.
4.

5.

6.

7.

〈{F((ϕ−∗χ)∧ (ψ−∗χ))→ ((ϕ ∨ψ)−∗χ) : c0}, /0〉
〈{T(ϕ−∗χ)∧ (ψ−∗χ) : c0,F(ϕ ∨ψ)−∗χ : c0}, /0〉

〈{Tϕ ∨ψ : c1,Fχ : c2},{C◦c0c1c2}〉
〈{Tϕ−∗χ : c0,Tψ−∗χ : c0}, /0〉

〈{Fϕ : c1}, /0〉

〈{Fψ : c1}, /0〉

〈{Tϕ : c1}, /0〉
⊗

〈{Tψ : c1}, /0〉
⊗

〈{Tχ : c2}, /0〉
⊗

〈{Tχ : c2}, /0〉
⊗

Premiss
〈F→〉, 1.
〈F−∗〉, 2.
〈T∧〉, 2.

〈T−∗〉, 3., 4.

〈T−∗〉, 3.,4.

〈T∨〉, 3.

Figure 9.11: Tableau proof of (ϕ−∗χ)∧ (ψ−∗χ)→ ((ϕ ∨ψ)−∗χ).

1.
2.
3.
4.
5.
6.

7.

8.

〈{F((ϕ ∗χ);(ψ ∗θ))→ ((ϕ;ψ)∗ (χ;θ)) : c0}, /0〉
〈{T(ϕ ∗χ);(ψ ∗θ) : c0, F(ϕ;ψ)∗ (χ;θ) : c0}, /0〉
〈{Tϕ ∗χ : c1, Tψ ∗θ : c2}, {C.c1c2c0}〉
〈{Tϕ : c3, Tχ : c4}, {C◦c3c4c1}〉
〈{Tψ : c5, Tθ : c6}, {C◦c5c6c2}〉
〈 /0, {C.c3c5c7, C.c4c6c8, C◦c7c8c0}〉

〈{Fϕ;ψ : c7}, /0〉

〈{Fϕ : c3}, /0〉
⊗

〈{Fψ : c5}, /0〉
⊗

〈{Fχ;θ : c8}, /0〉

〈{Fχ : c4}, /0〉
⊗

〈{Fθ : c6}, /0〉
⊗

Premiss
〈F→〉, 1.
〈T;〉, 2.
〈T∗〉, 3.
〈T∗〉, 3.
Exch, 3., 4., 5.

〈F∗〉, 2., 6.

〈F;〉, 6., 7.

Figure 9.12: CKBI tableau proof of ((ϕ ∗χ);(ψ ∗θ))→ ((ϕ;ψ)∗ (χ;θ)).

of Tθ : c6 at step 5. and Fθ : c6 at step 8. Note the essential use of the frame
expansion rule 〈Exchange〉 at step 6: this should be expected, as the frame property
it corresponds to is the frame correspondent of the Exchange law. This is able to
be triggered because of the introduction of the label constraints C.c1c2c0 at step 3,
C◦c3c4c1 at step 4. and C◦c7c8c0 at step 5.

Finally we look at a tableau proof for a logic with intuitionistic additives. Fig-
ure 9.13 shows a BiBI + Weak Distributivity proof of the weak distributivity axiom
ϕ ∗ (ψ ∨∗ χ)→ (ϕ ∗ψ)∨∗ χ . Here the frame expansion rule corresponding to the
frame property Weak Distributivity is used at step 5., using the the label constraints
that occur at steps 3. and 4. This gives the required label constraints to trigger the
rules 〈T∨∗ 〉 at step 7. (using the labelled formula Tψ ∨∗ χ : c4 introduced at step 3.)

9.5. Parametric Soundness and Completeness 181

1.
2.
3.
4.
5.
6.

7.

8.

〈{Fϕ ∗ (ψ ∨∗ χ)→ (ϕ ∗ψ)∨∗ χ : c0}, /0〉
〈{Tϕ ∗ (ψ ∨∗ χ) : c1,F(ϕ ∗ψ)∨∗ χ : c1},C<c1c0〉
〈{Tϕ : c3,Tψ ∨∗ χ : c4},{C<c1c2,C◦c3c4c2}〉
〈{Fϕ ∗ψ : c6,Fχ : c7},{C<c5c1,COc6c7c5}〉

〈 /0,{C◦c3c8c6},COc8c7c5}〉
〈 /0,{C<c4c4,C<c6c6}〉

〈{Tψ : c8}, /0〉

〈{Fϕ : c3}, /0〉
⊗

〈{Fψ : c8}, /0〉
⊗

〈{Tχ : c7}, /0〉
⊗

Premiss
〈F→〉, 1.
〈T∗〉, 2.
〈F∨∗ 〉, 2.
〈Weak Distributivity〉, 3., 4.
〈< Re f 〉, 3., 4.

T∨∗ , 3., 6., 7.

〈F∗〉, 4., 5., 6.

Figure 9.13: Tableau proof of the weak distributivity axiom.

and 〈F∗〉 at step 8. (using the labelled formula Fϕ ∗ψ : c6 introduced at step 4.).
The left branch is closed because Tϕ : c3 occurs at step 3. and Fϕ : c3 occurs at
step 8.; the centre branch is closed because Tψ : c8 occurs at step 7. and Fψ : c8

occurs at step 8.; finally the right branch is closed because Fχ : c7 occurs at step 4.
and Tχ : c7 occurs at step 7.

9.5 Parametric Soundness and Completeness
With tableaux calculi for the breadth of bunched logics specified, we turn to proving
these systems are sound and complete. Due to the uniform presentation of the sys-
tems we are able to do so parametrically in choice of calculus. We do so by utilising
a novel representation of tableau systems as finite coherent theories: the key insight
here is that the translation of coherent formulae into tableau rules is not one-way:
tableaux rules can naturally be seen as coherent formulae in a signature augmented
with special predicate symbols corresponding to labelled formulae. The parametric
soundness and completeness of the framework can then be reduced to proving the
soundness and completeness of Tarskian truth for coherent logic with respect to a
meta-tableaux method formulated by Bezem & Coquand [22]. To our knowledge,
the application of this technique to labelled tableaux calculi is new, although in the
aforementioned work Bezem & Coquand show how to encode the tableau method
for classical logic as a coherent theory, and trace the idea of abbreviating formulae
with predicate symbols to Skolem [209].

We begin by defining the coherent theory associated with a tableaux calculus.
Let L be a bunched logic. We extend the first-order signature ConSym(L) with
unary predicate symbols Tϕ and Fϕ for each L formula ϕ to obtain the signature

9.5. Parametric Soundness and Completeness 182

Tab(L) for the tableau language for L . The logical expansion rules can now be
straightforwardly read as coherent formulae in this signature in effectively the same
way read coherent axioms were interpreted as tableau rules: the premiss is read as
a conjunction forming the antecedent of a coherent formula and the conclusion is
read as the consequent; fresh labels are replaced with variables bound by existential
quantification, branching is read as disjunction and the labelled formulae and label
constraints in each disjunct are read as a conjunction of atomic formulae.

In Figure 9.14 we show the translation of the rules pertaining to bunched logics
with classical additives; in Figure 9.15 those for bunched logics with intuitionistic
additives. It should be emphasised at this point that the axioms in these figures
define a schema for infinitely many coherent axioms, with each 〈S♥〉 corresponding
to the infinitely many L formulae which have the connective ♥ as the outermost
connective.

Next, the same translation must be done for all of the frame expansion rules
associated with each L . For the most part this consists of the pre-translation of the
already-coherent axiomatisation of L frames into the tableau language, although
we must also translate the rules for equality and order, as well as those governing the
interpretation of C− as a total function. For clarity we give these explicitly. In Figure
9.16 the coherent axioms corresponding to the equality and order rules is given.
Note that 〈Sub〉 defines a schema for finitely many coherent axioms, corresponding
to the finitely many ways a label can occur in a label constraint for the finitely many
constraint symbols associated with each logic: this finiteness will be important in
our completeness proof.

Figure 9.17 and 9.18 give the coherent axioms obtained from the frame rules
for BBI and BI respectively. For CBI and DMBI, the axioms from Figure 9.19
are added to those for BBI and BI respectively, noting that 〈Dual〉 is redundant for
CBI. Coherent axioms corresponding to basic Bi(B)BI are obtained by adding those
of Figure 9.20 to those for (B)BI—here 〈U−Closure〉 is redundant for BiBBI. The
coherent axioms corresponding to subclassical extensions of basic BiBBI are shown
in Figure 9.21, whilst those for extensions of basic BiBI are shown in Figure 9.22.
Finally, Figure 9.23 gives the coherent axioms that should be added to those of BBI
for CKBI.

There is a final aspect of the tableaux calculi that must be captured in the
coherent axiomatisation: the closure conditions. These are all coherent antecedents
that are never true (i.e.; coherent formulae with conclusion ⊥). Indeed, one might
think of closure conditions as the way in which coherent axioms of this form are
represented in tableaux calculi. The translations of closure conditions is shown in
Figure 9.24.

9.5. Parametric Soundness and Completeness 183

〈T∧〉 T(ϕ ∧ψ)(x)→ Tϕ(x)∧Tψ(x)

〈F∧〉 F(ϕ ∧ψ)(x)→ Fϕ(x)∨Fψ(x)

〈T∨〉 T(ϕ ∨ψ)(x)→ Tϕ(x)∨Tψ(x)

〈F∨〉 F(ϕ ∨ψ)(x)→ Fϕ(x)∧Fψ(x)

〈T→〉 T(ϕ → ψ)(x)→ Fϕ(x)∨Tψ(x)

〈F→〉 F(ϕ → ψ)(x)→ Tϕ(x)∧Fψ(x)

〈T∗〉 T(ϕ ∗ψ)(x)→∃y,z(Tϕ(y)∧Tψ(z)∧C◦yzx)

〈F∗〉 F(ϕ ∗ψ)(x)∧C◦yzx→ Fϕ(y)∨Fψ(z)

〈T−∗〉 T(ϕ−∗ψ)(x)∧C◦xyz→ Fϕ(y)∨Tψ(z)

〈F−∗〉 F(ϕ−∗ψ)(x)→∃y,z(Tϕ(y)∧Fψ(z)∧C◦xyz)

〈T∗−〉 T(ϕ ∗−ψ)(x)∧C◦yxz→ Fϕ(y)∨Tψ(z)

〈F∗−〉 F(ϕ ∗−ψ)(x)→∃y,z(Tϕ(y)∧Fψ(z)∧C◦yxz)

〈T∨∗ 〉 T(ϕ ∨∗ ψ)(x)∧COyzx→ Tϕ(y)∨Tψ(z)

〈F∨∗ 〉 F(ϕ ∨∗ ψ)(x)→∃y,z(Fϕ(y)∧Fψ(z)∧COyzx)

〈T\∗〉 T(ϕ \∗ψ)(x)→∃y,z(Tϕ(y)∧Fψ(z)∧COyxz)

〈F\∗〉 F(ϕ \∗ψ)(x)∧COyxz→ Fϕ(y)∨Tψ(z)

〈T¬∗ 〉 T¬∗ ϕ(x)∧C−xy→ Fϕ(y)

〈F¬∗ 〉 F¬∗ ϕ(x)∧C−xy→ Tϕ(y)

〈T;〉 T(ϕ ; ψ)(x)→∃y,z(Tϕ(y)∧Tψ(z)∧C.yzx)

〈F;〉 F(ϕ ; ψ)(x)∧C.yzx→ Fϕ(y)∨Fψ(z)

〈T−.〉 T(ϕ−.ψ)(x)∧C.xyz→ Fϕ(y)∨Tψ(z)

〈F−.〉 F(ϕ−.ψ)(x)→∃y,z(Tϕ(y)∧Fψ(z)∧C.xyz)

〈T.−〉 T(ϕ .−ψ)(x)∧C.yxz→ Fϕ(y)∨Tψ(z)

〈F.−〉 F(ϕ .−ψ)(x)→∃y,z(Tϕ(y)∧Fψ(z)∧C.yxz)

〈T�〉 T�ϕ(x)→∃y(Tϕ(y)∧CRxy)

〈F�〉 F�ϕ(x)∧CRxy→ Fϕ(y)

〈T>∗〉 T>∗(x)→CEx

〈F⊥∗〉 F⊥∗(x)→CU x

Figure 9.14: Logical coherent axioms for bunched logics with classical additives.

9.5. Parametric Soundness and Completeness 184

〈T∧〉 T(ϕ ∧ψ)(x)→ Tϕ(x)∧Tψ(x)

〈F∧〉 F(ϕ ∧ψ)(x)→ Fϕ(x)∨Fψ(x)

〈T∨〉 T(ϕ ∨ψ)(x)→ Tϕ(x)∨Tψ(x)

〈F∨〉 F(ϕ ∨ψ)(x)→ Fϕ(x)∧Fψ(x)

〈T→〉 T(ϕ → ψ)(x)∧C<yx→ Fϕ(y)∨Tψ(y)

〈F→〉 F(ϕ → ψ)(x)→∃y(Tϕ(y)∧Fψ(y)∧C<yx

〈T∗〉 T(ϕ ∗ψ)(x)→∃w,y,z(Tϕ(y)∧Tψ(z)∧C◦yzw∧C<xw)

〈F∗〉 F(ϕ ∗ψ)(x)∧C<xw∧C◦yzw→ Fϕ(y)∨Fψ(z)

〈T−∗〉 T(ϕ−∗ψ)(x)∧C<wx∧C◦wyz→ Fϕ(y)∨Tψ(z)

〈F−∗〉 F(ϕ−∗ψ)(x)→∃w,y,z(Tϕ(y)∧Fψ(z)∧C◦wyz∧C<wx)

〈T∗−〉 T(ϕ ∗−ψ)(x)∧C<wx∧C◦ywz→ Fϕ(y)∨Tψ(z)

〈F∗−〉 F(ϕ ∗−ψ)(x)→∃w,y,z(Tϕ(y)∧Fψ(z)∧C◦ywz∧C<wx)

〈T∨∗ 〉 T(ϕ ∨∗ ψ)(x)∧C<wx∧COyzw→ Tϕ(y)∨Tψ(z)

〈F∨∗ 〉 F(ϕ ∨∗ ψ)(x)→∃w,y,z(Fϕ(y)∧Fψ(z)∧COyzw∧C<wx)

〈T\∗〉 T(ϕ \∗ψ)(x)→∃w,y,z(Tϕ(y)∧Fψ(z)∧COywz∧C<xw)

〈F\∗〉 F(ϕ \∗ψ)(x)∧C<xw∧COywz→ Fϕ(y)∨Tψ(z)

〈T¬∗ 〉 T¬∗ ϕ(x)∧C−xy→ Fϕ(y)

〈F¬∗ 〉 F¬∗ ϕ(x)∧C−xy→ Tϕ(y)

〈T>∗〉 T>∗(x)→CEx

〈F⊥∗〉 F⊥∗(x)→CU x

Figure 9.15: Logical coherent axioms for bunched logics with intuitionistic additives.

〈= Re f 〉 >→C=xx 〈= Trans〉 C=xy∧C=yz→C=xz

〈= Sym〉 C=xy→C=yx 〈Sub〉 C♥x0 . . .x . . .xn∧C=xy→C♥x0 . . .y . . .xn

〈< Re f 〉 >→C<xx 〈< Trans〉 C<xy∧C<yz→C<xz

Figure 9.16: Coherent axioms for equality and order. In 〈Sub〉, C♥ ∈ConSymb(L).

〈Commutativity〉 C◦xyz→C◦yxz

〈Unit Existence〉 >→ ∃y(CEy∧C◦xyx)

〈Coherence〉 CEz∧C◦yzx→C=xy

〈Associativity〉 C◦xyt ∧C◦tzw→∃s(C◦yzs∧C◦xsw)

Figure 9.17: Frame coherent axioms for BBI.

9.5. Parametric Soundness and Completeness 185

〈Commutativity〉 C◦xyz→C◦yxz

〈Unit Existence〉 >→ ∃y(CEy∧C◦xyx)

〈Coherence〉 CEz∧C◦yzx→C<xy

〈Associativity〉 C<t ′t ∧C◦xyt ∧C◦t ′zw

→∃s,s′,w′(C<s′s∧C◦yzs∧C<ww′∧C◦xs′w′)

Figure 9.18: Frame coherent axioms for BI.

〈Function〉 C−xy∧C−xy′→C=yy′

〈Total〉 >→ ∃y(C−xy)

〈Dual〉 C<xy∧C−xx′∧C−yy′→C<y′x′

〈Involutive〉 C−xx′∧C−x′x′′→C=xx′′

〈Compatibility〉 C◦xyz∧C−xx′∧C−zz′→C◦z′yx′

Figure 9.19: Frame coherent axioms for DMBI and CBI.

〈Commutativity〉 COxyz→COyxz 〈U−Closure〉 CU x∧C<xy→CU y

Figure 9.20: Frame coherent axioms for Bi(B)BI.

〈Associativity〉 COxyt ∧COtzw→∃s(COyzs∧COxsw)

〈⊥∗ Weak〉 CU z∧COyzx→C=yx

〈⊥∗ Contract〉 >→ ∃y(CU y∧COxyx)

〈∨∗ Contract〉 >→COxxx

〈Weak Dist〉 C◦x1x2t ∧COy1y2t→∃z(C◦x1zy1∧COzy2x2)

Figure 9.21: Frame coherent axioms for extensions of BiBBI.

〈Assoc〉 C<t ′t ∧COxyt ∧COt ′zw→∃s,s′,w′(C<ss′∧COyzs∧C<w′w∧COxs′w′)

〈⊥∗ Weak〉 CU z∧COyzx→C<yx

〈⊥∗ Contr〉 >→ ∃y(CU y∧COxyx)

〈∨∗ Contr〉 >→COxxx

〈W. Dist〉 C<t ′t ∧C◦x1x2t ∧C<t ′′t ′∧COy1y2t ′′→∃z(C◦x1zy1∧COzy2x2)

Figure 9.22: Frame coherent axioms for extensions of BiBI.

9.5. Parametric Soundness and Completeness 186

〈Unit ExistenceL〉 >→ ∃y(CEy∧C.yxx)

〈Unit ExistenceR〉 >→ ∃y(CEy∧C.xyx)

〈CoherenceL〉 CEz∧C.zyx→C=xy

〈CoherenceR〉 CEz∧C.yzx→C=xy

〈AssociativityL〉 C.xyt ∧C.tzw→∃s(C.yzs∧C.xsw)

〈AssociativityL〉 C.yzt ∧C.xtw→∃s(C.xys∧C.szw)

〈Exchange〉 C◦wyt ∧C◦xzs∧C.tsu→∃v,v′(C.wxv∧C.yzv′∧C◦vv′u

Figure 9.23: Frame coherent axioms for CKBI.

〈= Inconsistency〉 Tϕ(x)∧Fϕ(y)∧C=xy→⊥
〈< Inconsistency〉 Tϕ(x)∧Fϕ(y)∧C<xy→⊥
〈F>〉 F>(x)→⊥
〈T⊥〉 T⊥(x)→⊥
〈F>∗〉 F>∗(x)∧CEx→⊥
〈T⊥∗〉 T⊥∗(x)∧CU x→⊥

Figure 9.24: Coherent axioms for closure conditions.

