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Abstract

COMPUTING SPACES OF INDEPENDENT EXPLANATIONS VIA

ABDUCTIVE REASONING

Warren Del-Pinto
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2022

This thesis investigates methods for abductive reasoning in large knowledge bases.
Abduction refers to the process of explaining new observations using prior knowledge,
which enables tasks that require the generation of new hypotheses including scientific
discovery, belief expansion, diagnostics, language interpretation and inductive learn-
ing. This thesis focuses on knowledge represented using Description Logics (DLs),
which are commonly used to model information in domains such as bioinformatics,
healthcare, robotics and natural language processing. A variety of research has been
conducted on abduction in DLs, though it remains a hard problem.

In this work, the aim is to produce hypotheses that take the form of a set of expla-
nations and are semantically minimal. Producing a set of explanations, rather than a
single one, provides a way to examine multiple avenues of explaining the observation,
providing further insight into both the observation and the available knowledge. Se-
mantic minimality limits hypotheses to those that assume no more than is necessary to
explain the observation given the existing knowledge. For the general application of
abduction, it is natural to first seek explanations that are likely, but limit the strength of
initial assumptions until further evidence is available. This provides a useful mecha-
nism for ordering hypotheses, seeking the least assumptive (weakest) ones first, which
can then be refined through further investigation.

However, semantic minimality is problematic in the presence of disjunction as it
permits any number of redundant explanations (disjuncts). Therefore, disjunction has
previously been excluded from solutions when considering semantic minimality. In
this work, this problem must be addressed as the hypothesis takes the form of a set
of possible explanations, represented as a disjunction. Therefore, a new DL abduction
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problem is defined. The proposed problem introduces a notion of independence, where
explanations must not contradict existing knowledge and must not express information
that is contained within the other explanations. This problem is the first to consider
both semantic minimality and independence of explanations together in the DL setting.
The issue of permitting language extensions in the hypotheses is also discussed and
motivated, as this makes the abduction problem considered here significantly different
to prior work. An example of this is disjunctions of DL axioms used to represent the
hypotheses.

To solve the problem, novel methods that utilise the connection between forgetting
and abduction are proposed. The need for further investigation into this connection in
the DL setting is addressed, including investigation of the characteristics of forgetting
solutions in relation to the proposed problem and the development of efficient methods
for eliminating redundant explanations. Extensions to existing forgetting tools required
for expressive abduction are also proposed and implemented. The forgetting-based ab-
duction approaches developed are evaluated over corpora containing real ontologies.
The results indicate that in the majority of cases, the approaches can efficiently com-
pute spaces of explanations over ALC knowledge bases with tens of thousands of
axioms. The use of the disjunctive hypotheses produced by forgetting-based abduction
approaches is also explored with respect to the problems of hypothesis refinement,
induction and concept learning in ontologies, to provide suggestions on how the char-
acteristics of these hypotheses may be utilised in practice.
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Chapter 1

Introduction

Abductive, inductive and deductive reasoning are fundamental forms of reasoning,

each of which encapsulates a process distinct from the others. The characterisation

of these three forms of reasoning, and particularly the identification of abduction as a

third form of reasoning alongside deduction and induction, was a key element in the

work of Charles Sanders Peirce [Pei78]. Notions related to abductive reasoning date

back further, with methods of argument such as the Greek apagoge in the works of

Aristotle.

While deduction and induction are widely known, the role of abduction is less

widely understood. Often, abductive reasoning is not explicitly identified when utilised

alongside other forms of reasoning, where its role is instead assumed as an implicit part

of the process of inductive reasoning [Pop14]. The two forms of reasoning do share

similarities. Both abduction and induction are ampliative: they provide mechanisms

by which new knowledge can be obtained that goes beyond what is already known. As

a result, another similarity between abduction and induction is that they are not neces-

sarily truth preserving: a false conclusion can be inferred from entirely true premises.

The results of abduction and induction are intended to be likely under the given cir-

cumstances, but are not guaranteed to be correct. It is in these aspects that abduction

and induction differ from deduction. Deductive reasoning enables the process of infer-

ring implicit knowledge that can be derived from pre-existing, explicit facts, without

13



14 CHAPTER 1. INTRODUCTION

going beyond the existing knowledge. It is by nature truth-preserving: given that the

premises of an inference are true, the conclusion must also be true.

However, despite these similarities, abduction and induction emphasise two dis-

tinct notions. Abduction concerns explanation of a specific set of observations, pro-

ducing candidate explanations for the given observations with respect to some existing

knowledge. Meanwhile, inductive reasoning is instead related to the notion of gen-

eralisation. Given a set of observations, the aim of induction is to produce a general

rule that covers the entire population from which the observations were drawn. In this

sense, abduction can be seen as a form of hypothesis generation, while induction can

be viewed as hypothesis evaluation [FK00b].

Just as deduction and induction are utilised as core mechanisms in Artificial Intel-

ligence (AI), in areas such as Automated Reasoning and Machine Learning, abduction

too plays a key role in a variety of tasks which require the generation of explana-

tions for given observations. Consequently, abductive reasoning has become a topic

of recurring interest in AI. The identification and investigation of notions of best or

preferred hypotheses is core to the study and application of abductive reasoning in

practice, and abduction is often referred to as inference to the best explanation as a

result. The development of methods to compute abductive hypotheses became the sub-

ject of a wide variety of work in AI, spanning work in areas such as theorem proving

[Pop73] and abductive logic programming [KKT92]. Across AI, applications of ab-

ductive reasoning are varied and include tasks such as natural language interpretation

[HSAM93, Sti91] and inference [RNM05], automating the process of scientific inquiry

[KWJ+04, Ray07] and the extension and repair of large knowledge bases [EKS06]. A

variety of work has also been performed on the integration of abduction and induction

[FK00a] in areas such as machine learning [Moo00], abductive logic programming

[Ray09] and statistical relational AI [RM10].
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1.1 Motivation

As discussed, the importance of abductive reasoning has been recognised in many

areas of AI research. This is also true in the area of Knowledge Representation and

Reasoning, a major branch of which makes use of ontologies.

The term ontology has roots in philosophy, where it broadly encompasses the study

of notions of existence. In computer science and AI, an ontology can generally be seen

as a specification of the collection of entities and relationships between entities related

to a given domain [Gru95]. Often, ontologies are referred to as knowledge bases1 and

generalise notions such as Knowledge Graphs to include both an upper-level schema

of general entities and more specific, instance level data.

Description Logics (DLs) provide expressive languages which can be used to rep-

resent knowledge contained within an ontology. These DL languages enable the formal

basis to capture the semantics of knowledge in a way that enables expressive represen-

tations of complex relationships while maintaining the ability to efficiently make infer-

ences on existing knowledge. These capabilities have led to a widespread use of DLs

in representing ontologies in a variety of fields, prominent examples of which include

the SNOMED-CT clinical terminology [SPSW01] used internationally in healthcare,

the Gene Ontology [Con04] in bioinformatics which aims to represent genetic infor-

mation across a wide variety of species for use and the IEEE Standard Ontology for

Robotics and Automation [SPM+12].

The majority of reasoning services currently provided for DL ontologies are de-

ductive in nature. That is, they provide mechanisms by which implicit relationships

can be inferred from background knowledge. However, many tasks require a mecha-

nism for the generation of new knowledge that goes beyond what is already explicitly

or implicitly known. Such tasks include hypothesis generation, diagnostics and belief

expansion. To provide support for these problems, it is necessary to look to alternative

1In some domains the terms ontology and knowledge base differ in their consideration of what is
assumed to be present. For example, in some cases ontology may refer to an upper level terminology
consisting of universally quantified statements, without instance-level data, i.e., ground assertions. In
this thesis, the terms KB and ontology are used interchangeably.
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reasoning mechanisms such as abduction. The need for such a mechanism to address

corresponding problems in the domain of DL ontologies has been identified [EKS06].

This has led to the application of abduction in DLs to problems such as matchmaking

[CDNDS+05, DNDSD07], negative query answering [COSS13] and ontology repair

[LWKDI13, WKDL14].

Despite the longstanding interest in abductive reasoning in the wider field of AI,

abductive reasoning in DLs is a relatively new problem. Providing abductive reasoning

capability in the context of DL ontologies is the focus of this thesis.

1.2 Challenges

There exist many definitions of the abduction problem, each differing in the notion of

what constitutes an acceptable or “best” hypothesis. The decision as to how to formu-

late an appropriate abduction problem therefore depends upon a multitude of factors,

including the domain of application and the intended use case, each of which may re-

quire a different set of constraints to be applied to the hypotheses produced. There

is also the issue of complexity: abductive reasoning has been identified as a difficult

problem throughout its history as a topic of interest in AI. This also holds true for

logic-based abduction. In propositional logic, complexity studies have been conducted

that indicate that the task of abduction is more difficult, in terms of computational

cost, than deduction [EG95]. This difficulty naturally applies also to the domain of DL

ontologies, where further complexity analyses have been performed, focusing particu-

larly on lightweight DLs such as the EL family [Bie08]. In general, the complexity of

abductive reasoning is highly dependent on the constraints imposed upon the hypothe-

ses produced: certain preference relations between hypotheses increase the complexity

more significantly than others.

The difficulty of the problem also depends heavily on the size of the input. While

DLs are designed to be decidable, ontologies are often large. As a result, the difficulty

of abductive reasoning is amplified in the setting of DL ontologies, since the space
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of possible explanations can become intractably large, possibly infinite, as the size of

the background knowledge increases. This is problematic considering that efficiency

and tractability are core considerations when utilising DL ontologies. Therefore, any

useful abductive reasoning system developed for this domain should also attempt to

satisfy these requirements as far as possible. Further, in many cases, for a hypothesis

to be useful in this domain it must also be interpretable by a user, otherwise any insight

that could be derived from the explanations produced would be lost. As a result, dif-

ferent considerations are required when attempting to produce a solution to abductive

problems than in settings which assume that the background theory is small, or those

in which redundant explanations are less problematic. Narrowing the hypothesis space

to avoid computing a potentially infinite number of solutions, while simultaneously

prioritising useful hypotheses, is a difficult task.

Given this difficulty it becomes less surprising that, despite the clear and iden-

tified need for abductive reasoning capabilities in the area, there is a lack of prac-

tical systems for performing abductive reasoning in large ontologies. So far, sev-

eral works have presented methods for addressing different instantiations of the prob-

lems of TBox abduction [WKDL14, HBK14, DWM17] and ABox abduction [KES11,

HB12, DWS14, PH17]. Despite this, existing approaches tend to be purely theoretical

in nature [KES11], scale only to small, example ontologies [PH18, MPH18] or address

the problem in specific Horn fragments of DLs [DWS14].

Few existing works on abduction consider the problem of computing a hypothesis

that makes the least assumptions necessary to entail the given observation under the

available knowledge. This notion is quite natural considering the role of abduction as

providing initial, “likely” explanations, and has been of interest in several applications

including natural language interpretation [Sti91] and diagnostics [PH17]. In the DL

literature, the notion of a least assumptive hypothesis is referred to as semantic mini-

mality [KES11, HB12, HBK14]. However, despite this interest practical solutions to

computing semantically minimal hypotheses in DLs have yet to manifest. The lack of
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work on this form of abduction is likely due to the computational complexity of find-

ing these solutions: it is not possible to simply compute all possible hypotheses then

perform entailment checks between them. Such generate-and-test approaches would

be intractable in practice, particularly in more expressive DLs such as ALC where

the complexity of entailment checking is at least exponential in the size of the input.

In addition, existing works on semantically minimal abduction restrict the problem

to exclude disjunction in the hypotheses produced [KES11, HB12, HBK14]. This is

partly due to further increasing the difficulty, but is also due to an insufficiency in the

definition of semantic minimality when considering logics that permit disjunction. Ef-

fectively, the set of acceptable hypotheses can contain hypotheses that consist of the

expected disjuncts plus any arbitrary number of redundant disjuncts joined to the rest

of the hypothesis. Eliminating these redundancies is in itself a challenging problem,

but in the presence of large ontologies it can quickly become impossible to identify

the redundancies contained within a hypothesis, reducing the interpretability of the

solution returned.

A common feature of abduction problems in fields such as abductive logic pro-

gramming [KKT92] is the ability to specify a set of allowed symbols, called ab-

ducibles, which restricts hypotheses to a subset of the vocabulary used to express a

knowledge base. In contrast, in the DL setting many approaches do not enable the

specification of abducibles. However, abducibles are a useful way to constrain the

search space for hypotheses, while providing a user the ability to seek hypotheses that

are of interest based on a subset of the domain spanned by a given knowledge base.

From this, it is clear that further work is needed on abductive reasoning in DLs, par-

ticularly when computing least assumptive hypotheses. A promising avenue of inves-

tigation lies in the connection between abductive reasoning and another non-standard

reasoning task: forgetting. The application of forgetting to abductive reasoning has

been proposed in a general setting [DLS01], but has remained undeveloped.
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1.3 Contributions

In this thesis, the aim is to investigate the problem of abduction and develop practical

hypothesis generation capabilities for different forms of DL abduction. To this end,

the use of forgetting methods for abductive reasoning is investigated in the setting of

DL ontologies, and the connection between abductive reasoning and forgetting in this

domain is developed. To evaluate the effectiveness of these approaches in practice,

existing state-of-the-art forgetting tools in DLs were investigated and extended.

The choice to investigate forgetting for abduction is based on the connection be-

tween forgetting solutions, strongest necessary and weakest sufficient conditions. By

utilising forgetting together with contraposition, the weakest sufficient condition for

a given abduction problem can be obtained, which corresponds to a notion of seman-

tic minimality. Additionally, efficient forgetting approaches have been developed for

DLs in recent years, which handle expressive DL languages and perform well over

large, real world ontologies. Considering these factors, a forgetting based approach to

abductive reasoning appears promising.

Previous work has identified the connection between forgetting and abduction in

the context of small theories in classical logics [DLS01, GSS08], but has not addressed

the problem of redundant explanations. Since a hypothesis consisting of mostly redun-

dant explanations is of little use in practice, the notion of redundancy between dis-

junctive explanations must be addressed. Solving this problem is an essential step to

ensuring that the abduction approach yields hypotheses that are interpretable and use-

ful in practice in the setting of DL ontologies, since the number of redundancies in

the hypotheses produced tends to be very large in the presence of a large amount of

background knowledge. Similarly, the notion of semantic minimality as established so

far in the work on abduction in DLs does not address abduction settings that permit

disjunction in the hypothesis.

The main contributions of this thesis are as follows:

• A new abduction problem is proposed for the setting of DL ontologies, which
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extends the condition of semantic minimality to account for disjunction in the

hypothesis by viewing each disjunct as a single explanation for the observation

and considering independence between each of these explanations. Therefore,

in this perspective the aim is not to compute a single explanation for the given

observation, as is common in prior work on abduction, but is instead to compute

a hypothesis that is a representation of the entire space of possible explanations

for the observation.

• Methods for producing the desired hypotheses are presented, developing the con-

nection between forgetting and abduction for the problem of ABox abduction.

To this end, several state-of-the-art forgetting approaches for DLs are investi-

gated and compared for use in abduction systems. The problem of eliminat-

ing redundant explanations from the hypotheses is identified and solved via two

proposed approaches: a low-cost approximation-based approach and an exten-

sive approach that eliminates all redundancies by combining the approximation-

based approach with entailment checking using an external reasoner. The result

is the first practical approach for producing hypotheses that take the form of a

space of independent explanations for a given observation in the DL setting.

• Extensions to existing forgetting methods that are necessary for their application

to abductive reasoning are identified for both ABox and TBox abduction. These

are then addressed and solved by extending the forgetting calculus. By extending

the abduction problem definition and notions of redundancy, the resulting calcu-

lus is then utilised to solve the problem of Knowledge Base Abduction, which

generalises both ABox and TBox abduction to explain observations and produce

hypotheses that can contain both universally quantified and ground statements.

Knowledge Base abduction is the most general form of abduction identified for

DLs [EKS06]. The result is the first approach to address and completely solve

the Knowledge Base Abduction problem, which produces hypotheses as a set of

independent knowledge bases that explain the new observation.
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• The presented abduction approaches are all evaluated via a set of experiments

performed over several corpora consisting of real ontologies in active use, pri-

marily in the biomedical domain. The experimental evaluations presented in

this thesis constitute one of the few experimental evaluations of abduction in

the domain of DL ontologies. To the authors’ knowledge, this is the first ex-

tensive experimental evaluation of an abduction system for DL ontologies that

aims to compute semantically minimal, i.e., least assumptive hypotheses, partic-

ularly in the presence of disjunction. The results support the practicality of the

approaches presented in this thesis for all three of the forms of DL abduction

investigated and highlight the importance of eliminating redundant explanations

when utilising approaches of this kind.

• The use of the hypotheses produced by the abduction approaches in this work

is discussed with respect to several reasoning tasks in the area of DLs. Since

hypotheses as spaces of independent explanations have yet to be investigated in

DLs, promising directions for utilising the hypotheses produced by the abduc-

tion approaches in this thesis are proposed. Directions include the problems of

hypothesis refinement, inductive reasoning and ontology learning.

This work provides the first investigation into developing practical signature-based

approaches to ABox abduction, TBox abduction and Knowledge Base abduction in

DLs, resulting in the first solution that computes semantically minimal hypotheses in

the presence of disjunction.

1.4 Chapter Overview and Published Results

Chapter 2 covers the basic notation and definitions relevant to Description Logic on-

tologies, which is the setting of this work. Chapter 3 focuses on summarising relevant

background on abductive reasoning, with a focus on relevant definitions on abductive

reasoning in DLs and the task of forgetting, which are core to the abduction approaches

presented in this work.
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Chapter 4 focuses on the abduction problem that is identified and solved in this the-

sis. The key constraints applied to the abductive solutions are discussed and motivation

is provided for the choices made in tackling the defined problem. Therefore, Chapter

4 provides context and a generalised basis for the work in subsequent chapters, which

aim to solve the problem.

Chapter 5 presents an approach to performing ABox abduction in large description

logic ontologies expressed in the language of ALC. The focus is on developing a prac-

tical method for computing hypotheses as semantically minimal spaces of independent

explanations, including efficient methods for solving the problem of redundancy in

the hypothesis. Proofs of soundness and completeness and experimental evaluations

are provided. A short version of this material is published at the Thirty-Third AAAI

Conference on Artificial Intelligence (AAAI-19) [DS19a]. Preliminary ideas for this

approach were presented at the First Workshop on Second-Order Quantifier Elimina-

tion and Related Topics [DS17].

Chapter 6 investigates the ABox abduction problem in a more expressive setting,

with the aim of extending the space of solutions that can be reached for the ABox ab-

duction problem in ALC. Specifically, the focus is on investigating the integration of a

different form of forgetting to the abduction approach, namely semantic forgetting, and

comparing the hypotheses produced to those obtained using the approach in Chapter 5.

This investigation was first described in a paper that was published in the proceedings

of the International Symposium on Frontiers of Combining Systems (FroCoS 2019)

[DS19b].

Chapter 7 extends the scope of the abduction problem and the abduction approach

presented in Chapter 5. Extensions that must be made to both the proposed abduction

problem and the forgetting calculus used are identified and developed, with the aim of

solving a more expressive form of ABox abduction and the problem of TBox abduc-

tion. By lifting these results, this is then followed by a description of a system that

solves the Knowledge Base (KB) abduction problem, which generalises the problems

of ABox and TBox abduction. This includes the extended forgetting calculus, a new
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approach to applying the inferences in the calculus to avoid redundant explanations

and proofs of the main properties of the approach including soundness and complete-

ness. Discussions of and solutions for the problem of eliminating redundant expla-

nations in this more expressive setting are presented, together with an experimental

results, making use of a newly developed framework for performing experiments for

abductive reasoning in DLs. The work in Chapter 7, particularly Sections 7.3, 7.4 and

the Appendix A.1, was the result of a collaboration and originally presented in a pa-

per published at the Seventeenth International Conference on Principles of Knowledge

Representation and Reasoning (KR2020) [KDTS20]. New compared to [KDTS20] are

additional discussions and proposals for combining the filtering approaches in earlier

chapters with the approach in Chapter 7 in Section 7.5, while the results of the experi-

mental evaluation in Section 7.6 and the approach used to obtain them are new to this

thesis and hence different from those presented in the paper.

Chapter 8 provides perspectives and an initial investigation into the use of the

signature-based abduction approaches developed in this work for applications related

to inductive reasoning and learning in DL ontologies. The connection between KB

abduction and problems such as explanatory induction are discussed, and examples

are provided to motivate the use of the hypotheses produced by the methods in this

thesis in inductive problems. The problem of selecting an appropriate forgetting signa-

ture and hypothesis refinement are also discussed. The work in this chapter builds on

ideas presented at the Automated Reasoning Workshop [DS18] and work presented at

the Deduction Beyond Satisfiability seminar (19371) as part of the Dagstuhl Seminar

series [Del19].



Chapter 2

Basics of Description Logics

This thesis focuses primarily on abductive reasoning in a particular setting: large

knowledge bases, often referred to as ontologies, expressed in formal languages called

Description Logics (DLs). To provide context to this domain, this Chapter gives an

overview of the basics of the description logic languages considered in this work. For

the purpose of this chapter, some knowledge of first-order logic and set theory is as-

sumed. Description logics are decidable fragments of first-order logic that are widely

used to represent domain knowledge in the form of ontologies. This knowledge is rep-

resented by the use of three sets of symbols: concepts, roles and individuals. These

three can be described as follows: concepts group sets of individuals under a common

entity, roles are relations between two individuals, and the individuals themselves are

constants, i.e., a single instance. Recently, description logics have been used to provide

the basis of the current version of the Web Ontology Language, OWL 2, of the World

Wide Web Consortium (W3C). As a result, constructors in OWL are closely related

to the concept, role and individual symbols discussed above, where concept and role

symbols are instead referred to as classes and properties respectively. In this thesis,

the DL naming conventions will be used. The exact relationship between OWL and

DLs is not covered here, since the syntax and semantics of DLs is sufficient to discuss

the topics of this thesis; further details on OWL can be found in [HKP+09].

24



2.1. DESCRIPTION LOGICS 25

2.1 Description Logics

Description Logics provide expressive languages with which complex specialist knowl-

edge can be represented, while retaining the possibility of developing efficient reason-

ing procedures to derive further insight from the available knowledge. As such, one

of the most common formalisms used to express ontologies are DLs, which provide

the semantic underpinning behind the Web Ontology Language (OWL), a family of

languages which are widely used in creating ontologies for knowledge representation.

An ontology expressed in the OWL-DL sublanguage directly corresponds to a DL

knowledge base [Hor05], and the formalism underlying the successor to OWL, OWL2

[GHM+08], is the DL language SROIQ(D) [HKS06]. DL ontologies are split into

two main parts. The first is a TBox containing information regarding general enti-

ties called concepts and relations between these entities called roles. The second is

called the ABox, which contains assertions regarding specific instances of these con-

cepts, called individuals, and the relationships that exist between them. The primary

emphasis behind the use of DLs is practicality: common reasoning problems such as

satisfiability and subsumption are decidable and it is possible to develop systems that

solve these problems efficiently in practice [Hor05].

Given these benefits, DL ontologies are utilised in a wide variety of fields, where

they address the need to represent domain knowledge in a way that is machine-readable,

clear and consistent while providing the ability to reason about entities and relations

present within a given domain. Examples of areas in which ontologies have seen

widespread application include the Semantic Web, AI, computational-linguistics, bioin-

formatics, medical informatics and robotics. The benefit of using DL ontologies is par-

ticularly pronounced when there is a large amount of knowledge to be modelled and

the complexity of the given knowledge increases. For example, increased adoption of

the expressivity provided by DL languages underpinning OWL has been motivated for

the clinical terminology SNOMED-CT [SPSW01], which is used globally to model

clinical information essential to the provision of healthcare. Key motivations for this

adoption include improving the representations of clinical context, flexible handling of



26 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

definitions for entities and the ability to better represent complex relations between en-

tities in different parts of the terminology [RB08]. Other examples of ontologies in use

in industry include the Financial Industry Business Ontology [Ben13] used to describe

and give meaning to data in the financial sector and the IEEE Standard Ontology for

Robotics and Automation [SPM+12].

There are a variety of DL languages, each of which is defined according to its

expressivity. The name given to a DL language, for example ALC, refers to the op-

erators that can be used to construct concepts in the given language. Extensions of a

DL language are then named according to the additional operators added compared to

the original language, for example ALCI extends the language ALC with inverse role

symbols. Generally, as the expressivity of DLs increases, so does the computational

complexity of reasoning in the language.

An overview of description logic languages is provided in [BCM+03]. Here, the

focus is on first introducing the core DL relevant to this thesis: ALC. Following this,

extensions of ALC that are relevant to later chapters are also introduced. The specific

motivation behind the use of these extensions with respect to the abduction problem

are discussed in the relevant chapters.

2.2 The Description Logic ALC

The DL language ALC, or “Attributive Concept descriptions with Complements” [SSS91],

is a widely used DL language. It is considered to be a foundational example of an ex-

pressive DL. Here an overview of the syntax and semantics of ALC are defined.

Let NC, NR and NI be pairwise disjoint and countably infinite sets of concept, role

and individual symbols respectively. Concepts in ALC can take one of the forms in

the left-hand column in Table 2.1.

A concept is referred to as an atomic concept if it is a concept name, and complex

if it is constructed using a combination of ALC operators and atomic concepts. For
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ALC concepts ALC TBox axioms
Top concept: ⊤ Concept inclusion: C ⊑ D
Bottom concept: ⊥ Concept Equivalence: C ≡ D
Atomic concept: A
Negation: ¬C
Conjunction: C⊓D
Disjunction: C⊔D ALC ABox assertions
∃-role restriction: ∃r.C Concept assertion: C(a)
∀-role restriction: ∀r.C Role assertion: r(a,b)

Table 2.1: The forms taken by concepts and axioms in the description logic ALC,
where A denotes a concept name A ∈ NC, r denotes a role name r ∈ NR, a,b ∈ NI
denote individual names and C and D are arbitrary ALC concepts.

example, the concept Reptile is an atomic concept, consisting of a single concept sym-

bol, while the concept ∃hasFeature.ScalySkin is a complex concept constructed using

the operator ∃, the role symbol hasFeature and the concept symbol ScalySkin.

The semantics of ALC can be defined as follows. An interpretation I consists of

two components: a non-empty set ∆I called the domain and a function ·I which assigns

to every atomic concept symbol A ∈ NC a subset of the domain AI ⊆ ∆I , to every role

symbol r ∈ NR a binary relation rI ⊆ ∆I ×∆I and to every individual symbol a ∈ NI

an element of the domain aI ∈ ∆I . The semantics of the general ALC concepts in

Table 2.1 is then defined by extending the interpretation function ·I using the inductive

definitions shown in Table 2.2.

ALC concept Interpretation
⊥ /0
⊤ ∆I

¬C ∆I \CI

C⊓D CI ∩DI

C⊔D CI ∪DI

∃r.C {x ∈ ∆I |∃y.(x,y) ∈ rI ∧ y ∈CI}
∀r.C {x ∈ ∆I |∀y.(x,y) ∈ rI → y ∈CI}

Table 2.2: Interpretation of ALC concepts where C, D are arbitrary concepts, r is a role
symbol, ∆I is the domain and CI denotes the application of the interpretation function
·I to the concept C.
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An ALC ontology captures knowledge about a domain that can be represented us-

ing the ALC concepts in Table 2.1 as well as the set of individuals Ni. The knowledge

described by an ontology is split into two parts: the TBox and the ABox, containing

axioms in the right-hand side of Table 2.1. The TBox describes terminological knowl-

edge regarding general entities, i.e., concepts. It consists of statements of two forms:

concept inclusion axioms of the form C ⊑ D and concept equivalence axioms of the

form C ≡ D, where C and D are arbitrary ALC concepts of one of the forms given

above. An axiom of the form C ≡ D can also be represented by two inclusion axioms,

C ⊑ D and D ⊑C. Meanwhile, the ABox describes assertional knowledge about spe-

cific instances of concepts, i.e., individuals. It contains concept assertions of the form

C(a) and role assertions of the form r(a,b). For simplicity, in this thesis the term ABox

axioms will be used interchangeably to refer to ABox assertions. To illustrate, consider

the following simple example:

Example 2.2.1. Consider the following TBox and ABox, both expressed in ALC:

T = {Reptile ⊑ Animal,

Mammal ⊑ Animal,

Reptile⊓Mammal ⊑⊥,

ScalySkin ⊑ BodyFeature,

⊤⊑ ∀hasBodyFeature.BodyFeature,

Reptile ⊑ ∃hasBodyFeature.ScalySkin,

Hatchling ≡ ∃hasAgeGroup.In f ant ⊓Reptile}

A= {∃hasBodyFeature.ScalySkin(rep1),

isParentO f (rep1,rep2)}

Together, T and A form an ALC ontology O, where O = T ∪A.

In the above example, the axiom Reptile ⊑ Animal is a concept inclusion, while

Hatchling ≡ ∃hasAgeGroup.In f ant ⊓Reptile is a concept equivalence. The axiom
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Reptile⊓Mammal ⊑⊥ is a specific type of concept inclusion, often referred to as a

disjointness axiom, specifying that no domain element can belong to both Reptile and

Mammal simultaneously. The axiom ⊤ ⊑ ∀hasBodyFeature.BodyFeature is another

type of concept inclusion, known as a range axiom, specifying that all successors of

the hasBodyFeature relation must be instances of the concept BodyFeature. The fi-

nal two axioms are examples of typical ABox axioms: a concept and role assertion

respectively, where rep1 and rep2 are individuals.

An ALC ontology is therefore the union of a set of TBox axioms (TBox) T and

a set of ABox axioms (ABox) A, i.e., O = T ∪A. For the remainder of this thesis,

the notation T ,A will be used instead of T ∪A, and O,β instead of O∪β where β

is an axiom. This will be used for any arbitrary combination of sets of DL axioms, for

example in the abduction problem the notation O,H will be used to refer to the union

O∪H of a background ontology O and a set of DL axioms as a hypothesis H. In cases

where the second argument takes the form of a single axiom the same notation will be

used, where the second argument is interpreted as a singleton set. For example, for

O,H it is often the case that the hypothesis H will consist of a single axiom.

In the literature, the term “ontology” is often used to refer directly to the termi-

nology defined by a TBox, i.e., the tuple O = ⟨T ⟩. Meanwhile, the term “knowl-

edge base” is used to refer to the combination of a terminological component and a

data or assertional component, i.e., the tuple containing both a TBox and an ABox

K = ⟨T ,A⟩. However, in this thesis the terms “ontology” and “knowledge base” are

used interchangeably unless specified otherwise (see Chapter 7).

The semantics of TBox and ABox axioms is defined as follows. For a given axiom

α and an interpretation I, the notation I |= α means that α is true in I. A concept

inclusion C ⊑ D, where C and D are arbitrary ALC concepts, is true under an inter-

pretation I iff CI ⊆ DI . Similarly, a concept equivalence C ≡ D is true under an

interpretation I iff CI = DI . An interpretation I is referred to as a model of a TBox T
iff every axiom contained in T is true under I. If I is a model of T then the notation

I |= T is used. For ABox axioms, a concept assertion C(a) is true under I iff aI ∈CI



30 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

and a role assertion r(a,b) is true under I iff (aI ,bI) ∈ rI . The interpretation I is a

model for an ABox A iff every axiom inA is true under I, and as before the notation

I |= A is used in this case. For an ontology O = ⟨T ,A⟩, if I is a model of both the

TBox T and ABox A, then it is a model of the ontology, i.e., I |=O.

A given ontology O is referred to as inconsistent if there is no interpretation I that

is a model of O. If an axiom α is true in every model of an ontology O, then the axiom

α is said to be entailed by O, written as O |= α . If every axiom of an ontology O is

entailed by a second ontology O′, then O is said to be entailed by O′, written O′ |=O.

A given class C is said to be unsatisfiable under an ontology O, i.e., C ≡⊥, if there

is no model of O for which the interpretation of C is non-empty.

In this thesis, the term signature will be used to refer to a set of concept and role

symbols, and is denoted by sig(X), where X can be any one of a DL concept, a DL ax-

iom, a TBox, an ABox or an ontology (knowledge base). For example, given ontology

O, the signature sig(O) is the set of concept and role symbols occurring in O.

2.3 Extensions to ALC

Here the extensions to ALC that are relevant to this thesis are defined. These include

nominals, inverse roles, disjunctive assertions (∨) and fixpoints (ν ,µ). In each case,

the semantics of the extended language is obtained by extending the interpretation

function ·I defined for ALC in the previous section.

2.3.1 Nominals

When describing ALC, it is stated that individual symbols can only occur in the ABox

of an ontology in either concept assertions C(a) or role assertions r(a, b). However,

in some cases it can be useful to include individuals in the TBox. For this purpose,

nominals are utilised, indicated by O in the name of the DL language, e.g. ALCO. A

nominal is a concept that has only one instance, for example the nominal {a} denotes

the concept with the sole instance being the individual a.
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For example, the following ABox axiom:

∃hasChild.⊤(mary)

states that the individual mary has at least one child. Suppose it is also known that

mary has two children, jim and james, where jim ̸= james. This information could

be added to the ABox in the form of two role assertions hasChild(mary, jim) and

hasChild(mary, james). However, suppose it is specifically known that mary only

has jim and james as children and a modeller would like to express this information

directly. Nominals provide several options for this, such as:

∀hasChild.({james}⊔{jim})(mary)

Alternatively, the enumeration of the children of Mary can be constructed as follows:

ChildrenOfMary ≡ {james}⊔{jim}

where for an individual a, the corresponding nominal is denoted as {a}. Thus, nom-

inals are useful in expressing the enumeration of a set of individuals when combined

with the disjunction operator ⊔ [KSH12]. It is also worth noting that ABox assertions

can be represented using nominals: a concept assertion C(a) can be equivalently rep-

resented as {a} ⊑C while a role assertion r(a,b) can be represented as {a} ⊑ ∃r.{b}.

This highlights the absence of a mathematical significance behind the separation of the

TBox and the ABox, which exists primarily for modelling purposes [KSH12].

For the purposes of this thesis, it is also worth noting that certain forms of ax-

ioms that would normally not be available in the considered DLs can be equivalently

represented using nominals. In most formalisms ABoxes do not permit negated role

assertions of the form ¬r(a,b), with a few exceptions [ABHM03, LLMW06] and in

the expressive DL SROIQ [HKS06]. However, for some approaches it can be nec-

essary to be able to equivalently represent such a negated assertion, without the full
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machinery available in the most expressive DLs. For the work in this thesis, partic-

ularly Chapter 6, nominals are used to equivalently represent negated role assertions

when required, where the assertion ¬r(a,b) can be represented as {a} ⊑ ∀r.¬{b}.

The extension of ALC with nominals is denoted by ALCO. The semantics of

ALCO can be obtained from ALC by extending the interpretation function ·I as fol-

lows: let NO be the set of nominal symbols. For each a ∈ NO, the function ·I assigns

the singleton set {aI} ⊆ ∆I .

2.3.2 Inverse Roles

Inverse roles enable the representation of a symmetrical relationship between two bi-

nary roles. They provide a means by which entities can be described by the sum of

their parts, and simultaneously parts can be described by the entities to which they

belong [HS99]. For example, given the following axioms:

RotorSystem ⊑ ∃isPartOf.Helicopter

Helicopter ⊑ FlyingVehicle⊓∃hasPart.RotorSystem

without inverse roles, it is not possible to model the fact that the roles isPartO f and

hasPart are directly related: they are inverse relations. This can be specified as follows:

isPartOf ≡ hasPart−

where r− indicates the inverse of a role r. The usefulness of this notion is also evident

when considering assertional information. For example, if it is known that two indi-

viduals a and b are related under the hasParent relation, i.e., hasParent(a,b) then it

should not be the case that ∃hasChild.⊥ (b), i.e., b has no child, since hasChild is the

inverse of hasParent. To capture this notion, it is sufficient to identify that hasChild

and hasParent are inverses to one another.