For each logic L the coherent theory ΦL associated to the tableaux calcu-
lus for L is comprised of the logical coherent axioms for L , together with the
frame coherent axioms for L , the closure condition axioms corresponding to the
L tableaux calculus and the coherent axioms for equality (and in the case of L

with intuitionistic additives, those for order as well).
The coherent theories corresponding to each calculus should be compared to

the definitions of Hintikka sets that are commonly used to prove completeness for
tableau systems (for bunched logic systems see [101, 148, 68, 98]). In essence
what we are doing is providing a modular axiomatisation of Hintikka set for the
different systems. This coheres with the observation2 of Beckert & Goré [16] that
their method for generating labelled tableaux calculi for propositional modal logics
works via a “clever translation ... into first-order logic”. Where we diverge from
other work is that in our case we are making the metalogic—coherent logic—in
which Hintikka sets are defined explicit, which allows us to leverage the metatheory
of that metalogic. There is a small problem: to use that metatheory we require finite
coherent theories, whereas each ΦL is infinite. We can, however, obtain a finite

2Thank you to Stéphane Demri for pointing me in the direction of his [75] in which this observa-
tion was reported.

9.5. Parametric Soundness and Completeness 187

coherent theory by looking at the part of ΦL that is actually relevant to each L

formula ϕ .

Definition 9.7 (ΦL
ϕ). Let ϕ be a L formula. The coherent theory corresponding to

ϕ , ΦL
ϕ , is given by

• Each logical coherent axiom of L corresponding to a subformula of ϕ;

• The frame coherent axioms for L ;

• The closure condition axioms for L (taking only the instances of 〈=
Inconsistency〉 and 〈< Inconsistency〉 featuring a subformula of ϕ);

• The equality and/or order coherent axioms.

It is clear that ΦL
ϕ is finite for any L formula ϕ: since there are only finitely

many subformulae of ϕ , only finitely many logical coherent axioms are taken from
the infinitely many defined by the schema. This corresponds precisely to what hap-
pens when a tableau proof is attempted for ϕ: of the logical expansion rules, only
instances corresponding to subformulae of ϕ can ever be triggered, as there is no
way for a labelled formula Sψ : x to be introduced in the tableau if ψ is not a sub-
formulae of ϕ . As there are finitely many frame coherent axioms, closure condition
axioms featuring subformulae of ϕ and equality/order coherent axioms, the whole
theory is finite.

We now use the coherent theories ΦL
ϕ to prove soundness and completeness

of the systems. We first establish a connection between the existence of first-order
models of ΦL

ϕ and particular Kripke L models. To help with the clarity of our
presentation, we refer to first-order models of coherent theories (in the usual sense)
as Tarksian models, in contrast to Kripke models. The key step is to establish that
the existence of a Kripke L model with a state that does not satisfy ϕ is equivalent
to the existence of a Tarskian model of ΦL

ϕ ∪{∃xFϕ(x)}.

Definition 9.8 (Induced Kripke Model of M). Given a Tarskian model M =

(X ,I) of ΦL
ϕ , the structure of the induced Kripke model operations of M are

defined as follows. Here, ♥ is any binary operation in the language of L frames.

• XM = {[x] | x ∈ X}, where [x] = {y |CI
= yx};

• [x]<M [y] iff CI
< xy;

• [x] ∈ [y]♥M [z] iff CI
♥ yzx;

• EM = {[x] |CI
E x};

9.5. Parametric Soundness and Completeness 188

• −M [x] = {y |CI
− xy};

• UM = {[x] |CI
U x};

• RM [x][y] iff CI
R xy.

• for L with classical additives, VM (p) = {[x] | ∃y ∈ X ,TpI (y) and CI
= xy};

• for L with intuitionistic additives, VM (p)= {[x] | ∃y∈X ,TpI (y) and CI
< xy}.

The induced Kripke model of M is comprised of the set XM and the valuation VM

together with the relevant L frame structure taken from the above list.

The next lemma shows that Tarskian models of the coherent theory ΦL
ϕ capture

enough of the Kripke semantics to enforce the satisfaction (or not) of subformulae
ψ of ϕ in the induced Kripke model at particular states through the predicates Sψ .

Lemma 9.9. For any bunched logic L , L formula ϕ and Tarskian model M of
ΦL

ϕ :

1. The induced Kripke model of M is a L model.

2. For any subformula ψ of ϕ and x ∈ X, TψI (x) implies [x] �VM
ψ and

FψI (x) implies [x] 6�VM
ψ .

Proof. 1. The axioms governing C= establish that it is an equivalence relation
on X . Further, the axioms defined by the schema 〈Sub〉 dictate that the equiv-
alence relation respects the L frame structure, and so the L frame structure
is well-defined. The case of −M requires some closer attention: we must
show that −M [x] is an equivalence class of C= and is always defined. Let
y ∈ −M [x] and C=yy′. Then CI

− xy and by 〈Sub〉 we have that CI xy′. Hence
y′ ∈ −M [x]. Further, 〈Total〉 dictates that {y |CI

− xy} 6= /0.

The required frame properties are directly axiomatised by the frame axioms
entailing that the structure is indeed a L frame. The last verification is that
VM is well-defined, and further, is persistent when L has intuitionistic ad-
ditives. Well-definedness follows straightforwardly from 〈Sub〉 so we move
to persistence: suppose [x] ∈ VM (p) and [y]<M [x]. Then there exists z ∈ X
such that CI

< xz and TpI (z). By definition, we also have that CI
< yx so by

〈< Trans〉, CI
< yz. Hence [y] ∈ VM (p).

2. We proceed by structural induction on the subformulae ψ of ϕ . As most of the
inductive steps are similar, we demonstrate a selection from the case where
L has intuitionistic additives. For the base case, TpI (x) entails [x] �VM

p

9.5. Parametric Soundness and Completeness 189

by definition of VM . If FpI (x), it cannot be the case that there exists y with
C<xy and TpI (y) as that would entail ⊥. Hence [x] 6∈ VM (p) and [x] 6� p.

Consider the case T(ψ1−∗ψ2)
I (x). Suppose [w]<M [x] and [z] ∈ [w]◦M [y].

Then CI
< wx and CI

◦ wyz. Since ψ1−∗ψ2 is a subformula of ϕ , the coherent
axiom corresponding to the rule 〈T−∗〉 for the instance ψ1−∗ψ2 is in ΦL

ϕ .
As the antecedent of the axiom is satisfied, either FψI

1 (y) or TψI
2 (z). By

the inductive hypothesis, either [y] 6�VM
ψ1 or [z] �VM

ψ2. Hence [x] � ψ1−∗
ψ2. For the case F(ψ1−∗ψ2)

I (x), since ψ1−∗ψ2 is a subformula of ϕ , the
coherent axiom corresponding to 〈F−∗〉 for this formula is in ΦL

ϕ . Hence
there exist w,y,z ∈ X such that TψI

1 (y), FψI
2 (z), CI

◦ wyz and CI
< xw. By the

inductive hypothesis, [y] � ψ1 and [z] 6� ψ2, and by definition [w]<M [x] and
[z] ∈ [w]◦M [y]. Hence [x] 6�VM

ψ1−∗ψ2.

The final cases we consider are those corresponding to ¬∗ . First, suppose
T¬∗ ψI (x). By 〈Total〉, there exists y ∈ X such that CI

− xy. Since ¬∗ψ is a
subformula of ϕ , the axiom instance of 〈T¬∗ 〉 corresponding to ¬∗ψ is in ΦL

ϕ .
Hence FψI (y). By the inductive hypothesis [y] 6� ψ; we show [y] = −M [x].
Suppose CL

= yy′. Then by 〈Sub〉, CI
− xy′, hence y′ ∈ −M [x]. Suppose instead

that CI
− xy′. By 〈Function〉 we can conclude C=yy′, hence y′ ∈ [y]. Hence

−M [x] 6�VM
ψ , so [x] �VM

¬∗ψ as required. The case for F¬∗ ψI (x) is similar.

The other direction is from Kripke models to Tarskian models.

Definition 9.10 (Induced Tarskian Model). Let (X ,V) be a Kripke L model. The
induced Tarskian model MX = (X ,IX) is defined as follows. Once again, ♥ is
any binary operation in the language of L frames.

The carrier of MX is X ; CIX
= = {(x,x) | x ∈ X};

CIX
< = {(y,x) | y< x}; CIX

♥ = {(x,y,z) | z ∈ x♥ y};
CIX

E = E; CIX
− = {(x,−x) | x ∈ X};

CIX
U =U ; CIX

R = R;
TϕIX = {x | x �V ϕ}; FϕIX = {x | x 6�V ϕ}.

It is straightforward but tedious task to verify that given a Kripke L model
(X ,V), the induced Tarskian model MX is a Tarskian model of ΦL , and hence
for any L formula ϕ , a Tarskian model of ΦL

ϕ . The following lemma is a simple
corollary of this fact, and completes the connection between validity of ϕ in L

models and the existence of Tarskian models of ΦL
ϕ .

9.5. Parametric Soundness and Completeness 190

Lemma 9.11. If (X ,V) is a Kripke L model with a state x (not) satisfying ϕ ,
then the induced Tarskian model MX is a Tarskian model of ΦL

ϕ ∪ {∃xTϕ(x)}
(ΦL

ϕ ∪{∃xFϕ(x)}).

To summarise, if a Tarskian model M of ΦL
ϕ ∪{∃xFϕ(x)} exists, by taking the

induced Kripke model of M we obtain a countermodel to the validity of ϕ in Kripke
models. If no Tarskian model of ΦL

ϕ ∪{∃xFϕ(x)} exists, then in particular ϕ must
be valid in Kripke models: otherwise the induced Tarskian model of any counter-
model would contradict the non-existence of Tarskian models of ΦL

ϕ ∪{∃xFϕ(x)}.
We now connect the existence of a closed tableau to Bezem & Coquand’s [22]

breadth-first forward reasoning proof system for coherent logic. In their system,
judgments of the form X
Φ D are derived, where X is a set of atomic first-order
sentences, Φ a finite coherent theory and D a closed coherent disjunction; a first-
order sentence with the same syntactic shape as the consequent of a coherent for-
mula. The derivation of the judgment X
Φ D is defined inductively:

1. (Base) X
Φ D holds if for one of the disjuncts ∃⇀y.C of D, there are constants
⇀a such that all conjuncts of C[⇀y := ⇀a] occur in X ;

2. (Inductive Step) Consider all closed instances Ci → Di of Φ-axioms such
that the conjuncts of Ci occur in X but the conjuncts of no disjunct Ci, j

of Di do. There exist finitely many, with their consequents thus enumer-
ated D0, . . . ,Dn. Let ∃⇀yi, j.Ci, j denote the j-th of the mi disjuncts of Di, and
denote by Ci, j the substitution of ⇀yi, j with fresh constants. Infer X
Φ D
from ∀ j0 ∈ {1, . . . ,m0}, . . . ,∀ jn ∈ {1, . . . ,mn}(X ,C0, j0 , . . . ,Cn, jn

Φ D). Im-
portantly, if a Di is ⊥, then mi = 0, and X
Φ D is trivially inferred.

A derivation can be seen as a kind of tableau, branching at each stage by adding
every possible consequence of Φ obtainable from the atomic first-order sentences
at the current node. A semi-decidable procedure is given to systematically search
for a derivation of X
Φ D. First check the base case. If it doesn’t hold, apply
the inductive step to any Φ-axioms fireable from X . If there are none, X forms an
Herbrand countermodel of Φ against D. If the inductive step can be applied, apply
the search procedure recursively to all premisses. Bezem & Coquand show that
successful termination corresponds to Tarskian truth.

Theorem 9.12 ([22]). X
Φ D is derivable iff the search procedure successfully
terminates for X
Φ D iff D is true in all Tarskian models of X ∪Φ.

We’re now ready to connect everything up. First, it is straightforward that the
search procedure for {Fϕ(a)}
ΦL

ϕ ⊥ corresponds precisely to an exhaustive search

9.5. Parametric Soundness and Completeness 191

for a closed tableau for ϕ . The search procedure systematically applies every pos-
sible tableau rule (represented as the coherent axioms in ΦL

ϕ) that can be applied
in the construction of a L tableau for ϕ . The search terminates only if every pos-
sible expansion ends up resulting in ⊥: that is, each possible branch of the tableau
satisfies a closure condition.

Lemma 9.13. There exists a closed L tableaux for ϕ iff the search procedure for
{Fϕ(a)}
ΦL

ϕ ⊥ successfully terminates.

Since ⊥ can never be true in a Tarskian model, successful termination of the
search procedure in this instance corresponds to the non-existence of a Tarskian
model of ΦL

ϕ ∪{∃xFϕ(x)}. Thus ϕ is valid in Kripke models. This direction gives
the soundness of the tableau method: the L tableau provability of ϕ implies the
validity of ϕ in L models. If no tableau proof exists for ϕ , the search procedure
does not terminate. The completeness of the Bezem-Coquand system guarantees
that there exists a Tarskian countermodel to {Fϕ(a)}
ΦL

ϕ ⊥— that is, a Tarskian
model of ΦL

ϕ ∪ {∃xFϕ(x)} where ⊥ does not hold (a redundant condition for a
Tarskian model)—which is obtained as a Herbrand model specified by the atomic
sentences on an infinite branch in the limit of the procedure. The induced Kripke
model of this Tarskian model is thus a witness to the failure of validity for ϕ in L

models. This takes care of the completeness of the tableau method: validity of ϕ in
L models implies L tableau provability of ϕ .

Theorem 9.14 (Soundness and Completeness of L Tableaux Calculi). For any L

formula ϕ , ϕ is valid in Kripke L models iff ϕ is provable in the L tableaux
calculus.

One aspect we have not discussed is complexity. This highlights one downside
of this method: as coherent logic is undecidable (as is easily seen by the coher-
ent logic encoding of the tableaux system for classical first-order logic) it seems
unlikely that we can analyse aspects like the decidability of any particular system
through our framework. Much more work also needs to be done to add mechanisms
that restrict constraint generation, something that is not controlled in our systems
and is an obvious source of inefficiency in naive proof-search. We suggest that these
systems should be seen from the computational point-of-view as idealised but cor-
rect systems that may yield tractable systems through refinement and the addition
of suitable control processes.

Chapter 10

Tableaux Calculi for Applications of
Bunched Logics

In the previous chapter we set up a modular tableaux calculus framework that yields
sound and complete proof systems for each of the bunched logics under investiga-
tion in this thesis. One of the motivations to focus on the tableau method rather than
essentially algebraic formalisms like the display calculus was the inexpressivity of
many of the properties of models used in applications of bunched logic: inexpres-
sivity essentially states that there is no way for such systems to recognise those
properties because those properties are not witnessed algebraically. We indicated
that this would not be an issue for the tableau method, which is based on the frame
view of the logics rather than the algebraic one. In this chapter we make good on
this claim by showing that the framework can be modularly extended to witness the
vast majority of properties of interest. This is once again achieved by appealing to
coherent axiomatisations of classes of frames.

We also investigate the construction of a tableaux calculus for layered graph
semantics. This is somewhat more delicate than the generic frame semantics as
labels must now represent graphs, with a required internal structure that may not
become apparent until long after the label has been introduced in the derivation. To
make this work we design a calculus from scratch, and show it is possible to extract
layered graph countermodels to invalid formulae, and is thus sound and complete.

Section 10.1 of this chapter is based on material from the paper Modular
Tableaux Calculi for Separation Theories [81], while Section 10.2 is based on the
paper Intuitionistic Layered Graph Logic [78].

10.1 Separation Logics
The key application of bunched logic is in program verification, exemplified by
Separation Logic (see Chapter 3). While the assertion language of the standard

10.1. Separation Logics 193

model of Separation Logic is defined by the theory of the heap model of (B)BI,
this idea quickly gave way to a large number of separation logics, wherein assertion
languages are defined by the theory of bespoke memory models of (B)BI.

There have been a number of attempts to capture the notion of memory model
at an abstract level This was first undertaken by Calcagno, O’Hearn & Yang [50],
who abstracted the details of the heap model to a structure called a separation al-
gebra, a partial-deterministic and cancellative monoid model of BBI. Conflicting
definitions of separation algebra have since been given by adding/removing first-
order properties or strengthening/weakening the monoid properties [44, 51, 77, 84].
These mutually exclusive definitions can be encompassed in a framework of sepa-
ration theories [44], collections of first-order axioms (separation properties) in the
language of (B)BI frames that are common to separation logic models. All separa-
tion logics in the literature can be seen to be models of separation theories, while
the verification frameworks Views [77] and Iris [135] explicitly implement the idea
of generating program logics parametrically by separation theory.

A theorem prover for deriving assertions satisfied by the underlying model
is a necessary component of any implementation of a separation logic, with the
deployable proof theory of the standard formalism crucial for its scalability to large
code bases [49, 221]. Standard implementations are model-specific, however, and
only suitable for the heap model. In order to account for the large numbers of
bespoke separation logics, as well as Views/Iris-style frameworks, we require tools
that support parametrization by separation theory. This is somewhat complicated
by the expressivity issues related to separation theories that were raised in Chapter
7 however, as many of the characteristic properties of a memory model are not
necessarily being witnessed by the underlying logic.

Worse, it is known that some separation theories determine distinct classes of
valid formulae. Larchey-Wendling & Galmiche [150] show that this is the case for
the properties of partial functionality and total composition for BBI, while Broth-
erston & Calcagno [39] show that partial functionality has the same effect for CBI
validity. While the effect on validity for the full space of separation theories has not
been investigated, it is clear that separation theories determine distinct logics (in the
semantic sense of a logic as the theory of a class of frames) in key cases and it may
be expected that this phenomenon arises more broadly.

These problems are easily side stepped in our tableaux calculi framework, how-
ever: the separation theories can be directly represented as tableau rules. This is
possible because virtually all of the separation properties found in the literature are
given as coherent forumulae. There is one exception—Divisibility—but even this
can be captured by a system of coherent axioms.

10.1. Separation Logics 194

There are of course many proof theoretic treatments of the concrete heap model
of Separation Logic [20, 100, 127], but very little exists for separation theories. The
key exception to this is Hóu et al.’s [124] labelled sequent calculi for propositional
abstract separation logic. There, a labelled sequent calculus for BBI is extended
with rules corresponding to the most common separation properties – partial de-
terminism, cancellativity, indivisible unit and divisibility – and completeness and
cut elimination is proved. In Hóu’s PhD dissertation [123] the properties cross-split
and splittability are additionally handled, although completeness for these new rules
requires ‘non-trivial changes’ to the previous proofs.

Recent work by Hóu et al. [125] that appeared concurrently with the writing
of this thesis improves upon this by giving a schema for generating rules for their
calculus based on the syntactic form of separation properties: this can be seen as a
more restricted form of our method as it utilises a fragment of coherent formulae
they call frame axioms. This is suitable for the properties they consider, but does
not capture everything that we can. The classes of frames captured by our systems
strictly extend those of Hóu et al.—in particular, by additionally considering classes
of BI frames that are appropriate for intuitionistic separation logics, in addition to
separation theories interpreted on frames for other bunched logics. A deficiency of
our approach with respect to Hóu et al’s is a lack of implementation, though we
note that the representation of our systems as theories of coherent logic suggests
off-the-shelf coherent logic provers (see Polonsky [184] for a survey) could be used
to give naive implementations of our framework.

Brotherston & Villard [44] deal with the undefinability of separation theories
by defining a conservative extension of BBI called HyBBI, extending the syntax
with nominals, satisfaction operators and binders. This extra expressivity leads
to the axiomatizability of the undefinable separation properties. This work is not
specifically concerned with proof theory, giving only a Hilbert-style system for
HyBBI, and has the defect of requiring modifications to the syntax of Separation
Logic. In addition, a significant theoretical reformulation would be required to
capture separation theories interpreted on BI frames this way: the satisfaction of
nominals (which must be true at a single state) necessarily fails to be persistent
in all but trivial models, so it is unclear if it would be possible to use them in an
intuitionistic logic to axiomatise frame properties. Intuitionistic hybrid logic has
been investigated by Braüner [33] but requires significant changes to the frames for
intuitionistic modal logic to sidestep this issue.

In addition to this issue, the axiomatization of—and completeness argument
for—HyBBI utilizes Boolean negation in an essential way to take care of the inter-
action between the hybrid operators and −∗. As BI lacks Boolean negation such a

10.1. Separation Logics 195

Partial Functionality z ∈ x◦ y∧ z′ ∈ x◦ y→ z = z′

Total ∃z(z ∈ x◦ y)
Cancellativity z ∈ x◦ y∧ z ∈ x◦ y′→ y = y′

Single Unit x ∈ E ∧ x′ ∈ E→ x = x′

Indivisible Units x ∈ y◦ z∧ x ∈ E→ y ∈ E
Disjointness x ∈ y◦ y→ y ∈ E
Divisibility x 6∈ E→∃y,z(y 6∈ E ∧ z 6∈ E ∧ x ∈ y◦ z)
Cross-Split x ∈ t ◦u∧ x ∈ v◦w→∃a,b,c,d(t ∈ a◦b∧u ∈ c◦d∧ v ∈ a◦ c∧w ∈ b◦d)
Upwards-Closed z ∈ x◦ y∧ z≤ z′→∃x′,y′(z′ ∈ x′ ◦ y′∧ x≤ x′∧ y≤ y′)
Downwards-Closed z ∈ x◦ y∧ x′ ≤ x∧ y′ ≤ y→∃z′(z′ ∈ x′ ◦ y′∧ z′ ≤ z)
Non-Branching x≤ y∧ x≤ y′→ y≤ y′∨ y′ ≤ y
Always-Joins x≤ y∧ x≤ y′→∃z(y≤ z∧ y′ ≤ z)
Increasing z ∈ x◦ y→ y≤ z
Unit Self Joining x ∈ E→ x ∈ x◦ x
Normal Increasing z ∈ x◦ y∧ z ∈ E→ x≤ z

Figure 10.1: Separation properties.

technique cannot be directly transferred. In contrast, in our work the necessary ma-
chinery is internalised within the proof system and both classical and intuitionistic
cases are taken care of uniformly.

10.1.1 Separation Theories
We begin by collecting separation theories from the literature. Some we have al-
ready encountered in Chapter 7 and others we consider now for the first time in
the thesis. In Figure 10.1 we list separation properties collected from Brotherston
& Villard [44], Calcagno et al. [50], Cao et al. [51] and Dockins et al. [84]. A
separation theory Σ is a set of these properties. Those involving < are of course
only to be interpreted on frames for bunched logics with intuitionistic additives.

Some of these (for example, Non-Branching and Always-Joins) can be ax-
iomatised in (B)BI (see [51]), but others like Partial Functionality and Single Unit
we know cannot [44]. Separation theories containing only axiomatisable proper-
ties can be given an algebraic-style display calculus proof theory, but most separa-
tion logics are actually models of separation theories that contain some undefinable
properties. We demonstrate this fact by giving a sequence of examples of actual
separation logics that satisfy some separation theory obtained from this list.

Heaps. Our first example is given by the standard memory models of Sep-
aration Logic that we have seen before. Recall that a heap is a partial function
h : N→ Z, representing an allocation of memory addresses to values. Given heaps
h,h′, h#h′ denotes that dom(h)∩dom(h′) = /0; h ·h′ denotes the union of functions
with disjoint domains, which is defined iff h#h′. The empty heap, [], is defined
nowhere.

10.1. Separation Logics 196

Let H denote the set of all heaps. Then HeapBBI = (H, ·,{[]}) is a BBI frame.
Letting h < h′ denote that h extends h′, HeapBI = (H,<, ·,H) defines a BI frame.
These frames generate the standard classical and intuitionistic models of Separation
Logic. HeapBBI satisfies Partial Determinism, Cancellativity, Single Unit, Indivisi-
ble Units, Cross-Split and Unit Self Joining; HeapBI additionally satisfies Splittabil-
ity, Upwards-Closed, Downwards-Closed, Increasing and Normal Increasing while
dropping Single Unit and Unit Self Joining.

Permissions. Permissions are incorporated into variants of separation log-
ics that are designed to reason about certain kinds of concurrent algorithms and
more fine-grained notions of memory disjointness: for example, disjointness mod-
ulo shared read permission. Hóu [123] reports a schema of Clouston that encom-
passes many such models: we recall it, with two concrete instances.

Let V be a set of values and ? : V 2→V an associative and commutative partial
function. Denote by HV the set of V-valued heaps h : N → V . Then HeapV =

(HV ,◦?,{[]}) is a BBI frame, where ◦? is defined by

h1 ◦? h2(n) =


h1(n)?h2(n) if n ∈ dom(h1)∩dom(h2) and h1(n)?h2(n) ↓
h1(n) if n ∈ dom(h1)\dom(h2)

h2(n) if n ∈ dom(h2)\dom(h1)

undefined otherwise.

Hóu defines Bornat et al.’s [32] counting permissions model with V = Z2 and

(x, i)? (y, j) =


(x, i+ j) if x = y, i < 0 and j < 0

(x, i+ j) if x = y, i+ j ≥ 0 and (i < 0 or j < 0)

undefined otherwise.

This frame satisfies Partial Determinism, Cancellativity, Indivisible Units, Single
Unit, Cross-Split and Unit Self Joining.

Hóu defines Dockins et al.’s [84] binary tree model by considering the set T
of non-empty binary trees with leaves labelled > or ⊥ that are quotiented by the
smallest congruence that identifies any subtree in which all leaves have the same
label with a single leaf carrying that label. Then V = Z×T , and ? is defined, where
∨ (∧) denotes pointwise disjunction (conjunction) of equivalent trees, by

(x, [t])? (y, [t ′]) =

{
(x, [t ∨ t ′]) if x = y and [t ∧ t ′] = [⊥]
undefined otherwise.

10.1. Separation Logics 197

This frame satisfies Partial Determinism, Cancellativity, Single Unit, Indivisible
Units, Disjointness, Splittability, Cross-Split and Unit Self Joining.

Crash Hoare Logic. Chen et al. [53] use a separation logic to verify that the
FSCQ file system meets its specification and secures its data under any sequence
of crashes. Cao et. al. [51] give the underlying model as the following BI frame.
Let V+ be the set of non-empty lists over a set V and ε the empty list. Buffer
heaps are defined to be heaps h : N→ V+. Let Hbuff be the set of all buffer heaps.
Then Heapbuff = (Hbuff,<, ·,{[]}) is a BI frame, where · is the usual heap compo-
sition, and h2 < h1 iff dom(h1) = dom(h2) and ∀x ∈ N, ∃l ∈ V+ ∪{ε} such that
h1(x) = l⊕ h2(x). This frame satisfies Partial Determinism, Cancellativity, Single
Unit, Indivisible Units, Cross-Split, Upwards-Closed, Downwards-Closed, Always-
Joins, Non-Branching, Unit Self Joining, and Normal Increasing.

Typed Heaps. Cao et al. [51] give an example derived from the handling
of multibyte locks in Appel’s [11] Verified System Toolchain separation logic for
CompCert C. Let a typed heap be a partial map h : N → {char,short1,short2}
such that h(n) = short1 implies h(n+ 1) = short2. Let Htyp denote the set of all
typed heaps. Then HeapTyp = (Htyp,<,◦,Htyp) is a BI frame, where h2 < h1 iff,
for all n ∈ dom(h1) either n ∈ dom(h2) and h1(n) = h2(n) or h1(n) = char, and
h∈ h1◦h2 iff h1 ·h2≤ h. This frame satisfies Indivisible Units, Disjointness, Splitta-
bility, Cross-Split, Upwards-Closed, Downwards-Closed, Non-Branching, Increas-
ing, and Normal Increasing.

Memory Models With Intersection Operators. Our final example is slightly
more abstract. Brotherston & Villard [45] motivate the introduction of BiBBI and
its subclassical extensions as a way of interpreting multiplicative disjunction ∨∗ on
memory models, as heaps do not form models of CBI and DMBI. On such models,
the frame operation O is interpreted as heap intersection. However, it is only under
certain conditions that a BBI memory model can be equipped with a heap intersec-
tion operation that yields a model of all the subclassical axioms: the model must
satisfy Partial Functionality, Cross-Split and Disjointness. This separation theory
thus defines the class of BBI frames that are subclassically extendable.

10.1.2 Modular Tableaux Calculi for Separation Theories
We can now use the translation schema of Chapter 9 to transform these separation
properties into tableau rules that can be added to the L tableaux calculus for a given
bunched logic L to obtain the L +Σ tableaux calculus for any separation theory Σ.
Note that we do not specify that L is (B)BI, despite the focus being on separation
logic. It may be useful to investigate other bunched logics with memory interpre-
tations extended with separation theories: for example, subclassical bunched logics

10.1. Separation Logics 198

〈P Func〉 C◦xyz,C◦xyz′ ∈ C

〈 /0,{C=zz′}〉
〈Total〉 Expression(x),Expression(y) ∈F ∪C

〈 /0,{C◦xyci}〉

〈Canc〉 C◦xyz,C◦xy′z ∈ C

〈 /0,C=yy′〉
〈U. Closed〉 C◦xyz,C<z′z ∈ C

〈 /0,{C◦cic jz′,C<cix,C<c jy}〉

〈Dis joint〉 C◦yyx ∈ C

〈 /0,CEy〉 〈Cross−Split〉 C◦tux,C◦vwx ∈ C

〈 /0,{C◦cic jt,C◦ckclu,C◦cickv,C◦c jclw}〉

〈Single Unit〉 CEx,CEy ∈ C

〈 /0,C=xy〉 〈D. Closed〉 C◦xyz,C<xx′,C<yy′ ∈ C

〈 /0,{C◦x′y′ci,C<zci}〉

〈Unit Sel f Joining〉 CEx ∈ C
〈 /0,{C◦xxx}〉 〈Always− Joins〉 C<yx,C<y′x ∈ C

〈 /0,{C<ciy,C<ciy′}〉

〈Increasing〉 C◦xyz ∈ C

〈 /0,{C<zy}〉 〈Non−Branching〉 C<yx,C<y′x ∈ C

〈 /0,{C<yy′}〉 | 〈 /0,{C<y′y}〉

〈N. Increasing〉 C◦xyz,CEz ∈ C

〈 /0,C<zx〉

with ci,c j,ck,cl fresh labels.

Figure 10.2: Separation theory frame expansion rules.

which have heaps with intersection as a model, or perhaps CKBI for concurrent sep-
aration logic like models. Modularity of our framework makes this straightforward.
We give these rules, with the exception of Divisibility, in Figure 10.2.

Dealing with Divisibility requires a small amount of pre-processing: unlike
every other L frame axiom we have come across in this thesis, it is not a coher-
ent axiom. Written explicitly in the first-order tableau language, it is of the form
¬CEx→∃y,z(¬CEy∧¬CEz∧C◦yzx). The presence of these negations takes us out-
side of coherent logic. This can be fixed by directly representing the complement of
E with a constraint symbol, and using a coherent axiomatisation of the property of
being the complement of a particular set to generate supplementary rules.

Explicitly, for L + Σ tableaux calculi for which Σ contains Divisibility, we
add a new constraint symbol to ConSym(L): CE . Now CEx is interpreted as saying
x 6∈ E. To enforce that interpretation we have the coherent axioms: >→CEx∨CEx
and CEx∧CEx→ ⊥. Thus Figure 10.3 gives the tableau rules corresponding to
Divisibility. These correspond precisely to the first of the complement axioms and
the Divisibility property itself. For the second complement axiom, we are in the
translation case we did not cover in the previous chapter: a coherent formula with⊥
as consequent. Straightforwardly, the antecedent becomes a new closure condition:

7. CEx,CEx ∈ C .

10.1. Separation Logics 199

〈Divisibility〉 CEx ∈ C

〈 /0,{CEci,CEc j,C◦cic jx}〉
〈Complement 1〉 Expression(x) ∈F ∪C

〈 /0,CEx〉 | 〈 /0,CEx〉

Figure 10.3: Divisibility frame expansion rules.

1.
2.
3.
4.
5.

〈{Fφ ∗ψ → ψ : c0}, /0〉
〈{Tφ ∗ψ : c1, Fψ : c1},{C<c1c0}〉

〈{Tφ : c3, Tψ : c4}, {C◦c3c4c2, C<c1c2}〉
〈 /0, {C<c2c4}〉
〈 /0, {C<c1c4}〉

⊗

Premiss
〈F→〉, 1.
〈T∗〉, 2.
〈Increasing〉, 3.
〈< Trans〉, 2., 3.

Figure 10.4: Tableau proof of φ ∗ψ → ψ in the BI + Increasing system.

This sheds some light on the construction of the underlying tableaux calculi
for bunched logics with>∗ or⊥∗. The labelled formulae F>∗ : x and T⊥∗ : x already
encode x 6∈ E and x ∈ U . The closure conditions 5. and 6. are thus of the same
essential form of 7. One might ask, why not just use F>∗ : x instead of the new
constraint symbol? The main reason is that the introduction of labelled formulae
is much more controlled than the introduction of label constraints, and there is no
mechanism in the tableau countermodel construction procedure that ensures that
every equivalence class of labels [x] that ends up not being in EM has a represen-
tative x that occurs in a labelled formula F>∗ : x. This means Divisibility would
not necessarily hold in the countermodel, breaking completeness for these calculi.
This is explicitly ensured by the rule 〈Complement 1〉 for the new label constraint
method.

We now give a couple of examples of separation theory tableau proofs witness-
ing validity that does not hold at the most general level of L frames. One of the
key properties distinguishing the standard heap models is that weakening for ∗ (i.e.,
φ ∗ψ → ψ) is valid in the intuitionistic heap model but not the classical. Cao et al.
[51] show that this corresponds to the separation property Increasing. Figure 10.4
— again, written using the traditional representation of tableaux — shows a single
branch tableaux proof of φ ∗ψ → ψ for BI + Increasing, closed because Tψ : c4,
Fψ : c1 and C<c1c4 occur.

A more interesting example can be given of a formula that is valid in frames
satisfying a particular separation property that the formula nonetheless doesn’t de-
fine. The formula (¬>∗−∗⊥)→>∗ is valid in BBI models satisfying Total, but not
in all BBI models [149], and Figure 10.5 shows that the tableaux calculus for BBI
+ Total proves it. At the final step, the identity ¬ϕ := ϕ →⊥ allows us to apply

10.1. Separation Logics 200

1.
2.
3.

4.
5.

〈{F(¬>∗−∗⊥)→>∗ : c0}, /0〉
〈{T¬>∗−∗⊥ : c0, F>∗ : c0}, /0〉

〈 /0, {C◦c0c0c1}〉

〈{F¬>∗ : c0}, /0〉
〈{T>∗ : c0, F⊥ : c0}, /0〉

⊗

〈{T⊥ : c1}, /0〉
⊗

Premiss
〈F→〉, from (1)
Total, from (1)

〈T−∗〉, from (2), (3)
〈F→〉, from (4)

Figure 10.5: Tableau proof in the BBI + Total system.

the 〈T→〉 rule, as our system does not have a primitive rule for ¬ as it is a defined
connective. The left-hand branch is closed because T>∗ : c0 occurs at step 2. and
F>∗ : c0 occurs at step 5., while the right branch is closed because T⊥ : c1 occurs
at step 4.

The soundness and completeness of the tableaux calculi augmented with sep-
aration theory rules is an immediate corolllary of the case for the base tableau:
the only difference is the additional coherent axioms obtained from the separation
theory rules enforce that the induced Kripke models of Tarskian models of ΦL+Σ

ϕ

satisfy the separation theory Σ, and that every Kripke L model satisfying a sepa-
ration theory Σ induces a Tarskian model of ΦL+Σ

ϕ . The rest of the argument goes
through identically.

Theorem 10.1 (Soundness and Completeness of L +Σ Tableaux Calculi). For any
L formula ϕ , and any separation theory Σ in the language of L frames, ϕ is valid
in Kripke L +Σ models iff ϕ is provable in the L +Σ tableaux calculus.

This exhaustively treats the separation theories of the literature. Moreover, if
any new separation property is deemed to be of interest in applications of bunched
logic, as long as it is axiomatisable via a finite coherent theory, tableaux calculi can
be defined for the classes of frames it defines. A folklore result reconstructed by
Dyckhoff & Negri [90] demonstrates just how much this captures: given any first-
order sentence ϕ , there exists a finite coherent theory (involving at most finitely
many new predicate symbols added to the language of ϕ) that conservatively ex-
tends the theory of ϕ . Moreover, this coherent theory can be constructed from ϕ .
Our treatment of Divisibility is a specific case of this general result.

We should mention the limitations of this approach, however. There are some
frame properties of interest that are out of reach for this technique. In Chapter 7 we
defined the concept of well-founded decomposition and identified it as the property
that allows states of the heap model to be identified with formulae of separation
logic. As this property is not first-order definable, we cannot define tableaux calculi
for frames satisfying well-founded decomposition in our framework.

10.2. Layered Graph Models 201

A similar issue arises with a frame property that is essential for the higher
order concurrent separation logic framework Iris [135]. That framework utilises
step-indexed memory models, with a state essentially given by a pair (r,n) where r
is a resource and n∈N. Approximately, (r,n)� ϕ if ϕ holds of r for at least n reduc-
tion steps in an operational program semantics. This additional structure allows the
interpretation of Nakano’s [168] later modality, which is used to reason about recur-
sion and is one of the key aspects of the framework. The later modality defines an
intuitionistic modal logic known [59] to be sound and complete for Kripke frames
with an accessibility relation R that is transitive and converse well-founded—that
is, has no infinite sequences x0Rx1Rx2Rx3 Converse well-foundedness is not
first-order definable and thus cannot be captured by rules generated from coherent
formulae. Clouston & Goré [59] have given a sound and complete sequent calcu-
lus for the modal logic of the later modality, but it would take substantial work to
understand how those techniques could be combined with ours.

10.2 Layered Graph Models
We finish the thesis where we began: back at the weakest bunched logic ILGL.
Just as memory models are the classes of frames of interest for logics including
and extending (B)BI, layered graph models are of primary interest for the layered
graph logics. Using our framework to define a tableaux calculus that is sound and
complete for this class of frames is somewhat more complicated, however.