The semantics of ALC extended with inverse roles can be obtained by extending
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the interpretation function as follows: (r−)I = {(y,x) ∈ ∆I ×∆I |(x,y) ∈ r−}.

2.3.3 Universal Role

In some cases, it is useful to extend the set of role symbols NR to include the top or

universal role, which is denoted by ∇. This notion is analogous to the notion of the top

concept ⊤, where the universal role ∇ relates all pairs of individuals.

The semantics of ALC extended with the universal role (∇) can be obtained by

extending the interpretation function ·I in Table 2.2 as follows:

∇
I = ∆

I ×∆
I .

The use cases for the universal role in the context of this thesis are discussed alongside

the proposed abduction methods.

2.4 Additional Language Features

2.4.1 Disjunctive Axioms

In most cases, the ABox of a DL ontology does not permit disjunctions over multiple

individuals, permitting only disjunctions over a single individual, i.e., ABox axioms

of the form C ⊔D(a). In applications requiring explicit representation of partial in-

formation [ABHM03], this is overly restrictive. Abduction is one of these scenarios,

since the hypothesis produced as a result of abduction is not guaranteed to be true, it

is only a possible explanation for the given observation. Often, there exists not one

possible explanation, but a set of competing explanations that could be true given the

information available. Representing the entire set of explanations gives rise to the abil-

ity to perform further investigation to confirm or deny the truth of a given explanation,

arriving at a more specific hypothesis when more information has been obtained.

Therefore, it is useful to utilise the notion of a disjunctive ABox assertions [KS15b].
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A disjunctive assertion is an ABox axiom of the following form:

C1(a1)∨ ...∨Cn(an)

where each Ci is a concept in the language and each ai is an individual. Cases involving

disjunctions over a single individual, such as C(a)∨D(a), can also be expressed as a

formula in pure ALC making use of the ALC disjunction operator ⊔, e.g., (C⊔D)(a).

An ontology expressed in ALC extended with disjunctive assertions is an ontology

containing at least one ABox axiom of the above form, where each Ci is an arbitrary

ALC concept. The semantics of disjunctive assertions is as follows:

O |=C1(a1)∨ ...∨Cn(an) iff O |=Ci(ai)

for some i ∈ {1, ...,n}, where O is an ontology.

The notion of disjunctive assertions will also be lifted to include disjunctions of

ABoxes, i.e., disjunctions of the form α1 ∨ ...∨αn where each αi for 1 ≤ i ≤ n is a

conjunction of ALC ABox axioms. In Chapter 7, disjunctive TBoxes and hence dis-

junctions of DL knowledge bases are introduced. Since this extension is driven by

the proposed abduction problem and approach, it is discussed in the aforementioned

chapter. In each case, the notation (∨) will be used to denote the extension of a DL

language with disjunctive axioms, for example ALC(∨) which extends ALC with dis-

junctive axioms. The extent of the disjunction, i.e., disjunctions of ABox axioms,

TBox axioms or both, will be stated for each of the proposed problems and solutions.

2.4.2 Fixpoints

In some cases, cycles may occur in ontologies, resulting in concepts that cannot be

finitely represented without additional constructs. Fixpoint operators provide a way to

extend DL languages to enable finite representations of these cycles [Sch94, CDGL99].

The symbol X ∈ Nv is used to represent a concept variable, where Nv is the set of

concept variables and is disjoint from the sets NC,NR,NI and NO. Fixpoints are then
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concepts of the form:

µX .C[X ] or νX .C[X ]

which denote least and greatest fixpoints respectively [CDGL99]. Concepts of the

form C[X ] are viewed as functions, where C[C′] takes the concept C′ as an argument

and returns the result of replacing all occurrences of X in C with C′. Here, the concept

C[X ] represents a concept in which the concept variable X occurs only positively, i.e.,

under an even number of negations [Koo15]. In the above, least and greatest fixpoint

concepts X is said to be bound, where µ and ν are treated as quantifiers [CDGL99]. If

all variables in C[X ] are bound, then C is closed. Otherwise, C[X ] is said to be open.

In this work, it is required that all C occurring in the axioms of an ontology are closed.

Under the Knaster-Tarski theorem [T+55], all monotone functions have a least and

greatest fixpoint [Sch94]. If a concept C[X ] contains X only positively, then C[X ]

is monotonic with respect to the inclusion relation ⊑. Since ⊑ has a minimal and

maximal element in the top ⊤ and bottom ⊥ concepts respectively, this means that for

each concept C[X ] there always exists a least and greatest fixpoint [Koo15].

The semantics of fixpoints in DLs can be defined as follows [CDGL99]. Let I be

an interpretation and ρ be a valuation on I which maps concept variables X to subsets

of the domain ∆I . The function ·Iρ is an extension function which maps concepts to

subsets of the domain ∆I and nary relations to subsets of (∆I)n. The semantics of

fixpoint operators can then be provided as follows [CDGL99]:

(νX .C)I =
⋃
{E ⊆ ∆

I |E ⊆CI
ρ[X/E ]}

(µX .C)I =
⋂
{E ⊆ ∆

I |CI
ρ[X/E ]⊑E}

where ρ[X/E ] is a valuation function identical to ρ aside from the following equality:

ρ[X/E ](X) = E . If C is a closed concept, as is assumed in this setting, then the exten-

sion is independent of the valuation [CDGL99]. Thus, the interpretation function ·I

provided in Table 2.2 can be extended by setting CI =CI
ρ for each concept C.
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The extension of ALC with greatest (least) fixpoints is denoted by ALCν (ALCµ).

As greatest and least fixpoints are dual to each other [GSS08]:

µX .C[X ]≡ ¬νX .¬C[X/¬X ]

νX .C[X ]≡ ¬µX .¬C[X/¬X ]

meaning that the negation of a greatest fixpoint results in a least fixpoint.

2.5 DL Languages Used in this Work

The DL languages used in this thesis are summarised in Table 2.3. The languages are

split into “input”, referring to the language used for the input provided to the proposed

abduction methods, and “output”, which refers to the language used for the result (hy-

pothesis) in the most expressive cases.

The thesis focuses on abduction problems for which both the background ontology

O and the observation ψ are expressed in ALC. Therefore, the input to the abduction

methods is in ALC throughout. The DL languages used to represent the results of in-

termediate steps, for example contraposition to obtain O,¬ψ , are discussed alongside

the proposed abduction methods. Chapter 4 defines the abduction problem for ALC,

where the hypothesis is a disjunction of explanations, necessitating the use of ALC(∨)
for the output. Subsequent chapters present abduction methods that produce more ex-

pressive solutions, where the output language depends upon the characteristics of the

proposed algorithm, which differs in Chapters 5, 6 and 7. The rationale behind these

output languages is motivated and discussed in the relevant chapters.

As a summary, the output languages used to represent hypotheses produced by the

methods presented in this work are defined as follows. Concepts in the DL ALC can

be constructed according to the following syntax rules:

C ::= A | ¬C | C⊔C | ∃r.C
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Chapter Input Language Output Language
4 ALC ALC(∨)∗
5 ALC ALCµ(∨)∗
6 ALC ALCOI(∇)
7 ALC ALCOIµ(∨)∗∗

Table 2.3: A summary of the description logic languages used throughout this the-
sis. ∗ denotes the use of disjunctive ABoxes, while ∗∗ denotes the use of disjunctive
knowledge bases (i.e., disjunctions of ontologies).

where A ∈ NC is an atomic concept, C is an arbitrary ALC concept and r ∈ Nr is a

role. The DL ALCOI extends the set Nr to include inverse roles r− and permits

additional concepts of the form {a} where {a} ∈ No is the nominal corresponding to

the individual a ∈ NI . The DL ALCOI(∇) then extends the set of role symbols Nr

further to include the universal role ∇.

The DL ALCµ (ALCOIµ) extends ALC (ALCOI) with least fixpoint concepts

of the form µX .C, where X ∈ Nv is a concept variable. For least fixpoint concepts

µX .C, X occurs only positively, i.e., under an even number of negations (¬).

The DL ALC(∨) (ALCµ(∨)) extends ALC (ALCµ) with disjunctive ABox ax-

ioms of the form C1(a1)∨ ...∨Cn(an) where each Ci ∈ NC for 1 ≤ i ≤ n is an ALC
(ALCµ) concept and each ai ∈ NI is an individual.

In Chapter 7, the DL ALCOIµ(∨), extends this notion further to include disjunc-

tions of both TBox and ABox axioms, i.e., disjunctions of DL ontologies. The term

boolean knowledge base (KB) will be used to refer to this extension, which can be

constructed as follows:

C ::= β | ¬K | K∧K | K∨K

where β is an ALCOIµ axiom and K is a KB. Each KB K is defined as the conjunction

of the axioms contained within it. This then extends the DL setting to include negation

and disjunction of ontologies, which will be motivated in Chapter 7. The semantics

for a given KB depends upon the language in which it is expressed. The semantics of

the DLs considered are the same as defined in previous sections. The interpretation
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I of KBs can be extended from these semantics as follows. For a given KB K, an

interpretation I which satisfies K, denoted as I |= K, is referred to as a model of K.

For the constructions of K above: I |= ¬K if I ̸|=K, I |=K1∧K2 if both I |=K1 and

I |= K2, and finally I |= K1 ∨K2 if either I |= K1 or I |= K2. The notation Ki |= K j

means that every model of Ki is also a model of the KB K j.



Chapter 3

Background on Abduction and

Forgetting

This Chapter provides context behind abductive reasoning, since this is the core prob-

lem addressed in this thesis with focus on abduction in the setting of description logic

ontologies. However, there exists a range of significant work on abduction across sev-

eral subfields of Artificial Intelligence. Therefore, a brief introduction to the philosoph-

ical background of abductive reasoning is given, followed by an overview of studies on

abduction in Artificial Intelligence, including relevant work in the area of Abductive

Logic Programming (ALP). Work on abductive reasoning in DL ontologies is subse-

quently discussed with respect to the main problems that have been identified in this

setting, common constraints applied to the hypotheses and approaches that have been

developed to solving various instantiations of the abduction problem. Work in clas-

sical logics on the use of second-order quantifier elimination for abductive reasoning

problems is then discussed. This is of particular relevance to this thesis, since the

approaches here are based on forgetting which is closely related to the problem of

second-order quantifier elimination. Details on the two forgetting approaches relevant

to this thesis are then provided, focusing on the key properties that are needed to pro-

vide context and understanding to the abduction approaches proposed in this work.

Finally, the connection between forgetting and abductive reasoning is discussed.

39
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3.1 Abductive Reasoning

There exist multiple perspectives on the form taken by and role of abductive reasoning,

particularly with respect to its distinction from inductive reasoning. Two ways of dis-

tinguishing and defining the interactions between deduction, induction and abduction

were given by Peirce. The first is referred to as his syllogistic theory, where syllogisms

are arguments usually represented in three lines: two propositions from which a con-

clusion is drawn deductively. This framing of abduction used syllogisms to illustate

the difference between each form of reasoning, as shown in Figure 3.1 via an example

of each case [Pei78].

From this, it can be seen that the three forms of reasoning differ in both input and

output. Deduction takes a general rule and a specific case, both known to be true,

and derives a consequence that must be true as a result. Induction, on the other hand,

takes a specific case and a result, both known to be true, and generalises to a rule

that probably covers the entire population from which the case was drawn. Finally,

abductive reasoning takes a rule and a result, both known to be true, and provides a

possible explanation as to why the specific result holds given the prior rule.

The second perspective taken by Peirce resulted in his inferential theory [Pei60,

FK00a]. Rather than specifically considering syllogistic arguments, Peirce referred to

Deduction The beans in this bag are white (Rule)
These beans were in the bag (Case)
Conclusion: These beans are white (Result)

Induction These beans are selected from this bag (Case)
These beans are white (Result)
Conclusion: All the beans from this bag are white (Rule)

Abduction All the beans from this bag are white (Rule)
These beans are white (Result)
Conclusion: These beans are from this bag (Case)

Figure 3.1: The distinction between deduction, induction and abduction in Peirce’s
syllogistic theory.
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the interaction between the three forms of reasoning in terms of how they are used

to infer new knowledge based on prior knowledge and observations. Here, the three

forms of reasoning are seen in terms of a separate stage in this process. Abduction is

the process of hypothesis generation: when something new is observed, abduction is

used to produce an initial hypothesis to explain the observation. In this way, abduction

can be viewed as a “flash of insight” [Pei60]. Following this, deduction is the process

of deriving consequences that would hold if the initial hypothesis was assumed to be

true, under existing knowledge. Induction is then the process of hypothesis evaluation,

or hypothesis refinement, akin to the process of performing an experiment to confirm

or deny the initial explanation. These steps then form a loop which gradually accounts

for new knowledge by generating, testing and refining new hypotheses. This explicitly

separates the process of hypothesis generation from hypothesis evaluation, which are

otherwise often assumed to be part of the same process.

3.2 Abduction in Artificial Intelligence

Abductive reasoning has been a recurring topic of interest in various subfields of Ar-

tificial Intelligence (AI), having long been recognised as an important mechanism for

reasoning and problem solving [Pop73]. The role filled by abductive reasoning, i.e., ac-

counting for new observations by producing an explanation that leverages prior knowl-

edge, has led to a wide range of work on applying abduction to key problems in AI

such as scientific hypothesis generation [KWJ+04, Ray07], diagnostics [SMvS+18]

and interpretation of natural language [Sti91, HSAM93].

Abduction has also been recognised as a hard problem in AI. In terms of compu-

tational cost, abductive reasoning is difficult in comparison to many of the reasoning

tasks commonly addressed via deductive approaches [EG95], requiring the use of a

range of constraints designed to restrict the size of the search space for hypotheses.

Nevertheless, abduction has been studied extensively and applied successfully in sev-

eral subfields of AI. Among these is the area of logic programming [DK02], where the
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explicit separation between induction and abduction has proven to be an interesting

and useful perspective. In fields such as inductive [MDR94] and abductive [KKT92]

logic programming, there exists a variety of work on integrating abduction and induc-

tion leading to the development of systems that utilise abductive reasoning as a core

component [MB00, RBR03, TNCKM06, Ray09, IFKN09, CRL10].

Abductive reasoning has also been studied from a variety of perspectives in clas-

sical logics. Abduction can be linked to the generation of prime implicates, which

has been studied recently in the setting of first-order logic [EPT17, EPS18]. The no-

tion of weakest sufficient conditions [Lin01] is also closely related to the notion of a

least assumptive abductive hypothesis. Techniques for performing second-order quan-

tifier elimination have been proposed as a promising direction for computing weakest

sufficient conditions for the purpose of abductive reasoning [DLS01, GSS08, Wer13].

Second-order quantifier elimination techniques are related to the task of forgetting,

which is discussed further in Section 3.4.

The perspective of integrating abductive and inductive reasoning in a cycle of ex-

tending and refining existing knowledge has garnered significant interest [FK00b].

This is exemplified by the fields of abductive and inductive reasoning as discussed

above, where the importance of abduction continues to be emphasised as an important

direction for future work [MDRP+12]. The integration of these two forms of reason-

ing has also been investigated in other areas of AI such as machine learning [Moo00],

statistical relational AI [RM10, BHD+11] and natural language processing [RNM05].

The integration of induction and abductive reasoning has continued to be identified as

a promising direction for recent approaches to statistical learning [DXYZ19, Zho19].

3.3 Abduction in Description Logics

The need for abductive reasoning in DL ontologies was motivated by [EKS06], who

outlined a number of application scenarios and forms for the abduction problems in
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this context. The need for abductive reasoning from an ontology engineering perspec-

tive, particularly in the tasks of ontology alignment and quality assurance, was also

advocated by [BMH08].

In the setting of DL ontologies, it is common to separate the basic abduction prob-

lem into several subproblems. The main forms of abduction that have been identified

include concept abduction, ABox abduction, TBox abduction and Knowledge-Base

(KB) abduction. One of the primary differences between each of these abduction prob-

lems is the forms taken by the observations and hypotheses.

Concept abduction focuses on the task of finding all subconcepts for a given con-

cept, thereby extending the range of subsumptions in a given ontology [CDNDS+03,

CDNDS+05]. The concept abduction problem can be defined as follows [CDNDS+05]:

Definition 3.3.1. Let L be a DL language, S and D be concepts in L and O be a set

of axioms in L, where both S and D are satisfiable in O. The Concept Abduction

Problem is the task of finding a concept H ∈ L such that O |= (S⊓H)⊑ D and S⊓H

is satisfiable in O. In this case, H is a hypothesis about S according to D and O.

Concept abduction has been applied to problems such as semantic matchmaking in

electronic marketplaces [CDNDS+03] and image understanding [AHB13]. In contrast

to the other forms of abduction discussed, which focus on observations and hypotheses

as sets of DL statements, concept abduction focuses on observations and hypotheses

in the form of individual DL concepts. As a result, the task of concept abduction

is inherently different to the forms of abduction most relevant to this thesis, and the

methods for concept abduction cannot be directly extended to handle more challenging

abduction problems including ABox, TBox and KB abduction.

Additionally, concept abduction has also been considered as part of a framework

of belief revision for ontologies, where the revision of an ontology with a new piece of

information is split into two steps: contraction and expansion [CDNDS+05, RSS20].

Given a new piece of knowledge, contraction first modifies the original ontology to

ensure that the resulting ontology is consistent with the new information. Following
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this, an expansion step is applied to add the new information to the modified ontology.

In the setting of this work, the aim is instead to generate a hypothesis that is consistent

with the original ontology, which will be reflected in subsequent definitions of the

abduction problem. As such, contraction is not considered, while the abduction process

provides a candidate hypothesis to consistently expand the original ontology.

A basic definition for the class of abduction problems most relevant to this thesis

is as follows:

Definition 3.3.2. Abduction in DLs. Let O be a knowledge base and ψ be a set of

axioms, both expressed in a DL language L. If O,ψ ̸|=⊥ and O ̸|= ψ , then the tuple

⟨O,ψ⟩ is an instance of the basic abduction problem. The aim of the basic abduction

problem is to compute a hypothesis H as a set of axioms, expressed in a DL language

L′, satisfying the following constraints:

(i) Consistency: H is said to be consistent if O,H ̸|=⊥

(ii) Explanation: H is said to be an explanation if O,H |= ψ

The two constraints considered in the basic abduction problem, consistency and ex-

planation, are perhaps the most common constraints applied to abductive hypotheses.

Consistency captures the notion of not contradicting what is already known. Mean-

while, when added to the given background knowledge, an explanatory hypothesis

should lead to the entailment of the given observation.

Two subtypes of this general problem can be defined as follows:

Definition 3.3.3. ABox Abduction. Consider the abduction problem ⟨O,ψ⟩ from Def-

inition 3.3.2. For the ABox abduction problem, ψ takes the form of a set of ABox

axioms expressed in a DL language L. The solution to the ABox abduction problem is

a hypothesis H as a set of ABox axioms expressed in a DL language L′ satisfying the

constraints of (i) consistency and (ii) explanation.

Definition 3.3.4. TBox Abduction. Consider the abduction problem ⟨O,ψ⟩ from Def-

inition 3.3.2. For the TBox abduction problem, ψ takes the form of a set of TBox
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axioms expressed in a DL language L. The solution to the TBox abduction problem is

a hypothesis H as a set of TBox axioms expressed in a DL language L′ satisfying the

constraints of (i) consistency and (ii) explanation.

It is worth noting that in Definitions 3.3.2–3.3.4, no specific relation is imposed

between the input language L, used to express O and ψ , and the language used to

express the solutions L′. In many cases for abductive reasoning, the input language L
and the output language L′ are the same i.e., L= L′. In other cases, it may be that the

hypotheses are restricted in some way, so that the output language L′ is less expressive

than the input language L. An example of this case is in Klarman et al [KES11],

which concerns an ABox abduction problem for which the background ontology O
may be expressed in the DL language ALC, while the hypotheses (and observations)

are restricted to a less expressive language that excludes disjunction and uses negation

only over concepts (ALE).

Another possibility is that it may be necessary to utilise a more expressive language

for the solutions compared to the input, depending on the requirements placed on and

form taken by abductive hypotheses. This is particularly relevant in the context of

this thesis, where the proposed abduction problem and the methods for solving this

problem assume that the hypothesis H may be expressed in an extended DL language

compared to the input. A core element of the work in this thesis is that the H produced

as a solution to the abduction problem takes the form of a set of possible, alternative

explanations for the observation ψ . This leads to the main language extension that will

feature in this work: disjunctive axioms, which are used to represent this notion. This

is discussed in Chapter 4, while other language extensions are discussed in subsequent

chapters alongside the proposed abduction methods.

It is worth noting that, since the constraints are based upon entailment relations

between O, H and ψ , the language of the constraints is the same as the most expressive

language used to express these (be it L or L′).

As evident from Definitions 3.3.3 and 3.3.4, the ABox and TBox abduction prob-

lems differ in the form taken by the observations and hypotheses. This delineation
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between TBox and ABox abduction reflects the treatment of universally and existen-

tially quantified axioms in the DL setting in general: ontologies are usually split into

a terminology (TBox) about general entities and a collection of assertions or data re-

garding specific individuals (ABox). The majority of previous work on abduction in

DLs focuses on tackling an instance of either the TBox or ABox abduction problem,

rather than both simultaneously. The notion captured by ABox abduction corresponds

more closely with the notion of abduction most commonly adopted in the fields of ALP

[KKT92] and ILP [MDR94], where abduction is often separated from induction in the

fact that it concerns ground explanations for ground observations without providing a

generalising effect. TBox abduction, on the other hand, lifts the abduction problem to

universally quantified statements, where neither the observations nor the hypotheses

are ground. However, TBox abduction still focuses on producing an explanation for

the given observation rather than on generalisation; the fact that the abductive hypothe-

ses are TBox statements is a consequence of the need to provide an explanation for a

TBox observation rather than the result of a process of generalisation.

A third, but previously unsolved, task is knowledge-base (KB) abduction. For KB

abduction, the restrictions on the observations and hypotheses are lifted: these can

contain a mixture of TBox or ABox axioms and therefore both the observation and

hypothesis can be viewed as ontologies. In this way, KB abduction can be viewed as a

generalisation of both the ABox and TBox abduction problems [EKS06] as in the basic

abduction problem of Definition 3.3.2. For example, as pointed out in Elsenbroich,

Kutz and Sattler [EKS06], if the given observation is a set of ABox assertions, then

the hypothesis produced as a solution to the ABox abduction problem could be viewed

as a solution to the KB abduction problem where the observation does not contain any

TBox axioms. The same perspective can be taken on the relation between the TBox

and KB abduction problems.

For each of the three general abduction problems defined above, the precondi-

tions on the observation ψ constrain the focus to abductive problems. For example,

if O |= ψ , then the background knowledge in O already explains the observation ψ .
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Thus, the problem of “explaining” ψ would instead be a deductive one, i.e., searching

for an existing proof of ψ from the axioms in O, which falls under problems such as

computing justifications for existing entailments [KPHS07]. Additionally, the back-

ground knowledge base O must itself be consistent, and the observation ψ must be

consistent with O. Thus, the separate problem of abductive reasoning under inconsis-

tency [DWS15] is not considered in this work.

So far, the basic abduction problem definitions have considered two constraints:

consistency and explanation. However, the types of hypotheses returned as solutions

to a given abduction problem vary widely, being defined in each case by the set of

abductive constraints that they must satisfy. There are a variety of constraints in the

abduction literature, and though two given problems may both be identified as a form

of abduction, it is not necessarily the case that the problems being solved are similar:

particularly if the abductive constraints used in both cases are significantly different.

In general, the purpose of abductive constraints is to limit the size of the search space

of hypotheses for practical purposes, since this space can be intractably large in many

cases. However, this restriction should be made while simultaneously ensuring that

the remaining, valid hypotheses are those that are most useful for a particular purpose.

This makes the task of identifying and selecting constraints a challenging one.

Consistency and explanation are commonly used constraints throughout work on

abduction in AI, including in the setting of DL ontologies. In some cases, an additional

restriction to the notion of explanation is also specified. This constraint, referred to

as relevance [EKS06, KES11], ensures that the hypothesis does not directly entail

the observation, i.e. H |= ψ , without the use of the background knowledge in O.

This avoids producing somewhat trivial explanations, for example the case that the

hypothesis H is simply the same as the given observation ψ .

Solutions to the abduction problem can also be constrained so that the hypotheses

can only be expressed using a set of allowed symbols, referred to as abducibles. In

abductive logic programming this constraint is used widely [KKT92] and has more

recently been investigated as part of implicate generation approaches in the setting of
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first-order logic [EPT17, EPS18]. In contrast, abducibles are less widely investigated

in the setting in DLs. In fact, most abduction approaches in DLs do not provide a

way to specify abducibles as part of the abduction problem, both in the cases of ABox

abduction [KES11, HB12, PH17, PH18] and TBox abduction [WKDL14, DWM17].

Nonetheless, abducibles are useful in restricting the set of solutions to a specific subset

of the domain knowledge contained in a given background ontology. This can be

useful in avoiding uninteresting explanations in a number of application scenarios. For

example, in diagnostics it may be useful to restrict the hypotheses produced to those

that explain the observed fault, such as a disease or a malfunction in a given system,

by making use of symbols specifically associated with causes.

The basic abduction problems specified in Definitions 3.3.2–3.3.4 above can be

extended with the notion of abducible symbols. The abduction problem is then the

triple ⟨O,ψ,SA⟩, where SA ⊆ sig(O,ψ) specifies the signature of abducible symbols

and for a hypothesis H to be a valid solution, it must be the case that sig(H) ⊆ SA.

In this work, the signature of abducibles contains only concept and role symbols and

for the presented methods, the hypotheses can contain any individuals specified in the

ontology O or the observation ψ .

Hypotheses can also be constrained using notions of minimality. Two commonly

discussed minimality criteria in the DL setting are syntactic and semantic minimality.

Syntactic minimality restrains solutions to the abduction problem to hypotheses

that are shortest in length [EKS06]. Syntactic minimality has also been referred to as

subset minimality and can be defined as follows [HB12, HBK14]:

Definition 3.3.5. Given an abduction problem ⟨O,ψ⟩, a hypothesis H is said to be

syntactically smaller than a second hypothesis H′ if H⊂H′. The hypothesis H is said

to be syntactically minimal if no proper subset of H provides an explanation for ψ

under O.

Effectively, this criterion focuses on removing unnecessary assertions or guesses

from an explanation; if the observation can be explained by a given set of assertions,

then any additional assertions are deemed to be superfluous. In this sense, syntactic
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minimality is useful for removing unnecessary axioms from explanations.

A second minimality criterion that is often discussed is semantic minimality. Se-

mantic minimality focuses on relating hypotheses via entailment, rather than length.

Under this notion of minimality, a hypothesis H is preferred over a second hypothesis

H′ if it is the case that H is weaker than H′ under the available background knowledge,

i.e., H′ implies H but not the reverse. Semantic minimality can be defined as follows:

Definition 3.3.6. Given an abduction problem ⟨O,ψ⟩, a hypothesis H is said to be

semantically minimal if there is no other hypothesis H′ that is not equivalent to H
under O such that O,H |=H′.

This criterion captures the notion of making the least assumptions necessary to

explain the observation ψ given the available background knowledge in O. This is

particularly useful in ranking hypotheses with respect to the ontology O [HBK14].

It is possible for a hypothesis to be syntactically minimal but not semantically

minimal. To illustrate the difference between these notions, consider the following

ABox abduction example.

Example 3.3.1. Consider a simplified ontology O concerning a species of reptile,

which contains the following axioms:

Pogona ⊑ ∃livesIn.Arid

PogonaMinor ⊑ Pogona

Arid ⊑ Habitat

AridWoodland ⊑ Arid

and let ψ = ∃livesIn.Arid(ind) be a new observation about an individual ind. Let the

set of abducible symbols exclude the symbol Arid, thereby avoiding the trivial, i.e.,

non-relevant explanation H = ψ . For simplicity, let the hypotheses be restricted to
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those that do not contain disjunction. Consider the following set of candidate hypothe-

ses to explain ψ under O:

H1 = Pogona(ind)

H2 = PogonaMinor(ind)

H3 = ∃livesIn.AridWoodland(ind)

H4 = Pogona⊓∃livesIn.AridWoodland(ind)

If the syntactic minimality criterion is applied, then H4 is not a valid solution to the

abduction problem since the set of axioms in H1 is a subset of those in H4. The same is

true for H3 and H4. This leaves H1, H2 and H3 as possible abductive solutions. If the

semantic minimality criterion is applied instead, then H4 is still not a valid solution,

since O,H4 |= H1 and O,H4 |= H3 but neither of the reverse cases hold. Similarly,

H2 is not a semantically minimal hypothesis since O,H2 |=H1 and O,H1 ̸|=H2. This

leaves H1 and H3 as possible abductive solutions.

Therefore, Example 3.3.1 provides an example of a hypothesis (H2) that is syn-

tactically minimal, but not semantically minimal. The reverse is also possible. To

illustrate this, a given semantically minimal hypothesis could be conjunctively ex-

tended with a consequence of the ontology O. In Example 3.3.1, extending H1 to

obtain Pogona(ind)⊓∃livesIn.Habitat(ind) results in an example of a hypothesis that

is semantically minimal, but not syntactically minimal.

In this section, common abductive constraints applied to hypotheses have been

outlined, but no specific abduction problem has been defined utilising a certain set of

constraints. The general abduction problem that is identified and solved in this thesis

is discussed in Chapter 4, which will then provide a basis for extending the problem to

more expressive forms of abduction in subsequent chapters.
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Existing Approaches in DLs

A variety of work exists on abduction in DLs. Alongside studies of the complexity

of abduction problems in given DL languages [Bie08], this work can be divided into

approaches that concern a form of the TBox abduction problem, and those that focus

on a form of the ABox abduction problem. As noted, though these approaches all

perform a particular form of abduction, they often differ significantly in the actual

problem being addressed. This is largely due to constraints placed on the language

in which the background ontology, observations and hypotheses are specified, or due

to abductive constraints placed on the hypotheses produced such as those discussed

previously.

In the DL setting, ABox abduction has been applied to problems such as text inter-

pretation [PKMM08] and query explanation [COSS13]. A number of works approach

the task of ABox abduction via DL tableau-based approaches. Klarman et al [KES11]

present a theoretical framework for ABox abduction in ALC relying on two reasoning

techniques: regular connection tableaux and resolution with set-of-support. The ap-

proach restricts observations and hypotheses to be in the subset of ALC that excludes

disjunction and uses negation only over concept names, namely ALE . The issue of

non-termination of the approach is discussed with respect to relaxing the minimality

requirement or restricting TBoxes to be acyclic. The approach is shown to be sound

and complete for this problem, though it is theoretical in nature, without an implemen-

tation, and no experimental evaluations are provided.

The connection tableau approach in [KES11] was performed directly using DL

tableau by Halland and Britz [HB12]. The method relies upon the fact that if O,H |=ψ

for some observation ψ , then O,H,¬ψ |=⊥. Tableau approaches are used to compute

all models of O,¬ψ , while Reiter’s minimal hitting set algorithm [Rei87] is used to

generate abductive solutions by combining negated assertions from each of the given

models to form a hypothesis. The approach computes consistent, relevant and syntac-

tically minimal hypotheses in ALE , and is sound for this problem but not complete.

Semantically minimal explanations are not computed, but are noted to be of interest.
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Building on the work in [HB12], Pukancova and Homola [PH17] extend the ap-

proach based on minimal-hitting sets, providing an implementation that utilises the

DL reasoner Pellet [SPG+07] as a black-box. As a result, the DL language used is

restricted only by the reasoner, which in this case is SROIQ. The approach supports

atomic and negated atomic concept and role assertions, computing syntactically mini-

mal hypotheses starting with the shortest explanations first, and is sound and complete

for this problem. An experimental evaluation is provided in [PH18] over three small

ontologies ranging from 24 axioms to 291 axioms in size. Explanations of up to length

three were computed, after which point the approach is limited by memory usage.

Du et al [DWS14] developed an approach to ABox abduction where the observa-

tions take the form of Boolean conjunctive queries (BCQs) [COSS13] and the back-

ground knowledge takes the form of Datalog rewritable ontologies, which restrict on-

tologies to be expressed in Horn fragments of DLs. The approach can be applied to on-

tologies expressed in the Horn fragment of the DL SHIQ. The hypotheses produced

are syntactically minimal and a class of representative explanations is introduced to

reduce the size of the hypothesis space. The method is sound and complete for this

problem, and experimental results are provided over three ontologies for BCQs that

are atomic and for general BCQs that allow existentially quantified variables.

TBox abduction in DLs has been applied to problems such as ontology repair

[LDI12, WKDL14]. In Lambrix et al [LDI12] it is assumed that a set of required

repairs have been detected, taking the form of missing is-a relations. The problem of

finding ways to repair this missing information is formulated as TBox abduction prob-

lem, and an algorithm is presented to solve this problem in the setting of acyclic ALC
TBoxes, where solutions are restricted to sets of atomic concept inclusions. In Wei-

Kleiner et al [WKDL14] the problem of repairing missing is-a relations is similarly

solved for EL++ ontologies, where the aim is to compute hypotheses as sets of atomic

concept inclusions that conform to a notion of semantic maximality, i.e., most specific

explanations. This criterion is noted to be specifically relevant to the repair problem

being addressed. The hypotheses produced are also required to be subset minimal. The
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algorithm presented is sound and an experimental evaluation is performed over three

ontologies commonly used for reasoning competitions.

In Halland et al [HBK14], a TBox abduction method for ALC is presented that

uses an approach based on the use of DL tableau and minimal hitting sets, similar to

the approaches described for ABox abduction above. A fragment of ALC is specified

that restricts solutions to using atomic negation, limited existential and universal re-

strictions and excludes both conjunction and disjunction. The approach is sound and

complete, and a post-processing approach based on using DL tableau to test entail-

ment between solutions is suggested to ensure that the solutions conform to a notion of

semantic minimality, though no experimental evaluation is provided for the approach.

Du et al [DWM17] developed a TBox abduction approach that uses justification

patterns, which can be constructed using fresh or existing concept names, to explain

observations as sets of atomic concept inclusions. The explanations produced conform

to a specified notion of subset minimality that places preference on fresh symbols.

Empirical results are presented over a corpus of ten TBoxes.

Several points are of particular relevance to the work in this thesis. First, to the

best of the authors’ knowledge, an implemented and evaluated method for computing

semantically minimal hypotheses in DLs has not yet been developed. Works that con-

sider semantic minimality most often do so in the absence of disjunction in the com-

puted hypotheses, restricting the problem to cases such as the one in Example 3.3.1.

Permitting disjunction fundamentally changes the problem, and the notion of semantic

minimality given in Definition 3.3.6 is not sufficient in this context since it permits an

unbounded number of redundant explanations as additional disjuncts. Second, as noted

earlier most works on abduction in DLs do not consider the ability to restrict hypothe-

ses to a set of abducible symbols, in contrast to other areas such as ALP. The problem

of KB abduction is also unsolved in the literature, where the problems of TBox and

ABox abduction are treated separately. These factors imply that there is a need for

more work on abduction in DL ontologies, and are part of the motivation behind the

work in this thesis that is discussed in Chapter 4.
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3.4 Second-Order Quantifier Elimination and Forget-

ting

The abduction approaches developed in this thesis utilise forgetting methods during

one of the steps. Therefore, this section contains relevant background on the task of

forgetting. Since the forgetting task itself is not the primary topic of this thesis, the

material in this section focuses on notions of forgetting that are directly needed to

discuss the proposed abduction problems and methods, as well as existing work on the

connection between abductive reasoning and forgetting. The exact connection between

abductive reasoning and forgetting is discussed in Section 3.6.