One way forward would be similar to the treatment of separation theories:
abstract from the specific internal structure of layered graph models to a class of
axioms that captures salient features of the composition, in the same way that heap
models are abstracted to (B)BI frames satisfying particular additional axioms. To
do so we might include rules enforcing anti-reflexivity, contra-commutativity and
partial functionality of composition.

We’d like to do something stronger than this though, and define a system that
is genuinely complete for layered graph models themselves. This boils down to
ensuring that the countermodels generated by the tableau construction procedure
are genuine layered graph models, but this is tricky: states in our countermodels
are equivalence classes of labels, and it is not clear how to systematically assign the
necessary graph structure to each one of these states to make the resulting frame
an ordered scaffold with a valuation that faithfully represents the satisfaction data
encoded by labelled formulae.

Instead we define a new tableaux calculus for ILGL with layered countermodel
extraction. It shares some similarities with the presentation of tableaux calculi of
Chapter 9, but we are now much more careful in our treatment of labels, which will

10.2. Layered Graph Models 202

become the vertices of the layered graph countermodels extracted for invalid ILGL
formulae. The design of this system is much closer to previous tableau systems for
bunched logics [101, 148, 68], with its soundness and completeness argument es-
sentially that given for those calculi. In particular, the design philosophy is similar
to Galmiche & Méry’s [100] tableaux calculus for Separation Logic, which con-
trols the introduction of labels in such a way that they can be used to define heap
countermodels.

10.2.1 A Tableaux Calculus for Layered Graph Models
Definition 10.2 (Graph labels). Let Σ = {ci | i ∈ N} be a countable set of atomic
labels. We define the set L= {x ∈ Σ? | 0 < |x| ≤ 2}\{cici | ci ∈ Σ} to be the set of
graph labels. A sub-label y of a label x is a non-empty sub-word of x, and we denote
the set of sub-labels of x by S (x).

The graph labels are a syntactic representation of the subgraphs of a model,
with labels of length 2 representing a graph that can be decomposed into two lay-
ers. Note that we are now explicitly representing the partial functional graph com-
position in the structure of labels. Importantly, we exclude the possibility cici as
layering is anti-reflexive. We also introduce constraints to represent the preorder<.
These are the only constraint symbols for the tableau system, and as we aren’t going
through the intermediate stage of translating to the first-order tableau language we
are much more direct in our representation.

Definition 10.3 (Constraints). A constraint is an expression of the form x< y, where
x and y are graph labels.

Let C be a set of constraints. The domain of C , D(C), is the set of all
sub-labels appearing in C . In particular, D(C) =

⋃
x4y∈C (S (x)∪S (y)) The al-

phabet of C is the set of atomic labels appearing in C . In particular, we have
A (C) = Σ∩D(C). In this system the derivation of constraints is outsourced to
maintain control of the labels that are being introduced to a branch. It additionally
has the computational benefit of controlling the application of the rules that pertain
to constraint derivation around logical expansion rules, something that is difficult to
specify at the level of genericity we were working at with the modular framework.

Definition 10.4 (Closure of constraints). Let C be a set of constraints. The closure
of C , denoted C , is the least relation closed under the rules of Figure 10.6 such that
C ⊆ C .

This closure yields a preorder on D(C), with 〈R1〉−〈R6〉 generating reflexiv-
ity and 〈Tr〉 yielding transitivity. Crucially, taking the closure of the constraint set

10.2. Layered Graph Models 203

x< y〈R1〉 x< x
x< y〈R2〉 y< y

x< yz〈R3〉 y< y
x< yz〈R4〉 z< z

xy< z〈R5〉 x< x
xy< z〈R6〉 y< y

x< y y< z〈Tr〉 x< z

Figure 10.6: Rules for closure of constraints.

does not cause labels to proliferate and the generation of any particular constraint
from an arbitrary constraint set C is fundamentally a finite process.

Proposition 10.5. Let C be a set of constraints.

1. x ∈D(C) iff x< x ∈ C .

2. D(C) = D(C) and A (C) = A (C).

Lemma 10.6 (Compactness). Let C be a (possibly countably infinite) set of con-
straints. If x < y ∈ C , then there is a finite set of constraints C f ⊆ C such that
x< y ∈ C f .

We now give the definition of labelled formula and CSS for this calculi. These
are essentially the same as in Chapter 9, but we impose more conditions on CSSs to
ensure we can transform them into layered graph models.

Definition 10.7 (Labelled Formula / CSS). A labelled formula is an expression Sϕ :
x where S∈ {T,F}, ϕ is a formula of ILGL and x is a graph label. A constrained set
of statements (CSS) is a pair 〈F ,C 〉, where F is a set of labelled formulae and C

is a set of constraints, satisfying the following properties: for all x ∈ L and distinct
ci,c j,ck ∈ Σ,

1. (Ref) if Sϕ : x ∈F , then x4 x ∈ C ,

2. (Contra) if cic j ∈D(C), then c jci 6∈D(C), and

3. (Freshness) if cic j ∈D(C), then cick,ckci,c jck,ckc j 6∈D(C).

A CSS 〈F ,C 〉 is finite if F and C are finite. The relation ⊆ is defined on CSSs
by 〈F ,C 〉 ⊆ 〈F ′,C ′〉 iff F ⊆F ′ and C ⊆ C ′. We denote by 〈F f ,C f 〉 ⊆ f 〈F ,C 〉
when 〈F f ,C f 〉 ⊆ 〈F ,C 〉 holds and 〈F f ,C f 〉 is finite.

The CSS properties ensure models can be built from the labels: (Ref) ensures
we have enough data for the closure rules to generate a preorder, (Contra) ensures
the contra-commutativity of graph layering is respected, and (Freshness) ensures

10.2. Layered Graph Models 204

〈T∧〉 Tϕ ∧ψ : x ∈F

〈{Tϕ : x,Tψ : x}, /0〉 〈F∧〉 Fϕ ∧ψ : x ∈F

〈{Fϕ : x}, /0〉 | 〈{Fψ : x}, /0〉

〈T∨〉 Tϕ ∨ψ : x ∈F

〈{Tϕ : x}, /0〉 | 〈{Tψ : x}, /0〉 〈F∨〉 Fϕ ∨ψ : x ∈F

〈{Fϕ : x,Fψ : x}, /0〉

〈T→〉 Tϕ → ψ : x ∈F and y< x ∈ C

〈{Fϕ : y}, /0〉 | 〈{Tψ : y}, /0〉
〈F→〉 Fϕ → ψ : x ∈F

〈{Tϕ : ci,Fψ : ci},{ci < x}〉

〈T∗〉 Tϕ ∗ψ : x ∈F

〈{Tϕ : ci,Tψ : c j},{x< cic j}〉
〈F∗〉 Fϕ ∗ψ : x ∈F and x< yz ∈ C

〈{Fϕ : y}, /0〉 | 〈{Fψ : z}, /0〉

〈T−∗〉 Tϕ−∗ψ : x ∈F and y< x,yz< yz∈C

〈{Fϕ : z}, /0〉 | 〈{Tψ : yz}, /0〉
〈F−∗〉 Fϕ−∗ψ : x ∈F

〈{Tϕ : c j,Fψ : cic j},{ci < x,cic j < cic j}〉

〈T∗−〉 Tϕ ∗−ψ : x ∈F and y< y,zy< zy∈C

〈{Fϕ : z}, /0〉 | 〈{Tψ : zy}, /0〉
〈F∗−〉 Fϕ ∗−ψ : x ∈F

〈{Tϕ : c j,Fψ : c jci},{ci < x,c jci < c jci}〉

with ci and c j being fresh atomic labels.

Figure 10.7: Tableau rules for ILGL.

the layering structure of the models we construct is exactly that specified by the
labels and constraints in the CSS. One might wonder why we didn’t represent these
conditions directly as rules in the style of the modular tableaux calculi framework.
Had this been done, it would not be possible to prove soundness of the system as
the freshness property if conceived as a proof rule is clearly not sound for arbitrary
layered graph models when the labels are interpreted as subgraphs. We do need it
to turn suitable CSSs into layered graph models, however, but this mismatch is be-
nign: the design of the tableau rules will ensure that every branch CSS constructed
according to the tableaux calculus satisfies these properties anyway, and the layered
graph semantics will be shown sound with respect to those rules.

As with constraint closure, CSSs have a finite character.

Proposition 10.8. For any CSS 〈F f ,C 〉 in which F f is finite, there exists C f ⊆ C

such that C f is finite and 〈F f ,C f 〉 is a CSS.

Figure 10.7 presents the rules of the tableau system for ILGL. That ‘ci and c j

are fresh atomic labels’ means ci 6= c j ∈ Σ \A (C). This means it is impossible
to introduce the non-label word cici 6∈ L as a label. Tableaux in this system are
defined identically to those in the modular framework. There is a small distinction
in the notion of a tableau for ϕ , however. Now, a tableau for ϕ is a tableau for
〈{Fϕ : c0},{c0< c0}〉: this initial constraint is required to make the root CSS satisfy
the CSS properties of Definition 10.7 and begin the generation of the preorder <.
It is straightforward but tedious to verify that the tableau rules also preserve the
CSS properties of Definition 10.7. Hence tableau construction produces branches
satisfying (Ref), (Contra) and (Freshness), as we will require.

10.2. Layered Graph Models 205

1.
2.
3.
4.

5.

6.

7.

〈{F((ϕ−∗χ)∧ (ψ−∗χ))→ ((ϕ ∨ψ)−∗χ) : c0},{c0 < c0}〉
〈{T(ϕ−∗χ)∧ (ψ−∗χ) : c1,F(ϕ ∨ψ)−∗χ : c1},{c1 < c0}〉
〈{Tϕ ∨ψ : c3,Fχ : c2c3},{c2 < c1, c2c3 < c2c3}〉

〈{Tϕ−∗χ : c1,Tψ−∗χ : c1}, /0〉

〈{Fϕ : c3}, /0〉

〈{Fψ : c3}, /0〉

〈{Tϕ : c3}, /0〉
⊗

〈{Tψ : c3}, /0〉
⊗

〈{Tχ : c2c3}, /0〉
⊗

〈{Tχ : c2c3}, /0〉
⊗

Premiss
〈F→〉, 1.
〈F−∗〉, 2.
〈T∧〉, 2.

〈T−∗〉, 3., 4.

〈T−∗〉, 3.,4.

〈T∨〉, 3.

Figure 10.8: ILGL tableau proof of (ϕ−∗χ)∧ (ψ−∗χ)→ ((ϕ ∨ψ)−∗χ).

The closure conditions specifying when a tableau is a proof are defined essen-
tially the same as those for the ILGL calculus from the modular framework:

1. Tϕ : x,Fϕ : y ∈F and x< y ∈ C ;

2. F> : x ∈F ;

3. T⊥ : x ∈F .

A tableau proof of ϕ is thus a tableau for ϕ in which all branches are closed. An
example of a tableau proof for this system is given in Figure 10.8. This revisits the
formula (ϕ −∗ χ)∧ (ψ −∗ χ)→ ((ϕ ∨ψ)−∗ χ) previously proved for all bunched
logics with classical additives in Figure 9.11. Note that at steps 5. and 6. it is
possible to trigger 〈T−∗〉 because of the occurrence of c2 < c1 and c2c3 < c2c3 at
step 3. We then obtain closure of the leftmost branch because Fϕ : c3 occurs at step
5. and Tϕ : c3 occurs at step 7.; the centre-left branch is closed because Fψ : c3

occurs at step 6. and Tψ : c3 occurs at step 7.; the centre-right branch is closed
because Fχ : c2c3 occurs at step 3. and Tχ : c3 occurs at step 6.; finally, the right-
most branch is closed because Fψ : c2c3 occurs at step 3. and Tχ : c2c3 occurs at
step 5.

10.2.2 Soundness and Completeness
We now prove this system is sound and complete for the layered graph semantics of
ILGL. In contrast to the modular framework, this is done directly by constructing
layered graph countermodels to invalid formulae by saturating a branch of tableau.
First we prove soundness by strengthening the informal interpretation of the labelled

10.2. Layered Graph Models 206

formulae and constraints as encodings of the structure of a layered graph model
through the notion of realization.

Definition 10.9 (Realization). Let 〈F ,C 〉 be a CSS. A realization of 〈F ,C 〉 is a
triple R = (X ,V ,b.c) where M = (X ,V) is a layered graph model and b.c :
D(C)→ X is such that

1. for all x ∈D(C), if x = cic j, then bcic@E bc jc ↓ and bxc= bcic@E bc jc,

2. if x< y ∈ C , then bxc<M byc,

3. if Tϕ : x ∈F , then bxc |=V ϕ ,

4. if Fϕ : x ∈F , then bxc 6|=V ϕ .

We say that a CSS is realizable if there exists a realization of it. We say that a
tableau is realizable if at least one of its branches is realizable. We can also show
that the relevant clauses of the definition extend to the closure of the constraint set
automatically.

Proposition 10.10. Let 〈F ,C 〉 be a CSS and R = (X ,V ,b.c) a realization of it.
Then:

1. for all x ∈D(C), bxc is defined;

2. if x< y ∈ C , then bxc< byc.

As the name suggests, a realization realizes the partial specification of a lay-
ered graph model encoded in the labelled formulae and constraints of a CSS as an
actual layered graph model. Soundness follows from the preservation of realizabil-
ity by the tableau rules together with the fact that closed tableaux are not realizable.
Note that a realization may map distinct labels to the same subgraphs and the lay-
ered graph model realizing the CSS may include more layering structure than that
dictated by the presence of labels cic j in the CSS. This is how the CSS property
Freshness does not affect anything for soundness: no such analogous property is re-
quired to be satisifed by the layered graph model realizing the CSS. The following
lemmas are routine proofs (cf. [101, 148, 68]) proceeding by case analysis.

Lemma 10.11. The tableau rules for ILGL preserve realizability.

Proof. We give a characteristic example. Suppose a tableau T is realizable, via the
realizable branch 〈F ,C 〉, say by R. Suppose Tϕ−∗ψ : x ∈F and y< x,yz< yz ∈
C . Then by assumption, bxc �V ϕ −∗ψ , y <X x and byc@E bzc ↓. If bzc 6�V ϕ ,

10.2. Layered Graph Models 207

then the branch 〈F ∪{Fϕ : z},C 〉 is realizable by R. If bzc �V ϕ , it follows from
our assumption that byc@E bzc �V ψ . Hence the branch 〈F ∪ {Tψ : yz},C 〉 is
realizable by R.

Lemma 10.12. Closed branches are not realizable.

Theorem 10.13 (Soundness). If there exists a closed tableau for the formula ϕ ,
then ϕ is valid in layered graph models.

Proof. Suppose that there exists a tableau proof for ϕ . Then there is a closed tableau
Tϕ for the CSS C = 〈{Fϕ : c0},{c0 < c0}〉. Now suppose that ϕ is not valid.
Then there is a model M = (X ,V) and a subgraph H ∈ X such that H 6|=M ϕ .
Define R = (M ,V ,b.c) with bc0c = H. Note that R is a realization of C, hence
by Lemma 10.11, Tϕ is realizable. By Lemma 10.12, Tϕ cannot be closed. But,
this contradicts the fact that Tϕ is a tableau proof and therefore a closed tableau. It
follows that ϕ is valid.

We now proceed to establish the completeness of the labelled tableaux with
respect to layered graph semantics. We begin with the notion of a Hintikka CSS,
which will facilitate the construction of countermodels. This should be compared
to the coherent theories ΦL , as the definition of Hintikka CSS can essentially be
obtained from the specific case of L being ILGL.

Definition 10.14 (Hintikka CSS). A CSS 〈F ,C 〉 is a Hintikka CSS if, for any ILGL
formulae ϕ,ψ and any graph labels x,y, the following holds:

1. Tϕ : x 6∈F or Fϕ : y 6∈F or x4 y 6∈ C ;

2. F> : x 6∈F ;

3. T⊥ : x 6∈F ;

4. if Tϕ ∧ψ : x ∈F , then Tϕ : x ∈F and Tψ : x ∈F ;

5. if Fϕ ∧ψ : x ∈F , then Fϕ : x ∈F or Fψ : x ∈F ;

6. if Tϕ ∨ψ : x ∈F , then Tϕ : x ∈F or Tψ : x ∈F ;

7. if Fϕ ∨ψ : x ∈F , then Fϕ : x ∈F and Fψ : x ∈F ;

8. if Tϕ → ψ : x ∈ F , then, for all y ∈ L, if y < x ∈ C , then Fϕ : y ∈ F or
Tψ : y ∈F

9. if Fϕ→ψ : x∈F , then there exists y∈L such that y< x∈C and Tϕ : y∈F

and Fψ : y ∈F ;

10.2. Layered Graph Models 208

10. if Tϕ ∗ψ : x ∈F , then there are ci,c j ∈ Σ such that x < cic j ∈ C and Tϕ :
ci ∈F and Tψ : c j ∈F ;

11. if Fϕ ∗ψ : x ∈F , then, for all ci,c j ∈ Σ, if x< cic j ∈ C , then Fϕ : ci ∈F or
Fψ : c j ∈F ;

12. if Tϕ −∗ψ : x ∈F , then, for all ci,c j ∈ Σ, if ci < x ∈ C and cic j ∈ D(C),
then Fϕ : c j ∈F or Tψ : cic j ∈F ;

13. if Fϕ −∗ψ : x ∈F , then there are ci,c j ∈ Σ such that ci < x ∈ C and cic j ∈
D(C) and Tϕ : c j ∈F and Fψ : cic j ∈F ;

14. if Tϕ ∗−ψ : x ∈F , then, for all ci,c j ∈ Σ, if ci < x ∈ C and c jci ∈ D(C),
then Fϕ : c j ∈F or Tψ : c jci ∈F

15. if Fϕ ∗−ψ : x ∈F , then there are ci,c j ∈ Σ such that ci < x ∈ C and c jci ∈
D(C) and Tϕ : c j ∈F and Fψ : c jci ∈F .

We now give the definition of a function Ω that extracts a layered graph model
from a Hintikka CSS.

Definition 10.15 (Function Ω). Let 〈F ,C 〉 be a Hintikka CSS. The function Ω

associates to 〈F ,C 〉 a tuple Ω(〈F ,C 〉) = (G ,E ,X ,<,V), defined

1. V (G) = A (C),

2. E(G) = {(ci,c j) | cic j ∈D(C)}= E , X = {xΩ | x ∈D(C)}, where V (cΩ
i) =

{ci}, E(cΩ
i) = /0, V ((cic j)

Ω) = {cic j}, and E((cic j)
Ω) = {(ci,c j)},

3. xΩ < yΩ iff x< y ∈ C , and

4. xΩ ∈ V (p) iff there exists y ∈D(C) such that x< y ∈ C and Tp : y ∈F .

The next lemma shows that there is a precise correspondence between the
structure that the Hintikka CSS properties impose on the labels and the layered
structure specified by the construction of the model.

Lemma 10.16. Let 〈F ,C 〉 be a Hintikka CSS and Ω(〈F ,C 〉) = (G ,E ,X ,<,V).

1. If ci,c j ∈A (C), then cic j ∈D(C) iff cΩ
i @E cΩ

j ↓.

2. If cic j ∈D(C), then (cic j)
Ω = cΩ

i @E cΩ
j .

3. xΩ @E yΩ ↓ iff there exist ci,c j ∈A (C) s.t. x = ci, y = c j and cic j ∈D(C).

Proof. 1. Immediate from CSS property (Contra).

10.2. Layered Graph Models 209

2. Immediate from 1. and the definition of Ω.

3. The right-to-left direction is trivial, so assume xΩ @E yΩ ↓. There are three
possible cases for x and y other than x = ci and y = c j: we attend to one
as the others are similar. Suppose x = cic j and y = ck. Then xΩ @E yΩ ↓
must hold because of either (ci,ck) ∈ E or (c j,ck) ∈ E . That is, cick ∈D(C)

or c jck ∈ D(C). In both cases the CSS property (Freshness) is contradicted
so neither can hold. It follows that only the case x = ci and y = c j is non-
contradictory, and so by 1. cic j ∈D(C).

We can now show that Ω turns Hintikka CSSs into layered graph models. Cru-
cially, these models still reflect the satisfaction requirements encoded by labelled
formulae.

Lemma 10.17. Let 〈F ,C 〉 be a Hintikka CSS. Ω(〈F ,C 〉) is a layered graph
model.

Proof. G is clearly a graph and the fact that < is a preorder on X can be read off of
the rules for the closure of constraint sets. Thus the only non-trivial aspects of the
proof are that X is admissible and that V is persistent.

First we show that X is an admissible subgraph set. Let H,K ∈ Sg(G) with
H @E K ↓. First we assume H,K ∈ X . Then H = xΩ and K = yΩ for labels
x,y. By the previous lemma it follows that x = ci and y = c j and cic j ∈ D(C).
Thus H @E K = cΩ

i @E cΩ
j = (cic j)

Ω ∈ X . Now suppose H @E K ∈ X . Then
H @E K = xΩ for some x ∈ D(C). The case x = ci is clearly impossible as
E(cΩ

i) = /0 so necessarily x = cic j. Then we have ci,c j ∈ D(C) as sub-labels of
cic j and cΩ

i @E cΩ
j ↓ with cΩ

i @E cΩ
j the only possible composition equal to (cic j)

Ω.
It follows that H = cΩ

i ∈ X and K = cΩ
j ∈ X as required.

Finally we must show V is a persistent valuation. Let H ∈ V (p) with K < H.
Then H = xΩ and K = yΩ for some x,y ∈ D(C) with y < x ∈ C . By definition of
V there exists z ∈ D(C) with x < z ∈ C and Tp : z ∈F . By the closure rule 〈Tr〉
we have y< z ∈ C so K = yΩ ∈ V (p).

Lemma 10.18. Let 〈F ,C 〉 be a Hintikka CSS and M = Ω(〈F ,C 〉) = (G ,E ,X ,4

,V). For all formulae ϕ ∈ Form, and all x ∈D(C). we have

1. if Fϕ : x ∈F , then xΩ 6|=V ϕ , and

2. if Tϕ : x ∈F , then xΩ �V ϕ .

Hence, if Fϕ : x ∈F , then ϕ is not valid and Ω(〈F ,C 〉) is a countermodel of ϕ .

10.2. Layered Graph Models 210

Proof. We proceed by a simultaneous structural induction on ϕ , concentrating on
characteristic cases.

- Base cases.

– Case Fp : x ∈F . We suppose that xΩ �V p. Then xΩ ∈ V (p). By the
definition of V , there is a label y such that x < y ∈ C and Tp : y ∈F .
Then by condition (1) of Definition 10.14, 〈F ,C 〉 is not a Hintikka
CSS, a contradiction. It follows that xΩ 6|=M p.

– Case Tp : x∈F . By CSS property (Re f), x< x∈C . Thus, by definition
of V we have xΩ ∈ V (p). Thus xΩ �V p.

- Inductive step. We now suppose that (1) and (2) hold for formulae ϕ and ψ

(IH).

– Case Tϕ → ψ : x ∈ F . Suppose xΩ 4 yΩ. Then x 4 y ∈ C and by
Definition 10.14 property 8. it follows that Fϕ : y ∈F or Tψ : y ∈F .
By (IH) it follows that if yΩ �V ϕ then yΩ �V ψ as required.

– Case Tϕ ∗ψ : x∈F . By Definition 10.14 property 10. there exist labels
ci,c j ∈D(C) such that x< cic j ∈ C and Tϕ : ci ∈F and Tψ : c j ∈F .
By (IH) we have cΩ

i �V ϕ and cΩ
j �V ψ . Further, by definition of Ω we

have that (cic j)
Ω = cΩ

i @E cΩ
j 4 xΩ, so xΩ �V ϕ ∗ψ .

– Case Tϕ−∗ψ : x ∈F . Suppose xΩ 4 yΩ with yΩ @E zΩ ↓ and zΩ �V ϕ .
By Lemma 10.16 we know y = ci,z = c j ∈ A (C) with cic j ∈ D(C).
Hence by Definition 10.14 property 12., either Fϕ : c j ∈ F or T ψ :
cic j ∈F . By (IH) it follows either cΩ

j |=V ϕ or (cic j)
Ω = cΩ

i @E cΩ
j �V

ψ . As we know the former cannot be true, it must be the latter. Hence
xΩ �V ϕ−∗ψ as required.

This construction of a countermodel would fail in the analogous labelled
tableaux system for LGL. We would require a systematic way to construct the
internal structure of each subgraph in the model, as the classical semantics for ∗
demands strict equality between the graph under interpretation and the decomposi-
tion into layers. This is complicated by the fact that the internal structure required
may not be known until much later than the introduction of the label in the tableau
construction This issue is sidestepped for ILGL since each time the tableaux rules
require a decomposition of a graph into layers we can move to a ‘fresh’ layered
graph further down the ordering. Thus we can safely turn each graph label into the
simplest instantiation of the kind of graph it represents: either a single vertex (inde-
composable) or two vertices and an edge (layered). A well-foundedness condition

10.2. Layered Graph Models 211

on the constraints of CSSs may make this method adaptable to LGL, but it is clear
from our previous discussions that this is not straightforward and may not be possi-
ble in this setting: the techniques we have used utilise the first-order definability of
the semantics of the logic, and well-foundedness is not a first-order property.

It now remains to give a procedure that constructs a Hintikka CSS containing
Fϕ : c0 for every ϕ that does not have a tableau proof. This is done in identical fash-
ion to that of previous bunched logic tableau systems [148, 68]: given a CSS C that
cannot be closed, consistent labelled formulae and constraints are added systemat-
ically in accordance to the tableau rules to saturate C. In particular, we must try to
apply every tableau rule infinitely often, as the conditions allowing it to be triggered
in a derivation may not be satisfied the first time it is attempted. This requires the
concept of a fair strategy.

Definition 10.19 (Fair strategy). A fair strategy for ILGL is a sequence of labelled
formulae (Siϕi : xi)i∈N such that {i∈N | Siϕi : xi≡ Sϕ : x} is infinite for any labelled
formula Sϕ : x.

Simple considerations of the countability of each component of labelled for-
mulae justifies the existence of such a strategy.

Proposition 10.20 (cf. [148]). There exists a fair strategy.

Next we need the concept of an oracle, which allows Hintikka sets to be con-
structed inductively by testing the required consistency properties at each stage.

Definition 10.21 (Oracle). Let P be a set of CSSs.

1. P is ⊆-closed if 〈F ,C 〉 ∈ P holds whenever 〈F ,C 〉 ⊆ 〈F ′,C ′〉 and
〈F ′,C ′〉 ∈P holds.

2. P is of finite character if 〈F ,C 〉 ∈P holds whenever 〈F f ,C f 〉 ∈P holds
for every 〈F f ,C f 〉 ⊆ f 〈F ,C 〉.

3. P is saturated if, for any 〈F ,C 〉 ∈P and any instance

cond(F ,C)

〈F1,C1〉 | . . . | 〈Fk,Ck〉

of a rule of Figure 10.7, if cond(F ,C) is fulfilled, then 〈F ∪Fi,C ∪Ci〉 ∈
P , for at least one i ∈ {1, . . . ,k}.

An oracle is a set of open CSSs which is⊆-closed, of finite character, and saturated.

10.2. Layered Graph Models 212

Definition 10.22 (Consistency). Let 〈F ,C 〉 be a CSS. We say 〈F ,C 〉 is consistent
if it is finite and has no closed tableau. We say 〈F ,C 〉 is finitely consistent if every
finite sub-CSS 〈F f ,C f 〉 is consistent.

Proposition 10.23 (cf. [148]). 1. Consistency is ⊆-closed.

2. A finite CSS is consistent iff it is finitely consistent.

We denote the set of finitely consistent CSS by Pfincon.

Lemma 10.24. Pfincon is an oracle.

Proof. For ⊆-closure and finite character see [148]. For saturation we show the
case 〈T−∗〉: the rest are similar.

Let 〈F ,C 〉 ∈Pfincon, Tϕ−∗ψ : x∈F and y< x,yz< yz∈C . Suppose neither
〈F ∪{Fϕ : z},C 〉 ∈Pfincon nor 〈F ∪{Tψ : yz},C 〉 ∈Pfincon. Then there exist
〈F A

f ,C
A
f 〉 ⊆ f 〈F ∪ {Fϕ : z},C 〉 and 〈F B

f ,C
B
f 〉 ⊆ f 〈F ∪ {Tψ : yz},C 〉 that are

inconsistent. By compactness (Lemma 10.6), there exist finite C0,C1 ⊆ C such
that z 4 z ∈ C0 and yz 4 yz ∈ C1. Thus we define F ′

f = (F A
f \ {Fϕ : z})∪ (F B

f \
{Tψ : yz})∪ {Tϕ −∗ψ : x} and C ′f = C A

f ∪C B
f ∪C0 ∪C1. Then 〈F ′

f ,C
′
f 〉 is a

finite CSS and [〈F ′
f ∪{Fϕ : z},C ′f 〉;〈F ′

f ∪{Tψ : yz},C ′f 〉] is a tableau for it. We
have 〈F A

f ,C
A
f 〉 ⊆ f 〈F ′

f ∪{Fϕ : z},C ′f 〉 and 〈F B
f ,C

B
f 〉 ⊆ f 〈F ′

f ∪{Tψ : yz},C ′f 〉, so
by ⊆-closure of consistency 〈F A

f ,C
A
f 〉 and 〈F B

f ,C
B
f 〉 are inconsistent: let TA and

TB be closed tableaux for them respectively. Then TA⊕TB is a closed tableau for
〈F ′

f ,C
′
f 〉 and the CSS is inconsistent, contradicting 〈F ′

f ,C
′
f 〉 ⊆ f 〈F ,C 〉 ∈Pfincon.

We can now show completeness of the tableaux calculus. Consider a formula
ϕ for which there exists no closed tableau. We show there is a countermodel to
ϕ . We start with the initial tableau T0 for ϕ . Then, we have that T0 = [〈{Fϕ :
c0},{c0 4 c0)}〉] and T0 cannot be closed. By Proposition 10.20, there exists a fair
strategy, which we denote by S , with Siϕi : xi the ith formula of S . As T0 cannot
be closed, 〈{Fϕ : c0},{c0 < c0}〉 ∈Pfincon. We build a sequence 〈Fi,Ci〉i>0 as
follows:

- 〈F0,C0〉= 〈{Fϕ : c0},{c0 < c0}〉;

- if 〈Fi∪{Siϕi : xi},Ci〉 6∈Pfincon, then we have 〈Fi+1,Ci+1〉= 〈Fi,Ci〉; and

- if 〈Fi∪{Siϕi : xi},Ci〉 ∈Pfincon, then we have 〈Fi+1,Ci+1〉= 〈Fi∪{Siϕi :
xi}∪Fe,Ci∪Ce〉 where Fe and Ce are determined by

10.2. Layered Graph Models 213

Si ϕi Fe Ce

F ϕ → ψ {Tϕ : cI+1,Fψ : cI+1} {cI+1 < xi}
T ϕ ∗ψ {Tϕ : cI+1,Tψ : cI+2} {xi < cI+1cI+2}
F ϕ−∗ψ {Tϕ : cI+2,Fψ : cI+1cI+2} {cI+1<xi ,cI+1cI+2 < cI+1cI+2}
F ϕ ∗−ψ {Tϕ : cI+2,Fψ : cI+2cI+1} {cI+1<xi ,cI+2cI+1 < cI+2cI+1}
Otherwise /0 /0

with I= max{ j | c j ∈A (Ci)∪S (xi)}.

Proposition 10.25. For any i ∈ N, the following properties hold:

1. Fi ⊆Fi+1 and Ci ⊆ Ci+1;

2. 〈Fi,Ci〉 ∈Pfincon.

Proof. Only 2 is non-trivial. and we prove it by induction on i. The base case i = 0
is given by our initial assumption. Now for the inductive hypothesis (IH) we have
that 〈Fi,Ci〉 ∈Pfincon. Then the inductive step is an immediate consequence of
Lemma 10.24 for the non-trivial cases.

We now define the limit 〈F∞,C∞〉 = 〈
⋃

i>0 Fi,
⋃

i>0 Ci〉 of the sequence
〈Fi,Ci〉i>0.

Proposition 10.26. The following properties hold:

1. 〈F∞,C∞〉 ∈Pfincon;

2. For all labelled formulae Sϕ : x, if 〈F∞∪{Sϕ : x},C∞〉 ∈Pfincon, then Sϕ :
x ∈F∞.

Proof. 1. First note that 〈F∞,C∞〉 is a CSS since each stage of construction
satisfies (Ref) and by our choice of constants throughout the construction
(Contra) and (Freshness) are satisfied. Further, it is open since otherwise
there would be some stage 〈Fk,Ck〉 at which the offending closure condition
is satisfied, which would contradict that each 〈Fi,Ci〉 is consistent. Now
let 〈F f ,C f 〉 ⊆ f 〈F∞,C∞〉. Then there exists k ∈ N such that 〈F f ,C f 〉 ⊆ f

〈Fk,Ck〉. By Proposition 10.25 〈Fk,Ck〉 ∈Pfincon so it follows 〈F f ,C f 〉 ∈
Pfincon. As Pfincon is of finite character, we thus have 〈F∞,C∞〉 ∈Pfincon.

2. First note that 〈F∞∪{Sϕ : x},C∞〉 is a CSS so (Contra) and (Freshness) are
satisfied when the label x is introduced. By compactness, there exists finite
C f in ⊆ C∞ such that x < x ∈ C f in. As it is finite, there exists k ∈ N such that
C f in ⊆ Ck and by fairness there exists l ≥ k such that Slϕl : xl ≡ Sϕ : x. Since

10.2. Layered Graph Models 214

(Freshness) and (Contra) are fufilled with respect to F∞ they are also fulfilled
with respect to Fl∪{Sϕ : x} so 〈Fl+1,Cl+1〉= 〈Fl∪{Sϕ : x},Cl〉 ∈Pfincon

and 〈Fl+1,Cl+1〉= 〈Fl ∪{Sϕ : x}∪Fe,Cl ∪Ce〉. Hence Sϕ : x ∈F∞.

Lemma 10.27. The limit CSS is a Hintikka CSS.

Proof. For properties 1.− 3. we have that 〈F∞,C∞〉 is open. For the other condi-
tions, the saturation property of the oracle Pfincon and Proposition 10.26 item 2.
suffice.

We immediately obtain completeness.

Theorem 10.28 (Completeness). If ϕ is valid in layered graph models, then there
exists a closed tableau for ϕ .

Proof. Suppose there exists no tableau proof for the formula ϕ . Then by Lemma
10.27 we can construct the Hintikka CSS 〈F∞,C∞〉 from T0 = [〈{Fϕ : c0},{c0 4

c0)}〉] as outlined above, with Fϕ : c0 ∈F∞. Then by Lemma 10.18, Ω(〈F∞,C∞〉)
is a layered graph countermodel for ϕ . That is, ϕ is not valid.

10.2. Layered Graph Models 215

Summary of Part III
In this part of the thesis we set up a uniform and modular labelled tableaux proof
theory for propositional bunched logics, as well as interesting classes of bunched
logic model that are incomplete for standard sequential systems. In Chapter 9 we
set up a framework to define systems that are sound and complete for the logics
introduced in Part I. The key concept utilised to do so is coherent logic, a fragment
of first-order logic containing just the goal-directed implications. Not only can co-
herent formulae be transformed into proof rules (used here to encode bunched logic
frames in proof theoretic form), tableaux calculi themselves can be seen as coher-
ent theories. This enabled us to prove soundness and completeness by embedding
the calculi in a proof system for coherent logic. In Chapter 10 we produced proof
systems for application-inspired classes of models in two ways. First, we used the
coherent logic based translation to give new proof rules representing the separation
theories used to axiomatise memory models of bunched logic. This gives the first
uniform and modular proof theory for the breadth of abstract separation logic mod-
els. Second, we built a tableaux calculus from scratch for layered graph models of
ILGL, carefully controlling the introduction of labels during derivation to enable
the transformation of branches into countermodels for invalid formulae.

Part IV

Conclusions & Further Work

216

217

Conclusions
In this thesis we have specified a family of bunched logics and investigated it
through two uniform frameworks. The first is a duality theoretic framework that
relates the algebraic and Kripke-style interpretations of the logics, the second is a
modular tableaux calculi framework, sound and complete for both validity of the
logics and validity in classes of model of interest for the principal applications of
the logics. In doing so we have made a number of contributions to the literature on
bunched logic.

• The formulation of the intuitionistic variants of a number of bunched logics
that had previously not been well investigated (if at all). This includes Kripke-
style layered graph and resource interpretations as well as proof theory.

• The formulation of a schema for defining separating modal bunched logics,
strictly generalising those found in the literature.

• The formulation of concurrent Kleene bunched logic, a formalism connecting
concurrent Kleene algebra to bunched logic.

• Systematic duality theorems for the structures interpreting bunched logics,
both propositional and predicate.

• Uniform soundness and completeness theorems for bunched logics. For many
bunched logics with intuitionistic additives these are new; for those with clas-
sical additives that have previously been investigated these greatly simplify
existing proofs.

• Decidability theorems for layered graph logics.

• A characterisation theorem for the classes of bunched logic models that can
be defined by bunched logic formulae, analogous to the Goldblatt-Thomason
theorem for modal logic.

• The resolution of the open problem of Craig interpolation for BBI and CBI,
as well as the reduction of the same problem for BI and DMBI to a simpler
one.

• Uniform labelled tableaux proof theory for the breadth of bunched logics,
extending to particular classes of bunched logic model of interest in appli-
cations. Of interest beyond our particular systems is the new insight that la-
belled tableaux systems can be seen as representations of theories of coherent
logic, opening up a new direction in their study.

218

More abstractly, this work highlights the viability of algebraic approaches to
the study of bunched logic, something long neglected in the field. Our representa-
tion and duality theorems witness the fact that the resource semantics that has made
bunched logic so impactful in computer science arise from the algebras interpreting
bunched logic, while the results of Chapter 7 show that algebraic techniques are
capable of resolving significant open problems. This may not be so surprising for
logicians working with logics adjacent to bunched logic (e.g., modal logic or the
substructural logics extending the full Lambek calculus), but it is nonetheless an
advance on the previous state of the art.