In the context of ontologies, forgetting is the process of finding a compact repre-

sentation of an ontology by hiding or removing subsets of symbols within it. Here, the

term symbols refers to concept and role names present in the ontology. The symbols to

be hidden are specified in the forgetting signature F , which is a subset of symbols in

the ontology O.

There are two notions of forgetting that are directly relevant to this thesis: weak

forgetting [ZZ10] and strong forgetting [LR94, ZZ10]. Weak forgetting can be defined

for first-order logic as follows [Koo15]:

Definition 3.4.1. Let T be a formula expressed in first-order logic and F be a signature

of predicate symbols. T ′ is a solution of weakly forgetting F in T iff for every formula

G not containing any symbol in F , T |= G iff T ′ |= G.

The notion of weak forgetting has been noted [Zha18] to be the dual notion of

uniform interpolation [Hen63]. The duality lies in the fact that the uniform interpolant

in the signature S for a formula T is equivalent to the result of forgetting the symbols

in T that are outside of S via weak forgetting.

A reformulation of the modal logic definition for uniform interpolation in [Hen63]

for description logics is as follows [Koo15]:

Definition 3.4.2. Let L be a DL language, O be an ontology in L and S ⊆ sig(O)



3.4. SECOND-ORDER QUANTIFIER ELIMINATION AND FORGETTING 55

be a signature. An ontology V is an L uniform interpolant for the signature S iff the

following two conditions hold:

(i) sig(V)⊆ S

(ii) For every L axiom β with sig(β )⊆ S we have V |= β iff O |= β

Given the duality to weak forgetting, Definition 3.4.2 can also be expressed in

terms of a signature of forgetting symbols F , where the result V should be expressed

using only symbols in sig(O)\F . The symbols in F should be removed from O while

preserving all entailments of O that can be represented using the signature sig(O)

without F . The result is a new ontology, V , which is a forgetting solution. This dual

perspective is the one used primarily throughout this thesis.

The second notion, called strong forgetting, can be defined as follows [LR94]:

Definition 3.4.3. Let T be a theory in first-order logic and F be a set of predicates.

A theory T ′ is the result of strongly forgetting F from T if for every interpretation M,

M |= T ′ iff there exists an interpretation M′ |= T such that M and M′ differ only on the

interpretations of the predicates in F .

Strong forgetting has also been referred to in the literature as semantic forgetting

[EW08, ZS15]. To define strong forgetting in DLs, the notion of F-equivalence is use-

ful [ZS17, Zha18]. Let I and I ′ be two interpretations. Then I and I ′ are equivalent

up to a set F of concept and role symbols, referred to as being F-equivalent, if I and

I ′ coincide but differ possibly in the interpretations of the symbols in F . This means

that both I and I ′ have the same domain ∆I = ∆I ′
and interpret all individuals, and

all concept and role symbols outside of F , the same, i.e., aI = aI
′

for every a ∈ NI ,

AI = AI ′
for every A ∈ NC that is not in F and rI = rI

′
for every r ∈ Nr that is not in

F . The definition for strong forgetting in DLs is then as follows [Zha18]:

Definition 3.4.4. Let L be a DL language, O be an ontology and F be a set of concept

and role symbols, called a forgetting signature, such that F ⊆ sig(O). An ontology V
is an L semantic forgetting solution for eliminating the symbols in F iff the following

two conditions hold:
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(i) sig(V)⊆ sig(O)\F and

(ii) For any interpretation I: I |= O′ iff I ′ |= O for some interpretation I ′ F-

equivalent to I.

The notion of semantic forgetting is closely related to the problem of second-

order quantifier elimination. Second-order quantifier elimination is a generalisation

of the problem of forgetting, in which the aim is to compute an equivalent first-order

logic formula for a given second-order logic formula by eliminating (existentially)

quantified predicate symbols. By eliminating these quantified predicate symbols, the

resulting first-order formula preserves all entailments of (is equivalent to) the origi-

nal second-order formula up to the interpretation of the predicate symbols that have

been eliminated. Given this clear connection between second-order quantifier elimina-

tion and forgetting, the above proposal of applying second-order quantifier elimination

techniques to the problem of abductive reasoning is also related to the application of

forgetting to abduction. This connection is therefore relevant to the methods presented

in this thesis.

In this thesis, unless stated otherwise, it is assumed that forgetting refers to the no-

tion of weak forgetting, i.e., the dual of uniform interpolation. When it is necessary to

make a distinction, primarily in Chapter 6, strong forgetting will be explicitly referred

to as semantic forgetting.

3.5 Relevant Forgetting Approaches

There is a variety of work on forgetting in DLs [KWW09, LW11, LK14, KS15b,

ZS16], a full survey of which is outside the scope of this thesis, which focuses on

the problem of abductive reasoning. However, forgetting is utilised as part of the ab-

duction approaches presented in this thesis. As such, the forgetting notions discussed

in the previous section are linked directly to two systems that perform forgetting in

the domain of DL ontologies. The specific motivations behind focusing on these two

systems is discussed in Chapters 5–7. Here the focus is on presenting the calculi and
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discussing the key properties required for understanding the abduction methods pre-

sented in the rest of the thesis.

For weak forgetting or uniform interpolation, the resolution-based system LETHE

[KS15b, Koo15] is investigated, while for semantic forgetting the system FAME [ZS15,

ZS16, Zha18], which is based around the application of Ackermann’s Lemma [Ack35],

is used to provide a comparison between the two forms of forgetting. These two state

of the art systems for performing forgetting in DL ontologies have shown promising

performance over real world ontologies.

3.5.1 Forgetting: LETHE

The first relevant forgetting approach for this work takes the weak forgetting (uniform

interpolation) perspective. The approach makes use of a resolution-based calculus

[KS15b], referred to here as IntALC , which is implemented in a system called LETHE

[KS15a]. The calculus is utilised in the abduction approach of Chapter 5 and is ex-

tended as part of an approach for more expressive abduction problems in Chapter 7.

The calculus IntALC can be used to eliminate a set of symbols from a given ALC
ontology, specified in a forgetting signature F , which can include any concept or role

symbols in the input ontology. Individual forgetting is not supported by the approach,

and as such F cannot contain any individuals. The approach also supports forgetting

for input ontologies with greatest fixpoints, i.e., those expressed in ALCν , but for the

context of this thesis it is sufficient to consider inputs without fixpoints.

Before the forgetting calculus IntALC can be applied, the input ontology must first

be transformed to an appropriate normal form. In this normal form, each axiom takes

the form of a role assertion r(a,b), where r is a role symbol and a,b are individuals, or

one of two forms of clauses [KS15b] as follows:

L1(x)∨ ...∨Ln(x)

L1(a1)∨ ...∨Ln(an)
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where each Li is a concept literal, x is a variable and each ai is a constant (individual).

Concept literals Li take one of the following forms: A, ¬A, ∃r.D, ∀r.D where A is a

concept name, r is a role name and D is a definer symbol. Definer symbols are fresh

concept symbols, i.e., they are drawn from a separate set of symbols D ∈ ND that do

not occur in the signature of the input ontology.

The first form of clause results from the transformation of a TBox axiom: a state-

ment C1(x)∨C2(x) is equivalently representable as the TBox axiom ⊤⊑C1⊔C2, where

x is introduced as part of the implicit universal quantification present in DL TBoxes.

The second clausal form, resulting from the transformation of an ABox axiom, corre-

sponds to the notion of a disjunctive ABox assertion. All clauses in the normal form are

subject to the restriction that they may contain at most one literal of the form ¬D(x),

and no literal of the form ¬D(a), where D is a definer symbol and a is an individual.

The procedure applied to obtain the normal form can be described as follows,

where t is either a constant or the (implicit) variable x. Structural transformations are

applied to flatten nested quantifiers by representing concepts that fall under the scope

of a role restriction, i.e., a clause of the form C1 ⊔Qr.C2(t), where Q denotes either

∃ or ∀, becomes the set of clauses C1 ⊔Qr.D1(t),¬D1 ⊔C2(x) where D1 is a definer

symbol. Standard conjunctive normal form (CNF) flattening techniques are used to

transform expressions of the form C1 ⊔ (C2 ⊓C3)(t) into a set of clauses, interpreted

conjunctively, of the form {C1 ⊔C2(t),C1 ⊔C3(t)}. The following example illustrates

the transformation of an ontology into the required normal form:

Example 3.5.1. Consider the following ontology O:

O = {A ⊑ ∀r.(E ⊓C),

B ⊑ ∀s.F,

C ⊑ F,

∃r.¬C(a),

s(a,b)}
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The transformation of O into the normal form results in the following clause set:

1)¬A(x)∨∀r.D1(x)

2)¬D1(x)∨E(x)

3)¬D1(x)∨C(x)

4)¬B(x)∨∀s.D2(x)

5)¬D2(x)∨F(x)

6)¬C(x)∨F(x)

7)∃r.D3(a)

8)¬D3(x)∨¬C(x)

9)s(a,b)

To flatten the concept ∃r.(C ⊓ D) in the first axiom of O, the definer symbol D1 is

introduced beneath the existential role restriction, and clauses (2) and (3) are added.

Similarly, D2 is introduced to flatten ∀s.F. The remaining TBox axiom is expressed in

clausal form. A third definer, D3, is introduced to flatten the concept expression in first

ABox axiom, while no further transformation is required for the second ABox axiom.

Once a given input ontology has been transformed into normal form, the calculus

IntALC can be applied to eliminate symbols in the forgetting signature. This calculus

is shown in Figure 3.2.

Given an input ontology O and a forgetting signature F , the IntALC calculus is

applied on the normal form of O until saturation. Resolution inferences are restricted to

concepts in F or definer symbols, while the role propagation rule need only be applied

when it is necessary to enable further resolution steps on symbols in F [Koo15]. The

unifier σ in Figure 3.2 refers to a substitution between two terms t1 and t2 , which

exists only if either t1 or t2 are the variable x, or if t1 = t2 [KS15b]. For example, if

t1 = x and t2 = a, then the unifier σ is the substitution that replaces occurrences of x

with a.
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Resolution:

C1 ∨A(t1) C2 ∨¬A(t2)
(C1 ∨C2)(σ)

Role Propagation:

C1 ∨ (∀r.D1)(t1) C2 ∨Qr.D2(t2)
(C1 ∨C2)(σ)∨Qr.D12(t1σ)

∃-Role Restriction Elimination:

C∨ (∃r.D)(t) ¬D(x)
C

Role Instantiation:

C1 ∨ (∀r.D)(t1) r(t2,b)
C1(σ)∨D(b)

D1 and D2 are definer symbols, Q ∈ {∀,∃}, t, t1 and t2 are terms (variable
“x” or a constant), σ is the unifier of t1 and t2 if it exists, D12 is a new
definer symbol for D1 ⊓D2 and no clause contains more than one negative
definer literal of the form ¬D(x), and none of the form ¬D(a).

Figure 3.2: IntALC rules [KS15b] utilised in the forgetting calculus of LETHE.

Example 3.5.2. Consider the set of clauses (1)–(9) corresponding to the normalised

ontology in Example 3.5.1. Let the forgetting signature be F = {s,C}, then application

of the IntALC calculus proceeds as follows:

10)¬D1(x)∨F(x) Resolution(3, 6)

11)¬A(a)∨∃r.D13 Role Propagation(1, 7)

12)¬D13(x)∨D1(x)

13)¬D13(x)∨D3(x)

14)¬D13(x)∨E(x) Resolution(2, 12)

15)¬D13(x)∨C(x) Resolution(3, 12)
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16)¬D13(x)∨¬C(x) Resolution(8, 13)

17)¬D13(x) Resolution(15, 16)

18)¬A(a) ∃-Role Restriction Elimination(11, 17)

19)¬B(a)∨D2(b) Role Instantiation(4, 9)

An important aspect of the approach is that definer symbols are introduced only

when necessary: if possible, previously introduced definers are reused. This ensures

that there is a double exponential bound on the number of clauses derived, ensuring

the termination of the approach [KS15b].

Once all possible inferences have been made, any clauses containing symbols in F
are removed. Definer symbols are then eliminated using the rules in Figure 3.3.

Example 3.5.3. Continuing from Examples 3.5.1 and 3.5.2, consider the full set of

clauses (1) – (19). To extract the forgetting solution, first all clauses containing sym-

bols in F = {s,C} are removed. The definer elimination rules in Figure 3.3 are then

applied to the remaining clauses, resulting in the following forgetting solution V:

V = {A ⊑ ∀r.(F ⊓E),¬A(a),¬B(a)∨F(b),∃r.⊤(a)}

Once this is done, the result is an ontology V that is free of all symbols in F . The

ontology V may contain greatest fixpoints as a result of cyclic definer elimination and

may contain disjunctive assertions due to the role instantiation rule. As a result, V is

expressed in the DL ALCν(∨). The use of fixpoints is also required to ensure that

the result of forgetting can be finitely represented in the presence of cycles, as not

all DLs have the uniform interpolation property [KWW08, LW11]. This means that

the forgetting solution does not necessarily exist in these logics, which includes ALC
without fixpoint operators [LW11, Koo15].

The key properties of the IntALC calculus with respect to the work in this thesis

are the soundness and interpolation completeness of the approach. The soundness and

interpolation completeness of IntALC with respect to forgetting over ALCν(∨) have
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Declausification:
O∪{¬D(x)∨C1(x), ...,¬D(x)∨Cn(x)} if D occurs only positively in O

O∪{D ⊑C1 ⊓ ...⊓Cn}
Definer purification:

O if D occurs only positively in O
O[D/⊤]

Non-cyclic Definer Elimination
O∪{D ⊑C} if D ̸∈ sig(C)

O[D/C]
Cyclic Definer Elimination

O∪{D ⊑C[D]} provided D ∈ sig(C[D])

O[D/νX .C[X ]]

Figure 3.3: Definer elimination rules used in IntALC [Koo15], where O is an ALCν

ontology without definer symbols, each Ci is an ALC concept, D is a definer symbol
and νX .C[X ] represents a greatest fixpoint, where X is concept variable and C[D] is a
concept containing the definer symbol D.

been proven in [KS15b, Koo15].

Soundness of a calculus is defined according to the standard notion: the calculus

should derive only those axioms that are entailed by the input. Soundness is defined

below with respect to a set of clauses, i.e., the clausal form of an ontology O [KS15b].

Definition 3.5.1. A calculus is sound if for any set of clauses N and any axiom α

with sig(α), that does not contain fresh definer symbols, the result V of applying the

calculus to N satisfies the following property: if V |= α then N |= α .

Completeness is defined in the context of strongest necessary conditions, since this

is what is required in the context of abductive reasoning. Recalling from Definition

3.6.1, all forgetting solutions are also strongest necessary conditions. Thus, complete-

ness of IntALC with respect to forgetting is defined as follows:

Definition 3.5.2. A calculus is complete for forgetting in the language L if for any

combination of an L ontology O and a forgetting signature F , the result V of forgetting

the symbols in F from O using the calculus is a forgetting solution, i.e., V is a strongest

necessary condition of O in the signature sig(O)\F .
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Further discussion of the IntALC calculus and the associated normalisation and

definer elimination rules, including proofs, can be found in [KS15b, Koo15].

3.5.2 Semantic Forgetting: FAME

The second forgetting approach utilised in this thesis takes the semantic (strong) for-

getting perspective and is implemented in a system called FAME [ZS16, Zha18].

The approach can be used to eliminate a set of concept and role symbols, specified

in a forgetting signature F , from a given ontology. As for the previous forgetting

approach, F cannot contain individuals (nor nominals), i.e., individual forgetting is

not supported. For the context of this thesis, it is not necessary to utilise the full

expressivity of the forgetting approach discussed in [ZS16], since the main aim is to

solve a new form of abduction problem in the DL ALC. As such it is sufficient to

consider ALCO(∇), that is ALC extended with nominals (O) and the universal role

(∇), ontologies as input. The use of nominals is due to the fact that the approach

of FAME requires that all ABox axioms be converted to equivalent TBox axioms.

Meanwhile, the use of the top role ∇ relates to the abduction problem. These language

considerations are discussed in Chapter 6.

The forgetting approach of FAME is based around Ackermann’s Lemma [Ack35].

The original Ackermann’s Lemma has been utilised in the task of second-order quanti-

fier to eliminate single predicate symbols from formulae expressed in first-order logic.

As such, the process of eliminating a set of symbols specified in a forgetting signa-

ture using FAME is reduced to the problem of eliminating one symbol at a time from

the set. The symbol to be eliminated on a given iteration is referred to as the pivot,

where the order of elimination is based upon a heuristic analysis of the frequency of

occurrence of each symbol in the input [ZS16].

For both concept and role forgetting, the procedure follows several main phases:

clausification, normalisation, forgetting and definer elimination. The latter three phases

are repeated for each symbol in the forgetting signature. While a full formal description

of each of these phases is outside of the scope of this work, an overview is provided
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SurfacingC:

N ,C⊔∀r.D

N ,(∀r−.C)⊔D

where: (i) A ∈ sigC(N ) is the pivot concept.
(ii) A does not occur in the concept C.

(iii) If A occurs positively in D, the rule is the SurfacingC,+ rule.
If A occurs negatively in D, then the rule is the SurfacingC,− rule.

SkolemisationC:

N ,¬{a}⊔∃r.D

N ,¬{a}⊔∃r.{b},¬{b}⊔D

where: (i) A ∈ sigC(N ) is the pivot concept.
(ii) {b} is a fresh nominal.

(iii) If A occurs positively in D, the rule is the SkolemisationC,+ rule.
If A occurs negatively in D, then the rule is the SkolemisationC,− rule.

Figure 3.4: Surfacing and skolemisation rules used to compute the A-reduced form in
the forgetting system FAME [Zha18].

to give context to the forgetting procedure utilised by FAME so that the impact on the

hypotheses obtained from the forgetting-based abduction algorithm can be understood.

Here, the focus is on describing the normalisation and forgetting process for concept

forgetting, as this captures the main notions required for an intuitive understanding of

the forgetting procedure. Full details and proofs for these phases are available in the

corresponding works [ZS16, Zha18]. When a concept C is referred to as being negative

with respect to a concept A, this means that A occurs only negatively in C, i.e., under

an odd number of negations. If C is positive with respect to A, then A occurs under an

even number of negations.

The first stage in this transformation is the clausification phase, during which any

ABox axioms in the input are translated to equivalent TBox axioms in ALCO, making

use of nominals. For example, the ABox axioms C(a) and r(a,b) can be transformed

into the corresponding TBox axioms {a} ⊑ C and {a} ⊑ ∃r.{b}. Then, the resulting
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TBox is transformed into a set of clauses N using standard clausification rules.

Following this, it is necessary to transform the set of clauses N into the appropriate

reduced forms, based upon the current pivot. This is done during the normalisation

phase. Depending on whether the current pivot is either a concept symbol A or a role

symbol r, the corresponding reduced form is referred to as the A-reduced or the r-

reduced form respectively. For the A-reduced form, it is necessary to move the pivot

A to the top-level of each clause, i.e., ensure that A is not nested beneath existential or

universal quantifiers. The rules applied to obtain the A-reduced form are provided in

Figure 3.4. Note that if A does not occur beneath an existential or universal quantifier

in a clause, then it already occurs at the top-level of the clause. Thus, no additional rule

is required to compute the A-reduced form in these cases. The following is an example

of transforming an ontology into A-reduced form:

Example 3.5.4. Consider the ontology O = {B ⊑ A,C ⊑ ∀r.A}. Transforming this

ontology into clausal form results in:

¬B⊔A

¬C⊔∀r.A

while the first clause is already in A-reduced form, the second is not: A is nested

beneath a universal quantifier. Application of the SurfacingC,+ rule to the second

clause results in the equivalent clause (∀r−.¬C)⊔A, where r− denotes the inverse of

the role symbol r. The resulting set of clauses is then in A-reduced form.

Once the A-reduced form is obtained, the forgetting phase is performed to eliminate

the concept symbol A. The idea behind the concept forgetting procedure in FAME is

based on substituting an appropriate definition for each occurrence of the pivot A in

the clause set N , thereby eliminating it from the input set. An appropriate definition

for the pivot A is, informally, a concept that defines A without using A itself [Zha18].

The rules used to eliminate the pivot A are shown in Figure 3.5, and are based upon a

generalisation of Ackermann’s Lemma [NS95] to the setting of DL ontologies [ZS16,
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Zha18]. This generalisation can be expressed for generic DL ontologies as follows

[Zha18]:

Theorem 3.5.1. Let O be a DL ontology containing the axioms C1 ⊑ A, ...,Cn ⊑ A

where A is a concept symbol and each Ci for 1 ≤ i ≤ n is a DL concept that does

not contain A. Let Õ = O \{C1 ⊑ A, ...,Cn ⊑ A} denote the result of excluding the

axioms C1 ⊑ A, ...,Cn ⊑ A from O. If Õ is negative with respect to A, then ÕA
C1⊔...⊔Cn

is a solution of forgetting the symbol A from O, where ÕA
C1⊔...⊔Cn

denotes the result of

replacing every occurrence of A with C1 ⊔ ...⊔Cn in Õ.

The generalisation in Theorem 3.5.1 leads to the AckermannC,+ rule of Figure 3.5,

while the dual theorem in [Zha18] leads to the AckermannC,− rule.

Once the pivot has been eliminated, the process is repeated for each remaining

concept symbol in the forgetting signature.

The procedure for role forgetting, including the transformation of the clause set

N into r-reduced form for a pivot r, is conceptually similar. However, obtaining a

AckermannC,+: N \{C1 ⊔A, ...,Cn ⊔A},C1 ⊔A, ...,Cn ⊔A
N \{C1 ⊔A, ...,Cn ⊔A}A

¬C1⊔...⊔¬Cn

where (i) A does not occur in any Ci for 1 ≤ i ≤ n
(ii) N \{C1 ⊔A, ...,Cn ⊔A} is negative with respect to A

AckermannC,−: N \{C1 ⊔¬A, ...,Cn ⊔¬A},C1 ⊔¬A, ...,Cn ⊔¬A
N \{C1 ⊔¬A, ...,Cn ⊔¬A}A

C1⊓...⊓Cn

where (i) A does not occur in any Ci for 1 ≤ i ≤ n
(ii) N \{C1 ⊔A, ...,Cn ⊔A} is positive with respect to A

PurifyC,+: N
N A

⊥
where N is negative
with respect to A

PurifyC,+: N
N A

⊤
where N is positive
with respect to A

Figure 3.5: Rules used in the forgetting system FAME to forget a pivot concept A,
where N A

C denotes the set of clauses obtained from N by replacing every occurrence
of A with C [Zha18].
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definition for r is less straightforward. This is due to the fact that role symbols in

DLs always occur after an existential or universal role restriction, so it is not obvious

how the pivot symbol r can be brought to the top-level of a clause [Zha18]. Thus, the

approach used in FAME relies on combining all of the premises of a role restriction

to obtain an implicit definition for the pivot r. Details of the full procedure can be

found in [ZS16, ZS17, Zha18], while here the role forgetting procedure is described

and illustrated by example to avoid deviating from the focus on abduction in this work.

For role forgetting, the r-reduced form is as follows. Given a role symbol to be for-

gotten r, every clause in N that contains r must be of the form C⊔∀r.D or C⊔¬∀r.D

where C and D are possibly complex concepts that do not contain r. During this trans-

formation, definer symbols may need to be introduced as in Section 3.5.1. Definer

symbols are used to incrementally replace the concept symbols C and D in clauses

such as the one above, until neither clause contains r. For example:

Example 3.5.5. Consider the following clause:

∀r.A⊔∀r.B

given a forgetting signature F = {r}, a definer is introduced to replace ∀r.A. This

results in the following two clauses:

D1 ⊔∀r.B

¬D1 ⊔∀r.A

Once the r-reduced form is obtained, as with the concept forgetting procedure de-

scribed earlier, rules based around Ackermann’s Lemma [Ack35] are used to forget

the role symbols in the forgetting signature F . Once all role symbols have been elimi-

nated, any definer symbols that were introduced during the transformation to r-reduced

form are then eliminated via the use of concept forgetting as described above.

The approach can be used to perform forgetting for ALCOIHµ+(∇,⊓), i.e., ALC
extended with nominals (O), inverse roles (I), role hierarchies (H), fixpoints (µ and
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ν), the top role (∇) and role conjunction (⊓) [ZS16]. However, for the abduction

problems that are solved in this thesis, the full expressivity is not needed. In fact, the

input provided to the forgetting approach can be expressed in ALCO(∇), the reasoning

behind which is discussed in the context of abduction in Chapter 6. Consequently, the

result of semantic forgetting in this context can be represented in ALCOI(∇), due to

the fact that role hierarchies of the form r ⊑ s are not present in the input, and role

conjunction r ⊓ s is only required in the event that the forgetting result utilises role

hierarchies [Zha18]. Therefore, the forgetting approach used by FAME is described

here for TBoxes only, while RBoxes can be excluded. While support for fixpoint

operators was discussed in [ZS16], later versions of the tool, and described in [Zha18],

did not support fixpoints. As such, fixpoints are not present in the forgetting solutions

produced by the version of the tool used in this work. Therefore, the use of FAME

in this work is restricted to input ontologies expressed in ALCO, while the forgetting

solution is expressed in ALCOI(∇).

The forgetting approach of FAME is sound for forgetting in ALCOIHµ+(∇,⊓)
ontologies. However, only forgetting solutions expressed in DLs up to ALCOI(∇)

will be required in this work. The soundness of the forgetting approach in this setting

is stated in Theorem 3.5.2, which is a weaker form of the corresponding theorem in

[ZS16].

Theorem 3.5.2. For any ALCOI(∇) ontology O and any signature F ⊆ sig(O),

where sig(O) is the set of concept and role symbols in O, FAME always terminates

and returns a set V of clauses. If V does not contain any symbols in F , then the

symbols in F were successfully forgotten and the set V is a solution of forgetting the

symbols in F from O.

Proof: The original theorem proving the soundness of FAME for the semantic forget-

ting problem [ZS16] holds for ALCOIHµ+(∇,⊔). Since ALCOI(∇) is a fragment

of ALCOIHµ+(∇,⊔) excluding fixpoints, role inclusions of the form r ⊑ s and role

conjunctions of the form r⊓ s, the original soundness proof also holds in this setting.

The forgetting approach of FAME is, however, not complete [Zha18]. This is due to



3.6. FORGETTING AND ABDUCTIVE REASONING 69

the known incompleteness of Ackermann-based approaches to forgetting. In general, it

is not possible to bring every set of DL clauses into a form where a forgetting symbol

can be successfully eliminated [ZS16, ZS17]. For instance, the SkolemisationC rule

applies only to clauses of a specific form: ¬{a}⊔∃r.D, where {a} is a nominal, unlike

the SurfacingC rule. Therefore, it cannot be applied to surface a pivot symbol beneath

an existential restriction for all clauses. As such, it is not possible to eliminate the pivot

symbol in these cases, since the forgetting rules in Figure 3.5 assume that the input has

been transformed into A-reduced form.

3.6 Forgetting and Abductive Reasoning

The connection between forgetting and abductive reasoning has been identified in clas-

sical logics [DLS01, GSS08, Wer13] with respect to the related problem of second-

order quantifier elimination. Specifically, the notions of strongest necessary conditions

and weakest sufficient conditions [Lin01, DLS01] form the basis of the connection be-

tween the two tasks. In [Lin01], for propositional theories it was observed that the

weakest sufficient condition corresponds to the notion of a weakest abductive expla-

nation. The fact that second-order quantifier elimination has been proposed as an ef-

ficient method for computing weakest sufficient and strongest necessary conditions of

propositional and first-order theories in [DLS01] establishes the connection between

second-order quantifier elimination and abductive reasoning. The use of this connec-

tion was expanded upon in subsequent work including [GSS08, Wer13] and utilised in

applications such as the analysis of Biochemical Pathways [DKMS04].

This relationship between abduction and forgetting has been a topic of interest in

AI. However, the connection has been under explored, particularly in the domain of

DL ontologies. Further work is needed to develop this connection before it can be

utilised as part of practical abductive reasoning systems in the DL setting.

In DLs, necessary and strongest necessary conditions can be defined as follows:

Definition 3.6.1 (Strongest Necessary Conditions). Let O be an ontology, G be a set



70 CHAPTER 3. BACKGROUND ON ABDUCTION AND FORGETTING

of axioms and S be a signature of concept and role symbols. A set of axioms T , where

sig(T ) ⊆ S , is a necessary condition of G under O in the signature S iff O,G |= T .

It is also a strongest necessary condition if for all other necessary conditions T ′ such

that sig(T ′)⊆ S , it is the case that O,T |= T ′.

The definition for sufficient and weakest sufficient conditions is as follows:

Definition 3.6.2 (Weakest Sufficient Conditions). Let O be an ontology, G be a set of

axioms and S be a signature of concept and role symbols. A set of axioms T , where

sig(T ) ⊆ S, is a sufficient condition of G under O in the signature S if O,T |= G. It

is also a weakest sufficient condition if for all other sufficient conditions T ′ such that

sig(T ′)⊆ S , it is the case that O,T ′ |= T .

Since the aim of forgetting is to retain all of the entailments representable in the

signature S, the forgetting result or uniform interpolant must by definition be the

strongest entailment of the input ontology within the specified signature S. It is there-

fore possible to formulate the definition of forgetting or uniform interpolation in terms

of strongest necessary conditions [Koo15]. In general, it holds that:

Theorem 3.6.1. V is a uniform interpolant (forgetting solution) of ontology (O,G) for

S only if V is a strongest necessary condition of G under O in S.

Proof: Let V be a uniform interpolant of (O,G) in S.1 It holds that V |= V for any

V . Recalling from Definition 3.4.2, since sig(V) ⊆ S, then O,G |= V by the reverse

direction of Definition 3.4.2 condition (ii), and so V is a necessary condition of (O,G).

To show that the uniform interpolant V is a strongest necessary condition of G under

O in S, let V ′ be any set of axioms such that O,G |= V ′ and sig(V ′)⊆ S. From this, it

follows by Definition 3.4.2 condition (ii) that V |= V ′ and thus O,V |= V ′ for any V ′.

Therefore, V is a strongest necessary condition of G under O in S.

As discussed in [Lin01], strongest necessary and weakest sufficient conditions are

dual notions, i.e., negating the strongest necessary condition gives the weakest suf-

ficient condition of the negated formula and vice versa. It is in this duality that the
1Note: from the forgetting perspective, the input (O,G) is provided as a single ontology.
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connection between forgetting and abduction is made via the use of contraposition:

O,H |= ψ iff O,¬ψ |= ¬H

where H is a hypothesis for the observation ψ . Since forgetting produces a set of

entailments of a given input ontology, by setting this input to O,¬ψ the forgetting so-

lution V corresponds directly to the negation of a candidate hypothesis ¬H. Since this

set of entailments is also the strongest necessary condition of the input, i.e., V is the

strongest encessary condition of ¬H under O, the hypothesis obtained via contraposi-

tion corresponds to the weakest sufficient condition of ψ under O.

Depending on the form taken by ψ , it may be the case that the negation ¬ψ must be

represented using an extended DL language. For example, given an ALC observation

ψ =C(a)⊓D(b), the negation ¬ψ is not representable in ALC. Instead, the negation

takes the form of a disjunctive assertion ¬ψ = ¬C(a)∨¬D(b). This is discussed

further in subsequent chapters.

3.7 Why Forgetting?

The connection between forgetting and abductive reasoning provides a promising ba-

sis. First, forgetting provides a goal-oriented way to produce hypotheses that conform

to the notion of abducibles as discussed in Section 3.3. The set of symbols given as

input, the forgetting signature, are eliminated and excluded from the forgetting solu-

tion. The forgetting signature is therefore a set of non-abducible symbols, and can be

used to restrict the signature of the hypotheses produced. The possibility of generating

hypotheses that take the form of weakest sufficient conditions is also an interesting

prospect, as this captures a core notion of abductive reasoning: producing a least as-

sumptive hypothesis given the available evidence in the background theory. For the

general application of abduction it is natural to assume only that which is necessary

to explain the observation. If we do not immediately assume that the first explana-

tion computed is the correct one, then producing the least assumptive hypothesis first
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ensures that we do not lose the correct explanation by assuming too much initially

[Poo89]. By starting at the weakest explanation first, it is also possible to iteratively

apply abduction to obtain stronger explanations, which is discussed in Chapter 8.

In the DL context, weakest sufficient conditions coincide with the notion of se-

mantic minimality as in Definition 3.3.6. It should be noted that semantic minimality

is a difficult constraint to satisfy, particularly comparated to a constraint such as the

syntactic minimality requirement in Definition 3.3.5. Using a generate and test ap-

proach, i.e., generating a large number of candidate hypotheses and then eliminating

those that do not satisfy the requirements, is in general infeasible when one of the re-

quirements is semantic minimality. To eliminate non-semantically minimal hypotheses

would require comparing each pair of candidate hypotheses via entailment: if a given

hypothesis is stronger than another, it should be removed. Depending on the complex-

ity of entailment checking in the given DL language, this can become expensive. For

example, in ALC each of these checks would have exponential complexity [Sch94]

with respect to the size of the background ontology together with the candidate hy-

pothesis. Therefore, the fact that forgetting together with contraposition can be used to

produce semantically minimal hypotheses directly is promising.

However, before this can be used as a starting point to build a practical abduction

approach for DL ontologies, a number of challenges must be addressed and solved.

This includes identifying a new DL abduction problem, which is the subject of the

next chapter.



Chapter 4

Computing Spaces of Independent

Explanations

In this chapter, a new abduction problem in the DL setting is defined, where the input

ontology and observation are expressed in the DL language ALC. When utilised in

an abductive reasoning system, forgetting can provide a starting point for the compu-

tation of hypotheses satisfying an otherwise difficult property: semantic minimality.

However, the connection between forgetting and abduction has not been sufficiently

investigated in the setting of large DL ontologies. For example the problem of re-

dundancy, particularly in the presence of disjunction, is a critical issue that must be

overcome. The problem identified in this chapter therefore captures the notion of se-

mantic minimality while permitting disjunction in the abduction solutions, which has

not yet been considered in the area. In doing so, the problem offers a perspective on

abduction that is new to the setting of DL ontologies. This chapter also motivates the

problem by examining the constraints placed on the hypotheses and how these improve

the solutions returned.

The problem proposed in this chapter is the core problem solved throughout this

thesis. Using the definition provided in this chapter as a basis, subsequent chapters

will focus on proposed methods to solve this problem as well as extensions to more

expressive abduction problems.

73
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4.1 Challenges

A key difference between the work on second-order quantifier elimination approaches

to abduction and the work in this thesis is in the setting of the problem, which brings

a number of new challenges. Unlike many of the problems considered in classical

logics, DL ontologies are often large by comparison. A consequence of this is that

the problem of eliminating redundant parts of the hypothesis becomes more important

than in the domain of classical logics, where this problem is either not considered or

regarded as an optional post-processing step [Wer13]. This is particularly true if the

weakest sufficient condition is interpreted as a disjunction of possible explanations for

the given observation, which is the perspective taken in this thesis and in works such

as [DKMS04]. In the domain of large ontologies, it is not sufficient to present the

negation of a forgetting solution (via contraposition) as a hypothesis for the given ob-

servation. This is due to the fact that a majority of the given disjuncts will be redundant

in explaining the observation, either because they are consequences of the ontology it-

self or because they repeat information that is already contained in other disjuncts.

In the DL setting, despite the recent development of effective forgetting procedures

for expressive DLs [KWW09, LK14, KS15b, ZS16] including those discussed in the

previous chapter, the connection between forgetting and abductive reasoning has yet

to be sufficiently studied or utilised. In [KS15a], it was proposed that the forgetting

system LETHE could be utilised for a form of TBox (universally quantified) abduc-

tion. However, this proposal focuses only on directly negating the result of forgetting

to produce a weakest hypothesis that entails a given observation within a restricted

signature of abducible symbols, i.e., those that have not been forgotten. Additionally,

the use of approaches that utilise forgetting for ABox abduction was identified as an

open problem.

Given these considerations, it is clear that progress must be made in addressing

several key issues with utilising forgetting for abduction. First, the identification and

definition of a new abduction problem is required, including an appropriate form for
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hypotheses and constraints to capture the issue of redundancies in the hypotheses. Sec-

ond, the formalisation and development of methods to solve the abduction problem,

utilising not only forgetting but also efficient approaches to redundancy elimination to

ensure tractability over large DL ontologies and the computation of hypotheses that

are not misleading in practice.

The remainder of this chapter will focus on the first point: defining and motivating

an abduction problem which is new to the DL setting that takes into account the above

considerations. Subsequent chapters will then focus on presenting new methods for

abductive reasoning in DLs that produce hypotheses satisfying this problem.

4.2 Defining the Problem: Abductive Constraints

The abduction problem that is proposed and solved in this work is defined below for

ontologies and observations expressed in the DL language ALC.

Definition 4.2.1. ABox Abduction in ALC Ontologies. Let O be an ontology and ψ

be a set of concept assertions, both expressed in ALC, such that O ̸|=⊥, O,ψ ̸|=⊥ and

O ̸|= ψ . Let SA be a set of symbols called abducibles. The ABox abduction problem

is to compute a hypothesis of the form H = α1 ∨ ...∨αn where each αi for 1 ≤ i ≤ n

is a conjunction of ALC concept assertions. The solution H must contain only those

symbols specified in SA and satisfy the following conditions:

(i) O,H ̸|=⊥

(ii) O,H |= ψ

(iii) H does not contain inter-disjunct redundancy i.e., there is no disjunct αi in H
such that O,αi |= α1 ∨ ...∨αi−1 ∨αi+1 ∨ ...∨αn

(iv) for any H′ expressed in the same language and form as H that satisfies condi-

tions (i)–(iii), where sig(H′)⊆ SA, if O,H |=H′ then O,H′ |=H.

Since the task is to compute a hypothesis satisfying some constraints within a given

signature of abducibles SA, the following condition is imposed:
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Abducibles: the hypothesis should be expressed using only those symbols that

appear in the set of “allowed symbols”, called abducibles.

For the problems in this thesis, it is assumed that the set of abducibles contains

only concept and role symbols. It is assumed that the hypotheses produced can contain

any individuals specified in the ontology O or the observation ψ , i.e., while concept

and role symbols can be specified as non-abducible, specific individuals cannot.

The abduction problem is therefore to compute a hypothesis that satisfies the con-

ditions (i)–(iv) with respect to the given signature of abducibles SA. The constraints

specified by Definition 4.2.1 conditions (i)–(iv) can be described as follows:

(i) Consistency: the hypothesis should not contradict the information contained

within the background knowledge base.

(ii) Explanation: adding the hypothesis to the background knowledge base should

lead to the entailment of the observation.

(iii) Inter-disjunct Redundancy: the hypothesis produced should not contain dis-

juncts that are redundant, with respect to the abduction problem, given the rest

of the hypothesis. If the hypothesis satisfies this condition, then it is said to be a

space of independent explanations.

(iv) Semantic Minimality: the hypothesis should not assume more than is neces-

sary to explain the observation. This can be described as follows: a hypothesis

is only considered to be a solution to the abduction problem if all other possi-

ble hypotheses, expressed using the same set of abducibles, are either stronger,

i.e., more assumptive, than it or are at least equivalent under the background

knowledge.

Conceptually, this task can be seen as computing the least assumptive space of

independent explanations [Kon92] α1, ...,αn for the given observation, rather than a

single hypothesis. Each explanation (disjunct) takes the form of a conjunction of ALC
concept assertions, i.e., an ABox. Since the overall hypothesis is a disjunction of these
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explanations, it is necessary to make use of an extended language compared to the

input, i.e., the extension of ALC that permits disjunctions of ABoxes denoted here as

ALC(∨).
This problem forms the basic problem that is solved throughout this thesis. In

subsequent chapters, this is extended to more expressive abduction problems,1 though

the core of the task remains the same.

4.3 Examining the Constraints in Practice

Since this abduction problem is new to DLs, it is important to examine and motivate the

constraints specified in the definition in terms of their impact on the types of hypotheses

that are permitted as solutions.

As discussed in Chapter 3, the set of abducibles SA defines the subset of concept

and role symbols in the ontology that may appear in the hypothesis H. Restricting

the hypothesis to a subset of the available signature, while not often considered in

the setting of description logic ontologies, is a standard condition in many works on

abductive reasoning. This restriction allows a user to restrict acceptable hypotheses

based on their own prior knowledge, focusing on parts of the hypothesis space that

are useful to the given application. In some cases such as diagnostics, ontologies may

be engineered with “causes” and “effects” in mind. Thus, it may be useful to restrict

the set of abducibles to symbols representing the available causes rather than simply

explaining one effect in terms of another.

Conditions (i) and (ii) of Definition 4.2.1 are standard requirements in most ab-

ductive reasoning tasks. Condition (i) requires that all generated hypotheses H are

consistent with the background knowledge in the ontology O. Otherwise the ontology

obtained by adding H to O will entail ⊥ and as a result will also trivially entail every-

thing including the observation ψ . Condition (ii) ensures that adding H to O leads to

1This includes: permitting role assertions in both observations and hypotheses, extending the lan-
guage used to express each explanation (disjunct) in the hypothesis and lifting the problem from ABox
abduction to TBox / Knowledge Base (KB) abduction.
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the entailment of the observation ψ , and thus that H is an explanation for ψ as intu-

itively expected for abductive reasoning. Without these two constraints, the space of

possible solutions will consist mostly of uninformative hypotheses.

A significant difference between the notion of semantic minimality discussed in

Chapter 3 and here is the presence of disjunctions, particularly in the hypotheses pro-

duced. Condition (iii), inter-disjunct redundancy, captures this difference and suc-

cessfully resolves a shortcoming in the notion of semantic minimality in this setting.

Therefore, before considering condition (iii) it is useful to first examine condition (iv),

semantic minimality [KES11, HB12, HBK14], to provide context to the interaction

between these two conditions.

As discussed, producing hypotheses that make only the fewest assumptions neces-

sary given some background knowledge is of interest both intuitively [Poo89] and in

applications [Sti91, PH17]. This corresponds to the notion of semantic minimality as

in Definition 3.3.6, which is captured by condition (iv), where the aim is to produce

the weakest hypothesis H required to explain the observation ψ under the background

ontology O. The following example illustrates this notion.

Example 4.3.1. Consider the following abduction problem:

O = {A ⊑ B,

B ⊑C}

ψ =C(a)

SA = {A,B}

and the two candidate hypotheses:

H1 = B(a)

H2 = A(a)

Both of these hypotheses satisfy the conditions in Definition 4.2.1(i) and (ii). However,
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H2 does not satisfy condition (iv), since O,H2 |= H1, but the reverse does not hold.

Thus H2 is a stronger, i.e., “less minimal” hypothesis than H1.

From this, it can be seen that Definition 4.2.1(iv) rejects semantically stronger hy-

potheses, formalising the idea of not assuming more than is necessary to explain a

given observation. Note that stronger hypotheses can be sought in a principled fashion

via the specification of abducible symbols. For example, if the set of abducibles in

the above example was instead SA = {A}, the preferred hypothesis under Definition

4.2.1(iv) would be H= A(a).

Semantic minimality is usually only considered in the absence of disjunction in

the hypotheses. For example, several works considering semantic minimality in DLs

have restricted the solutions to ALE , the conjunctive variant of ALC [KES11, HB12,

HBK14]. As a result of this restriction on the space of solutions, the standard semantic

minimality constraint in condition (iv) is sufficient to capture the notion of computing

least assumptive hypotheses. However in more expressive DL languages which allow

disjunction, such as full ALC and its extensions, other forms of redundancy need to

be taken into account. This adds an additional challenge to the problem of computing

“semantically minimal” hypotheses, as illustrated by Example 4.3.2.

Example 4.3.2. Consider the following instance of the abduction problem:

O = {∃hD.BD ⊑ ∃hS.Headache,

TiredScientist ⊑ ∃hS.Headache,

∃cO.BDV1 ⊑ ∃hD.BD,

TiredAccountant ⊑ ∃hS.Headache,

¬TiredAccountant(p1)}

ψ = {∃hS.Headache(p1)}

where Brain Drain (BD) is a disease, “BDV1” is a virus, p1 is a patient and the

acronyms hD, hS and cO stand for “hasDisease”, “hasSymptom” and “carrierOf” re-

spectively. Suppose the set of abducibles SA includes all symbols in O except Headache
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and consider the hypotheses2:

H= ∃hD.BD(p1)∨TiredScientist(p1) and

H′ = ∃hD.BD(p1)∨TiredScientist(p1)∨∃cO.BDV1(p1)∨TiredAccountant(p1)

With respect to Definition 4.2.1, H′ does not satisfy condition (iii) as it contains the

redundant disjuncts ∃cO.BDV1(p1) and TiredAccountant(p1). Thus, the preferred

solution is H.

Both hypotheses in Example 4.3.2 satisfy Definition 4.2.1 conditions (i) and (ii).

In the absence of condition (iii), both H and H′ would also satisfy the semantic mini-

mality requirement in condition (iv): there are no other hypotheses that are expressible

without Headache which are strictly weaker than H or H′. It is also the case that

O,H ≡ O,H′. This means that, according to the standard semantic minimality def-

inition, both hypotheses are “as minimal” as one another. However, there are two

redundant disjuncts in H′: TiredAccountant(p1) and ∃cO.(BDV1)(p1). The first is in-

consistent with the ontology O. The second is not independent: it is simply stronger

than the disjunct ∃hD.BD(p1) in H′. Thus, condition (iii) excludes these disjuncts,

resulting in the preferred hypothesis H.

Attempting to produce semantically minimal hypotheses without any notion of dis-

junctive redundancy is problematic. Intuitively, a disjunctive hypothesis can be viewed

as a set of alternative explanations for the given observation. In Example 4.3.2, adding

either ∃hD.BD(p1) or TiredScientist(p1) from the overall hypothesis H is sufficient

to explain the observation that the individual p1 has the symptom Headache. This

highlights an advantage of computing a hypothesis as a disjunction of conjoined state-

ments, i.e., a space of explanations: it is possible to select the most suitable explanation

from the presented set of possibilities, rather than being presented with a hypothesis

that represents only one explanation which may not be the most suitable explanation.
2In this example, both H and H′ can be represented equivalently in ALC as the disjunction occurs

over a single individual, e.g. H = (∃hD.BD⊔TiredScientist)(p1). However, to maintain consistency
with the general case of the proposed abduction problem, hypotheses will be represented using disjunc-
tive assertions as in the example.
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Without the additional inter-disjunct redundancy constraint in condition (iii), hy-

potheses consisting of any number of redundant explanations, i.e., disjuncts, can be

considered as a “semantically minimal” solution to the abduction problem. As a re-

sult, the benefit of presenting multiple alternative explanations is lost. If a disjunct

is inconsistent with the background knowledge, then it is not an informative explana-

tion for the observation since everything is trivially entailed when it is added to the

background knowledge. Alternatively, if a disjunct is stronger than another disjunct or

disjuncts in the rest of the hypothesis, then the intuitive notion of semantic minimality

is violated: the explanation represented by this disjunct would make more assump-

tions than strictly necessary to explain the observation. In the context of large DL

ontologies, the severity of this problem is more pronounced. It is difficult for a user to

determine which explanations are valid and how each explanation is related in terms of

strength, particularly when the background knowledge base is large and the hypothesis

computed could consist of a large number of disjuncts.

The inter-disjunct redundancy condition excludes only those candidate hypothe-

ses that contain disjunctive redundancies, i.e., those containing explanations that are

redundant with respect to the above notions, as possible solutions to the abduction

problem. Conceptually, these can be split into three general categories: inconsistent

disjuncts, disjuncts that are strictly stronger than another subset of disjuncts in the

hypothesis H or disjuncts that are equivalent to another subset of disjuncts in the hy-

pothesis.

To illustrate the third case, consider the following example:

Example 4.3.3. Consider the following abduction problem:

O = {C⊔D ≡ A,

A ⊑ B,

C ⊑ B,

D ⊑ B}

ψ =B(a)
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SA = {A,C,D}

and consider the following candidate hypothesis:

H1 = A(a)∨C(a)∨D(a)

This hypothesis is not an acceptable solution to the abduction problem in Definition

4.2.1, since O,C(a) |= A(a), O,D(a) |= A(a) and O,A(a) |= C(a)∨D(a). Thus, it is

necessary to eliminate either C(a)∨D(a) or A(a) to obtain a satisfactory hypothesis,

i.e., a space of independent explanations for ψ . If A(a) is eliminated first, then the

hypothesis obtained would be H2 = C(a)∨D(a) and since neither O,C(a) |= D(a)

nor O,D(a) |= C(a) hold, H2 is a satisfactory hypothesis. If either C(a) or D(a) are

eliminated first, then A(a) will no longer be redundant since neither O,A(a) |= C(a)

nor O,A(a) |= D(a) hold. Thus, both C(a) and D(a) will be eliminated in either order,

leaving the hypothesis H3 = A(a) which also satisfies the abductive constraints.

Without the above redundancies, the resulting hypothesis must also be semantically

minimal under condition (iv). In the case where the hypothesis is a disjunction, this

also means that each disjunct must be a minimal explanation as shown by the following

Lemma.

Lemma 4.3.1. For a hypothesis H = α1 ∨ ...∨αn that satisfies conditions (i)–(iii) of

Definition 4.2.1 to also satisfy condition (iv), it must be the case that each disjunct αi

in H is also minimal in the sense that there is no other statement γi, where sig(γi)⊆SA,

such that O,γi |= ψ and O,αi |= γi but O,γi ̸|= αi.

Proof: Consider an arbitrary disjunct αi in H. The case of inconsistent disjuncts

O,αi |=⊥ is already excluded by condition (iii). Similarly, the case where αi entails

some other subset of the disjuncts in H under O is excluded. This leaves the case for

which there is an alternative statement γi which is also an explanation for ψ under O
such that O,αi |= γi but O,γi ̸|= αi, i.e., a weaker alternative to one of the existing dis-

juncts in H. Consider a hypothesis H′ constructed by replacing αi in H with γi. The
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hypothesis H′ satisfies conditions (i) – (iii), since O,αi |= γi and given that H is free

of inter-disjunct redundancy, it also holds that O,γi ̸|= α1 ∨ ...∨αi−1 ∨αi+1 ∨ ...∨αn.

Then the following holds: O,H |= H′ but O,H′ ̸|= H, and thus H does not satisfy

condition (iv).

Example 4.3.3 also demonstrates that solutions to the problem in Definition 4.2.1

are not necessarily unique: both H2 and H3 are solutions to the problem satisfying

both semantic minimality and the inter-disjunct redundancy condition.

In some cases, it is also possible that no suitable solution exists for the specified

abduction problem, as in Example 4.3.4.

Example 4.3.4. Consider the following abduction problem:

O = {A ⊑C,

B ⊑C,

E(a)}

ψ =C(a)

SA = {E}

For this problem, there is no suitable hypothesis: the signature of abducibles includes

only E and it is clear that E(a) would not be an explanation for ψ = C(a), i.e.,

O,E(a) ̸|= C(a). Therefore, there is no hypothesis satisfying Definition 4.2.1 in the

signature SA.

It is also worth noting that Definition 4.2.1(i), consistency, is a direct consequence

of condition (iii). Since each disjunct αi in H must not be inconsistent with O, the

overall disjunction α1∨ ...∨αn will also be consistent with O. However, as consistency

is a key condition in most abduction contexts it is explicitly included in the definition

for both clarity and to emphasise its importance. This also provides the option to seek

a consistent hypothesis that only partially fulfils the stronger inter-disjunct redundancy

requirement.
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Definition 4.2.1 does not remove all forms of redundancy from the hypothesis. The

focus is on removing redundant explanations via condition (iii), and hypotheses that

make assumptions that are too strong via conditions (iii) and (iv). Therefore, the final

hypothesis is the least assumptive space of explanations. However, there exist other

forms of redundancy that are not covered by Definition 4.2.1. For example, another

abductive criteria in the literature focuses on the length of the produced explanations:

if the shortest possible explanations are preferred, then the abduction problem seeks

hypotheses that conform to the notion of syntactic minimality. A definition for this

notion is provided in Definition 3.3.5 of Chapter 3. Syntactic minimality is not a spec-

ified constraint in Definition 4.2.1, and the following example illustrates how syntactic

redundancy is treated under this definition:

Example 4.3.5. Consider the following abduction problem:

O ={∃r.B ⊑ A,

C ⊑ A,

D ⊑C,

E ⊑ F,

E(ind1)}

ψ =A(ind1)

SA ={r,B,C,D,E,F}

and the following candidate hypotheses:

H1 = ∃r.B(ind1)∨C(ind1)

H2 = ∃r.B(ind1)∨ (C⊓F)(ind1)

H3 = ∃r.B(ind1)∨ (C⊓D)(ind1)

Under Definition 4.2.1, H1, H2 and H3 all satisfy condition (i): they are all consistent

with O. They also satisfy condition (ii): O,H |= ψ for all three candidate hypotheses.



4.3. EXAMINING THE CONSTRAINTS IN PRACTICE 85

For condition (iii): O,{∃r.B(ind1)} ̸|=C(ind1) and O,{C(ind1)} ̸|= ∃r.B(ind1), thus

H1 is free of inter-disjunct redundancy. The same is true of both H2 and H3, despite

the additional conjuncts in C⊓F and C⊓D respectively. Finally, H1 and H2 satisfy

the semantic minimality requirement in condition (iv): while O,H2 |= H1, it is also

the case that O,H1 |=H2 as F(ind1) follows from O. However, H3 does not satisfy

condition (iv), as O,{(C⊓D)(ind1)} |= C(ind1), but O,{C(ind1)} ̸|= (C⊓D)(ind1)

due to the axiom D ⊑C in O. Therefore, it follows that O,H3 |=H1 but O,H1 ̸|=H3.

The same is true for H2, where O,H3 |=H2 but O,H2 ̸|=H3. As a result, H3 is not

semantically minimal as it is stronger than both H1 and H2.

In the above example, H2 demonstrates one form of syntactic redundancy that is

not accounted for by Definition 4.2.1: neither the explanation (C⊓F)(a) nor C(a) are

preferred under the definition, since neither is stronger under the background ontology.

However, if the presence of an additional conjunct makes the hypothesis stronger as in

H3, this would be excluded via the semantic minimality constraint in condition (iv).

Similarly, no preference is made on the number of explanations presented as dis-

junctions in the hypothesis, provided that the overall space of explanations is still se-

mantically minimal. This is illustrated by Example 4.3.3: without further syntactic

constraints, under Definition 4.2.1 both H2 =C(a)∨D(a) and H3 = A(a) are satisfac-

tory hypotheses since neither is strictly stronger than the other under the background

ontology.

One possibility for simplifying cases such as Example 4.3.3 would be to introduce

specific orderings over the disjuncts in H. Definition 4.2.1(iii) can then be applied

based upon the given ordering. In Example 4.3.3, consider an ordering ≻ on the pre-

ferred symbols in explanations such that A≻C ≻D. By performing redundancy checks

for symbols lower down the ordering first, in the presence of an equivalence, less pre-

ferred symbols will be eliminated rather than those ranked higher in the ordering. This

would mean that the disjuncts C(a)∨D(a) would be eliminated first in Example 4.3.3.

Alternatively, the ordering could be based on the number of symbols present in each

disjunct, preferring the shortest in the case of two equivalent explanations.
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There are a variety of approaches to defining and realising preference handling

[CMP96, PPU03, DSTW04]. However, this work focuses on computing the weakest

possible space of independent explanations, rather than ensuring each individual ex-

planation takes the simplest form with respect to criteria such as syntactic redundancy.

As noted, the problem of computing spaces of independent explanations as pre-

sented in Definition 4.2.1 has not been addressed in the DL literature. As a result,

it is not feasible to provide a direct, empirical comparison between the above meth-

ods and the abduction approaches presented in this thesis. The primary reason for

this is the fact that several of the conditions, namely inter-disjunct redundancy and

semantic minimality in this context, differ significantly from existing works on ab-

duction. Therefore, the problem is fundamentally different to the forms of abduction

discussed in Section 3.3 of Chapter 3. Additionally, most works in DLs do not permit

the specification of abducible symbols to constrain the hypotheses produced, which

again changes the problem fundamentally. Consequently, the experimental results pre-

sented in subsequent chapters focus on the performance of the abduction approaches

presented in this thesis in a variety of different scenarios.



Chapter 5

An ABox Abduction Approach for

ALC

This chapter presents an approach for computing hypotheses satisfying the constraints

identified in the previous chapter. To develop such an approach, it is first necessary to

identify a suitable forgetting approach that can be used to compute the weakest suf-

ficient condition of the negated observation under the background ontology, yielding

a set of entailments that can be negated under contraposition to obtain a semantically

minimal hypothesis H, where filtering can then be applied to ensure that the disjunc-

tive redundancy requirement is met. The use of contraposition for abduction presents

a challenge for an ALC observations that take the form of sets of ABox axioms over

different individuals. While ALC concepts are closed under negation, the negation of

sets of ALC ABox axioms presents a challenge. For example, given ψ =C(a)⊓D(b)

where C, D are concepts and a,b are two different individuals, the negation ¬ψ is

not representable in pure ALC. To obtain a hypothesis such as H =C(a)⊓D(b) also

requires the computation of ¬H, which likewise requires the use of disjunctive as-

sertions. Therefore, the forgetting approach used must be capable of handling and

producing these disjunctive assertions.

The forgetting system LETHE, described in Section 3.5.1, is suited to this problem,

and is therefore used to compute the entailments required for contrapositive reasoning.

87
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Since LETHE also provides support for representing cyclic results using fixpoint op-

erators, the abduction problem identified in the previous chapter can be extended to

include explanations requiring least fixpoints. Several filtering methods are proposed

to eliminate disjunctive redundancies, emphasising efficiency in practice and with re-

spect to potential applications.

The proposed abduction approach can perform ABox abduction for input ontolo-

gies and observations expressed in the DL language ALC, producing hypotheses ex-

pressed in ALCµ(∨), i.e., ALC with least fixpoints and disjunctive ABoxes. The

capabilities and shortcomings of the resulting approach to the abduction problem are

identified and discussed, particularly in terms of extensions that must be made to solve

more expressive problems such as observations and hypotheses including role asser-

tions. An experimental evaluation of the resulting algorithm is performed over a corpus

of real world ontologies to provide an indication of the practicality of the approach in

applications.

5.1 Problem Definition

The problem tackled in this chapter is defined as follows.

Definition 5.1.1. Let ⟨O,ψ,SA⟩ be an ABox abduction problem that extends Definition

4.2.1 in the following way: each disjunct α in the hypothesis H (and α ′ in H′) is

expressed in ALCµ and thus the abduction solution is expressed in ALCµ(∨). To be

a solution, H must satisfy conditions (i)–(iv) of Definition 4.2.1.

This problem takes the same form as the abduction problem presented in Definition

4.2.1, following the same motivations. As before, the language for O,ψ is assumed

to be ALC. For H, the form taken is still a disjunction of conjunctions of ABox

axioms, i.e., a disjunction of ABoxes. However, Definition 5.1.1 extends the problem

in that each disjunct in H can be expressed in an extended language: ALC with least

fixpoints (ALCµ). This is due to the fact that the forgetting approach LETHE, which

can handle disjunctive assertions as required, supports the use of fixpoint operators
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to represent cyclic entailments of the given input. This enables the representation of

cyclic explanations if required. As a result, H is expressed in the language ALCµ(∨)
where µ indicates least fixpoints and ∨ indicates the use of disjunctive ABoxes. The

focus remains specifically on ABox abduction, where both ψ and H are ground.

As discussed in the previous chapter, the main restriction applied to the abduction

problem is that neither ψ nor H can contain role assertions. Effectively, this means

that the hypothesis is a disjunction of conjunctions of concept assertions, i.e., a dis-

junction of ALCµ ABoxes without role assertions. The reasoning behind the language

extension required to express the computed hypothesis H and the restrictions applied

are discussed alongside the proposed approach.

5.2 ABox Abduction Algorithm

The proposed forgetting-based abduction algorithm takes as input an ontology O ex-

pressed in the DL ALC, an observation ψ as a set of ALC axioms and a forgetting

signature F . The set of abducibles is the complement of the forgetting signature, i.e.,

F = sig(O,ψ) \ SA where SA is a set of concept and role symbols, and so the for-

getting signature specifies the set of non-abducibles.1 The output is then a hypothesis

expressed as a disjunction of axioms, which uses only symbols in SA and any individ-

uals occurring in O,ψ . Since the problem to be solved is ABox abduction, both ψ and

H consist only of ABox axioms (excluding role assertions), i.e., ground statements.

The algorithm reduces the task of computing abductive hypotheses for the obser-

vation ψ to the task of forgetting, using the following steps:

(1) Negate the observation ψ and add this to the background ontology O.

(2) Compute the forgetting solution V of (O,¬ψ) with respect to the forgetting signa-

ture F .

(3) Extract the reduced forgetting solution V∗, which is the set V∗ ⊆ V obtained by

1As stated in Chapter 4, it is assumed that the set of abducibles contains all individuals in (O,ψ).
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omitting all axioms in V that are redundant under the dual of Definition 5.1.1

condition (iii).

(4) Obtain the hypothesis H by negating the set V∗.

These steps are illustrated in Figure 5.1. The observation ψ takes the form of a set

of ABox axioms:

ψ = {C1(a1), ...,Ck(ak)}

where the Ci are ALC concepts and the ai are individuals. The negation takes the form

¬ψ = ¬C1(a1)∨ ...∨¬Ck(ak)

which is a disjunction of ABox axioms. The negation of ψ is required for contra-

positive reasoning. As discussed earlier, forgetting can be used to compute the set of

entailments, ¬H, required for contraposition:

O,H |= ψ iff O,¬ψ |= ¬H

where in this case the set of entailments ¬H is equal to the forgetting solution V of

(O,¬ψ), which takes the following form:

V = {β1, ...,βm}

where each βi is an ALCν axiom. This is obtained by forgetting the concept names in

F using an appropriate forgetting calculus. As discussed previously, forgetting is the

dual task of uniform interpolation, and therefore the forgetting solution V satisfies the

conditions specified in Definition 3.4.2 for the signature of abducibles SA.

If forgetting was used in isolation, the hypothesis obtained would be the negation

of the forgetting solution V . However, this is only guaranteed to satisfy the notions of
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Input:
Ontology O

Observation ψ
Abducible symbols SA

Step (1)
Contrapose: negate
ψ and add it to O

Step (2)
Compute entailments of
O,¬ψ restricted to SA

Step (3)
Remove redundant axioms
(not needed to explain ψ)

Step (4)
Negate reduced
set of axioms

Output: hypothesis
H = α1 ∨ ... ∨ αm

Use forgetting

Figure 5.1: Steps in the abduction algorithm for computing hypotheses as spaces of
independent explanations.

entailment and semantic minimality, without considering redundancy, captured in con-

ditions (ii) and (iv) of Definition 5.1.1. This follows from the fact that V is a strongest

necessary condition of ¬ψ under O in SA as in Theorem 3.6.1 where O,¬ψ |= V ,

and its negation would be the weakest sufficient condition of ψ [Lin01, DLS01] where

O,¬V |= ψ under contrapositive reasoning. Thus the hypothesis would entail the ob-

servation under O, satisfying condition (ii), and would be semantically minimal in SA,

satisfying the notion in condition (iv) if redundancy was not considered. However, it

would not necessarily satisfy Definition 5.1.1 condition (iii). This is discussed further

in Section 5.4.2 and is illustrated by Example 5.4.1. Additionally, in the event that

there is no suitable hypothesis for ψ in the signature SA, the result obtained by negat-

ing V would simply be inconsistent with O. This is due to the fact that all of the axioms

in V would follow directly from O. For example:

Example 5.2.1. Consider an ontology O = {A ⊑ C,B ⊑ C,E(a))} and observation
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ψ =C(a). Let the signature of abducibles be SA = {E}. Then the forgetting solution

obtained by eliminating A, B and C is V = {E(a)}. The negation of V is ¬E(a), which

is inconsistent with O and is therefore not a suitable hypothesis. The result should

instead be H= /0.

The purpose of Step (3) is to omit unnecessary information in V , to ensure that the

hypothesis fully satisfies Definition 5.1.1. The unnecessary information corresponds to

axioms in V that follow from the background knowledge O together with other axioms

in V itself. This check is the dual of the inter-disjunct redundancy check in Definition

5.1.1(iii), i.e., an axiom βi in V is redundant if the following holds:

O,β1, ...,βi−1,βi+1, ...,βm |= βi

This check therefore eliminates inter-disjunct redundancies such as those in Example

4.3.2. It is assumed that if an axiom βi is redundant, then it is removed from V imme-

diately and the following checks are performed with respect to the remaining axioms.2

This is discussed further in the next section.

The result is a reduced forgetting solution V∗ which takes the form:

V∗ = {β1, ...,βn}

where each βi is expressed in ALCν(∨).3 It is worth noting that each of the axioms

βi ∈ V∗ will be an ABox axiom: either a disjunction over a single individual or a dis-

junctive assertion over multiple individuals. This is due to the fact that all axioms in

the forgetting solution V that are derived solely from the background knowledge in O
will not satisfy the dual of the inter-disjunct requirement in Definition 5.1.1(iii), as they

are entailed by O alone, and will thus not be present in the reduced forgetting solution

2This ensures that if the redundancy occurs due to equivalence, then one of the equivalent axioms is
retained in the reduced forgetting solution.

3Note: the forgetting solution V can contain greatest fixpoints ν , leading to the use of ALCν(∨).
Meanwhile, the hypothesis can contain least fixpoints µ and is expressed in ALCµ(∨), since negation
is pushed inwards and greatest / least fixpoints are dual notions.



5.3. FORGETTING STEP 93

V∗. Axioms that do satisfy the requirement, and therefore appear in V∗, must be de-

rived via inferences with ¬ψ . Since ¬ψ is a disjunction of ABox axioms, any axioms

dervied in this way must also be ABox axioms: it is not possible to derive a TBox ax-

iom (universally quantified) via an inference under the IntALC rules, shown in Figure

3.2, where one of the premises is an ABox axiom (ground). Note however that not all

axioms derived via inferences with ¬ψ will be present in V∗. These characteristics of

V∗ are discussed further in Section 5.4.2.

These redundancies can be eliminated by performing entailment checking for the

dual of the inter-disjunct redundancy requirement for each axiom in V . For real world

ontologies this is not practical due to the complexity of entailment checking in ALC
and the fact that many of these ontologies are large. This necessitates the use of more

efficient approaches to performing Step (3), which is discussed in the next section.

In Step (4) the reduced forgetting solution V∗ is negated. The result of this is a

hypothesis of the form:

H= α1 ∨ ...∨αn

where each disjunct αi is a conjunction of ALCµ concept assertions of the form αi =

D1(a1)⊓ ...⊓Do(ao) where for 1 ≤ j ≤ o each D j is an ALCµ concept and each a j is

an individual. Thus, H can be viewed as a disjunction of ABoxes where H is assumed

to be in disjunctive normal form (DNF).

5.3 Forgetting Step

As discussed in Chapter 3, the connection between forgetting and abduction lies in con-

trapositive reasoning, where forgetting is used to compute the strongest set of entail-

ments of O,¬ψ within the restricted signature SA. Therefore, to realise a forgetting-

based approach to abductive reasoning it is first necessary to identify and apply an

appropriate forgetting calculus.

For the work in this chapter, the resolution-based calculus by Koopmann and Schmidt
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is investigated [KS13, KS15b, KS15a]. The calculus itself, referred to as IntALC , is

presented in Figure 3.2 and is discussed in Section 3.5 of Chapter 3.

The motivations for utilising IntALC specifically include:

1. Forgetting can be performed over ALC ontologies with ABoxes [KS15b].

2. Potentially infinite forgetting solutions can be represented finitely using fixpoint

operators.

3. Disjunctive assertions of the form C1(a1)∨ ...∨Cn(an) are supported.

4. The size of the forgetting solution is constrained to at most a double exponential

size with respect to the input ontology, and the method is guaranteed to termi-

nate.

The ability to perform forgetting in ALC is essential given the setting of the abduc-

tion problem specified in Definition 5.1.1. Similarly, the ability to perform forgetting

in the presence of an ABox is also essential for producing a hypothesis as a disjunction

of ABox axioms to explain an ABox observation.

The option to represent infinite results is important for abduction, since it is pos-

sible that the hypothesis obtained may involve cycles as illustrated by the following

example:

Example 5.3.1. Consider the following ontology O:

Mammal ⊑ ∃hasParent.Mammal

and an observation ψ = {¬Mammal(a∗)} with a forgetting signature F = {Mammal}.

In Step (1), the observation is negated to obtain ¬ψ = Mammal(a∗), and is added to

O. In Step (2), IntALC is applied as follows:

1.¬Mammal(x)∨∃hasParent.D1(x)

2.¬D1(x)∨Mammal(x)
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3.Mammal(a∗)

4.¬D1(x)∨∃hasParent.D1(x) Resolution(1,2)

5.∃hasParent.D1(a∗) Resolution(1,3)

At this point, all inferences have been made. Now definer symbols are eliminated and

clauses containing symbols in F = {Mammal} are removed. The elimination of D1

results in the introduction of a greatest fixpoint operator, representing a potentially

infinite chain under the hasParent relation in axioms 4 and 5. The resulting uniform

interpolant is

V = {∃hasParent.νX .(∃hasParent.X)(a∗)}

where νX .(∃hasParent.X) is the greatest fixpoint. In Step (3), since there are no re-

dundant axioms with respect to Definition 5.1.1 condition (iii), the reduced uniform

interpolant V∗ is simply equal to V . In Step (4), V∗ is negated to obtain the hypothesis:

H= ∀hasParent.µX .(∀hasParent.X)(a∗)

where µX is a least fixpoint operator.

The introduction of fixpoint operators via IntALC can be seen by seen by compar-

ing the elimination of non-cylic and cyclic definers under Ackermann’s lemma [KS13]

shown in Figure 3.3, where the latter case results in a greatest fixpoint operator be-

ing used. Since the forgetting solution is negated as part of the abduction procedure,

this means that least fixpoints, and only least fixpoints, could appear in the abduction

hypothesis.

The introduction of a greatest fixpoint operator is due to the presence of axiom 4 in the

above example. Effectively, the meaning of the least fixpoint in H is that, if a∗ is not a

Mammal as in ψ , then it must “not have a parent” or ”must have a parent who does not

have a parent...” and so on. In this limited ontology, this is the semantically minimal

hypothesis in the signature SA, i.e, not involving the concept Mammal.
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Thus in theory the result of forgetting (and abduction) can involve an infinite chain

of axioms, which can be represented finitely via fixpoint operators. In practice, fix-

points are rarely required: in previous work only 7.2% of uniform interpolants con-

tained cycles [KS13]. In the abduction context of Definition 5.1.1, it is reasonable to

expect that fixpoints would not be required frequently: the cycle would need to occur

over symbols in ψ that are part of the forgetting signature F , and the axiom expressed

using a fixpoint would need to be derivable from ¬ψ to ensure that it is kept in the

reduced forgetting solution V∗. This intuition is supported by the results in Section

5.6, where fixpoints did not occur in any case in practice.