Another perspective previously foreign to the study of bunched logic is the
significance of classical model theory. Our bunched logic version of the Goldblatt-
Thomason theorem relies on lemmas that take the first-order definition of bunched
logic frames seriously, while our tableaux calculi effectively arise and are proven
sound and complete through a careful examination of the fragment of first-order
logic in which bunched logic models can be defined.

We believe both of these perspectives will be important to future work on
bunched logics, and if there is a particular takeaway from this work that we would
urge beyond our specific results, it is that these techniques should be taken seriously
by practitioners in the field.

Further Work
There are many interesting directions future work based on this thesis could take,
and we outline a few now.

Modelling with bunched logics. While the use of (B)BI’s resource semantics
to model computer memory has generated impact at an industrial level through
Separation Logic, applications of other models of bunched logics have not been
pursued in nearly as much detail.

We suggest two applications that could fruitfully be investigated. The first is
quantum mechanics, through both the resource theory models of BI and the effect
algebra models of DMBI and CBI. Fritz [94] suggests that linear logic might be
used to reason about resource theories, but their formalisation as ordered commu-
tative monoids is much more suggestive of BI, the semantics of which directly
reflect Fritz’s conceptual development, in contrast to linear logic’s phase semantics.
Insights relating to the use of partiality in BI may also be useful for reasoning about
resource theories in which resources are not assumed to be universally composable
with each other. The second is complex systems modelling of the sort motivating
the formulation of layered graph logics. Preliminary work in this direction has

219

been done [64], but nothing with a suitable notion of dynamics. We suggest the
bigraph-style models of ILGL could form the basis of an formalism analogous to
Separation Logic, with program execution replaced by the dynamics given by bi-
graphical reactive systems.

Transition systems and coalgebraic logic. One application of resource seman-
tics that we have not talked about much in this thesis is the resource-sensitive pro-
cess algebra of Pym & Tofts [190], Collinson & Pym [61] and Anderson & Pym
[10]. Inspired by BI’s semantics, these calculi provide executable formalisations of
resource-sensitive transition systems that are suitable for discrete-event modelling.

It is now well known that coalgebra [201] provides an excellent mathematical
framework for specifying transition systems, with duality theory providing ma-
chinery to automatically output coalgebraic logics that can be used to reason about
them [30]. We believe the duality theory for bunched logics outlined in this thesis
provides the foundation to lift that work to the aforementioned resource-sensitive
transition systems, through which our approach to bunched logic and the process
algebra approach can be unified. Furthermore, this generic approach could addi-
tionally be used to specify calculi that also capture the spatial aspects of systems
like those modelled by bunched logics like (I)LGL.

Further resolution of open problems. There are many more logical properties that
remain open for bunched logics. Although in this thesis we were able to show that
Craig interpolation fails for BBI and CBI, our argument fell just short of proving
the same for BI and DMBI, though it seems likely that it is also the case for them
given the property we reduced it to typically holds of well-behaved logics. Beyond
these, the problems remain open for the other bunched logics we’ve examined in
the thesis. Given that bunched logics characteristically have more than one impli-
cation, it would also be of interest to examine interpolation properties based on the
multiplicative implications −∗ and ∗− as well as→. We might also investigate other
logical properties through algebraic means: for example, the Beth definability prop-
erty is known to correspond to the property of epimorphisms being surjective in the
category of algebras interpreting a logic.

Another problem that remains open in the bunched logic literature is the de-
cidability of DMBI. We conjecture it is decidable, based on the decidability of BI,
but it is not clear how to resolve the problem one way or the other. The algebraic
methodology of Galatos & Jipsen [97] seems promising, but given Ramanayake’s
[191] discovery of a flaw in their proof of BI’s decidability, some caution must be
exercised. A problem with a much clearer path to resolution is the characterisation

220

of a Sahlqvist-like [202] fragment of bunched logic for which validity corresponds
precisely to the satisfaction of first-order axioms on bunched logic frames. As with
the Goldblatt-Thomason theorem, in the case of modal logic this can be proved
through duality theoretic means [203], and we believe a similar argument should
work here.

Multiplicative quantification revisited. In this thesis we have looked at logics
featuring multiplicative versions of every standard connective except for the quan-
tifiers. In Pym’s [187] monograph on BI a sequent calculus and Kripke semantics
was given for an extension of BI with additive and multiplicative quantifiers, but
Biering [23] found a number of flaws that revealed the system to be ill-defined.
Multiplicative quantification is nonetheless a well-defined idea, as evidenced by its
sound usage in the aforementioned bunched process calculi. There their utility is
emphasised by the elegant definition of multiplicative modalities that is induced by
multiplicative quantification.

Multiplicative quantifiers were revisited by Collinson et al. [62] in the con-
text of BI’s type theory, the αλ calculus, and interpreted by hyperdoctrines with
additional coherence conditions to the ones we considered. We believe the duality
theoretic approach to BI hyperdoctrines given in Chapter 8 could be extended to
these structures to resurrect the semantic approach to multiplicative quantification.
It may also be possible to use the structure of these extended hyperdoctrines to
define a proof system without the defects of Pym’s.

Duality-theoretic approaches to Separation Logic. In Chapter 8 we gave duality
theorems that subsumed the semantics of Separation Logic’s assertion language.
However, what we didn’t consider was a semantics of program execution, extending
the assertion language to Hoare triples. Examples of duality theoretic approaches to
Hoare logic can be found in the work of Abramsky [1] and Brink & Rewitzky [34],
and we believe they may be reconfigured with our bunched logic dualities to give a
duality theoretic framework for the entirety of the Separation Logic formalism, sub-
suming the local predicate transformer approach to the semantics of commands of
O’Hearn & Yang [221] . Recent work by Hino et al. [116] has examined healthiness
properties of program logics through a duality theoretic framework, and it would
be interesting to investigate if this can be extended to Separation Logic through our
work.

Implementations and generalisations of the tableaux calculi. Our final sugges-
tion for further work is a programme of research based on the tableaux calculi of

221

Part III. The first and perhaps most obvious task is the implementation of those
systems. Given they can all be given as theories of coherent logic, an immediate
possibility is the use of off-the-shelf coherent theorem provers, of which Polonsky
[184] gives a summary. It has been reported [22] that many tasks for which tradi-
tional first-order provers are typically used are more efficiently tackled by coherent
provers, and it would be interesting to see if that efficiency transfers at all to our
tableaux calculi. It would also be fruitful to see if parametric separation logic tools
can be implemented using the tableaux calculi for separation theories. This is a
more complex task than the implementation of the calculi for bunched logics, as
the tableaux calculi would need to be embedded in a system that also captures the
Hoare logic component of Separation Logic, as well as typical control processes
like bi-abduction [49] that enable scalability to large code bases.

Beyond this, the extension of our techniques to logics interpreted on structures
that lie outside of the scope of coherent logic is of clear interest. Labelled tableaux
systems in which the labels are automata [110], or can be transformed into struc-
tures with fixed points [56] abound in the literature: if our techniques can be seen
as giving a foundation for typical labelled tableaux calculi in which labels represent
possible worlds, perhaps such an extension could give a foundation for these more
esoteric systems. This would also facilitate the extension of our systems with fea-
tures like cyclic proof [37, 40], a formalism typically used for separation logics that
include inductive predicates.

It is also clear that the techniques that yield the proof systems of Part III can
be applied more broadly than just bunched logics. Essentially any logic which is
interpreted on Kripke structures with a finite coherent axiomatisation can also be
given a tableaux calculus using a coherent logic translation. It would thus be of
interest to generalise this as far as possible, raising the intriguing possibility of a
semantic (as opposed to type-theoretic) logical framework that uses coherent logic
as its metalogic. Once again, off-the-shelf coherent logic provers may be put to use
for the implementation of such a framework.

Appendix A

Category Theory

In this appendix we recount the category theoretic definitions used throughout the
thesis. This should primarily be used as a reference: there are many good intro-
ductory category theory textbooks (e.g., Awodey [15] or Mac Lane [154]) if one
requires greater depth.

A category C is a collection of objects Ob(C) and a collection of arrows
Arr(C) together with maps dom,cod : Arr(C)→Ob(C) assigning to each arrow f
a domain dom(f) and codomain cod(f) in Ob(C), such that the following axioms
are satisfied:

• Composition: Given arrows f , g with cod(f) = dom(g) there exists a unique
arrow

g◦ f : dom(f)→ cod(g)

• Associativity: Given arrows f ,g,h with cod(f) = dom(g) and cod(g) =
dom(h) we have

h◦ (g◦ f) = (h◦g)◦ f

• Identity: For every object X there exists an identity arrow IdX such that,
given arrows f ,g with dom(f) = X = cod(g) we have

f ◦ idX = f idX ◦g = g

We refer to arrows interchangeably as morphisms, and use f : X → Y or X
f→

Y to denote that dom(f) = X and cod(f) = Y . We can distinguish some special
species of arrow that generalise familiar set theoretic properties of functions. We
call an arrow f : X → Y a monomorphism if it is left cancellable: for any pair of
arrows g,h : Z→ X such that f g = f h we have g = h. Dually we have the notion
of an epimorphism; a right cancellable morphism. An isomorphism f : X → Y is

223

an invertible arrow: that is, there exists an arrow g : Y → X such that g f = idX and
f g = idY .

The appropriate notion of morphism between categories is called a functor.
Given categories C and D , a functor F : C → D is given by a pair of maps
F0 : Ob(C)→ Ob(D) and F1 : Arr(C)→ Arr(C) that interacts coherently with
the category structure:

• For all arrows f : X → Y , F1(f) : F0(X)→ F0(Y);

• For all objects X , F1(idX) = idF0(X);

• For all arrows f : X → Y , g : Y → Z, F1(g◦ f) = F1(g)◦F1(f).

It is an endofunctor if C = D . If F : C op → D is a functor—where C op is the
category C with arrows reversed—we call it a contravariant functor F : C →D .

Next we give a notion of morphism between functors. Given functors F,G :
C →D , a natural transformation µ : F ⇒ G is given by a collection of C -indexed
maps

(µX : F(X)→ G(X) | X in Ob(C))

satisfying the following naturality condition: given any arrow f : X → Y , the fol-
lowing diagram commutes:

F(X) G(X)

F(Y) G(Y)

µX

F(f) G(f)

µY

A natural isomorphism is a natural transformation µ in which each µX is an iso-
morphism. A dual adjunction is a pair of contravariant functors F : C → D and
G : D → C and a pair of natural transformations η : IdC → GF and θ : IdD → FG
such that F(η)◦θF = IdF and G(θ)◦ηG = IdG. It is a dual equivalence if η and
θ are natural isomorphisms.

A monoidal structure (⊗,1,ε, ι ,a) on a category C consists of the following
data:

• Tensor Product: A functor C ⊗C → C ;

• Unit Object: An object 1 in C ;

224

• Unitors: Natural isomorphisms

ε : 1⊗−⇒ idC

ι :−⊗1⇒ idC

• Associator: A natural isomorphism

a : (−⊗−)⊗−=⇒−⊗ (−⊗−)

Making the following diagrams commute

• Pentagon Identity

(W ⊗X)⊗ (Y ⊗Z)

((W ⊗X)⊗Y)⊗Z

(W ⊗ (X⊗Y))⊗Z W ⊗ ((X⊗Y)⊗Z)

W ⊗ (X⊗ (Y ⊗Z))

aW⊗X ,Y,Z

aW,X ,Y⊗Z

aW,X⊗Y,Z

W⊗aX ,Y,Z

aW,X ,Y⊗Z

• Triangle Identity:

(X⊗1)⊗Y X⊗ (1⊗Y)

X⊗Y

aX ,1,Y

ιX⊗Y X⊗εY

We call a category equipped with a monoidal structure a monoidal category. It is
symmetric monoidal category if there exists natural isomorphisms υX ,Y : X ⊗Y '
Y ⊗X such that the following diagrams commute:

• Unit Coherence:
X⊗1 1⊗X

X

υX ,1

εX ιX

225

• Associativity Coherence:

(X⊗Y)⊗Z X⊗ (Y ⊗Z) (Y ⊗Z)⊗X

(Y ⊗X)⊗Z Y ⊗ (X⊗Z) Y ⊗ (Z⊗X)

aX ,Y,Z

υX ,Y⊗Z

υX ,Y⊗Z

aY,Z,X

aY,X ,Z Y⊗υX ,Z

• Inverse Law:
X⊗Y X⊗Y

Y ⊗X
υX ,Y

id

υY,X

Finally, an object X is the product of objects (Xi)i∈I iff there exist morphisms
πi : X → Xi such that for every object Y and every indexed family of morphisms
fi : Xi → Y there exists a unique morphism f such that πi ◦ f = fi for all i. A
category C has finite products if the product exists for every finite family of objects
(Xi)i∈I in C .

Bibliography

[1] Samson Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51(1–2): pp. 1–77, 1991.

[2] Samson Abramsky. Computational interpretations of linear logic. Theoreti-
cal Computer Science, 111, (1–2): pp 3–57, 1993.

[3] Samson Abramsky. Abstract scalars, loops, and free traced and strongly com-
pact closed categories. In José Luiz Fiadeiro et al. (eds.) Algebra and Coal-
gebra in Computer Science First International Conference, CALCO 2005,
Lecture Notes in Computer Science 3629, Springer, pp. 1–29, 2005.

[4] Samson Abramsky. Information, processes and games. In Pieter Adriaans
and Johan van Benthem. (eds.) Philosophy of Information, Handbook of the
Philosophy of Science Vol 8, pp. 483–549, 2008.

[5] Samson Abramsky. Petri nets, discrete physics, and distributed quantum
computation. In Pierpaolo Degano, Rocco De Nicola, and José Meseguer
.(eds.) Concurrency, Graphs and Models. Lecture Notes in Computer Sci-
ence 5065, Springer, 2008.

[6] Samson Abramsky and Bob Coecke. A categorical semantics of quantum
protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science, 2004, IEEE, pp. 415–425, 2004.

[7] Samson Abramsky and Jouko Väänänen. From IF to BI: a tale of dependence
and separation. Synthese, 167(2): pp. 207–230, 2009.

[8] Gerard Allwein and J. Michael Dunn. Kripke models of linear logic. The
Journal of Symbolic Logic, 58(2): pp. 514–545, 1993.

[9] Alan Ross Anderson, Nuel D. Belnap, and J. Michael Dunn. Entailment, Vol
2: The Logic of Relevance and Necessity. Princeton University Press, 1992.

Bibliography 227

[10] Gabrielle Anderson and David Pym. A calculus and logic of bunched re-
sources and processes. Theoretical Computer Science, 614: pp. 63–96, 2016.

[11] Andrew W. Appel. Program Logics for Certified Compilers. Cambridge
University Press, 2014.

[12] Krzysztof R. Apt. Ten years of Hoare’s logic: a survey–part I. ACM Trans-
actions on Programming Languages and Systems, 3(4): pp. 431–483, 1981.

[13] Pablo A. Armelı̀n and David Pym. Bunched logic programming (extended
abstract). In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow (eds.) Au-
tomated Reasoning: First International Joint Conference, IJCAR 2001 Siena,
Italy, June 18–22, 2001 Proceedings, Lecture Notes in Computer Science
2083, Springer, pp. 289–304, 2001.

[14] Robert Atkey. Amortised resource analysis with separation logic. Logical
Methods in Computer Science, 2(17): pp. 1–33, 2011.

[15] Steve Awodey. Category Theory (second edition). Oxford Logic Guides,
Oxford University Press, 2010.

[16] Bernhard Beckert and Rajeev Goré. Free-variable tableaux for propostional
modal logics. Studia Logica, 69(1): pp. 59–96, 2001.

[17] Nuel D. Belnap. Display logic. Journal of Philosophical Logic, 11: pp.
375–417, 1982.

[18] Nuel D. Belnap, Anil Gupta, and J. Michael Dunn. A consecutive calculus
for positive relevant implication with necessity. Journal of Philosophical
Logic, 9(4): pp. 343–362, 1980.

[19] Johan van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1985.

[20] Josh Berdine, Christiano Calcagno, and Peter O’Hearn. Smallfoot: modular
assertion checking with separation logic. In Frank S. de Boer (ed.) Formal
Methods for Components and Objects, 4th International Symposium, FMCO
2005, Lecture Notes in Computer Science 4111, Springer, 2005.

[21] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: memory safety for
systems level code. In Ganesh Gopalakrishnan and Shaz Qadeer (eds.) Com-
puter Aided Verification, 23rd International Conference, CAV 2011, Lecture
Notes in Computer Science 6806, Springer, pp. 178–183, 2011.

Bibliography 228

[22] Marc Bezem and Thierry Coquand. Automating Coherent Logic. In Geoff
Sutcliffe and Andrei Voronkov (eds.) Logic for Programming, Artificial Intel-
ligence, and Reasoning, 12th International Conference, LPAR 2005, Lecture
Notes in Computer Science 3836, pp. 246–260, 2005.

[23] Bodil Biering. Biering, B. 2004. On the logic of bunched implications and its
relation to separation logic. M.S. thesis, University of Copenhagen, 2004.

[24] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI hyperdoctrines and
higher-order separation logic. In Mooly Sagiv (ed.) Programming Languages
and Systems: 14th European Symposium on Programming, ESOP 2005, The-
oretical Computer Science and General Issues 3444, Springer-Verlag, pp.
233–247, 2005.

[25] Katalin Bimbó and J. Michael Dunn. Generalized Galois Logics. Relational
Semantics of Nonclassical Logical Calculi. CSLI Lecture Notes Vol 188,
CSLI Publications, 2008.

[26] Garrett Birkhoff. On the structure of abstract algebras. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 31(4): pp. 433–454, 1935.

[27] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, 2002.

[28] Willem J. Blok and Clint van Alten. The finite embeddability property for
residuated lattices, pocrims and BCK-algebras. Algebra Universalis, 48: pp.
253–271, 2002.

[29] Kevin Blount and Constantine Tsinakis. The structure of residuated lat-
tices. International Journal of Algebra and Computation, 13(4): pp. 437–
461, 2003.

[30] Marcello M. Bonsangue and Alexander Kurz. Duality for logics of transition
systems. In Vladimiro Sassone (ed.) Foundations of Software Science and
Computational Structures, 8th International Conference, FOSSACS 2005,
Lecture Notes in Computer Science 3441, Springer, pp. 455–469, 2005.

[31] Richard Bornat. Proving pointer programs in Hoare logic. In Roland Back-
house and José Nuno Oliveira (eds.) Mathematics of Program Construction,
5th International Conference, MPC 2000, Lecture Notes in Computer Sci-
ence 1837, Springer, pp. 102–126, 2000.

Bibliography 229

[32] Richard Bornat, Christiano Calcagno, Peter O’Hearn, and Matthew Parkin-
son. Permission accounting in separation logic. In Jens Palsberg and Martn
Abadi (eds.) Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2005, ACM, pp. 259–270,
2005.

[33] T. Braüner. Hybrid Logic and its Proof-Theory. Applied Logic Series 37,
Springer, 2011.