The forgetting calculus IntALC can also handle disjunctive ABox assertions which

are not representable in pure ALC. This is needed since, for instance, if the observation

is a set of assertions over different individuals then the negation of the observation will

take the form of a disjunctive assertion. In addition, disjunctive assertions will be

needed for some abduction cases involving multiple individuals in the hypothesis:

Example 5.3.2. Consider the following abduction problem:

O = {A ⊑C,

B ⊑ D}

ψ = {C(a),

D(b)}

SA = {A,B}

In Step (1), ¬ψ = ¬C(a)∨¬D(b) is added to O. In Step (2), (O,¬ψ) is translated

to the normal form required by IntALC and the following inferences are performed as

part of the forgetting procedure:

1)¬A(x)∨C(x)

2)¬B(x)∨D(x)

3)¬C(a)∨¬D(b)
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4)¬A(a)∨¬D(b) Resolution(1, 3)

5)¬C(a)∨¬B(b) Resolution(2, 3)

6)¬A(a)∨¬B(b) Resolution(1, 5) or Resolution(2, 4)

All clauses containing symbols in F are then removed, leaving only clause 6. The re-

sulting forgetting solution is then V = {¬A(a)∨¬B(b)}. Here, Step (3) simply returns

V∗ = V as there are no redundant clauses under the dual of Definition 5.1.1 condition

(iii). The hypothesis returned is then:

H= A(a)⊓B(b)

As the above example shows, when computing a hypothesis involving a conjunc-

tion over multiple individuals, disjunctive assertions are still required due to contra-

positive reasoning.

In terms of efficiency, termination of the method is important to ensure that a hy-

pothesis is returned if one exists. The bound on the size of the forgetting result is also

beneficial as this will have an impact on the performance of the resulting abduction

method, particularly during the filtering process in Step (3). However, since this bound

still leaves the possibility of a forgetting solution that is double exponential in size with

respect to the input, efficient methods for this procedure are still essential as presented

in the next section.

Note that the hypothesis specified in Definition 5.1.1 takes the form of a disjunc-

tion of conjunctions of concept assertions. Thus, the hypothesis is in disjunctive nor-

mal form (DNF). Since the transformation rules required by IntALC present the input

ontology, in this case O,¬ψ as a set of clauses in CNF, the hypothesis obtained by

negating the forgetting result will be in DNF as required.

Two further properties of the IntALC method that are also important to the proposed

abduction method are: (i) Soundness: any ontology O′ returned by applying IntALC

to an ontology O is a forgetting solution. (ii) Interpolation Completeness: if there
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exists a forgetting solution O′ of ontology O, then the result of IntALC is an ontology

V such that V ≡ O′. Thus, for any ALC ontology O and any forgetting signature

F , IntALC always returns a finite forgetting solution. Soundness and completeness

of the forgetting procedure naturally relate to the soundness and completeness of the

resulting abduction procedure, since the filtering and negation steps operate under the

assumption that the initial forgetting solution V is correct.

Aside from these main benefits, it is also important to consider the language used

to express the hypothesis H, and how this compares to the language used for the input.

For a first investigation of forgetting-based approaches to abduction in DLs, choos-

ing a method that only minimally extends the language used to express O and ψ has

benefits: adding a hypothesis expressed in a more expressive language than the back-

ground ontology adds additional complexity to further reasoning problems. From an

engineering perspective, it also fundamentally changes the modelling of information

represented in subsequent iterations of a knowledge base. This may be problematic in

applications for which efficient reasoning and careful modelling are important issues.

Also, starting with a commonly used expressive DL such as ALC provides a good

basis for characterising the capabilities of forgetting-based approaches to abduction in

DLs.

5.4 Practical Realisation

5.4.1 Assumptions on Input and Output

Several assumptions are made regarding the input to the algorithm. The method IntALC

does not cater for negated role assertions as can be seen in Figure 3.2. Thus, it is not

possible to take an observation with a role assertion as input due to contraposition, and

it is not possible to produce a role assertion as a hypothesis.

Another assumption is based on the notion of semantic minimality: if the forgetting

signature F does not contain at least one symbol in the observation ψ , the semantically

minimal hypothesis will simply be ψ itself, i.e., H = ψ . This is reflected in the fact
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that no inferences would occur between O and ¬ψ under IntALC . To avoid this trivial

hypothesis, F should contain at least one symbol in the signature of ψ .

Several assumptions are also made regarding the output H. As discussed previ-

ously, two extensions of ALC are potentially required to express H. In the event

that F contains concepts that occur within a cycle in O, the forgetting result obtained

using IntALC may contain greatest fixpoints [KS13] to finitely represent infinite forget-

ting solutions. For our method, this means that H may contain least fixpoints due to

the negation of greatest fixpoints under contraposition. In these cases, the output lan-

guage would be ALCµ . Disjunctive assertions are required during both the forgetting

step, to represent the negation of an observation over multiple individuals, and poten-

tially to represent the final hypothesis H as a disjunction of assertions over multiple

individuals.

Thus, with these two extensions, the most expressive language required to represent

H is assumed to be ALCµ(∨), i.e., ALC extended with least fixpoint operators and

disjunctive assertions.

5.4.2 Practical Elimination of Redundant Hypotheses

As discussed in Chapter 4, the inter-disjunct redundancy condition (iii) in Definition

5.1.1 is required to eliminate redundant disjuncts in the computed hypotheses. Since

the hypotheses obtained via this approach are interpreted as sets of explanations, this

ensures that the explanations obtained are consistent with the background ontology O
and express a unique avenue of explanation in the sense that they are not equivalent to

or stronger than other explanations in the hypothesis. The following example illustrates

how such redundancies may be derived using the forgetting-based approach outlined

in the previous section:

Example 5.4.1. Consider the following abduction problem:

O = {A⊓D ⊑⊥,

B ⊑C,
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E ⊑C,

B ⊑ E,

D(a)}

ψ =C(a)

SA = {A,B,D,E}

In Step (1), ¬ψ = ¬C(a) is added to O. The result of forgetting C in Step (2) is then:

V = {A⊓D ⊑⊥,

B ⊑ E,

D(a),

¬B(a),

¬E(a),

¬A(a)}

In the forgetting context, V is a correct solution to the forgetting problem, i.e., it is a

strongest necessary condition of ¬ψ under O in SA. If this was negated directly, the

candidate hypothesis would be the following space of explanations:

H= A(a∗)⊓D(a∗)∨¬B(a∗)⊓E(a∗)∨¬D(a)∨B(a)∨E(a)∨A(a)

where a∗ is a fresh individual, since the negation of a TBox axiom of the form A ⊑
B can be equivalently represented as ¬A(a∗)⊓ B(a∗).4 However, in the abduction

context the hypothesis obtained by negating V directly consists mostly of redundant

explanations. Instead of negating V directly, a subset of relevant information should

first be extracted. The two TBox axioms, as well as D(a), follow directly from the

background ontology O and should be discarded as redundant: they are contained

4Since TBox axioms are implicitly universally quantified, the universal quantifier becomes an ex-
istential quantifier once negation is pushed inwards. Application of Skolemization results in the form
expressed above.
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within O and therefore will not contribute to an explanation for ψ when negated.

Similarly, ¬A(a) follows from A⊓D ⊑⊥ together with D(a) and should be discarded.

Finally, it is the case that O,¬E(a) |= ¬B(a). Therefore, B(a) is redundant under

the dual of the interdisjunct redundancy condition (iii) in Definition 5.1.1. The final

hypothesis after redundancy elimination is therefore H= E(a).

Step (3) of Figure 5.1 is also necessary to ensure that an entirely redundant hy-

pothesis is not returned. In the worst case, the hypothesis obtained could simply be

inconsistent with the ontology O, as in the following example:

Example 5.4.2. Consider the abduction problem in Example 5.4.1. If the signature of

abducibles was restricted to SA = {A,D}, the forgetting solution would instead be:

V ={A⊓D ⊑⊥,

D(a),

¬A(a)}

As before, these three axioms are redundant with respect to the abduction problem,

since each follows directly from O. Thus, if the negated forgetting solution was re-

turned directly without additional filtering, the resulting hypothesis H would be incon-

sistent with O.

The situation illustrated by Example 5.4.2 occurs in general when there is no hy-

pothesis to explain the observation using the specified abducibles.

As demonstrated by the above examples: the hypothesis obtained by directly negat-

ing the forgetting solution is unlikely to satisfy Definition 5.1.1(iii). In practice, most

of the disjuncts in such a hypothesis will be redundant: the forgetting solution is the

strongest set of entailments of O,¬ψ , and will thus contain many entailments purely

from O. For large ontologies, most of the entailments will indeed follow purely from

O. Also, any redundancy contained within O will be reflected in this hypothesis, as

demonstrated by Example 5.4.1. And it is not reasonable to assume that real world
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ontologies are free of redundancies. In fact, many of these “redundant” entailments

may be intentional design choices when constructing an ontology in an ontology engi-

neering setting: it may be necessary to emphasise subset relations directly, or to make

extensive use of equivalences.

If an axiom βi is redundant, it is removed from V immediately. For the following

disjuncts, the check is performed against the remaining axioms in V . This avoids

discarding too many axioms: if multiple axioms express the same information, i.e. are

equivalent under O, one of them should be retained in the final hypothesis H. This is

illustrated by the following example:

Example 5.4.3. Consider the following abduction problem:

O = {A ≡ B,

A ⊑C,

B ⊑C,

∃r.D ⊑C}

ψ =C(a)

SA = {r,A,B,D}

and a candidate hypothesis H = A(a)∨B(a)∨∃r.D(a). The redundancy check pro-

ceeds as follows: since O,A(a) |= B(a)∨ ∃r.D(a), the disjunct A(a) is considered

redundant with respect to Definition 5.1.1(iii). If the check O,B(a) |= A(a)∨∃r.D(a)

is then performed, then B(a) will also be a redundant explanation and the hypothesis

returned would be H2 = ∃r.D(a). However, if A(a) had been removed immediately, the

check O,B(a) |= ∃r.D(a) would return false and the returned hypothesis would instead

be H3 = B(a)∨∃r.D(a). Since O,H2 |=H3, but O,H3 ̸|=H2, H2 does not satisfy the

semantic minimality condition. Thus, the correct solution under Definition 5.1.1 is H3.

In cases involving equivalent disjuncts, there are multiple possible solutions de-

pending on the order in which the disjuncts are checked. Thus, it would be possible to
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apply an additional preference relation [CMP96] on the possible explanations to ensure

which hypotheses would be returned in these cases. For example, it would be possi-

ble to check disjuncts in order of decreasing length, thereby preferring the shortest of

multiple equivalent disjuncts. Here, since the aim is not to satisfy such additional pref-

erences, the order in which the axioms are checked is random unless stated otherwise.

To perform the redundancy elimination, Step (3) requires checking the relation

O,V \βi ̸|= βi for every axiom βi in V . This could be performed using an external DL

reasoner. However, in practice this check is likely to be intractable, particularly over

large ontologies. In ALC, entailment checking has exponential complexity [Sch94].

In the worst case, the forgetting solution V obtained via application of IntALC can be

double exponential in size with respect to the input [KS15b]. As a result, there could be

a double exponential number of entailment checks required to eliminate redundancies

in Step (3). Thus, the worst-case complexity of Step (3) would be 3EXPTIME.

Regardless, Step (3) is essential; without it there will be a large number of redun-

dant explanations, under Definition 5.1.1(iii), in the hypotheses obtained. Therefore,

for a forgetting-based abduction approach to be viable, the question arises if a compu-

tationally feasible alternative can be devised. The required extension is illustrated in

Figure 5.2.

To ensure that the computational cost of performing Step (3) is lowered, the number

of entailment checks performed must be reduced. Our implementation of this step

begins by tracing the dependency of axioms in V on the negated observation ¬ψ . To

define the notion of dependency clearly, we will need the following notions. Each

premise in an application of an inference rule in IntALC is referred to as a parent of

the conclusion of the rule. The ancestor relation is defined as the reflexive, transitive

closure of the parent relation.

Therefore, an axiom β is defined as dependent upon ¬ψ if in the derivation using

IntALC it has at least one ancestor axiom in ¬ψ . The set of axioms dependent on

¬ψ is in general a superset of the reduced uniform interpolant V∗ and is referred to

as V∗
app, i.e., an approximation of V∗. The notion of dependency is used to devise
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Input:
Ontology O

Observation ψ
Abducible symbols SA

Step (1)
Contrapose: negate
ψ and add it to O

Step (2)
Compute entailments of
O,¬ψ restricted to SA

Step (3)
Perform annotation-based

approximate filtering

Negate approximately
reduced set of axioms

Full filtering
via entailment

checks

Step (4)
Negate fully reduced

set of axioms

Output: independent explanations
H = α1 ∨ ... ∨ αn

Output: approximate hypothesis
Happ = α1 ∨ ... ∨ αm

Use forgetting

Figure 5.2: Steps in the abduction algorithm for computing hypotheses as spaces of
independent explanations, utilising annotation-based filtering for efficient redundancy
elimination.

an alternative approach to Step (3) that reduces the computational cost of filtering

while maintaining the property that the hypothesis takes the form of a disjunction of

independent explanations.

The following example illustrates the above notions.
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Example 5.4.4. Consider the ontology:

O ={A ⊑ ∃r.B,

E ⊑C,

C ⊑ F,

C(e),

r(a,b)}

with an observation consisting of two concept assertions: ψ = {∃r.B(a),C(d)}. If the

set of abducibles is specified as SA = {A,B,E,F}, then the following is provided as

input to the forgetting step in Figure 5.1 after the negation of ψ and the normalisation

of (O,¬ψ):

1)¬A(x)∨∃r.D1(x)

2)¬D1(x)∨B(x)

3)¬E(x)∨C(x)

4)¬C(x)∨F(x)

5)C(e)

6)r(a,b)

7)∀r.D2(a)∨¬C(d) (from ¬ψ)

8)¬D2(x)∨¬B(x)

the result of forgetting F = {r,C} is then computed as follows:

9)F(e) Resolution(4, 5)

10)∀r.D2(a)∨¬E(d) Resolution(3, 7)

11)¬E(x)∨F(x) Resolution(3, 4)

12)¬A(a)∨¬C(d)∨∃r.D12(a) Role Propagation(1, 7)
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13)¬D12(x)∨D1(x)

14)¬D12(x)∨D2(x)

15)¬D12(x)∨B(x) Resolution(2, 13)

16)¬D12(x)∨¬B(x) Resolution(8, 14)

17)¬D12(x) Resolution(15, 16)

18)¬A(a)∨¬C(d) ∃ -Role Restriction Elimination(12, 17)

19)¬A(a)∨¬E(d) Resolution(3, 18)

20)¬C(d)∨D2(b) Role Instantiation(6, 10)

21)¬C(d)∨¬B(b) Resolution(8, 20)

22)¬E(d)∨¬B(b) Resolution(3, 21)

after elimination of definers and elimination of clauses containing symbols in F , the

following forgetting solution is obtained:

V = {E ⊑ F,F(e),¬A(a)∨¬E(d),¬B(b)∨¬E(d)}

Here, the axioms E ⊑C and C ⊑ F in O, corresponding to clauses (3) and (4), are the

parents of the axiom E ⊑F corresponding to clause (11). Thus, E ⊑F is not dependent

on ¬ψ . The same can be said of F(e), which has the parents C ⊑ F and C(e), both

of which occur in O. The remaining two axioms in V depend upon the observation

¬ψ , since they have an ancestor in ¬ψ represented by clause (7). Thus, the forgetting

solution V can be reduced to obtain:

V∗ = {¬A(a)∨¬E(d),¬B(b)∨¬E(d)}

In this paper, dependency tracing is achieved by using annotations, similar to

[KS17, KC17, PMIMS17]. These take the form of fresh concept names that do not

occur in the signature of the ontology nor the observation. Annotations act as labels

that are disjunctively appended to existing axioms. They are then used to trace which
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axioms are the ancestors of inferred axioms. This relies on the fact that the annotation

concept is not included in the forgetting signature F . Thus, it will carry over from the

parent to the result of any inference in IntALC , as formalised in the following property:

Theorem 5.4.1. Let O be an ontology, ψ an observation as a set of ABox axioms, F a

forgetting signature and ℓ a fresh annotator concept added as an extra disjunct to each

clause in the clausal form of ¬ψ where ℓ ̸∈ sig(O∪ψ) and ℓ ̸∈ F . For every axiom β

in the solution of forgetting F from (O,¬ψ) using the calculus IntALC , denoted as V ,

β is dependent on ¬ψ iff ℓ ∈ sig(β ).

Therefore, the presence of the annotation concept in the signature of an inferred

axiom indicates that the axiom has at least one ancestor in ¬ψ . Since the aim is to

trace dependency specifically on ¬ψ , only clauses that are part of ¬ψ need to be anno-

tated. As it is not important which specific clauses in ¬ψ were used in the derivation

of dependent axioms, only one annotation concept name is required. This will be re-

ferred to as ℓ. Using this technique, the process of extracting V∗
app from the uniform

interpolant V is a matter of removing all axioms in V that do not contain ℓ. Then, ℓ can

be replaced with ⊥ to obtain the annotation-free set V∗
app.

The use of dependency tracing to reduce the cost of Step (3) in Figure 5.1 is mo-

tivated by the fact that all axioms in the forgetting solution V that are not dependent

on ¬ψ are guaranteed to be redundant with respect to the abduction problem. Lemma

5.4.1 captures this fact.

Lemma 5.4.1. Let V be the forgetting solution of O,¬ψ in a given signature of ab-

ducibles SA, and let βi be an axiom in V such that βi is not dependent on ¬ψ . Then

it is the case that βi is redundant with respect to the abduction problem in Definition

5.1.1.

Proof: For every axiom βi in V we have that O,¬ψ |= βi from the definition of uniform

interpolation and the soundness of IntALC . If βi is not dependent on ¬ψ then it has no

ancestors in ¬ψ , i.e., it was derived solely from axioms in O. Therefore it must be the

case that O |= βi. As a result, βi will not satisfy the dual of Definition 5.1.1 condition
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(iii):

O,β1, ...,βi−1,βi+1, ...,βn ̸|= βi

and the hypothesis containing ¬βi as a disjunct will contain inter-disjunct redundancy.

Since this annotation-based filtering is sound, i.e., it only removes axioms that are

not dependent on ψ , as these are directly derivable from O and are thus guaranteed to

be redundant, it can be used at the start of Step (3) to compute V∗
app. The soundness of

the annotation-based filtering is shown in Section 5.5.

To guarantee the computation of the reduced uniform interpolant V∗, the entail-

ment check corresponding to the dual of the inter-disjunct redundancy condition (iii)

in Definition 5.1.1 must then be performed for each axiom β ∈ V∗
app. This is due to the

fact that not all axioms that are dependent upon ¬ψ are guaranteed to be relevant to the

abduction problem. Since some axioms may have multiple derivations, they can con-

tain the annotation concept but still be redundant with respect to the dual of Definition

5.1.1(iii). For example:

Example 5.4.5. Consider the following abduction problem:

O ={A ⊑C,

B ⊑C,

A⊓D ⊑⊥,

D(a)}

ψ =C(a)

SA ={A,B,D}

The annotated form of ¬ψ is ¬ψ = ℓ⊔¬C(a). Using F = {C}, the result of forgetting

in Step (2) is:

V = {A⊓D ⊑⊥,D(a),(ℓ⊔¬A)(a),(ℓ⊔¬B)(a)}
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Note: no inference is made with D(a), since D ̸∈ F . In Step (3) extracting all axioms

with annotations and setting ℓ=⊥ results in the following set of axioms:

V∗
app = {¬A(a),¬B(a)}

Despite ¬A(a) being derivable using ¬ψ , it follows from the original ontology O and

is therefore redundant with respect to Definition 5.1.1(iii). This can be detected by per-

forming the entailment check in Step (3), and this axiom should therefore be removed

from V∗
app to obtain the reduced forgetting solution V∗.

As discussed earlier, V∗ will only contain ABox axioms, possibly including dis-

junctive assertions. This is due to the fact that V∗
app, and by extension V∗, contain only

axioms that have at least one ancestor from ¬ψ . Since ¬ψ is composed entirely of

concept assertions (ground), any descendents of ¬ψ must also be ground. This can be

confirmed by examining the rules in Figure 3.2, where at least one if not both of the

premises are ground.

This method of filtering out redundancies has several advantages. First, it is not

specific to ALC and can be applied if the abduction method is later extended to more

expressive DL languages. Second, by removing axioms that are not dependent on ψ ,

the method reduces the cost of Step (3) as checking the signature of each axiom for the

presence of ℓ is linear in the size of V . In the worst case V∗
app is equal to V and a double

exponential number of entailment checks are still required. For this worst case scenario

to occur, it must be the case that all axioms in V have at least one ancestor in ¬ψ . Since

it is usually the case that the observation ψ is smaller than the background knowledge

in O, this would require one of several situations to occur: ψ contains a collection of

the most common symbols in O, which are then specified as non-abducible, or most of

the signature of O must be forgotten. In practice, as demonstrated by the experiments

in Section 5.6, this is unlikely: V∗
app is usually a small fraction of V as shown by the

results in Table 5.3 (pg. 127).

Outside of the worst case, each redundancy eliminated from V to V∗
app replaces an
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exponential check with a linear one, reducing the computational cost of Step (3).

The entailment checks that must be performed on V∗
app to compute V∗ may still be

costly in the event that many axioms are dependent on ψ in V . Therefore, we propose

that in some cases it may be pragmatic to relax the allowed hypotheses by negating

V∗
app instead of the reduced uniform interpolant V∗ itself. In this case, an additional

check, O,H ̸|=⊥, is required to rule out inconsistent hypotheses if all of the axioms

in V∗
app are redundant. This can occur if there is no explanation for the observation ψ

within the signature of abducibles SA. This approximate approach results in a hypoth-

esis Happ which satisfies conditions (i), (ii) and a weaker form of (iv) in Definition

5.1.1, i.e., it does not satisfy condition (iii).

To summarise, we suggest two realisations of Step (3) of the proposed abduction

method. (a) Approximate filtering. This computes an approximation of the hypothesis

denoted by Happ by negating the approximately reduced V∗
app. (b) Full filtering, which

performs the entailment check in Step (3) for each axiom in V∗
app to obtain V∗ and thus

the hypothesis H which is guaranteed to fully satisfy Definition 5.1.1. Note that for

setting (b), the approximation step is still used to reduce the overall cost of Step (3).

In practice, the full filtering step uses an external DL reasoner to check the dual of

Definition 5.1.1 condition (iii), i.e., the following:

O,β1, ...,βi−1,βi+1, ...,βn ̸|= βi

for each axiom βi ∈ V∗
app, thereby extracting the reduced forgetting solution V∗. As a

consequence of this, since there are no DL reasoners that can currently handle fixpoint

operators, it is not possible to determine whether or not a disjunct containing a fixpoint

operator is redundant with respect to condition (iii). However, greatest fixpoints can

be simulated using fresh concept symbols: by replacing νX .C[X ] with a fresh concept

symbol D and adding an axiom of the form D ⊑ C[D → X ]. As the forgetting solu-

tion, and hence V∗
app, are guaranteed to only contain greatest fixpoint operators, it is

possible to retain fixpoints when checking the redundancy of all of the other axioms.

For example, using the reasoner HermiT [GHM+14], the check above is reduced to the
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satisfiability check O,β1, ...,βi−1,βi+1, ...,βn,¬βi ̸|=⊥. If a greatest fixpoint occurs in

any of the β j such that j ̸= i, then the check proceeds as normal. Otherwise, if a fix-

point operator occurs in βi, i.e., under negation, then it is not possible to complete the

check. As a result, in the presence of redundant fixpoints in V∗
app, the final hypothesis

will still be guaranteed to satisfy conditions (i), (ii) and (iv) of Definition 5.1.1, with

the caveat that condition (iii) is satisfied up to possible redundancy of disjuncts in H
containing fixpoint operators.

There are also several ways of applying the above filtering to eliminate redundant

disjuncts based on whether or not flattening is applied to V∗
app and by extension the

hypothesis obtained. Flattening refers to the process of pulling out nested disjunctions,

or in the forgetting solution conjunctions. This is illustrated by Example 5.4.6.

Example 5.4.6. Consider the following abduction problem:

O = {∃r.(A⊔B)⊑ ∃r.C,

∃r.B ⊑ D,

D ⊑ ∃r.C}

ψ =∃r.C(a)

SA = {r,A,B,D}

Application of IntALC proceeds as follows, where clauses (1)–(8) are the result of the

normal form transformation on O,¬ψ:

1)∀r.D1(x)∨∃r.D2(x)

2)¬D1(x)∨¬A(x)

3)¬D1(x)∨¬B(x)

4)¬D2(x)∨C(x)

5)∀r.D3(x)∨D(x)

6)¬D(x)∨∃r.D2(x)
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7)∀r.D3 ∨ ℓ(a)

8)¬D3(x)∨¬C(x)

9)∀r.D1 ∨∃r.D23 ∨ ℓ(a) Role Propagation(1, 7)

10)¬D23(x)∨D2(x)

11)¬D23(x)∨D3(x)

12)¬D23(x)∨C(x) Resolution(4, 10)

13)¬D23(x)∨¬C(x) Resolution(8, 11)

14)¬D23(x) Resolution(12, 13)

15)∀r.D1 ∨ ℓ(a) ∃-Role Restriction Elimination(9, 14)

16)¬D(x)∨∃r.D23 ∨ ℓ(a) Role Propagation(6, 7)

17)¬D(x)∨ ℓ(a) ∃-Role Restriction Elimination(16, 17)

Note that role propagation is only applied to enable further resolution inferences on

symbols in F [Koo15]. After the application of definer elimination, removal of clauses

containing F , subsumption deletion and elimination of the annotation concept ℓ, the

approximate reduced uniform interpolant consists of clause 15, where D1 is replaced

by ¬A⊓¬B due to definer elimination with clauses 2 and 3, and clause 17:

V∗
app = {∀r.(¬A⊓¬B)(a),¬D(a)}

To extract V∗, the dual of Definition 5.1.1(iii) is then checked using an external rea-

soner. Since O,∀r.(¬A⊓¬B)(a) ̸|= ¬D(a) and O,¬D(a) ̸|= ∀r.(¬A⊓¬B)(a), the final

hypothesis is:

H1 = ∃r.(A⊔B)(a)∨D(a)

However, if flattening is first applied, then the universal quantifier in ∀r.(¬A⊓¬B)(a)
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distributes, resulting in:

V∗
app = {∀r.¬A(a),∀r.¬B(a),¬D(a)}

Performing the entailment checks to extract V∗ then proceeds as before. This time,

O,¬D(a) |= ∀r.¬B(a), and thus this axiom is removed. The resulting hypothesis is

then:

H2 = ∃r.A(a)∨D(a)

In the above example if we consider “disjuncts” to be possibly unflattened, i.e.

∃r.(A⊔B) would be seen as a single disjunct, then both candidate hypotheses satisfy

Definition 5.1.1 since both satisfy condition (iii) and O,H1 |= H2 and O,H2 |= H1.

However, if flattening is assumed to be applied to V∗
app, the optimal solution is H2.

To achieve this it is necessary to ensure that all conjunctions in V∗
app, or dually

all disjunctions in H, are pulled out prior to performing the inter-disjunct redundancy

check. Since the output of forgetting in Step (2) is already assumed to be in CNF, the

following transformation is sufficient to ensure that all conjunctions in V , and hence

all disjuncts in H are pulled out and checked for redundancy according to Definition

5.1.1(iii) individually:

∀r.(C⊓D) ⇐⇒ ∀r.C⊓∀r.D

This transformation ensures that all concept assertions of the form ∃r.(C⊔D)(a) oc-

curing in H are flattened to ∃r.C(a)∨∃r.D(a).

5.4.3 Remark on Role Forgetting

In prior work [DS19a], only concept forgetting was utilised for abduction, i.e., it was

assumed that the signature of abducibles SA contained all role symbols in sig(O,ψ).

However, it has since been determined that role forgetting is complete for the abduction
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setting in this chapter, assuming that role assertions are not present in the observation

nor the hypothesis.

Example 5.4.7. Consider the following abduction problem:

O ={C ⊑ ∃r.D}

ψ ={∃r.D(a)}

SA ={C,D}

The following derivation should occur during forgetting in practice:

1)¬C∨∃r.D1

2)¬D1 ∨D

3)(∀r.D2 ∨ ℓ)(a)

4)¬D2 ∨¬D

5)(¬C∨∃r.D12 ∨ ℓ)(a) RolePropagation(1,3)

6)¬D12 ∨D1

7)¬D12 ∨D2

8)¬D12 ∨D Resolution(2,6)

9)¬D12 ∨¬D Resolution(4,7)

10)¬D12 Resolution(8,9)

11)(¬C∨ ℓ)(a) ∃−RoleRestrictionElimination(5,10)

the reduced forgetting solution, after elimination of definer symbols and clauses con-

taining non-abducibles, is V∗ = ¬C(a). The resulting hypothesis is therefore:

H=C(a)

as expected. Note, this hypothesis can also be reached by specifying the signature
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of abducibles as SA = {r,C}. However, as the above shows, role forgetting is not

problematic in this case.

Due to an implementation issue in the version of LETHE used at the time of pub-

lication, the forgetting solution obtained for the above example was instead V = { /0}.

Thus, no hypothesis could be found despite the existence of a hypothesis satisfying

Definition 5.1.1. Specifically, it is necessary to ensure that the restriction on per-

forming resolution only on symbols in F is loosened for pairs of clauses of the form

{¬D12∨C,¬D12∨¬C} [Koo15]. This ensures that the existential role restriction elim-

ination rule can be applied as in Example 5.4.7.

However, the incompleteness of the IntALC calculus for role forgetting with respect

to abduction is still apparent in the case of TBox abduction, for example:

Example 5.4.8. Consider the following instance of the abduction problem:

O ={ /0}

ψ ={∃r.C ⊑ ∃r.D}

SA ={C,D}

There are several ways to represent the negation of the observation. Here, it is as-

sumed that it takes the form ¬ψ = (∃r.C⊓∀r.¬D)(a∗), where a∗ is a fresh individual.

Including the annotation process, inferences could then be performed as follows:

1)(∃r.D1 ∨ ℓ)(a∗)

2)¬D1 ∨C

3)(∀r.D2 ∨ ℓ)(a∗)

4)¬D2 ∨¬D

5)(∃r.D12 ∨ ℓ)(a∗) RolePropagation(1,3)

...

Even if role propagation is applied between clauses 1 and 5, the resulting reduced
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forgetting solution would be V∗ = { /0}. This is due to the fact that the only clauses

dependent on ¬ψ contain the symbol r, all of which will be deleted during the removal

of clauses containing symbols in F .

In the above TBox abduction example, role forgetting is indeed incomplete, since

the expected TBox abduction hypothesis in the signature SA = {C,D} is:

H=C ⊑ D

TBox abduction is studied in more detail in Chapter 7, which lifts the solution to

include TBox abduction as part of the more general task of Knowledge Base abduction.

5.5 Properties of the Approach

In this section proofs for the soundness and completeness of the abduction approach,

with respect to returning hypotheses satisfying the conditions in Definition 5.1.1, are

provided. The approach taken is the full approach in Figure 5.2: computing the seman-

tically minimal space of independent explanations using annotation-based filtering as a

pre-processing step, before eliminating any remaining redundant explanations. There-

fore, this section will also cover the soundness of the annotation-based filtering ap-

proach, with respect to eliminating only redundant explanations, since this approxima-

tion step is necessary to ensure that the method remains tractable over large ontologies.

5.5.1 Soundness and Completeness

To begin proving the soundness and completeness of the forgetting-based abduction

approach, it is necessary to consider the soundness and completeness of the forgetting

step in Step (2), and the filtering step in Step (3). For the forgetting step, it is essential

that the calculus used is sound and complete with respect to the forgetting problem.

From the abduction context, this means that the forgetting solution returned is correct

and satisfies the expected characteristic of being the strongest necessary condition of
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the input O,¬ψ provided in Step (2).

Recalling from Definition 3.5.1 and Definition 3.5.2, the soundness and interpola-

tion completeness of IntALC with respect to forgetting over ALCν(∨) ontologies have

been proven in [KS15b, Koo15]. Since the abduction problem in this chapter requires

forgetting over ontologies expressed in ALC(∨), i.e. O,¬ψ where ψ is a conjunction

of ALC concept assertions, these proofs also hold in the context provided in this sec-

tion. Importantly, this means that the forgetting solution returned in Step (2) is indeed

a strongest necessary condition of the input O,¬ψ .

Theorem 5.5.1. The calculus IntALC is sound and interpolation complete for comput-

ing forgetting solutions of ontologies expressed in ALCν with disjunctive assertions.

From this it is the case that if a result V is returned in Step (2), then it is a correct solu-

tion to forgetting non-abducibles from O,¬ψ . This means that it is also the strongest

necessary condition of O,¬ψ in the signature SA as in Theorem 3.6.1.

In Step (3), the filtering step ensures that the returned hypothesis satisfies the inter-

disjunct redundancy requirement in Definition 5.1.1 condition (iii). This is done by

eliminating all axioms in V that do not satisfy the dual of the aforementioned condition.

There are two cases to be considered: first, the case where the check:

O,β1, ...,βi−1,βi+1, ...,βn |= βi

is applied exhaustively to every axiom βi in V . The second case is to apply the above

check only to the result of the approximate filtering step V∗
app. In the first case, per-

forming the above entailment check exhaustively using an external reasoner guarantees

that the reduced forgetting solution V∗ is obtained by removing every axiom βi in V
for which the entailment holds.

The following Lemmas cover key properties of the forgetting solution V and the re-

duced forgetting solution V∗ that are useful in proving the soundness and completeness

of the approach with respect to Definition 5.1.1.

Lemma 5.5.1. O,¬ψ |= V
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Proof: The soundness of IntALC has been proven in [KS13, KS15b]. Thus, the set

V is a forgetting solution of the input (O,¬ψ) and satisfies the conditions in Defini-

tion 3.4.2 for the signature SA. The lemma then follows from Theorem 3.6.1: if V
is a strongest necessary condition of ¬ψ under O in the signature SA, then trivially

O,¬ψ |= V .

The subsequent Lemmas follow from the definition of Step (3) of the method: the

reduction of the forgetting solution to only the set V∗ of axioms such that for each

βi ∈ V∗, O,β1, ...,βi−1,βi+1, ...,βn ̸|= βi.

Lemma 5.5.2. O,¬ψ |= V∗

Proof: Given that O,¬ψ |= V and V∗ ⊆ V , it then follows that O,¬ψ |= V∗.

Lemma 5.5.3. O ̸|= β for every β ∈ V∗

Proof: Since the extraction of V∗ from V requires omitting all axioms βi ∈ V such that

O,β1, ...,βi−1,βi+1, ...,βn |= βi via the annotation-based filtering followed by entail-

ment checking on any remaining axioms, it follows that βi ̸∈ V∗ and for every β ∈ V∗

it is the case that O ̸|= β .

Note that Lemma 5.5.3 implies that O ̸|= V∗.

Lemma 5.5.4. O,V∗ |= V \V∗

Proof: The reduction of V to V∗ is performed sequentially. Thus, we can define a

sequence:

V0,V1, ...,Vn

where V0 = V , Vn = V∗ and for each i with 1 ≤ i< n:

O,Vi \{βi} |= βi (5.1)

and

Vi+1 = Vi \{βi} (5.2)
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where βi ∈ V \V∗ is the redundant axiom removed at step i. Now we can prove the

lemma by induction.

The base case is as follows:

O,V0 |= β

i.e., where no axioms have been identified as redundant and thus V∗ = { /0}. The base

case holds trivially since β ∈ V \V∗ reduces to β ∈ V as V∗ = { /0}. We now define the

induction hypothesis as follows:

O,Vi \{βi} |= β

and the induction step:

O,Vi+1 \{βi+1} |= β

There are three possible cases for the induction step. (i) β ̸∈ β0, ...,βi+1, i.e., the axiom

β has not yet been discarded as of step i+ 1. Then the induction step holds since

β ∈Vi+1\βi+1. (ii) β = βi+1, i.e., the axiom β is removed at step i+1. Then statement

(1) holds at step i+1 under the definition of redundancy in Definition 5.1.1 condition

(iii), and thus the induction step holds. (iii) β ∈ β0, ...,βi, i.e., β was checked and

discarded prior to step i+1. Then from (1):

O,Vi+1 \{βi+1} |= βi+1

and we can also write:

O,Vi+1 \{βi+1} |=O,Vi+1 \{βi+1},βi+1

Which simplifies to O,Vi+1\{βi+1} |=O,Vi+1. By substituting statement (2) into this,



120 CHAPTER 5. AN ABOX ABDUCTION APPROACH FOR ALC

we obtain:

O,Vi+1 \{βi+1} |=O,Vi \{βi}

From the induction hypothesis, O,Vi \{βi} |= β . Thus, the following holds:

O,Vi+1 \{βi+1} |= β

meaning that the induction step holds for all β ∈ V \V∗. As a result, we have that:

O,Vi \{βi} |= β

for all 1 ≤ i< n.

Lemma 5.5.5. For any W in the signature SA such that O,β1, ...,βi−1,βi+1, ...,βn ̸|= βi

for every βi ∈W and O,¬ψ |=W , O,V∗ |=W .

Proof: We have that O,¬ψ |=W . We also have that O,V |=W , since V is a strongest

necessary condition of ¬ψ under O in the signature SA. Since we can write V in the

following way: V = (V \V∗)∪V∗, it is the case that O,(V \V∗),V∗ |=W
From Lemma 5.5.4, we have that O,V∗ |= V \V∗ and from this O,V∗ |= O,V \

V∗,V∗ trivially follows, therefore we can write:

O,V∗ |=W

as required.

Using Lemmas 5.5.1–5.5.4, it is possible to prove the soundness of the method

with respect to the abduction problem in Definition 5.1.1.

Theorem 5.5.2. For any abduction problem ⟨O,ψ,SA⟩, where O and ψ are expressed

in ALC and the set of solutions excludes any hypothesis containing a role assertion,

the abduction method produces a hypothesis satisfying Definition 5.1.1, up to potential

redundancy of disjuncts containing fixpoint operators if present.
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Proof: Soundness. We obtain the hypothesis H by negating V∗ under contrapositive

reasoning, which is then added to O. Thus, the consistency requirement in Definition

5.1.1 condition (i) follows from Lemma 5.5.3 since βi ≡ ¬αi for all βi ∈ V∗ and thus

O,αi ̸|=⊥ for every disjunct αi ∈ H. Condition (ii) follows from Lemma 5.5.2: since

O,¬ψ |= V∗, under contraposition O,H |= ψ where H≡¬V∗. Condition (iii) is guar-

anteed via the strict check performed in Step (3) of the method, which is the dual of

condition (iii). Thus, since H is obtained by applying contraposition to V∗, and all

axioms in V∗ satisfy the check in Step (3), H will satisfy condition (iii). Condition

(iv) follows from Lemma 5.5.5, which shows that if there exists a set of axioms W in

the signature SA such that O,¬ψ |= W and the set W satisfies the dual of condition

(iii) then O,V∗ |=W . Since the hypothesis H is obtained by negating V∗, the dual of

Lemma 5.5.5 holds for H: i.e., if there exists a H′ such that H′ =¬W then O,H |=H′.

Completeness. This property follows directly from the interpolation completeness of

IntALC [Koo15]. For any given combination of an ontology O, negated observation

¬ψ and forgetting signature F , a uniform interpolant V is returned using IntALC such

that for any other uniform interpolant V ′ of (O,¬ψ)−F , the property V ≡ V ′ holds.

Thus, the set V∗ which satisfies the properties in Lemma 5.5.5 is always obtained

from V as required. The result of applying contrapositive reasoning to V∗ is then the

hypothesis H such that for any other consistent hypothesis H′ in the restricted signature

SA, O,H |=H′.

In Theorem 5.5.2, the restriction that disjuncts containing fixpoint operators may

be redundant under condition (iii) is due to the fact that, in practice, there are currently

no DL reasoners that can support fixpoints as pointed out in Section 5.4.2. Therefore,

it is not possible to check whether a disjunct containing a fixpoint is entailed by the rest

of the hypothesis. However, since the full filtering check is performed over the axioms

in V∗
app, and these are guaranteed to only contain greatest (not least) fixpoints, it is

possible to retain disjuncts containing fixpoints when testing the redundancy of all of

the other disjuncts in the hypothesis. This is due to the fact that greatest fixpoints can

be simulated using fresh symbols by replacing νX .C[X ] with a fresh concept symbol
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D and adding an axiom D ⊑C[D → X ]. For the check O,β1, ...,βi−1,βi+1, ...,βn |= βi

if a fixpoint occurs within some β j such that 1 ≤ j ≤ n, j ̸= i then the check proceeds

as normal, while if a fixpoint occurs in βi, then it is not possible to determine if the

entailment holds in practice. As a result, any other redundancies in the hypothesis

are eliminated, including those that are redundant with respect to a fixpoint operator.

Consequently, conditions (i), (ii) and (iv) are still satisfied in the presence of fixpoint

operators in H.

5.5.2 Soundness of Annotation-Based Filtering

The annotation-based filtering method is used as preprocessing to reduce the cost of

Step (3) by first computing V∗
app before applying the entailment check. Given that the

soundness of the abduction method without this optimisation has been proven, it is now

necessary to prove that this procedure is also sound to ensure that the overall method

remains both sound and complete.

From this Lemma, it is safe to assume that removing all axioms that are not de-

pendent on ¬ψ will not jeopardise the soundness of the abduction procedure: no valid

explanations are lost and thus the semantic minimality of the resulting hypothesis is

maintained. Now it remains to show that the annotation-based filtering is sound in the

sense that it only removes axioms that are not dependent on ¬ψ . To do this, it is nec-

essary to prove that the annotator concept ℓ carries from the premises of an inference

in IntALC to the conclusion, and thus that ℓ will appear in any axiom in V that is de-

pendent on ¬ψ in the presented method.

Theorem 5.4.1 Let O be an ontology, ψ an observation as a set of ABox axioms, F
a forgetting signature and ℓ an annotator concept added as an extra disjunct to each

clause in the clausal form of ¬ψ where ℓ ̸∈ sig(O∪ψ) and ℓ ̸∈ F . For every axiom β

in the uniform interpolant V = (O,¬ψ)−F , β is dependent on ¬ψ iff ℓ ∈ sig(β ).

Proof: The proof is by induction over the way the derivation is constructed in IntALC .

The base case is the start of the derivation, where no inference has been performed
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yet. So we consider any clause β in (O,¬ψ): the input to the abduction method. For

an axiom β to be dependent on ¬ψ , it must have at least one ancestor in Cls(¬ψ),

where Cls denotes the clausal form of ¬ψ . Since in the base case no inferences have

been performed, the only way for an axiom β to have an ancestor in Cls(¬ψ) is if

β ∈Cls(¬ψ), as no other dependent axioms have been derived. Thus, the only axioms

dependent on ¬ψ are those in the negated observation due to the reflexivity of the

ancestor relation.

Now consider the following set of axioms {ν1, ...,νk,νk+1} where each νi is the con-

clusion of an inference rule in IntALC between νi−1 and another axiom, where ν1 ∈¬ψ .

Since we must prove a characteristic of dependent axioms, the inferences must all have

at least one ancestor in ¬ψ . Thus, the set of inferences begins with ν1 ∈ ¬ψ . The in-

duction hypothesis is that νk contains the annotator concept ℓ: i.e., ℓ ∈ sig(νk). Now

for the induction step: two cases must be considered for the axiom νk+1 . Given that

one of the parents of νk+1 is νk, the other parent β can be (a) an axiom not dependent

on ¬ψ or (b) another axiom that is dependent on ¬ψ . In both cases, the inference can

be made using any of the rules in Figure 3.2. The case where both parent axioms are

not dependent on ¬ψ need not be considered, since the aim is to show that ℓ is present

in all axioms dependent on ¬ψ and the definition of dependency requires at least one

ancestor to be in ¬ψ .

For case (a), where β does not depend on ¬ψ:

(1) Resolution: Consider β = (C1∨¬C2)(t1) and νk =C2∨ℓ(t2) where σ is the unifier

of t1 and t2 if it exists. Resolution occurs on C2 as follows:

(C1 ∨¬C2)(t1) C2 ∨ ℓ(t2)
(C1 ∨ ℓ)σ

therefore ℓ ∈ sig(νk+1), since ℓσ = ℓ.

(2) Role propagation: Two cases are considered: (i) νk contains an existential quan-

tifier and (ii) νk contains a universal quantifier. Consider β = (C∨∀r.D1)(t1) and (i)

νk = ∃r.D2 ∨ ℓ(t2), (ii) νk = ∀r.D2 ∨ ℓ(t2) where D1 and D2 are definer symbols and σ
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is the unifier of t1 and t2 if it exists. Role propagation occurs on r as follows:

(i) (C∨∀r.D1)(t1) ∃r.D2 ∨ ℓ(t2)
(C∨ ℓ)σ ∨∃r.D12(t1σ)

therefore ℓ ∈ sig(νk+1).

(ii) (C∨∀r.D1)(t1) ∀r.D2 ∨ ℓ(t2)
(C∨ ℓ)σ ∨∀r.D12(t1σ)

therefore ℓ ∈ sig(νk+1).

(3) Existential role restriction elimination: Only one case needs to be considered

for νk, which is: νk = (C ∨ ℓ∨∃r.D1)(t). This is due to the fact that the annotator

concept ℓ is appended disjunctively to clauses in ¬ψ and thus does not occur under

quantifiers. Thus, no definer symbols will be introduced in place of concepts contain-

ing ℓ. Let β =¬D(x), then existential role restriction elimination is applied as follows:

(C∨ ℓ∨∃r.D1)(t) ¬D1(x)

C∨ ℓ

therefore ℓ ∈ sig(νk+1).

(4) Role instantiation: Since the observation may not contain role assertions, only one

case needs to be considered for νk, which is: νk = (C1∨ℓ∨ (∀.D)(t1). Let β = r(t2,b),

then role instantiation is applied as follows:

(C1 ∨ ℓ∨ (∀r.D))(t1) r(t2,b)

(C1 ∨ ℓ)σ ∨D(b)

therefore ℓ ∈ sig(νk+1).

For case (b), where β is dependent on ¬ψ: the derivations are largely the same. For the

resolution and role propagation rule the result of the inference simply contains ℓ∨ ℓ,
which simplifies to ℓ. For the existential role restriction elimination and role instantia-

tion rules, it is not possible for the second axiom to also be dependent on ¬ψ . This is
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due to the fact that ℓ does not fall under the scope of a quantifier, thus there will be no

clause of the form ¬D∨ ℓ, where D is a definer, introduced during the transformation

to the normal form required by IntALC . Additionally, ψ does not contain negated role

assertions, so there will also be no clause of the form r(a,b)∨ ℓ.

Thus, each axiom in V that has at least one ancestor in ¬ψ will contain the annotator

concept ℓ. Since ℓ is not present in O, having been disjunctively appended to ¬ψ ,

the approximation of the reduced uniform interpolant V∗ obtained by eliminating all

axioms βi such that ℓ ̸∈ sig(βi) will always take the form of a set of axioms that are

dependent on ¬ψ .

Since the annotation-based filtering is sound, i.e. it only removes a subset of the

axioms in V that are redundant under Definition 5.1.1(iii), it does not compromise the

soundness and completeness of the method that was proven earlier.

5.5.3 Complexity

Theorem 5.5.3. In the worst case, computing a hypothesis H using the proposed

forgetting-based abduction method has 3EXPTIME upper bound complexity for run-

ning time and the size of H can be double exponential in the size of (O,ψ).

Proof: The main source of complexity for the presented abduction method is in the use

of the forgetting method IntALC . Computing the uniform interpolant V has 2EXPTIME

complexity and the number of clauses in the uniform interpolant is double exponential

in the size of the input ontology [KS15b].

As for the extraction of hypotheses from uniform interpolants, this is done by first

approximating V∗ using the annotation-based filtering method described in Section

5.4.2, resulting in V∗
app. This relies on checking the signature of each axiom in V for

the presence of the annotator concept ℓ. The complexity of this filtering method is

linear in the size of the uniform interpolant V .
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In the case where the fully reduced uniform interpolant V∗ is computed, the addi-

tional check O,{β1, ...,βi−1,βi+1, ...,βn} ̸|= βi for each remaining axiom βi in V∗
app is

needed to remove remaining redundancies. In the worst case, V∗
app could be equal to

V , and thus could be double exponential in size with respect to (O,ψ). In this case,

this additional step would require a double exponential number of exponential time

entailment checks. Thus, the worst case complexity of this step is 3EXPTIME and the

overall worst case time complexity of the proposed abduction method is 3EXPTIME.

It is worth noting that the worst-case time complexity and hypothesis size above

is unlikely to occur in practice for large ontologies, since this requires V∗ to be equal

to V . For this to occur, it must be the case that every inference performed on O,¬ψ

using IntALC involved an axiom in, or dependent on, ¬ψ . In other words, for V∗
app to

be equal to V , every axiom in V∗ corresponds to a non-redundant disjunct in H when

negated.

In practice, the experiments in Table 5.3 indicate that the size of V∗
app tends to be

much smaller than that of V , supporting the intuition above.

5.6 Experimental Evaluation

A Java prototype was implemented using the OWL-API5 and the forgetting tool LETHE

which implements the IntALC method.6 Using this, two experiments were carried out

over a corpus of real world ontologies, which were preprocessed into their ALC frag-

ments. Axioms not representable in ALC, such as number restrictions of the form

≤ nr.C where r is a role symbol and C is a concept symbol, were removed. Others

were represented using appropriate ALC axioms where possible. For example, a range

restriction ∃r−.⊤⊑C was converted to ⊤⊑ ∀r.C, where r− is the inverse role of r.

The experiments in this section provide an initial evaluation of forgetting-based

approaches to abduction in DL ontologies. A small corpus was used for these exper-

iments so that a fine-grained approach could be taken to examining the size of the
5http://owlapi.sourceforge.net/
6http://www.cs.man.ac.uk/ koopmanp/lethe/index.html
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hypotheses returned, the number of redundancies eliminated and the benefit of the fil-

tering approaches described in Section 5.4.2 for each individual ontology in the corpus.

The choice of ontologies was based on several factors. They must be consistent,

parsable using LETHE and the OWL API and must vary in size to determine how this

impacts performance. Since many real-world ontologies are encoded in less expressive

DLs such as EL, the corpus was also split between EL and ALC to determine if the

performance over EL suffers as a result of the additional capabilities of the method

for ALC. The final corpus contains ontologies from the NCBO Bioportal and OBO

repositories,7,8 and the LUBM [GPH05] and Semintec ontologies.9 The characteristics

of the corpus are summarised in Table 5.1. The experiments were performed on a

machine using a 4.00GHz Intel Core i7-6700K CPU and 16GB RAM.

Ontology DL TBox ABox Num. Num.
Name Size Size Concepts Roles
BFO EL 52 0 35 0
LUBM EL 87 0 44 24
HOM EL 83 0 66 0
DOID EL 7892 0 11663 15
SYN EL 15352 0 14462 0
ICF ALC 1910 6597 1597 41
Semintec ALC 199 65189 61 16
OBI ALC 28888 196 3691 67
NATPRO ALC 68565 42763 9464 12

Table 5.1: Characteristics of the experimental corpus.

For each ontology in the corpus, 30 observations satisfying the requirements for

the abduction problem in Definition 5.1.1 were generated, i.e., the observations were

each consistent with and not entailed by the given ontology. The observations were

generated, prior to the running of the experiments, in the following way: each axiom

in the ontology was processed and the concepts occurring in them were stored. For a

TBox axiom of the form C ⊑ D or C ≡ D, where C and D are any arbitrary concepts

expressible in ALC, this means that the concepts C and D were be stored. For the

7https://bioportal.bioontology.org/
8http://www.obofoundry.org/
9http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
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ABox, concepts occuring in concept assertions of the form C(a) were stored. Using

the stored concepts, observations as concept assertions were generated using concepts

from those stored from the background ontology. The concept occurring in an observa-

tion was randomly chosen from one of the following, where C and D are two concepts

from the stored list: C, ¬C, C⊓D, C⊔D, ∀r.C and ∃r.C. Each candidate observation

was checked against the requirements in Definition 5.1.1. If a candidate observation

did not satisfy these requirements, it was discarded and the generation procedure was

reattempted.

It was necessary to develop a new experimental design for evaluating abductive

reasoning in DL ontologies due to the lack of existing benchmarks for the task. Few

experimental evaluations of abductive reasoning in DLs exist, and the existing methods

are not applicable to the problem solved by the algorithm in this Chapter: to the best

of our knowledge, no other abductive reasoning method in DLs produces a semanti-

cally minimal space of independent explanations as required in Definition 5.1.1. The

motivation behind the approach used for observation generation was to avoid trivial

observations, i.e. observations that are too simple or do not satisfy the abduction prob-

lem requirements, while simultaneously avoiding the problem of generating arbitrarily

complex observations. As a result, the concepts in each ontology were used as a guide

for the minimum complexity of unseen observations, while randomly combining these

with ALC operators encouraged variety particularly in simpler ontologies..

For the first experiment, the forgetting signature F was specified as one random

concept symbol from sig(ψ). Therefore the task was to compute the “most seman-

tically minimal” space of independent explanations for a given observation, i.e. the

semantically minimal hypothesis for the largest set of abducibles. The assumption

was that users may first seek the most general hypothesis as a starting point for inves-

tigating unseen phenomena. This also allows the user to pursue stronger hypotheses

subsequently by forgetting further symbols from the initial space of explanations incre-

mentally. The temporal results for first experiment (Table 5.2) are therefore indicative

of the expected time taken for a single increment, i.e., computing the next strongest
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hypothesis, while the results on hypothesis size and number of redundancies (Table

5.3) are indicative of the size of the initial hypothesis and the number of redundancies

removed from the forgetting solution.

The aim of the second experiment was to investigate how the size of the forgetting

signature, i.e., the number of non-abducibles specified, impacted the performance of

the abduction algorithm. While the impact of forgetting signature size has been in-

vestigated for the problem of forgetting [KS15b, Koo15], the impact in the setting of

abduction has not. Particularly, the number of inferences made during the forgetting

step using IntALC is expected to have a direct impact on the performance of the filtering

step. The benefit of using the annotation-based filtering approach as the forgetting sig-

nature size increases was therefore investigated via this experiment. Three ontologies

from the corpus in Table 5.1 were used: DOID, ICF and SYN. These ontologies were

chosen as they have a sufficiently large signature of concepts and LETHE did not time

out when forgetting in any case. Thus, results for the time taken during the filtering

step were available for every run of the experiment. In all cases, at least one symbol

from ψ was included in F to avoid trivial hypotheses.

In both experiments the two filtering approaches for Step (3), illustrated in Figure

5.2 and described in Section 5.4.2, were compared for the same observations and same

random selection of F . The first is the approximate filtering approach, which uses the

annotation-based filtering and the second is the full filtering approach, which performs

the entailment check corresponding to the dual of Definition 5.1.1 condition (iii) over

the approximate result. The DL reasoner HermiT [GHM+14] was used to perform

these entailment checks. Thus, the tradeoff between the additional time for entailment

checking and redundancy in the final hypothesis was evaluated. In all cases, LETHE

was subject to a 300 second time limit, while the filtering step was not subject to a time

limit.

However, in extreme cases the filtering step was terminated if the runtime for each

individual abduction problem exceeded several hours. In each of these cases, indicated
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by the t.o. entires in Table 5.2, the whole experiment was terminated over the corre-

sponding ontology. This decision was made both for practical purposes and due to the

purpose of the corresponding experiments:

The prototype used to perform the experiments in this Chapter makes use of the

OWL-API, which does not allow disjunctive assertions over multiple individuals. As

a result, it was not possible to represent observations consisting of a conjunction of

concept assertions over different individuals. Due to this limitation, the experiments in

this section were limited to observations involving one individual. For the filtering in

Step (3), the preference relation used in these experiments was simply based on order

of appearance of each disjunct.

Tables 5.2 and 5.3 show the results for the first experiment. Across all of the

ontologies the amount of time taken to filter the forgetting solution, i.e., to ensure

the hypothesis returned was a space of independent explanations satisfying Definition

5.1.1, was shorter when using the annotation-based filtering as opposed to performing

entailment checks for every axiom in the forgetting solution. This is illustrated by the

results in the V∗ and “V∗ no app” columns in Table 5.2: for the smaller EL ontolo-

gies, BFO, LUBM and HOM, the time taken using the proposed filtering approach

was between 11.1%–27.8% of the time taken using only entailment checking. For the

Ont. Mean Time Taken /s Max Time Taken /s
Name V∗

app V∗ V∗ no app. V∗
app V∗ V∗ no app.

BFO 0.01 0.01 0.09 0.01 0.07 0.14
LUBM 0.02 0.03 0.30 0.11 0.16 1.21
HOM 0.03 0.05 0.18 0.40 0.54 0.86
DOID 0.44 1.09 1071.35 1.11 6.98 1095.07
SYN 0.95 3.92 2421.96 2.33 61.52 2593.13
ICF 0.30 0.56 t.o. 0.52 1.58 t.o.

Semin. 3.13 5.12 t.o. 9.29 15.36 t.o.
OBI* 3.82 32.17 t.o. 25.18 95.37 t.o.
NATP. 26.54 179.70 t.o. 39.51 544.50 t.o.

Table 5.2: Computation time statistics for 30 observations using a forgetting signature
size of 1. * indicates that LETHE did not terminate within the 300s time limit in at
least one case, “t.o.” indicates that the experiment was terminated after several days
runtime.
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Ont. Mean Redund. Removed Size H /disjuncts Mean % of
V → V∗

app V∗
app →V∗ Mean Max Happ Redund.

BFO 52 0 1.97 4 0
LUBM 90 0.80 2.73 11 29.30
HOM 82 0.03 2.07 13 1.45
DOID 7891 0 7.23 104 0
SYN 15351 0.03 20.63 457 0.15
ICF 8505 0 2.30 7 0

Semin. 72827 0.03 3.60 10 0.83
OBI* 29191 6.48 52.48 161 12.35
NATP. 111318 0.03 48.70 204 0.06

Table 5.3: Redundancy removal and hypothesis size statistics over 30 observations
using a forgetting signature size of 1. The H for which mean and maximum sizes
are reported is the result of negating the fully reduced forgetting solution V∗ (fully
satisfying the abduction problem). * indicates that LETHE did not terminate within
the 300s time limit in at least one case.

largest EL ontologies, DOID and SYN, the corresponding results were 0.1% and 0.2%.

Over the ALC ontologies, the difference was more pronounced: using only entailment

checking the time taken to eliminate redundancies in the forgetting solution exceeded

several hours. These results indicate that the benefit of the proposed filtering approach

is more pronounced, both in absolute and proportional terms, as the size of the on-

tology increases and particularly as the complexity of the language is increased from

EL to ALC. This is as expected: for a larger ontology, the corresponding forgetting

solution when eliminated the chosen concept is likely to be larger and thus the number

of entailment checks required to ensure no redundant explanations are present in the

hypothesis will increase. Since the complexity of entailment checking is polynomial in

EL and exponential in ALC, the effect of replacing an entailment check with a linear

one is more pronounced in the ALC ontologies.

The results in Table 5.2 also provide a comparison between the approximate fil-

tering and the full filtering settings for Step (3) in Figure 5.2. For the smaller EL
ontologies, the difference in time taken between the approximate and full filtering was

small. For the larger ontologies the cost of the full filtering was more pronounced,

taking 313%, 742% and 577% longer across the SYN, OBI and NATPRO ontologies
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respectively.

With respect to the number of redundancies eliminated: in all cases, it can be seen

from Table 5.3 that the annotation-based filtering eliminated the majority of redundan-

cies, while entailment checking was required for a small portion of the total redun-

dancies. This is illustrated by the V → V∗
app and V∗

app →V∗ columns, which indicate

the mean number of redundancies removed in the two stages of Step (3) of Figure

5.2: the annotation-based filtering and additional entailment checks respectively. Over

the BFO, DOID and ICF ontologies for all 30 observations all of the redundancies

were eliminated by the annotation-based filtering, and additional entailment checks

were not required to reduce the forgetting solution any further. For the remaining on-

tologies, the redundancies that required entailment checks to remove accounted for no

more than 1% of the total redundancies in the forgetting solution.

Figure 5.3 shows the results of the second experiment, the aim of which was to

investigate the impact of the forgetting signature size, i.e., number of non-abducibles,

on the time taken for both forgetting and filtering, as in Steps (2) and (3) of Figure 5.2.

The time taken for the forgetting step, Step (2), increased almost linearly with the size

of F . This was expected due to a higher number of inferences needed to compute V .

The time taken for filtering, Step (3), did not increase with the size of F . This is likely

due to the fact that the size of the forgetting signature does not correlate directly with

the size of the resulting forgetting solution. As a result, the number of checks for the

annotation concept ℓ and the number of entailment checks do not depend upon the size

of the forgetting signature. However, for each ontology, maxima were observed for

different sizes of F . This may be due to the fact that the content of the forgetting sig-

nature has a more significant impact on the number of axioms in the forgetting solution

than the absolute size of the forgetting signature itself, i.e., including certain symbols

in F increases the filtering time. This may be explained by the possibility that forget-

ting commonly used concepts can result in more inferences and a larger V , therefore

increasing the number of checks that must be performed during the filtering step. The

full filtering took an average of 27, 11 and 70 times longer than the approximate case
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Figure 5.3: Mean forgetting and filtering times with varying F signature sizes for the
ICF, DOID and SYN ontologies.

for the DOID, ICF and SYN ontologies respectively. This indicates that the cost of the

full entailment check increased with the size of the ontology, particularly the size of

the TBox, not the size of F .

In 100% of cases for both experiments the hypotheses were represented without

fixpoints, indicating that cyclic, semantically minimal hypotheses seem rare in prac-

tice.



Chapter 6

ABox Abduction via Semantic

Forgetting

In this Chapter, the use of semantic forgetting as part of the second step in the proposed

abduction method is investigated. Specifically, the problem is to compute the least as-

sumptive set of independent explanations as in previous Chapters. The setting of the

problem remains ABox abduction in the DL ALC, thereby providing a comparison

to the approach presented in the previous chapter. Semantic forgetting is investigated

via the forgetting system FAME, described in Section 3.5.2, which is utilised in the

proposed abduction method where the hypotheses are expressed in ALCOI(∇). This

Chapter aims to compare the two approaches to forgetting in terms of their use in the

forgetting step of the forgetting-based abduction algorithm. The necessary adaptations

to the abduction procedure that are necessary to utilise semantic forgetting as imple-

mented by FAME are discussed, and the comparison between the two forgetting ap-

proaches is made through the use of specific examples and an experimental evaluation

over a corpus of ontologies.

134
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6.1 Motivation for Investigation

Investigating the use of forgetting for abductive reasoning in the setting of DL ontolo-

gies is one of the aims of this thesis. The forgetting method utilised as part of the

abduction system in the previous chapter takes the uniform interpolation perspective

on forgetting, i.e., the notion of weak forgetting described in Section 3.4. As part of

the investigation into forgetting-based approaches to abduction, it is useful to also con-

sider the semantic (strong) forgetting perspective on abduction [ZS15, ZS16, Zha18].

As discussed in Chapter 3, this view is closely related to second-order quantifier elim-

ination [DLS01, GSS08] and the model-theoretic notion of forgetting in Definition

3.4.3. This is a different perspective to the consequence-based notion of uniform inter-

polation, which aims to preserve all entailments that are representable in the restricted

signature SA. However, from the perspective of abduction, the semantic forgetting and

uniform interpolation solutions to the forgetting problem serve the same purpose. This

purpose is to produce the strongest necessary condition in the, language and signature

specified, for the provided input which is in this case the background ontology O to-

gether with the negated observation ¬ψ . Another motivation for the investigation in

this chapter is to extend the capabilities of forgetting-based abduction compared to the

approach used in Chapter 5. The main limitation of the approach presented in Chapter

5 is the fact that neither the observations nor the hypotheses are permitted to contain

role assertions of the form r(a,b). This limitation restricts the ability to utilise existing

(ground) information regarding specific individuals in the background knowledge, as

the following example illustrates:

Example 6.1.1. Consider the following abduction problem:

O = {∃r.B ⊑ A,

B(b)}

ψ =A(a)

SA = {B,r}
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For the signature SA, the hypothesis satisfying Definition 5.1.1 would be:

H1 = ∃r.B(a)

If the signature of abducibles is changed to SA = {r}, then the correct hypothesis is:

H2 = r(a,b)

The first hypothesis H1 is reachable using the IntALC calculus (Figure 3.2) for the

forgetting step. However, the hypothesis H2 is not. This is due to the fact that the

IntALC calculus does not support deriving negated role assertions of the form ¬r(a,b),

as it is designed only to preserve all entailments of the input that are expressible in

ALC. Thus, these are not obtained in the reduced forgetting solution V∗ and role

assertions will be absent from the hypothesis when V∗ is negated in the final step of

the abduction algorithm. This restriction means that the system is not able to utilise

existing relationships between individuals in the observation and those in the ABox

of the background ontology when generating hypotheses. Thus, many of the more

specific hypotheses such as H2 in the example above are not reachable.

Therefore in this chapter an alternative forgetting approach, taking the semantic

forgetting perspective, is investigated to compare how the use of such an approach

compares not only in terms of computational cost but also in terms of the forms of

the hypotheses produced. An alternative to overcome the limitation in Example 6.1.1

would be to extend the calculus of IntALC to enable inferences on negated role asser-

tions and thus enable both the input and output of the system to contain role assertions.

This option is the subject of Chapter 7.

6.2 Extending the ABox Abduction Approach

The general steps in the abduction algorithm specified in Figures 5.1 and 5.2 remain the

same. Since the method relies on contraposition, Step (1) negates the observation ¬ψ



6.2. EXTENDING THE ABOX ABDUCTION APPROACH 137

and provides this, as well as a signature of non-abducibles F to be forgotten, as input

to Step (2). Step (3) eliminates the redundancies in the forgetting solution V , resulting

in a reduced forgetting solution V∗ and thereby eliminating redundant explanations

(disjuncts) in the hypothesis. Finally, in Step (4) the reduced forgetting solution V∗

is negated resulting in a hypothesis H as a space, represented as a disjunction, of

independent explanations for the observation ¬ψ .

However, to compare the weak and semantic (strong) forgetting approaches for

the abduction problem, here Step (2) of the abduction algorithm utilises an imple-

mentation of the semantic forgetting approach as opposed to the uniform interpolation

approach in Chapter 5. This is provided by the algorithm FAME [ZS16], the calculus

and properties of which are discussed in Chapter 3 Section 3.5. The system has been

implemented and evaluated via experiments in recent work [ZS15, ZS16], showing

promising performance for the forgetting problem. As such, it provides a promising

basis for investigating the use of semantic forgetting as part of the abduction approach

for solving the problem specified in Definition 4.2.1. By utilising FAME for the forget-

ting step of the abduction algorithm in Figure 5.1, the expressivity of the problems that

can be solved is increased. In this work, the main benefit of this additional expressivity

is the ability to include nominals in the input O,¬ψ . Particularly, this provides an

alternative way to represent the negation of observations that include role assertions.

The other steps of the abduction algorithm presented in the previous chapter must

also be modified to account for the use of a new forgetting procedure and the fact that

the DL language used to represent the forgetting solutions is more expressive. Fur-

thermore, the abduction problems that are being solved are now also more expressive,

including the presence of role assertions in both observations and hypotheses. As such,

care must be taken to ensure that the hypotheses take the form required in Definition

4.2.1 and that redundancy elimination is performed appropriately.

As for the previous abduction problems, the input remains an ALC ontology O
together with an ALC observation ψ , which is a conjunctive set of ALC ABox axioms

that may now include role assertions. Since the forgetting approach utilised by FAME
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requires the conversion of ABox axioms into TBox axioms, which is achievable via

the use of nominals, the input can be expressed in ALCO.

However, it is necessary to formulate an appropriate representation for the nega-

tion of the observation ψ and the form of the hypothesis H, since FAME operates on

and produces TBox axioms containing nominals rather than the corresponding ABox

axioms. Example 6.2.1 illustrates a simple case of this.

Example 6.2.1. Consider the abduction problem in Example 6.1.1. This problem can

be reformulated in ALCO as follows:

O ={∃r.B ⊑ A,

{b} ⊑ B}

ψ ={a} ⊑ A

Given the set of abducibles SA = {B,r}, the hypothesis obtained using FAME for the

forgetting step of Figure 5.1 is:

H1 = {a} ⊑ ∃r.B

If instead SA = {r}, the corresponding hypothesis is:

H2 = {a} ⊑ ∃r.{b}

Both H1 and H2 satisfy the notions in the general abduction problem presented in

Definition 4.2.1.

The benefit of the additional expressivity of FAME is demonstrated by H2, which is

equivalent to the role assertion r(a,b). As a result the instance of the general abduction

problem, provided in Definition 4.2.1, that is addressed in this Chapter can be expanded

compared Chapter 5. Specifically the restriction that each explanation, i.e., disjunct, in

H must take the form of a conjunction of concept assertions can be lifted.
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However, before an appropriate instance of the abduction problem can be defined,

it is first necessary to determine how the observation and hypothesis should be repre-

sented for this problem. In cases where either the observation or the hypothesis take

the form of a conjunction or disjunction of ABox assertions, the reformulation is less

obvious than for simple cases such as that in Example 6.2.1. For more complex cases,

it is possible to take advantage of the fact that FAME can perform forgetting in the

presence of the top role ∇.

Example 6.2.2. Consider the following abduction problem:

O = {∃r.B ⊑ A,

C ⊑ D,

{b} ⊑ B}

ψ = {A(a),

D(c)}

SA = {r,C}

The expected hypothesis under Definition 4.2.1 should be equivalent to:

H1 = r(a,b)⊓C(c)

In ALC with disjunctive assertions, and negated role assertions, the negation of ψ is

as follows:

¬ψ = ¬A(a)∨¬D(c)

An equivalent representation for ¬ψ expressed using nominals and ∇ is as follows:

¬ψ =⊤⊑ ∀∇.(¬{a}⊔¬A)⊔∀∇.(¬{c}⊔¬D)

Following the steps in Figure 5.1 using FAME for the forgetting step, where F =
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{A,B,D}, the hypothesis obtained can be represented as:

H2 =⊤⊑ ∃∇.(¬{a}⊔∃r.{b})⊓∃∇.(¬{c}⊔C)

This is equivalent to the expected hypothesis H1 = r(a,b)⊓C(c).

Lifting the forms taken in the example above, the general form used for the negated

observations is shown in Figure 6.1, noting that the observation in this setting can

now also contain role assertions of the form r(a,b), as well as concept assertions. As

indicated in Figure 6.1, since FAME does not operate on ABox assertions directly

nor disjunctive ABox assertions, the negation of ψ must be expressed as a TBox in

ALCO(∇). The form taken by the hypotheses produced is as follows:

HF =⊤⊑ ∃∇.D1 ⊔ ...⊔∃∇.Dn (2)

where each Di is an ALCOI(∇) concept.