[34] Chris Brink and Ingrid Rewitzky. A Paradigm for Program Semantics: Power
Structures and Duality, Studies in Logic, Language and Information. CSLI
Publications, 2001.

[35] Petr Bródka, Krzysztof Skibicki, Przemysaw Kazienko, and Katarzyna Mu-
siał. A degree centrality in multi-layered social network. In International
Conference on Computational Aspects of Social Networks, IEEE, 2011.

[36] Stephen Brookes. A semantics for concurrent separation logic. Theoretical
Computer Science, 375(1–3): pp. 227–270, 2007.

[37] James Brotherston. Cyclic proofs for first-order logic with inductive def-
initions. In Bernhard Beckert (ed.) Automated Reasoning with Analytic
Tableaux and Related Methods, 14th International Conference, TABLEAUX
2005, Lecture Notes in Computer Science 3702, Springer, pp. 78–92, 2005.

[38] James Brotherston. Bunched Logics Displayed. Studia Logica 100(6): pp.
1223–1254, 2012.

[39] James Brotherston and Christiano Calcagno. Classical BI: Its semantics and
proof theory. Logical Methods in Computer Science, 6 (3): pp. 1–42, 2010.

[40] James Brotherston, Richard Bornat, and Christiano Calcagno. Cyclic proofs
of program termination in separation logic. In POPL ’08 Proceedings of the
35th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, ACM, pp. 101-112, 2008.

[41] James Brotherston and Rajeev Goré. Craig interpolation in displayable log-
ics. In Kai Brünnler and George Metcalfe (eds.) Automated Reasoning
with Analytic Tableaux and Related Methods, 20th International Conference,
TABLEAUX 2011, Lecture Notes in Computer Science 6793, Springer, pp.
88–103, 2011.

Bibliography 230

[42] James Brotheston and Max I. Kanovich. Undecidability of propositional sep-
aration logic and its neighbours. In Proceedings of the 25th Annual IEEE
Symposium on Logic in Computer Science, LICS 2010, IEEE, pp 130–139,
2010.

[43] James Brotherston and Max I. Kanovich. Undecidability of propositional
separation logic and its neighbours. Journal of the ACM, 61(2): Article 2,
2014.

[44] James Brotherston and Jules Villard. Parametric completeness for separation
theories. In POPL ’14: The 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, ACM, pp. 453–464, 2014

[45] James Brotherston and Jules Villard. Sub-classical Boolean bunched logics
and the meaning of par. In 24th EACSL Annual Conference on Computer
Science Logic, LIPlcs 41, Dagstuhl, pp. 325–342, 2015.

[46] Alexandre Buisse, Lars Birkedal, and Kristian Støvring. A step-indexed
Kripke model of separation logic for storable locks. In Michael Mislove
and Joël Ouaknine (eds.) Twenty-seventh Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVII), Electronic Notes in
Theoretical Computer Science 276: pp. 121–143, 2011.

[47] Wojciech Buszkowski. Interpolation and FEP for logics of residuated alge-
bras. Logic Journal of the IGPL, 19(3): pp. 437–454, 2011.

[48] Christiano Calcagno. Semantic and logical properties of stateful program-
ming. Ph.D. Thesis, University of Genova, 2002.

[49] Christiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. Journal of the ACM,
58(6): article no 26, 2011.

[50] Christiano Calcagno, Peter O’Hearn, and Hongseok Yang. Local action and
abstract separation logic. In Luke Ong (ed.) 22nd IEEE Symposium on Logic
in Computer Science (LICS 2007), IEEE, pp. 366–378, 2007.

[51] Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. Bringing order to
the separation logic jungle. In Bor-Yuh Evan Chang (ed.) Programming Lan-
guages and Systems, 15th Asian Symposium, APLAS 2017, Lecture Notes in
Computer Science 10695, Springer, pp. 190–211, 2017.

Bibliography 231

[52] Chen Chung Chang and H. Jerome Keisler. Model Theory (third edition).
Studies in Logic and the Foundations of Mathematics 73, North Holland Pub-
lishing Company, 1990.

[53] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for Certify-
ing the FSCQ File System. In SOSP ’15 Proceedings of the 25th Symposium
on Operating Systems Principles, ACM, pp. 18–37, 2015.

[54] Brian F. Chellas. Basic conditional logic. Journal of Philosophical Logic,
4(2): pp. 133-153, 1975.

[55] Agata Ciabattoni and Revantha Ramanayake. Power and limits of structural
display rules. ACM Transactions on Computational Logic, 17(3): https:
//doi.org/10.1145/2874775, 2016.

[56] Corina Cı̂rstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for
the coalgebraic µ-calculus. Logical Methods in Computer Science, 7(3:03):
pp. 1–33, 2011.

[57] David D. Clark. The design philosophy of the DARPA internet protocols. In
Proceedings of SIGCOMM ’88, Computer Communication Review, 18(4):
pp. 106–114, 1988.

[58] Edmund E. Clarke, E. Allan Emerson, and A. Prasad Sistla. Automatic veri-
fication of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2): pp. 244–
263, 1986.

[59] Ranald Clouston and Rajeev Goré. Sequent calculus in the topos of trees.
In Andrew Pitts (ed.) Foundations of Software Science and Computation
Structures, 18th International Conference, FOSSACS 2015, Lecture Notes
in Computer Science 9034, Springer, pp. 133–147, 2015.

[60] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical theory
of resources. Information and Computation 250: pp. 59–86, 2016.

[61] Matthew Collinson and David Pym. Algebra and logic for resource-based
systems modelling. Mathematical Structures in Computer Science, 19(5):
pp. 959–1027, 2009.

https://doi.org/10.1145/2874775
https://doi.org/10.1145/2874775

Bibliography 232

[62] Matthew Collinson, David Pym, and Edmund Robinson. On bunched poly-
morphism. Mathematical Structures in Computer Science, 18(6): pp. 1091–
1132, 2008.

[63] Matthew Collinson, Kevin McDonald, and David Pym. A substructural logic
for layered graphs. Journal of Logic and Computation, 24(4): pp. 953–988,
2014.

[64] Matthew Collinson, Kevin McDonald, and David Pym. Layered graph logic
as an assertion language for access control. Journal of Logic and Computa-
tion, 27(1): pp. 41–80, 2017.

[65] Dion Coumans. Duality for first-order logic. http://www.math.ru.
nl/˜coumans/talkAC.pdf. Accessed 31 July 2018.

[66] Dion Coumans. Generalising canonical extension to the categorical setting.
Annals of Pure and Applied Logic, 163(12): pp. 1940–1961, 2012.

[67] Dion Coumans, Mai Gehrke, and Lorijnvan Rooijen. Relational semantics
for full linear logic. Journal of Applied Logic, 12(1): pp. 50–66, 2014.

[68] Jean-René Courtault, Didier Galmiche, and David Pym. A logic of separating
modalities. Theoretical Computer Science, 637: pp. 30–58, 2016.

[69] William Craig. Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. The Journal of Symbolic Logic, 22(3): pp.
269–285, 1957.

[70] Frederik Dahlqvist and David Pym. Coalgebraic completeness-via-
canonicity for distributive substructural logics. Journal of Logical and Al-
gebraic Methods in Programming, 93: pp. 1–22, 2017.

[71] H.-H. Dang, Peter Höfner, and Bernhard Möller. Algebraic Separation Logic.
Journal of Logical and Algebraic Methods in Programming , 80(6): pp. 221–
247, 2011.

[72] Brian A. Davey and John C. Galati. A coalgebraic view of Heyting duality.
Studia Logica, 75(3): pp. 259–270, 2003.

[73] Martin Davis, Computability and Unsolvability. McGraw-Hill, 1958.

[74] Brian J. Day. On closed categories of functors. In Saunders Mac Lane (ed.)
Reports of the midwest category seminar, Lecture Notes in Mathematics 137,
Springer-Verlag, pp. 1–38, 1974.

http://www.math.ru.nl/~coumans/talkAC.pdf
http://www.math.ru.nl/~coumans/talkAC.pdf

Bibliography 233

[75] Stéphane Demri. Sequent calculi for nominal tense logics: a step towards
mechanization? In Neil V. Murray (ed.) Automated Reasoning with Analytic
Tableaux and Related Methods, International Conference, TABLEAUX99,
Lecture Notes in Computer Science 1617, Springer, pp. 140–155, 1999.

[76] Stéphane Demri and Morgan Deters. Separation logics and modalities: a
survey. Journal of Applied Non-Classical Logics, 25(1): pp. 50–99, 2015.

[77] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkin-
son, Hongseok Yang. Views: compositional reasoning for concurrent pro-
grams. In Proceedings of the 40th annual ACM SIGPLAN–SIGACT sympo-
sium on Principles of programming languages. ACM, pp. 287–300, 2013.

[78] Simon Docherty and David Pym. Intuitionistic layered graph logic. In Nicola
Olivetti and Ashish Tiwari (eds.) Automated Reasoning: 8th International
Joint Conference, IJCAR 2016, Coimbra, Portugal, Lecture Notes in Artifi-
cial Intelligence 9706, Springer, pp. 469–486, 2016.

[79] Simon Docherty and David Pym. Intuitionistic layered graph logic (abridged
version). In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence Best Sister Conferences, pp. 4816–4820, 2017.

[80] Simon Docherty and David Pym. A Stone-type duality theorem for Separa-
tion Logic via its underlying bunched logics. In Alexandra Silva (ed.) The
Thirty-third Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXXIII), Electronic Notes in Theoretical Computer Sci-
ence 336, Elsevier, pp. 101–118, 2018.

[81] Simon Docherty and David Pym. Modular tableaux calculi for separation
theories. In Christel Baier and Ugo Dal Lago (eds.) Foundations of Software
Science and Computation Structures: 21st International Conference, FOS-
SACS 2018, Theoretical Computer Science and General Issues 10803, pp.
441–458, 2018.

[82] Simon Docherty and David Pym. Intuitionistic layered graph logic: seman-
tics and proof theory. Logical Methods in Computer Science, 14(4), 2018.

[83] Simon Docherty and David Pym. Stone-type dualities for separation logics.
Logical Methods in Computer Science, 15(1), 2019.

[84] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at
separation algebras and share accounting. In Proc. of the 7th Asian Sympo-

Bibliography 234

sium on Programming Languages and Systems, Lecture Notes in Computer
Science 5904, Springer, pp. 161–177, 2009.

[85] Brijesh Dongol, Victor Gomes, and Georg Struth. A Program Construction
and Verification Tool for Separation Logic. In Mathematics of Program Con-
struction: 12th International Conference, MPC 2015, Springer, pp. 137–158,
2015.

[86] Kosta Dos̆en. A brief survey of frames for the Lambek calculus. Mathemat-
ical Logic Quarterly, 38(1): 179–187, 1992.

[87] J. Michael Dunn. Gaggle Theory: An Abstraction of Galois Connections and
Residuation with Applications to Negation, Implication, and Various Logi-
cal Operations. In Logics in AI: European Workshop JELIA ’90, Springer-
Verlarg, pp. 31–51, 1990.

[88] J. Michael Dunn. A representation of relation algebras using Routley-Meyer
frames. In C. Anthony Anderson and Michael Zelëny (eds.) Logic, Meaning
and Computation: Essays in Memory of Alonzo Church, Kluwer Academic
Publishers, pp. 77–108, 2001.

[89] J. Michael Dunn and Gary Hardegree. Algebraic Methods in Philosophical
Logic. Oxford Logic Guides 41, Oxford University Press, 2001.

[90] Roy Dyckhoff and Sara Negri. Geometrisation of first-order logic. The Bul-
letin of Symbolic Logic, 21(2): pp. 123–163, 2015.

[91] Leo Esakia. Topological Kripke models. Soviet Math. Dokl. 15, 147–15,
1974.

[92] Amos Fiat, Dean P. Foster, Howard Karloff, Yuval Rabani, Yiftach Ravid,
and Sundar Vishwanathan. Competitive algorithms for layered graph traver-
sal. SIAM Journal on Computing, 28(2): pp. 447–462, 1998.

[93] David J. Foulis and M. K. Bennett. Effect algebras and unsharp quantum
logics. Foundations of Physics, 24(10): pp. 1331–1352, 1994.

[94] Tobias Fritz. Resource convertibility and ordered commutative monoids.
Mathematical Structures in Computer Science, 27(6): pp. 850–938, 2017.

[95] Dov M. Gabbay. Labelled Deductive Systems: Volume 1. Oxford Logic
Guides 35, Oxford University Press, 1996.

Bibliography 235

[96] Dov M. Gabbay and Larisa L. Maksimova. Interpolation and Definability:
Modal and Intuitionistic Logics. Oxford Logic Guides 46, Oxford University
Press, 2005.

[97] Nikolaos Galatos and Peter Jipsen. Distributive residuated frames and gen-
eralized bunched implication algebras. Algebra Univeralis, 78(3): pp. 303–
336, 2017.

[98] Didier Galmiche, Pierre Kimmel, and David Pym. A substructural epistemic
resource logic. In Sujata Ghosh and Sanjiva Prasad (eds.) Logic and Its Ap-
plications: 7th Indian Conference, ICLA 2017, Kanpur, India, January 5-7,
2017, Proceedings, Lecture Notes in Computer Science 10119, Springer, pp.
106–122, 2017.

[99] Didier Galmiche and Dominique Larchey-Wendling. Expressivity proper-
ties of Boolean BI through relational models. In S. Arun-Kumar and Naveen
Garg (eds.) FSTTCS 2006: Foundations of Software Technology and Theoret-
ical Computer Science, Lecture Notes in Computer Science 4337, Springer,
pp. 357–368, 2006.

[100] Didier Galmiche and Daniel Méry. Tableaux and resource graphs for separa-
tion logic. Journal of Logic and Computation, 20(1): pp. 189–231, 2007.

[101] Didier Galmiche, Daniel Méry, and David Pym. The semantics of BI and
resource tableaux. Mathematical Structructures in Computer Science, 15:
pp. 1033–1088, 2005.

[102] Fabrizio Genovese and Jelle Herold. Executions in (semi-)integer Petri nets
are compact closed categories. In Proceedings of QPL 2018, ENTCS, to
appear.

[103] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathe-
matische Zeitschrift, 39(2): pp. 176–210, 1935.

[104] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Mathe-
matische Zeitschrift, 39(3): pp. 405–431, 1935.

[105] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1): pp.
1–101, 1987.

[106] Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-Yves
Girard, Yves Lafont and Laurent Regnier (eds.) Advances in Linear Logic,
Cambridge University Press, pp. 1–42, 1995.

Bibliography 236

[107] Jay L. Gischer. The equational theory of pomsets. Theoretical Computer
Science, 61(2-3):199–224, 1988.

[108] Robert Goldblatt. Varieties of Complex Algebras. Annals of Pure and Ap-
plied Logic, 44(3): pp. 173-242, 1989.

[109] Robert Goldblatt and S.K. Thomason. Axiomatic classes in propositional
modal logic. In J.N. Crossley (Ed.) Algebra and Logic, Lecture Notes in
Mathematics 450, Springer, pp. 163–173, 1975.

[110] Rajeev Goré and Linh Anh Nguyen. A tableau calculus with automaton-
labelled formulae for regular grammar logics. In Bernhard Beckert (ed.) Au-
tomated Reasoning with Analytic Tableaux and Related Methods, 14th Inter-
national Conference, TABLEAUX 2005, Lecture Notes in Computer Science
3702, Springer, pp. 138–152, 2005.

[111] Luis Gouveia, Luidi Simonetti, and Eduardo Uchoa. Modeling hop-
constrained and diameter-constrained minimum spanning tree problems as
Steiner tree problems over layered graphs. Mathematical Programming,
128(1): pp. 123–148, 2011.

[112] Davide Grohmann and Marino Miculan. Directed bigraphs. In Proceedings
of MFPS XXIII, Electronic Notes in Theoretical Computer Science 173, 121–
137, 2007.

[113] Zuzana Haniková and Rostislav Horc̆ı́k. The finite embeddability property
for residuated groupoids. Algebra Universalis, 72(1): pp. 1–13, 2014.

[114] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
2000.

[115] Leon Henkin. Some remarks on infinitely long formulas. In Infinitistic Meth-
ods: Proceedings of the Symposium on Foundations of Mathematics, Perga-
mon, pp. 167–183, 1961.

[116] Wataru Hino, Hiroki Kobayashi, Ichiro Hasuo and Bart Jacobs. Healthi-
ness from duality. In Thirty-First Annual ACM/IEEE Symposium on Logic In
Computer Science, LICS 2016, ACM/IEEE, pp. 682–691, 2016.

[117] Jaakko Hintikka and Gabriel Sandu. Informational independence as a se-
mantical phenomenon. In: J. E. Fenstad, I. T. Frolov and R. Hilpinen (eds.)
Logic, Methodology and Philosophy of Science VIII, Elsevier, pp. 571–589,
1989.

Bibliography 237

[118] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10): pp. 576-580, 1969.

[119] Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A theory of indirec-
tion via approximation. In Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM, pp. 171–184,
2010.

[120] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of in-
tuitionistic linear logic. Information and Computation,110(2): pp. 327-365,
1994.

[121] Wilfred Hodges. Compositional semantics for a language of imperfect infor-
mation. Logic Journal of the IGPL, 5(4): pp. 539–563, 1997.

[122] Wilfred Hodges. Some strange quantifiers. In: Jan Mycielski, Grzegorz
Rozenberg and Arto Salomaa (eds.) Structures in Logic and Computer Sci-
ence, Lecture Notes in Computer Science 1261, Springer, pp. 51–65, 1997.

[123] Zhé Hóu. Labelled Sequent Calculi and Automated Reasoning for Assertions
in Separation Logic. PhD thesis, The Australian National University, 2015.

[124] Zhé Hóu, Ranald Clouston, Alwen Tiu, and Rajeev Goré. Proof search for
propositional abstract separation logics via labelled sequents. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ACM, pp. 465–476, 2014.

[125] Zhé Hóu, Ranald Clouston, Alwen Tiu, and Rajeev Goré. Modular sequent
calculi for abstract separation logics. Accepted for publication in ACM Trans-
actions on Computational Logic, 2018.

[126] Zhé Hoú, Rajeev Goré, and Alwen Tiu. A labelled sequent calculus for BBI:
proof theory and proof search. Journal of Logic and Computation, 28(4): pp.
809–872, 2015.

[127] Zhé Hóu, Alwen Tiu, and Rajeev Goré. Automated Theorem Proving for
Assertions in Separation Logic with All Connectives. In Amy P Felty and
Aart Middeldorp (eds.) Automated Deduction - CADE-25, 25th International
Conference on Automated Deduction, Lecture Notes in Computer Science
9195, pp. 501–516, 2015.

[128] Martin Hyland and Valeria de Paiva. Full intuitionistic linear logic (extended
abstract). Annals of Pure and Applied Logic, 64(3): pp. 273–291, 1993.

Bibliography 238

[129] Samin Ishtiaq and Peter O’Hearn. BI as an assertion language for mutable
data structures. In POPL ’01: 28th ACM-SIGPLAN Symposium on Principles
of Programming Languages, ACM, pp. 14–26, 2001.