Observation, ψ: Negated Observation, ¬ψ :
C(a) =⇒ ⊤⊑ ∀∇.(¬{a}⊔¬C)

r(a,b) =⇒ ⊤⊑ ∀∇.(¬{a}⊔∀r.¬{b})
nl

i=1

Ci(ai)⊓
ml

j=1

r(b j,c j) =⇒ ⊤⊑
n⊔

i=1

∀∇.(¬{ai}⊔¬Ci) ⊔ ...

m⊔
j=1

∀∇.(¬{b j}⊔∀r.¬{c j})

where C and D are arbitrary ALC concepts, a and b are individuals with corre-
sponding nominals {a} and {b} and r is a role.

Figure 6.1: Transformation rules for negating an observation when using semantic
forgetting based abduction.

Given that the observations may now contain role assertions, it is necessary to

extend the proposed abduction problem once more. Additionally, as the hypothesis

takes on a different form it is necessary to reformulate the definition to account for
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this and to suitably retain the notion of a disjunction of individual explanations. The

necessary reformulation is given in Definition 6.2.1.

Definition 6.2.1. Let O be an ontology and ψ be a set of ABox assertions, both ex-

pressed in ALC, such that O ̸|=⊥, O,ψ ̸|=⊥ and O ̸|= ψ . Let SA be a set of sym-

bols called abducibles. The ABox abduction problem is to compute a hypothesis

H= α1∨ ...∨αn where each αi takes the form ⊤⊑ ∃∇.Di where Di is an ALCOI(∇)

concept. The solution H must contain only those symbols specified in SA and satisfy

conditions (i)–(iv) of Definition 4.2.1.

The general form of the abduction problem remains the same as the one proposed

in Definition 4.2.1. The aim is still to compute a hypothesis H which takes the form of

a space of independent explanations for the observation ψ . The main differences here

are that the observations may contain role assertions, the hypothesis H is represented in

the DL ALCOI(∇) and that each explanation or disjunct is now in the form ⊤⊑∃∇.Di

where Di is an ALCOI(∇) concept.

Since the result of the forgetting step is still the strongest necessary entailment

of O,¬ψ , the same rationale can be applied to the result of applying FAME as was

applied to the result of LETHE in Step (2) of Figure 5.1. It is still possible to satisfy

conditions (iii) and (iv) of Definition 4.2.1 using this representation. However, it is first

necessary to adapt the filtering method of step 3 in Figure 5.1 to obtain the reduced

forgetting solution V∗, as this is an important part of the feasibility of the approach in

practice [DS19a].

As in Chapter 5, an annotation concept ℓ is used to efficiently trace any dependen-

cies on the negated observation ¬ψ in the forgetting result V . Any axioms which do

not contain the concept ℓ are removed from V , thereby removing the majority of the

axioms that are redundant with respect to the inter-disjunct redundancy requirement

in Definition 5.1.1 condition (iii). Fortunately, extending this approach to the current

setting is straightforward. Here, the negated observation provided as input to Step (2)
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of Figure 5.2 is annotated as follows:

¬ψ =⊤⊑ ∀∇.(¬{a1}⊔¬C1 ⊔ ℓ)⊔ ...⊔∀∇.(¬{ak}⊔¬Ck ⊔ ℓ)

where as before, ℓ is a fresh concept symbol that does not occur in (O,ψ), nor in the

signature F .

As outlined in Chapter 5, the filtering Step (3) in Figure 5.1 can be applied in two

ways: approximate or full. As before, the approximate filtering utilises the annotation-

based method to inexpensively remove all redundancies that can be captured using this

approach, i.e., removing all axioms in V that are not dependent upon ¬ψ . The re-

sult is an approximation of the reduced forgetting result V∗, denoted by V∗
app. This is

then negated in Step (4) of Figure 5.1 to return an approximate hypothesis. Alterna-

tively, the full filtering setting further performs the dual entailment check of Definition

4.2.1(iii) over each axiom in V∗
app using an external reasoner. This eliminates any re-

maining redundancies that cannot be captured using annotations, as demonstrated in

Example 5.4.5. The result is then V∗, which is negated to return a hypothesis satisfying

Definition 6.2.1.

Example 6.2.3 illustrates the full procedure.

Example 6.2.3. Consider the abduction problem in Example 6.2.2. The input to FAME

in Step (2) of Figure 5.1 is:

O ={∃r.B ⊑ A,

C ⊑ D,

{b} ⊑ B}

¬ψ ={⊤ ⊑ ∀∇.(¬{a}⊔¬A⊔ ℓ)⊔∀∇.(¬{c}⊔¬D⊔ ℓ)}

SA ={C,r}

From SA, the set of symbols to be forgotten is F = {A,B,D}. During the forgetting



6.2. EXTENDING THE ABOX ABDUCTION APPROACH 143

process, O,¬ψ is transformed into clausal form:

∀r.¬B⊔A

¬C⊔D

¬{b}⊔B

while for forgetting A, ¬ψ must also be transformed into A-reduced form:

¬{a}⊔¬A⊔ ℓ⊔∀∇
−.(∀∇.(¬{c}⊔¬D⊔ ℓ))

using the SurfacingC rule of Figure 3.4. The concept A can then be eliminated using

the Ackermann rules in Figure 3.5. The same procedure is then performed to eliminate

the concept D. After forgetting both A and D, the result is:

¬{b}⊔B

∀∇.(¬{a}⊔∀r.¬B⊔ ℓ)⊔∀∇.(¬{c}⊔¬C⊔ ℓ)

Forgetting the concept B then produces:

∀∇.(¬{a}⊔∀r.¬{b}⊔ ℓ)⊔∀∇.(¬{c}⊔¬C⊔ ℓ)

which is the forgetting result V . In the filtering step (3) of Figure 5.1, the axiom is

retained and the annotation concept ℓ is set to ⊥. Neither disjunct in this hypothesis

is redundant with respect to the dual of Definition 4.2.1(iii) and thus both are retained

in the reduced forgetting result V∗, which is then negated in step (3) to produce the

hypothesis:

HF =⊤⊑ ∃∇.({a}⊓∃r.{b})⊓∃∇.({c}⊓C)
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This is equivalent to the suggested hypothesis H= r(a,b)⊓C(c).

6.3 Comparing Hypotheses

While the main aim of this work is to produce a hypothesis satisfying the notions spec-

ified in the general abduction problem in Definition 4.2.1, there is another factor that is

important to consider: the syntactic form taken by the hypotheses. Since each explana-

tion in the space represented by the hypothesis H should represent some independent

insight to explain the new observation ψ , the clarity and readability of the hypotheses

is important. This is in contrast to the problem of forgetting, where restricting the orig-

inal ontology while preserving all representable entailments [KS15b] or obtaining an

equivalent set of formulae [ZS15] is the main goal and the readability of the forgetting

solution is usually not considered as a priority. Thus, the readability of the forgetting

result has so far received little attention. Additionally, if one or several of the explana-

tions in H is to be added to a knowledge base to explain ψ , then producing explanations

in a more expressive language than the source ontology could be problematic in some

scenarios. For example, it will impact the efficiency of future reasoning applied to the

updated ontology, which may be problematic in practical scenarios.

Therefore, it is useful to compare the hypotheses produced by both approaches to

forgetting-based abduction: the first using the uniform interpolation approach LETHE,

and the second using the semantic forgetting approach of FAME. From here, to differ-

entiate between the hypotheses produced via both approaches: HF is used to denote

the hypothesis obtained using FAME for the forgetting process in Step (2) of Figure

5.1 and HL is used to refer to the one obtained using LETHE in Step (2). Consider the

following example:

Example 6.3.1. Consider the following abduction problem:

O ={Pogona ⊑ ∃livesIn.(Arid ⊓Woodlands),

Woodlands ⊑ Habitat,
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EucalyptForest ⊑Woodlands,

Eucal pytForest(SpringbrookPark)}

ψ =∃livesIn.Woodlands(Gary)

Case (1): let SA include all symbols in O except Woodlands, i.e. F = {Woodlands}.

The hypotheses obtained using LETHE and FAME respectively are:

HL =Pogona(Gary)∨∃livesIn.EucalyptForest(Gary)

HF =⊤⊑ ∃∇.(Pogona⊓∀livesIn.(¬Arid ⊔¬Habitat ⊔∃livesIn−.{Gary})

⊔∃∇.({Gary}⊓∃livesIn.EucalyptForest)

where livesIn− denotes the inverse of the role livesIn.

Example 6.3.1 illustrates a potential drawback of utilising a more expressive for-

getting approach: the hypothesis produced can be more difficult to interpret, as seen by

the additional complexity of the first disjunct of HF . Despite this, the extra expressiv-

ity in the target language of FAME does confer a benefit in the context of abduction:

producing additional explanations. Since the forgetting solution produced when utilis-

ing FAME in Step (2) is the strongest set of entailments of O,¬ψ in a more expressive

language than that obtained when using LETHE, it preserves additional entailments by

comparison. This leads to additional disjuncts, i.e., explanations in the final hypoth-

esis. In Example 6.3.1, if F is extended to F = {Woodlands,EucalyptForest}, then

the hypothesis produced using LETHE in the forgetting step is HL = Pogona(Gary),

whereas the hypothesis produced using FAME is as follows:

HF =⊤⊑∃∇.(Pogona⊓∀livesIn.(¬Arid ⊔¬Habitat ⊔∃livesIn−.{Gary})

⊔∃∇.({Gary}⊓∃livesIn.{SpringbrookPark})

The second disjunct in HF is equivalent to livesIn(Gary,SpringbrookPark), an ex-

planation that is absent from HL. As this case shows, it is possible in some cases to
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translate the hypotheses obtained to ALC with disjunctive assertions. This may be de-

sirable in some applications to avoid unnecessary extensions to the language used to

express the background knowledge. In this way, further reasoning and modelling re-

mains unchanged by the addition of computed explanations. If C is an ALCO concept,

then the following translations are possible:

⊤⊑ ∃∇.(¬{a}⊔C) ⇐⇒ C(a)

⊤⊑ ∃∇.(¬{a}⊔∃r.{b}) ⇐⇒ r(a,b)

It is also worth noting that, in Example 6.3.1, the following relations hold: O,HL |=
HF and O,HF ̸|=HL. This indicates that, in this case, the hypothesis obtained by the

abduction approach when using FAME for the forgetting step was weaker than the

corresponding hypothesis obtained when using LETHE for this step. This is true for

both sets of abducibles. In the first case, this is due to the fact that the first expla-

nation, i.e. the first disjunct, of HF is weaker than the corresponding explanation in

HL. In the second case, the effect is more apparent: HF consists of a disjunction of

two explanations, while HL contains only one explanation. In the general case, this

relationship between HF and HL is to be expected. This is due to the fact that the

forgetting solution computed by FAME can be stronger than the uniform interpolant

produced by LETHE, owing to the fact that FAME computes forgetting solutions in a

more expressive language than the uniform interpolants computed by LETHE. Thus,

HF can be weaker than HL under the background ontology, since these are obtained

by negating the reduced forgetting solutions.

6.4 Properties of the Approach

An important aspect of FAME for this work is the fact that it is sound for forgetting in

ALCOI(∇), as expressed in Theorem 3.5.2, which is a weaker form of the theorem

in [ZS16]. The aim of this work is to produce hypotheses for abduction problems ex-

pressed in ALC. In this setting, all abduction problems given as input can be expressed
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in ALCO(∇) as indicated in Figure 6.1. As a result, role hierarchies are unnecessary

and are excluded from this setting. Role conjunctions are also excluded since they are

only needed in the forgetting solution produced by FAME when the input is expressed

in ALCOIH [Zha18]. Thus, Theorem 3.5.2 sufficient for this setting.

One limitation of using FAME to compute the forgetting result is that it is not com-

plete for forgetting, as discussed in Section 3.5.2. As such the abduction approach in

this chapter is not complete as it utilises FAME in Step (2). Despite this, the additional

expressivity means that additional hypotheses are reachable in certain scenarios, as il-

lustrated by Examples 6.2.1, 6.2.2 and 6.3.1 earlier in this chapter. Therefore there is in

a sense a trade-off: while some explanations may be missed, others may be obtained.

The soundness of the filtering approach is expressed below.

Theorem 6.4.1. Let O be an ALCO(∇) ontology, ψ an observation as a set of axioms,

F a forgetting signature and ℓ an annotator concept appended disjunctively to each

disjunct in ¬ψ , where ℓ ̸∈ sig(O) and ℓ ̸∈ F . For each axiom β in the forgetting result

V obtained by forgetting all symbols in F via FAME [ZS16], if ℓ ̸∈ sig(β ) then β is

redundant under the dual of Definition 4.2.1 condition (iii), and should be removed in

the extraction of the reduced forgetting result V∗.

Proof: The proof is by induction over the construction of a derivation using the cal-

culus of FAME [ZS16], and takes the same form as the proof of Theorem 5.5.2 in

Chapter 5 Section 5.5. The annotation concept ℓ does not appear in the signature F .

Thus, ℓ is not eliminated and if a clause in the normal form of (O,¬ψ) contains the an-

notation concept ℓ, then any clause derived via inferences on this clause under FAME’s

forgetting calculus will also contain ℓ. Therefore, any axiom β in the forgetting result

V that does not contain ℓ was derived purely using axioms in the background ontology

O, i.e., O |= β . Since under Definition 4.2.1, O ̸|= ψ , such a β will not contribute to

the explanation of ψ required by abduction, and should be omitted from HF to satisfy

Definition 4.2.1 condition (iii).

As a direct result of Theorems 3.5.2 and 6.4.1, the full abduction approach is also

sound with respect to the ABox abduction problem in Definition 6.2.3 in ALC with
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observations as sets of concept and role assertions. As in Chapter 5, the full abduction

approach is assumed to follow Steps (1)–(4) of Figure 5.2, where the filtering proce-

dure uses the annotation-based approximation prior to full entailment checking due to

the infeasibility of performing entailment checks over the entire forgetting solution.

6.5 Experimental Evaluation

To perform an evaluation of the approach, a prototype was implemented in Java using

the OWL-API1. This prototype extends the prototype used in the experimental evalua-

tion in Chapter 5, where the necessary modifications to each step, such as the required

forms of negation and the option to use FAME during the forgetting step, in Figure

5.1 are included. One of the primary aims of this investigation was to compare the

use of the semantic forgetting system FAME against the uniform interpolation system

LETHE in Step (2) of Figure 5.1. Therefore, the prototype can be configured to use

either system during this step, where the corresponding procedure is followed for ei-

ther case. The results in this section can therefore be interpreted as a direct comparison

between the approaches in Chapters 5 and 6 respectively.

As discussed in previous chapters, there are few experimental evaluations of ab-

ductive reasoning over DL ontologies, particularly over large, expressive ontologies

such as those uploaded to NCBO Bioportal. In addition, the approaches in this thesis

solve a particular, challenging instantiation of the abduction problem: computing se-

mantically minimal spaces of independent explanations. Therefore, the approach taken

in these experiments was to utilise the experimental framework outlined in Section 5.6

as a benchmark. The observations generated by this approach do not violate the con-

ditions in Definition 4.2.1, i.e., they are consistent with the corresponding background

ontology, but are also not entailed by it. In each case, this was checked using the

external reasoner HermiT [GHM+14] during the generation of each observation. In

addition, the approach attempts to emulate the form and complexity of observations

1http://owlapi.sourceforge.net/
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that may be observed in real application scenarios. While it is not possible to know

exactly what forms the observations may take outside of case studies, it is important

to try to emulate information that may be seen in practice, rather than generating arbi-

trarily simple or complex cases. The framework for generating observations was also

extended. Specifically, the restriction placed on the observation was lifted and gener-

ated observations could include role assertions as well as concept assertions. This was

used to evaluate the performance of the abduction approach in cases where FAME was

used for the forgetting step, while the observation generation procedure from Section

5.6 was utilised when comparing this to the use of LETHE for forgetting.

First Experiment: Setup

The first experiment aims to compare the performance of the abduction system when

using FAME in Step (2) of Figure 5.1 as opposed to LETHE. In both cases, the full

filtering approach which uses the annotation-based approximation, followed by entail-

ment checking, was used. For the entailment checks, the DL reasoner HermiT was

used as during the observation generation procedure. The metrics used for the compar-

ison of the two abduction approaches were the time taken to compute a hypothesis and

the characteristics of the hypotheses obtained. To ensure that the performance of the

two approaches was directly comparable, the set of observations was restricted to those

that can be handled by the abduction system using LETHE as in Chapter 5. These in-

cluded any ALC concept assertion, with at least one concept symbol that is not ⊤ or

⊥, over a single individual. For ontologies with an ABox the individuals used in the

observations were existing individuals from the ABox, while for those ontologies that

did not have an ABox the individual was a freshly created one. The restriction to one

individual was due to the fact that disjunctive assertions over multiple individuals can-

not be expressed using the OWL API, which was used to provide input to the prototype

for this experiment as in Section 5.6. For each observation, the forgetting signature F
was set to one random concept symbol in the observation ψ . In this way, the results

are indicative of a single step of the abduction procedure, where the assumption is that
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the user has no additional information that would enable an informed reduction in the

size of the abducible set SA. Thus, the hypothesis obtained is the weakest possible hy-

pothesis (least assumptive) for the given observation. It is assumed that the user would

proceed to further refine the hypothesis by forgetting symbols from the hypotheses ob-

tained. The time limit in this experiment was 300 seconds for both the forgetting and

filtering steps respectively.

Ontology DL TBox ABox Num. Num.
Name Size Size Concepts Roles
BFO EL 52 0 35 0
LUBM EL 87 0 44 24
HOM EL 83 0 66 0
DOID EL 7892 0 11663 15
SYN EL 15352 0 14462 0
ICF ALC 1910 6597 1597 41
Semintec ALC 199 65189 61 16
OBI ALC 28888 196 3691 67
NATPRO ALC 68565 42763 9464 12

Table 6.1: Characteristics of the experimental corpus.

The corpus used in experiment 1 is the same as the one used in Chapter 5, which

consists of ontologies from NCBO Bioportal2, OBO Foundry3, the LUBM benchmark

[GPH05] and the Semintec4 financial ontology. The choice of corpus is detailed in

[DS19a]. The statistics of this corpus are shown in Table 6.1.

Second Experiment: Setup

The second experiment focused on assessing the performance of the abduction ap-

proach detailed in this Chapter, using both the approximate and full filtering settings.

As before, these settings correspond to the case where the resulting hypothesis is the

negation of the approximately reduced forgetting solution V∗
app, which is not guar-

anteed to fully satisfy Definition 4.2.1, and the fully reduced forgetting solution V∗,

which is guaranteed to fully satisfy Definition 4.2.1, respectively. The corpus used

2https://bioportal.bioontology.org/
3http://www.obofoundry.org/
4http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
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Number of Mean Median 90th Percentile Maximum
TBox Axioms 1374 328 3830 8535
ABox Assertions 1014 26 2472 10889
Concepts 783 221 2232 6446
Roles 54 21 76 1043
Individuals 558 23 1605 8220

Table 6.2: Characteristics of the experimental corpus used in experiment 2.

in the second experiment was extracted from a snapshot of NCBO Bioportal [MP17].

The observations were generated in the same way as in experiment 1, but without the

restrictions on the observations that were required for the comparison with the sys-

tem in Chapter 5. The forgetting signature in each case included at least one symbol

from the observation, including role symbols. As before the choice of forgetting sig-

nature for this experiment is based upon the fact that, while forgetting aims to restrict

a background ontology to a portion of the original, the aim of the abduction prob-

lem is instead to produce a space of independent explanations that does not make too

many assumptions about the new observations without sufficient prior knowledge. As

a result, the assumption is that the forgetting signature sizes used in practice for the

abduction problem are likely to be small, particularly when little is known about the

observations in question. For the second experiment, the timeout for the method was

set to 1000 seconds in total. The success rates reported include cases for which FAME

failed to forget at least one symbol due to the incompleteness of the forgetting calculus

utilised by the algorithm and cases for which the abduction approach, including both

forgetting and filtering, exceeded the time limit.

For the second experiment, a larger corpus was used to evaluate the performance

of the abduction approach in this chapter. The requirements of this second corpus

were as follows. (1) For each ontology in the corpus, it must be possible to parse the

ontology using OWL API, FAME and the reasoner HermiT. If there was an error in

loading an ontology into any of these systems, it was excluded from the corpus. (2)

The maximum size of any given ontology was 100,000 axioms. A restriction such

as this is required for practical purposes. The specific upper bound on the size is
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based upon prior experimental evaluations performed for the forgetting system FAME

[Zha18], since this is utilised as part of Step (2) and therefore similar guidelines are

applicable here. (3) When generating sets of observations, an upper limit of 2,000

attempts was permitted before the process was terminated. If it was not possible to

generate the required number of observations within this limit, then the corresponding

ontology was excluded from the corpus. In this way, ontologies for which it was not

possible to generate a sufficient number of non-entailed, consistent observations were

excluded. (4) Every ontology in the corpus must have a non-empty ABox. One of

the main benefits of the abduction approach in this Chapter is the fact that additional

hypotheses can be reached. The ability to handle observations and hypotheses that

contain role assertions enables the use of information about existing individuals in the

ABox and their relationships to one another. Therefore, the most appropriate setting

to evaluate the approach is in the presence of an ABox. Statistics for the final corpus,

which contained 50 ontologies in total, are provided in Table 6.2.

All ontologies were preprocessed into their ALC fragments, since this is the setting

of this work. Axioms not representable in ALC were removed, while those that are

representable in ALC were translated using simple conversions.

Both experiments were performed on a machine using a 2.8GHz Intel Core i7-

7700HQ CPU and 12GB of RAM.

6.5.1 Results

Since fixpoint operators are not utilised in the implementation of FAME, these were

not present in the results. Thus, cases requiring fixpoints are deemed to be a failure

case in the first experiment when comparing to the approach in Chapter 5, and count

against the reported success rates for computing HF . However, these are unlikely to

have a significant impact as they are rare in practice, as illustrated by the experimental

results in Chapter 5 Section 5.6.
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Ont. Mean Time /s Max Time/s Mean Disjuncts O,HL ≡ Success %
Name HL HF HL HF HL HF O,HF% HL HF
BFO 0.05 0.04 0.64 0.26 1.73 1.73 100.0 100.0 100.0

LUBM 0.08 0.06 0.67 0.30 2.53 2.96 60.8 100.0 86.7
HOM 0.06 0.05 0.65 0.26 2.5 2.5 100.0 100.0 100.0
DOID 3.35 3.07 9.97 10.26 4.77 4.77 100.0 100.0 100.0
SYN 6.18 2.84 16.12 13.92 5.6 5.6 100.0 100.0 100.0
ICF 0.96 0.67 3.56 2.16 1.93 1.93 100.0 100.0 100.0
Sem. 2.89 3.09 6.70 6.39 1.10 1.63 58.3 96.7 100.0
OBI 34.47 32.97 120.05 108.85 43.45 42.2 91.3 96.7 100.0
NAT. 46.04 138.24 301.27 688.87 10.61 4.17 62.5 76.7 76.7

Table 6.3: Results for the first experiment. HL (HF ) indicates results for the abduction
approach using LETHE (FAME) in the forgetting step. The time limit for forgetting
and filtering was 300 seconds each. For the equivalence check, only cases where both
LETHE and FAME computed a hypothesis were compared. For the success rate, fail-
ures took into account times exceeding the timeout and, in the case of FAME, results
for which the concept could not be forgotten and results containing definer symbols.

First Experiment: Results

The results for the first experiment are shown in Table 6.3. Over most of the ontologies

in the corpus the mean runtime was shorter for the abduction approach in this chap-

ter, which utilises FAME in Step (2). Two exceptions to this general trend were the

Semintec and NATPRO ontologies: the runtime using the abduction approach in this

chapter was longer in a few cases, particularly over the NATPRO ontology, for which

the mean runtime was over double that of the approach in Chapter 5. These differ-

ences could be due to the computation of additional explanations resulting from the

expressivity of the forgetting solution obtained using FAME in Step (2), which would

necessitate additional entailment checks during the filtering process in Step (3). Also,

for ontologies with large ABoxes, a significant number of axioms need to be trans-

formed to TBox axioms using nominals, which may increase the time taken. In most

cases, the success rate when computing HL was 100%. The same is true for HF . In

the former case, using the abduction approach of Chapter 5, failures occurred over the

larger and more expressive ontologies, Semintec, OBI and NATPRO. These are due

to timeouts during Step (2), indicating that LETHE took longer than 300 seconds to
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produce a solution. When utilising FAME in Step (2), failures can occur due to the

incompleteness of FAME’s calculus: all of the failures over the LUBM ontology when

computing HF were due to this characteristic, while for the NATPRO ontology all of

the failure cases were instead due to timeouts. In most cases, the hypotheses HL and

HF were equivalent under the corresponding ontology. This indicates that it should of-

ten be possible to express HF in ALC, which may help to improve the readability issue

discussed in Example 6.3.1 in these cases. Over the LUBM, Semintec, OBI and NAT-

PRO ontologies, a number of the HF hypotheses were weaker than the corresponding

HL. This is expected, due to the fact that the forgetting result obtained in Step (2) when

utilising FAME may be stronger than the corresponding forgetting solution produced

by LETHE. In some cases there may be hypotheses that cannot be expressed without

the extra expressivity of the forgetting solution computed using FAME. Example 6.5.1

is taken from the LUBM experiments and demonstrates the benefit in practice.

Example 6.5.1. For the observation ψ = ¬Organization(a), where a is a fresh indi-

vidual, the key axioms in the LUBM ontology were:

Person⊓∃worksFor.Organization ⊑ Employee College ⊑ Organization

Employee ⊑ Person⊓∃worksFor.Organization

For the forgetting signature F = {Organization}, the hypothesis was:

HF =⊤⊑ ∀∇.(¬{a}⊔∃worksFor−.(¬Employee⊓Person))

Other explanations, such as those equivalent to ¬College(a), are redundant with re-

spect to Definition 1(iii) and are removed by the filtering step. Using the approach in

Chapter 5, no hypothesis was produced as the above hypothesis requires the use of the

inverse role worksFor−, which cannot be produced using LETHE in Step (2).

Second Experiment: Results

The results for experiment 2 are shown in Table 6.4. As expected, the approximate

filtering took less time than the full filtering across all cases, as it does not perform
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F Forgetting Time Approx. Filter Time Full Filter Time Successes %
Size Mean Max Mean Max Mean Max Approx. Full

1 0.05 1.02 0.74 869.63 7.40 880.11 90.3 89.3
5% 0.13 11.15 0.09 28.25 8.29 878.05 81.7 80.9
10% 1.04 75.09 0.06 5.52 6.45 975.24 70.9 70.6

Table 6.4: Results for experiment 2. Percentages for F are relative to sig(O,ψ). All
times are in seconds.

the additional, expensive entailment checks. The maximum time for the approximate

filtering for an F size of 1 is particularly high. It is likely that for this single case the

forgetting solution was particularly large, indicating that the forgotten symbol occurred

frequently in the given ontology. The mean number of redundant axioms removed from

the forgetting results by the approximate filtering was 2444.6, 2510.4 and 2873.3 for

F sizes of 1, 5% and 10% respectively. The mean additional redundancies removed

by the full filtering setting was 11.7, 11.3 and 9.7 axioms respectively. This indicates

that in many cases the approximate filtering may be sufficient to obtain a space of ex-

planations that is largely free of redundancies. The success rates indicate that the full

filtering setting caused a number of additional timeouts for each size of F . However,

the majority of failures were the result of FAME failing to forget at least one symbol

in F . For the approximate filtering cases, 100%, 100% and 99.5% of failures occurred

due to the forgetting step for F sizes 1, 5% and 10% respectively. For the full filtering

cases, the corresponding values were 88.8%, 94.8% and 94.8% respectively. FAME’s

failure rates for these abduction experiments are higher than those reported for forget-

ting experiments [ZS16, Zha18]. This may be due to the frequency of role symbols

occurring in ABox observations for abduction, many of which included role assertions

or complex concepts involving roles.



Chapter 7

TBox and Knowledge Base Abduction

In this Chapter, forgetting-based abduction is investigated for the problem of TBox

abduction, for which the observations and hypotheses can be TBox axioms, i.e., uni-

versally quantified axioms rather than ground axioms as in the ABox abduction prob-

lem. First, the general problem of computing least assumptive spaces of independent

explanations is investigated in the context of TBox abduction from two perspectives.

The first adheres to standard considerations of TBoxes in DLs, examining disjunctive

redundancy occurring inside a single TBox axiom. The second aims to more fully

capture the notion of independent explanations by extending the setting to include dis-

junctions of TBoxes. The need to extend the forgetting calculus used in Chapter 5,

to overcome both shortcomings of the approach and the TBox abduction problem, are

then examined. Following this, the knowledge base (KB) abduction problem is defined,

which generalises the problems of ABox and TBox abduction. To solve this problem,

extensions that have been made to the calculus used by the forgetting system LETHE,

as well as the techniques to avoid redundant inferences with respect to abduction, are

presented. The result is the first approach for KB abduction over ALC ontologies, that

also extends the space of explanations that can be reached when compared to previ-

ous chapters. The resulting system is then evaluated experimentally over a corpus of

ontologies, focusing on the effect of increasing the number of non-abducibles and the

size of the observation with respect to ABox, TBox and KB observations. The aim is

156
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to avoid, where possible, strong assumptions on the forms of observations that may be

encountered in practice.

A portion of the work in this chapter is based on a collaboration with Patrick Koop-

mann, Sophie Tourret and Renate A. Schmidt that was published in [KDTS20], par-

ticularly Sections 7.3, 7.4 and the Appendix A.1. The experimental setup and results

presented in Section 7.6 are different to those in the aforementioned work.

7.1 Independent Explanations and TBox Abduction

As discussed in previous chapters, forgetting-based approaches to abduction lend them-

selves well to abduction problems where the aim is to produce semantically min-

imal hypotheses due to the duality between strongest necessary and weakest suffi-

cient conditions. However, unlike most considerations of semantic minimality in DLs

[KES11, HB12, HBK14] the setting of the problem considered in this thesis does not

exclude disjunctions in the hypothesis. Since the approach relies on both contraposi-

tion and forgetting, and the forgetting solution is a conjunction of entailments of the

input, the resulting hypothesis will be a disjunction. As a result, an additional require-

ment must be met: inter-disjunct redundancy as specified in Definition 4.2.1 condition

(iii). As argued in Chapter 4, this ensures that the semantically minimal hypothesis

computed does not consist mostly of redundant explanations, i.e., that each disjunct

is an independent explanation for the new observation. This requirement is concep-

tually the same in the TBox abduction setting. However, the notion of disjunctive

redundancy is less clear in the case of TBox abduction and fully solving the problem

requires further extension.

Consider the setting of the abduction problem in Chapter 5: abduction in the DL

ALC. An example of TBox abduction in this setting is as follows:

Example 7.1.1. Consider the following instance of the abduction problem:

O ={B ⊑C,
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∀r.A ⊑C,

E ⊑C,

E ⊓D ⊑⊥}

ψ =D ⊑C

SA ={r,A,B,D}

A possible hypothesis is as follows:

H1 = D ⊑ (∀r.A)⊔B

In order to check whether or not a candidate TBox abduction hypothesis satisfies

the conditions in Definition 4.2.1, it is first necessary to establish the notion of a space

of explanations in the TBox abduction setting. This requires an appropriate way to

account for disjunctions of explanations in a TBox hypothesis. In this section, two

possible characterisations of disjunctive redundancy will be explored: intra-axiom and

inter-axiom. The former examines disjunctions in hypotheses that take the form of

TBox axioms, as encountered commonly in DLs, while the latter case requires an

extension of the standard consideration of TBoxes to the notion of a disjunction of

TBoxes.

7.1.1 Intra-Axiom Disjunctive Redundancy

For Example 7.1.1, only one axiom is required in the hypothesis H1: D ⊑ (∀r.A)⊔B.

However, the notion of disjunctions of explanations is still relevant here. Consider the

following hypotheses as alternative solutions to Example 7.1.1:

H2 = D ⊑ ∀r.A

H3 = D ⊑ B

H4 = D ⊑ (∀r.A)⊔B⊔E
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All three of these hypotheses are consistent explanations for ψ under O. Thus, they

satisfy the notions in Definition 4.2.1 conditions (i) and (ii). It is worth noting that the

superclass of both H2 and H3 consists of one of the disjuncts from the superclass

in H1. Consequently, both H2 and H3 are less semantically minimal than H1, since

O,H2 |=H1 and O,H3 |=H1 but O,H1 ̸|=H2 and O,H1 ̸|=H3. Meanwhile, without

considering redundancy of individual disjuncts, H4 is as semantically minimal as H1

since both entail one another under the background ontology O.

Capturing the notion of inter-disjunct redundancy in Definition 4.2.1 condition (iii)

requires an appropriate consideration of disjunction in the TBox abduction setting.

Neither H2 nor H3 are interesting cases here, since neither contain a disjunction and

thus trivially satisfy the notion of condition (iii). This leaves H4. If the hypothesis is

still seen as being a disjunction of the following form:

H= α1 ∨ ...∨αn

where each αi is a conjunction of DL axioms, then H4 also trivially passes condition

(iii) since it is a single axiom.

However, it is clear that H4 intuitively contains a form of disjunctive redundancy:

the disjunct E in the superclass is redundant, since D ⊑ E is contradictory under O
since D and E are disjoint. Consider the following general concept inclusions (GCIs):

D ⊑ ∀r.A

D ⊑ B

D ⊑ E

consisting of D included in each of the disjunctions in the superclass of H4. If each

of these is seen as a candidate explanation for ψ , then the inter-disjunct redundancy

condition can be checked as follows:

O,D ⊑ ∀r.A |= D ⊑ B⊔E
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O,D ⊑ B |= D ⊑ (∀r.A)⊔E

O,D ⊑ E |= D ⊑ (∀r.A)⊔B

where each “disjunct” being checked is now a GCI. The first two entailment checks

return false. Therefore, the explanations D ⊑ ∀r.A and D ⊑ B are not redundant with

respect to one of the other explanations for the observation ψ . The third axiom D ⊑ E

is inconsistent with the background ontology, i.e., O,D ⊑ E |=⊥, and as such the

third entailment check trivially holds. Thus, the disjunct “E” in the superclass can be

seen as redundant: it does not provide a consistent (and independent) explanation for

the observation ψ . Removing this disjunct from the superclass leaves the hypothesis

originally suggested in Example 7.1.1:

H= D ⊑ (∀r.A)⊔B

as the preferred solution to the abduction problem. This solution comes closer to sat-

isfying the notion of a set of independent explanations, since it excludes the redundant

explanation D ⊑ E.

Note that disjunctions, and thus inter-disjunct redundancy, can occur in both the

superclass and subclass of TBox axioms, as illustrated by the following example.

Example 7.1.2. Consider the following abduction problem:

O ={D ⊑ A

D ⊑ B

D ⊑ E

C(a)

¬E(a)}

ψ =D ⊑C

SA ={A,B,C,E}
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The following is a hypothesis for the above problem:

H1 = A⊓B ⊑C

In the above hypothesis H1, the conjunction in the subclass should be treated as a

disjunction in the same way as an explicit disjunction in the superclass, i.e., both A ⊑C

and B ⊑C are stronger explanations for ψ than H1. For example, the following candi-

date hypothesis for Example 7.1.2 contains an intra-axiom disjunctive redundancy:

H2 = A⊓B⊓E ⊑C

in the form of the “E” in the subclass, since E ⊑C is inconsistent with the background

O given the information about the individual a.