[130] Peter Jipsen and Tadeusz Litak. An algebraic glimpse at bunched implica-
tions and separation logic. In Outstanding Contributions: Hiroakira Ono on
Residuated Lattices and Substructural Logics, arXiv:1709.07063v2, to ap-
pear.

[131] Peter Jipsen and Constantine Tsinakis. A survey of residuated lattices. In
Jorge Martı́nez (ed.) Ordered Algebraic Structures, Developments In Mathe-
matics, Springer, pp. 19–56, 2002.

[132] Peter Johnstone. Stone Spaces. Cambridge University Press, 1986.

[133] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators. Part I.
American Journal of Mathematics, 73(4): pp. 891–939, 1951.

[134] André Joyal. Remarks on the theory of two player games. Gazette
des sciences mathematiques du Quebec 1(4), 1997. English translation by
Robin Houston https://bosker.files.wordpress.com/2010/

12/joyal-games.pdf (Accessed 31 July, 2018).

[135] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales̆. Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular founda-
tion for higher-order concurrent separation logic. Accepted for publication
in Journal of Functional Programming, 2018.

[136] Michael Kaminski and Nissim Francez. Relational semantics of the Lambek
calculus extended with classical propositional logic. Studia Logica, 102(3):
pp. 479–497, 2014.

[137] Michael Kaminski and Nissim Francez. Relational semantics of the Lam-
bek calculus extended with intuitionistic propositional logic. Studia Logica,
104(5): pp. 1051–1082, 2016.

[138] Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concur-
rent Kleene algebra: free model and completeness. In Amal Ahmed (ed.)
Programming Languages and Systems, 27th European Symposium on Pro-
gramming, ESOP 2018, Lecture Notes in Computer Science 10801, Springer,
2018.

https://bosker.files.wordpress.com/2010/12/joyal-games.pdf
https://bosker.files.wordpress.com/2010/12/joyal-games.pdf

Bibliography 239

[139] Gregory M. Kelly and M. L. Laplaza. Coherence for compact closed cate-
gories. Journal of Pure and Applied Algebra, 19: pp. 193–213, 1980.

[140] Hitoshi Kihara and Hiroakira Ono. Interpolation properties, Beth definability
properties and amalgamation properties for substructural logics. Journal of
Logic and Computation, 20(4): pp. 823–875, 2010.

[141] Mikko Kivelä, Alexandre Arenas, Marc Barthelemy, James P. Gleeson,
Yamir Moreno, and Mason A. Porter. Multilayer networks. Journal of Com-
plex Networks, 2(3): pp. 203–271, 2014.

[142] Saul A. Kripke. Semantical analysis of intuitionistic logic I. In John N.
Crossley and Michael A. Dummett (eds.) Formal Systems and Recursive
Functions, Studies in Logic and the Foundations of Mathematics 40, North
Holland Publishing Company, pp. 92–130, 1965.

[143] Maciej Kurant and Patrick Thiran. Layered complex networks. Physical
Review Letters, 96(138701), 2006.

[144] Ágnes Kurucz, István Nemeti, Ildikó Sain and András Simon. Decidable and
undecidable modal logics with a binary modality. Journal of Logic, Lan-
guage and Information, 4: pp. 191–206, 1995.

[145] Joachim Lambek. The mathematics of sentence structure. The American
Mathematical Monthly, 65(3): pp. 154–170, 1958.

[146] Joachim Lambek. On the calculus of syntactic types. In Roman Jakobson
(ed.) Structure of Language and its Mathematical Aspects, American Math-
ematical Society, pp. 166–178, 1961.

[147] Joachim Lambek. Deductive systems and categories I. Syntactic calculus
and residuated categories. Mathematical Systems Theory, 2(4): pp. 287–318,
1968.

[148] Dominique Larchey-Wendling. The formal strong completeness of partial
monoidal Boolean BI. Journal of Logic and Computation, 26(2): pp. 605–
640, 2016.

[149] Dominique Larchey-Wendling and Didier Galmiche. The undecidability of
Boolean BI through phase semantics. In Proceedings of the 25th Annual
IEEE Symposium on Logic in Computer Science, LICS 2010, IEEE, pp. 140–
149, 2010.

Bibliography 240

[150] Dominique Larchey-Wendling and Didier Galmiche. Looking at separation
algebras through Boolean BI eyes. In Josep Diaz, Ivan Lanese, and Davide
Sangiorgi (eds.) Theoretical Computer Science, 8th IFIP TC 1/WG 2.2 Inter-
national Conference, TCS 2014, Lecture Notes in Computer Science 8705,
Springer, pp. 326–340, 2014.

[151] William Lawvere. Adjointness in foundations. Dialectica 23: pp. 281-296,
1969.

[152] Narciso Martı́-Oliet and José Mesegeuer. From Petri nets and linear logic.
Mathematical Structures in Computer Science, 1(1): pp. 69–101, 1991.

[153] Carsten Maus, Stefan Rybacki, and Adelinde. M. Uhrmacher. Rule-based
multi-level modeling of cell biological systems BMC Systems Biology,
5(166), doi:10.1186/1752-0509-5-166, 2011.

[154] Saunders Mac Lane. Categories for the Working Mathematician. Springer,
1970.

[155] Judit X. Madarász. Interpolation and amalgamation; pushing the limits. Part
I. Studia Logica, 61(3): pp. 311–345, 1998.

[156] Larisa L. Maksimova. Craig’s theorem in superintuitionistic logics and amal-
gamated varieties of pseudo-Boolean algebras. Algebra i Logika, 16(6): pp.
643–681, 1977.

[157] Larisa L. Maksimova. Interpolation theorems in modal logics and amalga-
mated varieties of topo-Boolean algebras. Algebra i Logika, 18, 1979.

[158] Andrei A. Markov Jr. Impossibility of certain algorithms in the theory of
associative systems. Dokl. Akad. Nauk. SSSR, 55(7):587590 (in Russian),
2003.

[159] Yuri Matiyasevich and Géraud Sénizergues. Decision problems for semi-
Thue systems with a few rules. Theoretical Computer Science, 330: pp.
145–169, 2005.

[160] George Metcalfe, Franco Montagna, and Constantine Tsinakis. Amalgama-
tion and interpolation in ordered algebras. Journal of Algebra, 402: pp.
21–82, 2014.

[161] Dale Miller. An overview of linear logic programming. . In Thomas Ehrhardt,
Paul Ruet, Jean-Yves Girard, and Phillip Scott (eds.) Linear Logic in Com-
puter Science, Cambridge University Press, pp. 119–150, 2004.

Bibliography 241

[162] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag,
1980.

[163] Robin Milner. Communicating and Mobile Systems: The π-calculus. Cam-
bridge University Press, 1999.

[164] Robin Milner. The Space and Motion of Communicating Agents. Cambridge
University Press, 2009.

[165] Grigore Moisil. Recherches sur l’algèbre de la logique. Annales Scientifiques
de l’Université de Jassy, 22: pp. 1–117, 1935.

[166] Patrick J. Morandi. Dualities in Lattice Theory. http://sierra.nmsu.
edu/morandi/notes/Duality.pdf (Accessed 31 July 2018), 2005.

[167] James Munkres. Topology (second edition). Prentice Hall, 2000.

[168] Hiroshi Nakano. A modality for recursion. In Fifteenth Annual IEEE Sym-
posium on Logic in Computer Science, IEEE, pp. 255–266, 2000.

[169] Sara Negri. Contraction-free sequent calculi for geometric theories, with an
application to Barrs theorem. Archive for Mathematical Logic, 42: pp. 389–
401, 2003.

[170] Sara Negri. Glivenko sequent classes in the light of structural proof theory.
Archive for Mathematical Logic, 55(3–4): pp. 461–473, 2016.

[171] Sara Negri. Proof analysis beyond geometric theories: from rule systems to
systems of rules. Journal of Logic and Computation, 26(2): pp. 513–537,
2016.

[172] Sara Negri. The intensional side of algebraic-topological rep-
resentation theorems. Synthese, https://doi.org/10.1007/

s11229-017-1331-1, 2017.

[173] Sara Negri and Jan van Plato. Proof Analysis: A Contribution to Hilberts
Last Problem. Cambridge University Press, 2011.

[174] Peter O’Hearn. On bunched typing. Journal of Functional Programming,
13(4): pp. 747–796, 2003.

[175] Peter O’Hearn. Resources, concurrency and local reasoning. Theoretical
Computer Science, 375(1–3): pp. 271–307, 2007.

http://sierra.nmsu.edu/morandi/notes/Duality.pdf
http://sierra.nmsu.edu/morandi/notes/Duality.pdf
https://doi.org/10.1007/s11229-017-1331-1
https://doi.org/10.1007/s11229-017-1331-1

Bibliography 242

[176] Peter O’Hearn. Algebra, Logic, Locality, Concurrency. http://www0.

cs.ucl.ac.uk/staff/p.ohearn/Talks/APLAS-CPP-2011.

pdf. Accessed 31 July 2018. 2011.

[177] Peter O’Hearn and David Pym. The logic of bunched implications. The
Bulletin of Symbolic Logic, 5(2): pp. 215–244, 1999.

[178] Peter O’Hearn, Rasmus L. Petersen, Jules Villard, and Akbar Hussain. On
the relation between Concurrent Separation Logic and concurrent Kleene al-
gebra. Journal of Logical and Algebraic Methods in Programing, 84(3): pp.
285–302, 2015.

[179] Peter O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Laurent Fribourg (ed.) Computer
Science Logic, 15th International Workshop, CSL 2001, Lecture Notes in
Computer Science 2142, Springer, pp. 1–19, 2001.

[180] Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a
map. Theoretical Computer Science, 84(1): pp. 127–150, 1991.

[181] Jonghyun Park, Jeongbong Seo, and Sungwoo Park. A theorem prover for
Boolean BI. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ACM, pp. 219–232,
2013.

[182] Azaria Paz. A theory of decomposition into prime factors of layered inter-
connection networks. Discrete Applied Mathematics, 159(7): pp. 628–646,
2011.

[183] Andew Pitts. Categorical Logic. In Samson Abramsky, Dov M. Gabbay and
Tom Maibaum (eds.) Handbook of Logic in Computer Science, Volume 5,
Oxford University Press, pp. 39–128, 2000.

[184] Andrew Polonsky. Proofs, Types and Lambda Calculus. PhD thesis, Univer-
sity of Bergen, 2012.

[185] Emil Post. Recursive Unsolvability of a Problem of Thue. The Journal of
Symbolic Logic, 12(1): pp. 1–11, 1947.

[186] Hilary A. Priestley. Ordered sets and duality for distributive lattices. In
Maurice Pouzet and Denis Richard (eds.) Orders: Description and Roles,
Elsevier, pp. 39–60, 1984.

http://www0.cs.ucl.ac.uk/staff/p.ohearn/Talks/APLAS-CPP-2011.pdf
http://www0.cs.ucl.ac.uk/staff/p.ohearn/Talks/APLAS-CPP-2011.pdf
http://www0.cs.ucl.ac.uk/staff/p.ohearn/Talks/APLAS-CPP-2011.pdf

Bibliography 243

[187] David Pym. The Semantics and Proof Theory of the Logic of Bunched Impli-
cations. Applied Logic Series 26, Springer Netherlands, 2002.

[188] David Pym and James Harland. Resource-distribution via Boolean con-
straints. ACM Transactions on Computational Logic, 4(1): pp. 56–90, 2003.

[189] David Pym, Peter O’Hearn, and Hongseok Yang. Possible worlds and re-
sources: the semantics of BI. Theoretical Computer Science, 315(1): pp.
257–305, 2004

[190] David Pym and Chris Tofts. A calculus and logic of resources and processes.
Formal Aspects of Computing, 18(4): pp. 495–517, 2006.

[191] Revantha Ramanayake. A syntactic proof of decidability for the logic of
bunched implication BI. Unpublished, 2018.

[192] Greg Restall. Negation in Relevant Logics (How I stopped worrying and
learned to love the Routley Star). In Dov M. Gabbay and Heinrich Wans-
ing (eds.) What is Negation?, Applied Logic Series 13, Kluwer Academic
Publishers, pp. 53–67, 1999.

[193] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[194] John C. Reynolds. Syntactic control of interference. In Conference record of
the fifth annual ACM symposium on principles of programming languages,
ACM, pp. 39–46, 1978.

[195] John C. Reynolds. The essence of Algol. In Jacobus W. Bakker and J. C. van
Vliet (eds.) Algorithmic languages: proceedings of the International Sym-
posium on Algorithmic Languages, North Holland Publishing Company, pp.
345–372, 1981.

[196] John C. Reynolds. Intuitionistic reasoning about shared mutabledata struc-
ture. In Jim Davies, Bill Roscoe,and Jim Woodcock, (eds.), Millennial Per-
spectives in Computer Science, Palgrave, pp. 303–321, 2000.

[197] John C. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. In Seventeenth Annual IEEE Symposium on Logic In Computer Sci-
ence, IEEE, pp. 55–74, 2002.

[198] John C. Reynolds. An Introduction to Separation Logic (Preliminary Draft).
Unpublished 2008.

Bibliography 244

[199] Piet Rodenburg. Intuitionistic Correspondence Theory. PhD Thesis, Univer-
siteit van Amsterdam, 1986.

[200] Richard Routley and Robert K. Meyer. The semantics of entailment II. Jour-
nal of Philosophical Logic, 1(1): pp. 53–73, 1972.

[201] Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 240(1): pp. 3–80, 2000.

[202] Henrik Sahlqvist. Completeness and correspondence for the first and second
order semantics for modal logic. In Stig Kanger (ed.) Proceedings of the
Third Scandinavian Logic Symposium, Studies in Logic and the Foundations
of Mathematics 82, North-Holland Publishing Company, pp. 110–143, 1975.

[203] Giovanni Sambin and Virginia Vaccaro. A new proof of Sahlqvist’s theorem
on modal definability and completeness. The Journal of Symbolic Logic,
54(3): pp. 992–999, 1989.

[204] Renate A. Schmitt and Dmitry Tishkovsky. Automated synthesis of tableau
calculi. In Martin Giese and Arild Waaler (eds.) Automated Reasoning
with Analytic Tableaux and Related Methods, 18th International Conference,
TABLEAUX 2009, Lecture Notes in Computer Science 5607, Springer, pp.
310–324, 2009.

[205] Bruce Schneier. The weakest link (https://www.schneier.com/
blog/archives/2005/02/the_weakest_lin.html). Schneier
on Security (https://www.schneier.com), 2005.

[206] Cristina Sernadas , Luca Viganò , João Rasga, and Amı́lcar Sernadas. Truth-
values as labels: a recipe for labelled deduction. Journal of Applied Non-
Classical Logics, 13(3–4): pp. 277–315, 2003.

[207] Hiroyuki Shirasu. Duality in superintuitionistic and modal predicate logics.
In Advances in Modal Logic Vol 1: pp. 223–236, 1998.

[208] Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal
Logic. PhD Thesis, University of Edinburgh, 1994.

[209] Thoralf Skolem. Logisch-kombinatorische Untersuchungen über die
Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theo-
reme über dichte Mengen, Skrifter I, 4: pp. 1–36, Det Norske Videnskaps-
Akademi, 1920.

https://www.schneier.com/blog/archives/2005/ 02/the_weakest_lin.html
https://www.schneier.com/blog/archives/2005/ 02/the_weakest_lin.html
https://www.schneier.com

Bibliography 245

[210] Marshall H. Stone. The theory of representations of Boolean algebras. Trans-
actions of the American Mathematical Society, 40: pp. 37–111, 1936.

[211] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[212] Axel Thue. Probleme über Veränderungen von Zeichenreihen nach gegebe-
nen Regeln. Christiana Videnskabs-Selskabs Skrifter, I. Math.-naturv. Klasse
10, 1914.

[213] Alasdair Urquhart. Semantics for relevant logics. The Bulletin of Symbolic
Logic, 49: pp. 1059–1073, 1972.

[214] Alasdair Urquhart. Failure of interpolation for relevant logics. Journal of
Philosophical Logic, 22(5): pp. 449–479, 1993.

[215] Alasdair Urquhart. Duality for algebras of relevant logics. Studia Logica,
56(1/2): pp. 263–276, 1996.

[216] Jouko Väänänen. Dependence Logic: A New Approach to Independence
Friendly Logic. Cambridge University Press, 2007.

[217] Yde Venema. Algebra and coalgebra. In Patrick Blackburn, Johan van Ben-
them, and Frank Wolter (eds.) Handbook of Modal Logic Vol 3, Studies in
Logic and Practical Reasoning, Elsevier, pp. 331–426, 2007.

[218] Steve Vickers. Geometric logic in computer science. In Geoffrey Burn, Si-
mon Gay, and Mark Ryan (eds.) Theory and Formal Methods 1993, Springer-
Verlag, pp. 37–54, 1993.

[219] Juan Wang, Philippe De Wilde, and Hui Wang. Topological analysis of a two
coupled evolving networks model for business systems. Expert Systems with
Applications, 36(5): pp. 9548–9556, 2009.

[220] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron
Cook, Dino Distefano, and Peter OHearn. Scalable shape analysis for system
code. In Aarti Gupta and Sharad Malik (eds.) Computer Aided Verification,
20th International Conference, CAV 2008, Lecture Notes in Computer Sci-
ence 5123, Springer, pp. 385–398, 2008.

[221] Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning. In
Proceedings of Foundations of Software Science and Computation Structures
5th International Conference, Springer, pp. 402–416, 2002.

[222] Lotfi A. Zadeh. Fuzzy logic. Computer, 21(4): pp. 83–93, 1988.

	Introduction
	From Classical to Non-Classical Logic
	Bunched Logics
	Road Map for the Thesis

	I A Family of Bunched Logics
	Layered Graph Logics
	Syntax and Semantics
	Layered Graphs

	Logics of Bunched Implications
	Syntax and Semantics
	Separation Logic
	Examples of (B)BI Frames

	Extensions of the Logics of Bunched Implications
	De Morgan Bunched Logics
	Sub-Classical Bunched Logics
	Separating Modal Logics
	Concurrent Kleene Bunched Logic

	Summary of Part I

	II Algebra and Duality for Bunched Logics
	Algebraic and Topological Preliminaries
	Algebra
	Topology
	Esakia Duality
	Stone Duality

	Dualities for Propositional Bunched Logics
	Layered Graph Logics
	Logics of Bunched Implications
	De Morgan Bunched Logics
	Other Variants

	Metatheory for Propositional Bunched Logics
	Completeness
	Decidability
	Expressivity
	Interpolation

	Dualities for Predicate Bunched Logics
	Categorical Structures for Predicate Bunched Logics
	Bunched Logic Models as Indexed Frames
	Duality for Bunched Logic Hyperdoctrines

	Summary of Part II

	III Proof Theory for Bunched Logics
	Modular Tableaux Calculi for Bunched Logics
	Logical Rules for Bunched Logic Tableaux Calculi
	Tableau Rule Generation from Coherent Axioms
	Frame Rules for Bunched Logic Tableaux Calculi
	The Tableaux Calculi
	Parametric Soundness and Completeness

	Tableaux Calculi for Applications of Bunched Logics
	Separation Logics
	Layered Graph Models

	Summary of Part III

	IV Conclusions & Further Work
	Appendix
	Category Theory
	Bibliography