Given this characterisation, one possible realisation of the abduction problem in

Definition 4.2.1 in the context of TBox abduction in ALC is as follows:

Definition 7.1.1. Let O be an ALC ontology and ψ be an observation as set of ALC
TBox axioms, where O,ψ ̸|=⊥ and O ̸|= ψ . Let SA be a set of symbols, called ab-

ducible symbols, where SA ⊆ sig(O,ψ). The TBox abduction problem is to find an

ALC hypothesis H as a set of TBox axioms such that:

(i) O,H ̸|=⊥

(ii) O,H |= ψ

(iii) Let H = γ1 ⊓ ...⊓ γm ⊑ α1 ⊔ ...⊔αn. The following conditions must hold where

C and D represent the sub and superclass of H respectively:

(a) For each αi ∈ D, it is not the case that O,C ⊑ αi |=C ⊑⊔n
j ̸=i α j.

(b) For each γi ∈C, it is not the case that O,γi ⊑ D |= dm
j ̸=i γ j ⊑ D.

(iv) If there exists a H′ satisfying (i)–(iii), where sig(H′)⊆ SA, then O,H′ |=H.
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This definition assumes that the hypothesis H takes the form of a single TBox

axiom, as permitted in DLs. Note that a conjunction of GCIs can also be represented

in the form of a single TBox axiom. The aim is then to reduce redundancy between

disjunctions that can occur within the axiom. However, this definition is not sufficient

to fully capture the notion of a hypothesis in Definition 4.2.1. Particularly, it assumes

that the semantically minimal hypothesis HT can be represented as a single GCI.

7.1.2 Inter-Axiom Disjunctive Redundancy

The main assumption made in Definition 7.1.1 is limiting for the abduction setting

considered in this thesis, as illustrated by the following example:

Example 7.1.3. Consider the following TBox abduction problem:

O ={ /0}

ψ =∃r.A⊓A ⊑ ∃r.B⊔D

Two possible explanations for ψ under O are:

A ⊑ B

A ⊑ D

To obtain the semantically minimal space of independent explanations, the optimal

hypothesis would be:

H= A ⊑ B∨A ⊑ D

The hypothesis H in Example 7.1.3 satisfies the properties of absence of inter-

disjunct redundancy and semantic minimality. However, the required disjunction can-

not be expressed using a single GCI, and is thus not directly representable in DLs such

as ALC. This is clearer when considering the first-order translations of DL statements
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as expressed in Figure 7.1 [HSG04].

DL Concepts:
π(C,x) =C(x)
π(∇,x,y) =⊤
π(C⊓D,x) = π(C,x)∧π(D,x)
π(C⊔D,x) = π(C,x)∨π(D,x)
π(∀r.C,x) = ∀y(π(r,x,y)→ π(C,y))

General Concept Inclusion Axiom:
Π(C ⊑ D) = ∀x(π(C,x)→ π(D,x))

Figure 7.1: Standard translations from description logics to first-order logics. [HSG04]

Consider the following two statements with respect to Example 7.1.3:

(1) A ⊑ B⊔D

(2) A ⊑ B∨A ⊑ D

where the first statement attempts to capture the required explanations in a single TBox

axiom, while the second statement is the suggested optimal hypothesis for the abduc-

tion problem given in Example 7.1.3. The first-order translations of these two state-

ments proceeds as follows:

Π(A ⊑ B⊔D) = ∀x(π(A,x)−→ π(B,x)∨π(D,x))

Π(A ⊑ B∨A ⊑ D) = ∀x1(π(A,x1)−→ π(B,x1))∨∀x2(π(A,x2)−→ π(D,x2))

which then becomes:

(1) ∀x(A(x)−→ B(x)∨D(x))

(2) ∀x1(A(x1)−→ B(x1))∨∀x2(A(x2)∨D(x2))
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note that, since universal quantification does not distribute over disjunction, these two

are not equivalent. In fact, statement (1) is not a valid explanation for ψ in Example

7.1.3. It is in fact too weak: if statement (1) is taken to be a hypothesis H then when

it is added to the background ontology O, which in this case is empty, the requirement

O,H |= ψ is not satisfied. This is clearer when considering possible interpretations

satisfying each statement: an interpretation where some elements of A are elements of

B but not D, while the rest are are elements of D but not B, satisfies statement (1) but

not statement (2) nor the observation ψ . For example, the following ABox:

A(ind1) A(ind2)

B(ind1) ¬B(ind2)

¬D(ind1) D(ind2)

r(ind1, ind2)

is a model of statement (1): A ⊑ B⊔D. However, the question remains: does this

statement provide an explanation for the TBox observation ψ in Example 7.1.3. Ex-

amining the information regarding the individual ind1: it is an element of A and it has

an r-successor that is an element of A, namely ind2. Thus, under ψ it should be the

case that ind1 either has an r-successor that is an element of B, or ind1 is an element of

D. Neither of these hold, and so O,H ̸|= ψ where O = { /0}, i.e., statement (1) cannot

be a hypothesis for ψ .

The solution to the abduction problem in Example 7.1.3 is instead statement (2):

a disjunction of GCIs. Examining the two disjuncts in statement (2), both statements

would be consistent explanations for the observation ψ under O:

O,A ⊑ B |= ∃r.A⊓A ⊑ ∃r.B⊔D

O,A ⊑ D |= ∃r.A⊓A ⊑ ∃r.B⊔D

It is also the case that neither O,A ⊑ B |= A ⊑ D nor O,A ⊑ D |= A ⊑ B hold,
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meaning that neither disjunct is stronger than the other under the background ontology.

As a result, the hypothesis satisfies the inter-disjunct redundancy notion in Definition

4.2.1 condition (iii). Generalising from this leads to a second definition for the problem

of computing the weakest space of ALC TBox hypotheses in the DL ALC, as follows.

Definition 7.1.2. TBox Abduction in ALC Ontologies. Let O be an ontology and ψ

be a set of TBox axioms, both expressed in ALC, such that O,ψ ̸|=⊥ and O ̸|= ψ . Let

SA be a set of symbols called abducibles. The TBox abduction problem is to compute

a hypothesis H = α1 ∨ ...∨ αn as a disjunction of TBox axioms, where each αi is

equivalent to a GCI of the form Ci ⊑ Di where Ci,Di are arbitrary ALC concepts. The

solution H must contain only those symbols specified in SA and satisfy the following

conditions:

(i) O,H ̸|=⊥

(ii) O,H |= ψ ,

(iii) H does not contain inter-disjunct redundancy i.e., there is no disjunct αi in H
such that O,αi |= α1 ∨ ...∨αi−1 ∨αi+1 ∨ ...∨αn

(iv) for any H′ satisfying conditions (i)–(iii) where sig(H′)⊆ SA, then O,H′ |=H.

By allowing disjunctions of TBox axioms, this problem takes the same form as the

ABox abduction problem presented in Definition 5.1.1: assuming that each disjunct αi

is a TBox axiom rather than a concept assertion, the conditions (i) – (iv) can be treated

the same way. Note that in ALC, a conjunctive set of TBox axioms (a TBox) can be

represented as a single TBox axiom and thus each αi is not restricted in this sense.

As discussed, it is not possible to represent solutions as disjunctions of GCIs di-

rectly in ALC. However, by utilising the universal role ∇, it is possible to represent

a disjunction of GCIs in DLs such as those utilised in Chapter 6. For example, the

hypothesis in Example 7.1.3 can be represented equivalently as follows:

⊤⊑ ∀∇.(¬A⊔B)⊔∀∇.(¬A⊔D)
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Generalising from this, any given hypothesis as a disjunction of GCIs can be rep-

resented using the above form, as formalised in Lemma 7.1.1.

Lemma 7.1.1. A hypothesis H that takes the form of a disjunction of GCI axioms

H=C1 ⊑D1∨ ...∨Cn ⊑Dn, where each Ci,Di is an ALC concept, can be equivalently

represented as a single axiom of the following form:

H=⊤⊑ ∀∇.(α1)⊔ ...⊔∀∇.(αn)

where each αi is an ALC concept.

Proof: Given a disjunction of arbitrary GCIs of the form H =C1 ⊑ D1 ∨ ...∨Cn ⊑ Dn

where each Ci,Di is an ALC concept, the suggested equivalent representation is:

H=⊤⊑ ∀∇.(¬C1 ⊔D1)⊔ ...⊔∀∇.(¬Cn ⊔Dn)

i.e., each αi in the lemma is a clause of the form ¬Ci ⊔Di. The first-order translation

of the above statement, using the notation in Figure 7.1 [HSG04] proceeds as follows:

Π(H) = Π[⊤⊑ ∀∇.(¬C1 ⊔D1)⊔ ...⊔∀∇.(¬Cn ⊔Dn)]

= ∀x[π(⊤,x)→ π(∀∇.(¬C1 ⊔D1)⊔ ...⊔∀∇.(¬Cn ⊔Dn),x)]

= ∀x[π(⊤,x)→ π(∀∇.(¬C1 ⊔D1))∨ ...∨π(∀∇.(¬Cn ⊔Dn))]

= ∀x[⊤→ ∀y1(π(∇,x,y1)→ π(¬C1 ⊔D1,y1))∨ ...∨∀yn(π(∇,x,yn)→ π(¬Cn ⊔Dn,yn))]

= ∀x[⊤→ ∀y1(⊤→ π(¬C1,y1 ∨π(D1,y1))∨ ...∨∀yn(⊤→ π(¬Cn,yn)∨π(Dn,yn))]

= ∀x[∀y1(¬C1(y1)∨D1(y1))∨ ...∨∀yn(¬Cn(yn)∨Dn(yn))]

eliminating the superfluous universal quantifier then leaves:

Π(H) = ∀y1(¬C1(y1)∨D1(y1))∨ ...∨∀yn(¬Cn(yn)∨Dn(yn))

Now it remains to show that this is equivalent to a disjunction of GCIs. Each disjunct
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above corresponds to the FOL translation of a single GCI axiom as follows:

∀yi(¬Ci(yi)∨Di(yi))

=∀yi(Ci(yi)→ Di(yi))

=Π(Ci ⊑ Di)

by the reverse of the translation in Figure 7.1. Following this, by extending the trans-

lation to include an arbitrary number of disjuncts, it can be seen that the hypothesis H
is equivalent to:

C1 ⊑ D1 ∨ ...∨Cn ⊑ Dn

which is a disjunction of GCIs where each Ci,Di is an ALC concept as required.

Thus, to solve the TBox abduction problem presented in Definition 7.1.2 via a

forgetting-based approach, it is necessary to utilise a calculus that can compute forget-

ting results in DLs that include the top role ∇.

It is reasonable to expect that the two most promising avenues of investigation

are: (1) extending the forgetting calculus used by the system LETHE to handle TBox

abduction and (2) utilising the calculus used by FAME directly to solve the TBox

abduction problem in the same, or a similar, fashion to the ABox abduction approach

in Chapter 6.

For the first option, tackling the TBox abduction problem in Definition 7.1.2 would

indeed require the extension of the forgetting calculus used in the forgetting system

LETHE. The limitation regarding computing negated role assertions, outlined in Chap-

ter 5 is not problematic in the TBox abduction case since role assertions will not be

present in the observation, and it is not possible for a role assertion to be provided as

an explanation of a set of TBox axioms. However, the incompleteness of role forget-

ting with respect to the TBox abduction problem illustrated in Example 5.4.8 must be

addressed, which is discussed in Section 7.2.
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For the second option, the calculus utilised by the system FAME can already per-

form forgetting in DLs that utilise the top role ∇, unlike the calculus used by LETHE.

As a result, it should be the case that the abduction problem in Example 5.4.8 can be

solved using an abduction system that utilises FAME’s calculus in Step (2) of Figure

5.1. Further, it is clear that the representation of H suggested in this section should not

be problematic. In fact, it is already similar to the representation used in Chapter 6. The

same can be said of ¬ψ , for example given a TBox observation ψ = {A ⊑ B,C ⊑ D},

the negation ¬ψ is equivalent to:

¬ψ =⊤⊑ ∃∇.(A⊓¬B)⊔∃∇.(C⊓¬D)

while in Chapter 6 for an ABox observation such as ψ = {A(c),B(d)}, ¬ψ takes the

form:

¬ψ =⊤⊑ ∀∇.(¬{c}⊔¬A)⊔∀∇.(¬{d}⊔¬B)

Note that the quantifier applied to ∇ differs here compared to Chapter 6, since in the

TBox abduction case the original observation ψ is universally quantified and the nega-

tion is existentially quantified while the opposite is true for ABox abduction. Aside

from this, the two representations of ¬ψ take similar forms, with the main difference

being that no nominals are required in the TBox abduction setting if we assume that the

background ontology O and the observation ψ are in ALC. The same parallel exists

between the representations of H in both cases.

The focus of the abduction approach in the following section will be on the first

case: extending the forgetting calculus of LETHE, for which there are several moti-

vations. First, the forgetting solutions produced via LETHE’s calculus are in general

syntactically simpler than those produced via FAME’s Ackermann-based approach, as

discussed in Chapter 6. Second, unlike FAME, LETHE utilises a calculus that is com-

plete for the forgetting problem in ALC. Thus, assuming that the incompleteness of

role forgetting with respect to TBox abduction can be overcome, it is reasonable to
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assume that the extension could be complete with respect to TBox abduction.

7.2 Motivating Extensions to the IntALC Calculus

In this section, specific cases that require extensions to the forgetting calculus IntALC ,

utilised in Step (2) of Figure 5.1 as discussed in Chapter 5, will be examined. These

will be used to motivate directions for extending the calculus specifically to solve these

problematic cases, primarily to enable the computation of solutions to TBox abduction

problems and to overcome limitations in the ABox abduction approach of Chapter

5. Here the focus is on examining motivating cases based on the prior approach and

identifying initial extensions that can be made to solve them. The final extensions made

to the forgetting calculus, which are the subject of the collaboration in [KDTS20], will

be discussed in Section 7.4.

For TBox abduction, Example 5.4.8 in Chapter 5 demonstrates a case requiring an

extension of the IntALC calculus in [KS15b]:

Example 7.2.1. Recall the following abduction problem:

O ={ /0}

ψ ={∃r.C ⊑ ∃r.D}

SA ={C,D}

Here the aim is to solve this problem using the IntALC calculus used in Step (2) of

Figure 5.1, as discussed in Chapter 5. For a GCI axiom C ⊑ D, the clausal form is

¬C⊔D, while the negation of this would therefore be C⊓¬D. As a result, during Step

(1) in the abduction approach in Figure 5.1, a possible representation for the negated

observation is:

¬ψ = (∃r.C⊓∀r.¬D)(a∗)

where a∗ is a fresh individual. The application of IntALC calculus to eliminate F = {r}
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proceeds as follows, where O,¬ψ has been converted to the required clausal normal

form:

1) ∃r.D1(a∗)

2) ¬D1(x)∨C(x)

3) ∀r.D2(a∗)

4) ¬D2(x)∨¬D(x)

while the role propagation rule could be applied on clauses (1) and (3), this would not

yield any further inferences on symbols in F . Even if the role propagation rule was

applied regardless, the result would be as follows:

5) ∃r.D12(a∗) Role Propagation (1, 3)

6) ¬D12(x)∨D1(x)

7) ¬D12(x)∨D2(x)

8) ¬D12(x)∨C(x) Resolution (2, 6)

9) ¬D12(x)∨¬D(x) Resolution (4, 7)

At this point, following the elimination of definer symbols and clauses containing sym-

bols in F , the result would still be V = { /0}. Thus, in Step (3) of the abduction approach

in Figure 5.1 the reduced uniform interpolant V∗ is also empty and no final hypothesis

is returned from the abduction approach. However, there is clearly a valid hypothesis

within the signature SA under Definition 7.1.2: H=C ⊑ D.

In the above example, the issue lies in the fact that it is not possible to retain the

information regarding the definer D12, which is discarded at the end of the forgetting

process. For the forgetting problem in ALC [KS15b], this is sufficient: there is no

entailment of O,¬ψ in the signature SA that is representable in ALC with disjunctive

assertions. However, for the abduction problem the hypothesis H = C ⊑ D is a valid

solution. Thus, it is necessary to extend IntALC to account for this, i.e., retain the
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information regarding D12. Utilising the top role ∇, this can be achieved as follows:

10)¬D1 ⊔∃∇.D12

by effectively replacing the occurrence of r, which occurs in the forgetting signature

F , with ∇, the required entailment in SA is retained. Substituting the definition for

D12 back into (10), eliminating the definers and then extracting the reduced forgetting

solution V∗ gives:

V∗ = {∃∇.(C⊓¬D)}

which when negated results in the following hypothesis:

H=⊤⊑ ∀∇r.(¬C⊔D)

which is equivalent to the expected hypothesis H=C ⊑ D.

Extending this to the general case, an initial suggestion for extending the calculus

IntALC is to include a rule of the following form:

(C1 ∨∀r.D1)(t1) (C2 ∨∃r.D2)(t2)

(C1 ∨C2)σ ∨∃∇.D12(t1σ)

where Q ∈ {∃,∀} and r ∈F . This is a special case of the role propagation rule to retain

the entailment under r when r is a symbol to be forgotten by utilising ∇. Applying this

to Example 7.2.1, the derivation of clause (6) instead becomes:

6)∃∇.D12

as required. Since r is no longer present in this clause, the clause will be retained.

The final realisation of this notion will be discussed later in this Chapter in Section

7.3, by the introduction of additional rules to the IntALC calculus.

For ABox abduction, the main limitation discussed in Chapter 5 is the inability to

support observations and hypotheses that contain role assertions of the form r(a,b).
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For example, a hypothesis containing a role assertion as an explanation occurs in the

following problem:

Example 7.2.2. Consider the following:

O ={∃r.C ⊑ A,

B ⊑ A,

C(b)}

ψ =A(a)

SA ={r,B}

A possible hypothesis, as a weakest set of explanations, is:

H= r(a,b)∨B(a)

For problems of this nature, it is necessary to be able to perform inferences on, and

produce as the result of an inference, negated role assertions of the form ¬r(a,b). This

would require the extension of the forgetting calculus IntALC , which does not support

negated role assertions. Alternatively, the calculus would need to be extended to allow

nominals in both the input and output as is the case for the calculus of FAME utilised in

Chapter 6. This would enable the representation of negated role assertions as follows:

¬r(a,b) could be represented as ∀r.¬{b}⊔¬{a}.

In addition, the language of the input and output also needs to be extended further.

In Chapter 5, disjunctions of concept assertions of the form C(a1)∨ ...∨C(an) were

utilised. These enabled the representation of the negated observation, where the ob-

servation takes the form of a conjunction of ALC concept assertions. Similarly, the

final hypothesis could be represented as a disjunction of conjunctions of ALC concept

assertions. Here, it is necessary to further extend the notion of disjunctive assertions

to disjunctions of both concept and role assertions as in Example 7.2.2. It is also
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necessary to extend the TBox with a similar notion of disjunction, to enable the repre-

sentation of disjunctions of TBoxes as identified in the previous section.

In this section several directions for extending the capabilities of forgetting-based

abduction, including both TBox and ABox abduction, have been identified and dis-

cussed. In the next section, a generalisation of these two separate problems will be

discussed: knowledge-base (KB) abduction [EKS06]. Since the result of forgetting-

based TBox and ABox abduction takes the same form, i.e., a disjunction of possible

explanations, it is natural to extend this problem to consider the more general case of

accepting mixed observations containing both TBox and ABox axioms. First, the con-

ditions specified in Chapter 4 Definition 4.2.1 must be extended to this more general

case. Following this, in Section 7.4 the extensions made to the IntALC calculus to solve

this problem in a more expressive language will be discussed.

7.3 Knowledge Base Abduction Problem

The characterisations of the ABox and TBox abduction problems in Definitions 5.1.1

and 7.1.2 both seek the same form of hypotheses: the semantically minimal space of

independent explanations for the given observation. In both cases this takes the form

of a disjunction, either of ABox assertions or GCI axioms respectively. Therefore,

by extending the calculus used in Chapter 5 for both ABox and TBox abduction it is

possible to tackle an instance of a more general abduction problem: KB abduction. As

discussed in Chapter 3, KB abduction is a generalisation of ABox and TBox abduction,

allowing observations and hypotheses that contain a mixture of both TBox and ABox

axioms. In this setting, the specific KB abduction problem can be defined as follows:

Definition 7.3.1. Let K be an ALC knowledge base, Ψ a set of TBox and ABox axioms

in ALC, and SA be a set of abducible symbols such that SA ⊆ sig(K,Ψ). The KB

abduction problem ⟨K,Ψ,SA⟩ is then to compute a hypothesis H =
∨n

i=1Ki, where

each Ki is a KB expressed in ALCOIµ , such that sig(H) ⊆ SA and H satisfies the

following conditions:
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(i) K,H ̸|=⊥,

(ii) K,H |= Ψ,

(iii) There is no disjunct Ki in H such that K,Ki |=K1 ∨ ...∨Ki−1 ∨Ki+1 ∨ ...∨Kn

(iv) For any ALC KB H′ satisfying conditions (i) – (iii) K,H′ |=H.

Here, the hypotheses and abductive constraints take the same form conceptually

as in Definition 4.2.1. The aim is still to compute the semantically minimal space

of explanations as a disjunction, where here the disjuncts are now KBs. A KB is a

conjunction of both TBox and ABox axioms, rather than ABox axioms. Here the term

KB is used to distinguish from DL ontologies. Compared to the previous chapters

the notion of a (Boolean) KB, defined in Section 2.5, extends the setting to include

negation and disjunction of ontologies, introducing the notion of disjunctive TBoxes

as motivated in previous sections. KBs will be referred to using the notation K and the

set of observations using the notation Ψ to differentiate between KB abduction and the

problem of ABox abduction discussed in previous chapters.

7.3.1 Language Extensions

The abduction problem setting is still assumed to be a background knowledge K and

observations Ψ expressed in ALC, together with a set of abducible symbols SA. There-

fore, the conditions in Definition 7.3.1 are specified with respect to ALC. However, the

language used to express solutions extends ALC, similarly to the extensions used in

Chapter 6. The purpose of these extensions is to capture all possible ALC explanations

for a given observation in a finite, compact form.

The most expressive language required to represent the hypothesis H is ALCOIµ ,

which is ALC extended with nominals, inverse roles and fixpoint expressions, the se-

mantics of which are defined in Chapter 2. Each of these extensions has the aim of

capturing all possible ALC explanations, thereby satisfying the intuitive notion behind

condition (iv) of Definition 7.3.1: the hypothesis should be the semantically minimal
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one, i.e., a disjunction covering all possible ALC explanations for the given observa-

tion. The aim of the language extensions here is to increase the space of explanations

that can be covered by the KB abduction approach, while ensuring that the hypotheses

are as informative and compact as possible.

To illustrate, consider the following example:

Example 7.3.1. Given the following KB abduction problem:

K = {EbolaPatient ≡ Patient⊓∃infectedWith.Ebola,

∃contactWith.EbolaCarrierBat ⊑ EbolaPatient,

EbolaPatient ⊑ ∀infected.EbolaPatient,

EbolaPatient(p1),

∀contactWith.¬EbolaCarrierBat(p2)}

ψ =EbolaPatient(p2)

SA = {contactWith, infected,EbolaCarrierBat}

then a possible consistent, explanatory hypothesis is:

∃contactWith.EbolaCarrierBat(p1)⊓ infected(p1, p2)

assuming that p1 is the only individual in the ontology. However, assuming that there

are other individuals, the following are also possible ALC explanations for the obser-

vation:

∃contactWith.EbolaCarrierBat(a1)⊓ infected(a1, p2)

∃contactWith.EbolaCarrierBat(a2)⊓ infected(a2, p2)

∃contactWith.EbolaCarrierBat(a3)⊓ infected(a3, p2)

...

for each individual ai ∈ NI for which neither of the two assertions above is explicitly
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excluded. An alternative is to use inverse roles, resulting in the following hypothesis:

H= ∃infected−.∃contactWith.EbolaCarrierBat(p2)

The main use of inverse roles in the proposed approach is to effectively, compactly

represent sets of ALC explanations that use different individuals, as illustrated in Ex-

ample 7.3.1. In cases where the number of individuals is large, there may be a large

number of ALC explanations that account for the observation in the same way but

use different individuals. In practice, this may result in a large number of repetitive

explanations.

Another scenario involves a chain of relations connecting two individuals, such as

in Example 7.3.2.

Example 7.3.2. Consider the abduction problem from Example 7.3.1, but let the sig-

nature of abducibles be SA = {infected}. For each individual a ∈ NI , the following is

a possible explanation for the observation ψ:

infected(p1,a)⊓ infected(a, p2)

Alternatively, using nominals, the following hypothesis can be used to compactly cap-

ture this set of explanations:

H= ∃infected.∃infected.{p2}(p1)

Effectively, the use of a nominal in Example 7.3.2 bridges the gap between two

individuals from the observation and background knowledge without the need to con-

sider all known individuals. This also conforms well to the notion of semantic mini-

mality, condition (iv) in Definition 7.3.1, under the open-world assumption (OWA) in

OWL: it is not necessary to directly identify the connecting individuals to provide an

explanation, thereby obtaining an explanation that makes fewer assumptions.

Finally, the motivation for using fixpoints is the same as in Chapter 5: to provide
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an option allowing cycles to be represented in the hypothesis. This is illustrated in

Example 7.3.3.

Example 7.3.3. Consider the abduction problem from Example 7.3.1. Due to the third

axiom, it is possible to explain the observation via an infinite chain of infections from a

given individual to the observed individual p2. If fixpoints are allowed in the solutions,

alongside inverse roles and nominals, the following hypothesis can be used to express

this:

H= µX .(∃contactWith.EbolaCarrierBat⊔∃infected−.{p1}⊔∃infected−.X)(p2)

As in Chapter 5, it is assumed that least, but not greatest, fixpoints may be required

in the hypothesis.

The aim of the above extensions is to ensure that all possible ALC explanations

can be contained within the hypothesis H, extending the setting of Chapter 5. Since H
should be the semantically minimal space of independent explanations, then the least

restrictive solution to the abduction problem should cover all independent explanations

that can be expressed in ALC. As illustrated by the above cases, sometimes a concise

solution requires the use of the above extensions to the expressivity of ALC.

Now that the KB abduction problem and the language needed to express ideal

solutions has been identified, a method for tackling the problem can be presented.

7.4 Knowledge Base Abduction Approach

To solve the problem in Definition 7.3.1 via a forgetting-based approach, the same

general steps can be followed as in Figure 5.1:

Step 1: Contraposition. Negate the observation ψ and add this to the back-

ground K.

Step 2: Forgetting. Obtain the strongest set of entailments of (K,¬ψ) in the

signature of abducibles SA by computing the forgetting solution V of (K,¬ψ)
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by eliminating the symbols that are not in SA.

Step 3: Filtering. Extract the reduced forgetting solution V∗, i.e., the set V∗ ⊆V
that excludes all axioms in V that are redundant under the dual of Definition 7.3.1

condition (iii).

Step 4: Return hypothesis. Negate the set V∗ to obtain the hypothesis H as a

disjunction of KBs.

As the setting is more general, several extensions must be made to solve this prob-

lem compared to the approach used in Chapter 5. These include extensions to the

forgetting calculus IntALC and the strategy with which this calculus is applied.

As before, Step (3) can be performed in two ways: approximately, resulting in the

approximate reduced forgetting solution V∗
app, or fully, resulting in the reduced forget-

ting solution V∗. Negating the former returns an approximate hypothesis, satisfying

Definition 7.3.1 conditions (i) and (ii), as well as condition (iv) without considering

inter-disjunct redundancy. Negating V∗ in Step (4) results in the hypothesis fully sat-

isfying Definition 7.3.1: the space of independent explanations for Ψ.

In the ABox abduction approach of Chapter 5, the approximation step was done

via annotation-based filtering, i.e., using the forgetting calculus IntALC as a black-box

then filtering the result to remove redundant axioms. For the KB abduction approach

in this chapter, approximation is instead performed by restricting the set of inferences

that can be made during forgetting based upon the negated observation. As a result, the

approximate filtering is effectively a part of Step (2), resulting in V∗
app, while Step (3)

focuses on performing entailment checking to eliminate any remaining redundancies

resulting in V∗. This difference is reflected in Figure 7.2, and will be described in

subsequent sections.

Sections 7.4.1 – 7.4.2 describe the application of the extended forgetting approach,

including the restriction of inferences to those concerning ¬Ψ, in Steps (1) and (2)

of Figure 7.2. Section 7.5 then describes the full filtering procedure to eliminate all

redundant explanations from the hypothesis, and examines differences between the
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Input:
Background K
Observation Ψ

Abducible symbols SA

Step (1)
Contrapose: negate
Ψ and add it to K

Step (2)
Compute entailments of
K,¬Ψ restricted to SA

Negate approximately
reduced set of axioms

Step (3)
Full filtering

via entailment
checks

Step (4)
Negate fully reduced

set of axioms

Output: independent explanations
H = K1 ∨ ... ∨ Kn

Output: approximate hypothesis
Happ = K1 ∨ ... ∨ Km

Use forgetting, base
inferences on ¬Ψ

(set-of-support inspired)

Figure 7.2: The forgetting-based KB abduction algorithm for computing hypotheses
as spaces of independent explanations.
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annotation-based approach to filtering and restricting inferences during forgetting.

7.4.1 Contraposition and Normalisation

As in Chapter 5 it is necessary to transform the input, a background ontology and a

set of observations, into the appropriate form. The normalisation process is extended

compared to the one utilised when applying IntALC , as both the problem to be solved

and the language used are more expressive.

First, the observation Ψ is a conjunction of both TBox axioms (GCIs) and ABox

assertions. For the negated observation ¬ψ , the negation of a GCI ¬(C ⊑ D) takes the

form ∃∇.(C⊓¬D)(a∗). For simplicity, the individual a∗ is assumed here to be a fresh

individual. This form is used for convenience sake so that the negated observation ¬Ψ

can be represented as a disjunction of assertions, since both negated TBox and negated

ABox axioms in Ψ will be ABox axioms in ¬Ψ. Note that the notion of disjunctive

assertion is slightly extended here. Each disjunct in ¬Ψ may not necessarily be a con-

cept assertion but can also be a negated role assertion ¬r(a,b), while the hypothesis H
may include role assertions r(a,b) as explanations (disjuncts). The following example

illustrates the process of transforming the input to the required normal form:

Example 7.4.1. Consider the following observation.

Ψ ={∃s.F ⊑ ∃s.E,

C(a)}

The corresponding negated observation is represented as:

¬Ψ = ∃∇.(∃s.F ⊓∀s.¬E)(a∗)∨¬C(a)

The corresponding clausal normal form for ¬Ψ is as follows:

∃∇.D1(a∗)∨¬C(a)
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¬D1(x)∨∃s.D2(x)

¬D1(x)∨∀s.D3(x)

¬D2(x)∨F(x)

¬D3(x)∨¬E(x)

The general definition of the normal form utilised in this approach is provided in

Definition 7.4.1 [KDTS20].

Definition 7.4.1. Let ND be a set of definers, which take the form of fresh concept

names. Let NT = NI ∪{x} be the set of terms, consisting of all the individual names NI

in the given domain together with a universally quantified variable x. A clause φ is a

disjunction of literals L1 ∨ ...∨Ln, where each literal Li can take one of the following

forms:

A(t) | ¬A(t) | Qr.D(t) | r(a,b) | ¬r(a,b)

where A is a concept name, r is a role name, a and b are individual names, t is a term,

Q ∈ {∃,∀} and D is a definer symbol. At most one literal in a given clause φ may take

the form ¬D(x) where D ∈ ND. It is assumed that there are no duplicate clauses and

that a clause can be treated as a set of literals where the order of literals in the clause

can be ignored.

The normal form above takes a similar form to the one in [KS15b], but here the

language permits the extensions described in the previous section. Note, a clause

L1(x)∨ ...∨Ln(x) can be expressed in DLs as ⊤ ⊑ L1 ⊔ ...⊔Ln, while ground clauses

can be expressed as a disjunction of ABox assertions where each literal takes the form

C(a), r(a,b) or ¬r(a,b). Clauses that mix variables and ground terms are not intro-

duced at any point. It is also assumed that sets of clauses can be added to KBs. Definer

symbols are fresh concept symbols, as utilised in previous chapters. As before, the

notation D12 is used to refer to the definer symbol representing D1⊓D2 and previously

introduced definer names are reused where possible.
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As detailed above, the transformation of a negated observation ¬Ψ will result in a

disjunction of negated assertions (a clause): the negation of each GCI ¬(C ⊑D) results

in ∃∇.(C ⊓¬D)(a) while the negation of each ABox assertion is simply a negated

assertion. The full input to the method consists of a background KB K and the negated

observation ¬Ψ: K,Ψ, where K is a conjunction of TBox and ABox axioms. The

GCIs Ci ⊑ Di in K can each be represented equivalently as ⊤ ⊑ ¬Ci ⊔Di, which can

be transformed to a clause ¬Ci(x)∨Di(x). For each concept C,D, concepts occurring

under role restrictions are replaced with definer symbols, similarly to the approach

described for IntALC in Chapter 5, resulting in additional GCIs of the form Di ⊑ C.

These can be treated in the same way as other GCIs. As a result, using standard CNF

transformations, the input K,¬Ψ is transformed into a set of clauses, where ¬Ψ is

guaranteed to be a ground clause.

7.4.2 Forgetting around ¬Ψ

The first extension that must be made to tackle the problem in Definition 7.3.1 is the

need for additional rules in the calculus IntALC , as motivated in previous sections.

The extended calculus is shown in Figure 7.3. Compared to the IntALC calculus in

Figure 3.2 [KS15b], the Resolution, Role Propagation and Role Instantiation rules are

the same. The ∃-Role Restriction Elimination rule in the IntALC calculus is replaced

by two rules: the R∃ rule, which is new, and the R∇ rule which fills a similar purpose.

The R∃ rule effectively captures the notion discussed in Example 7.2.1: retaining in-

formation during role forgetting via the use of the universal (top) role (∇). The rules Rr

and R∀-2 are also new, enabling inferences with and producing negated role assertions.

The forgetting calculus in Figure 7.3 can be utilised to compute a forgetting solu-

tion, which is the strongest set of entailments of the input K,¬Ψ as in Theorem 3.6.1.

As in Figure 5.1, a reduced forgetting solution V∗ should then be extracted from this

to ensure that entailments that are redundant with respect to the abduction problem

are eliminated, i.e., explanations that do not satisfy Definition 7.3.1 condition (iii) are

removed prior to returning the hypothesis.
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Resolution:

φ1 ∨A(t1) φ2 ∨¬A(t2)
(φ1 ∨φ2)(σ)

Role Propagation:

φ1 ∨ (∀r.D1)(t1) φ2 ∨Qr.D2(t2)
(φ1 ∨φ2 ∨Qr.D12(t1))σ

Role Instantiation:

φ1 ∨ r(t1,b) φ2 ∨ (∀r.D)(t2)
(φ1 ∨φ2 ∨D(b))σ

Rr:

φ1 ∨ r(a,b) φ2 ∨¬r(a,b)
φ1 ∨φ2

R∀-2

φ1 ∨¬D(a) φ2 ∨ (∀r.D)(b)
φ1 ∨φ2 ∨¬r(b,a)

R∃

φ1 ∨∃r.D(t)
φ1 ∨ (∃∇.D)(t)

R∇

φ ∨ (∃∇.D)(t) ¬D(x)
φ

where φ1 and φ2 are clauses, D1 and D2 are definer symbols, Q ∈ {∀,∃},
σ is the most general unifier of t1 and t2 if it exists, D12 is a new definer
symbol for D1 ⊓D2 and no clause contains more than one negative definer
literal of the form ¬Di(x).

Figure 7.3: Extended forgetting calculus for the KB abduction problem [KDTS20].
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Avoiding Unnecessary Inferences

As before, it is necessary to devise an efficient method for computing the reduced for-

getting solution V∗. Computing all possible entailments of K,¬Ψ then performing the

entailment check in Definition 7.3.1 condition (iii) directly is computationally infea-

sible, as demonstrated by the experimental results in Chapter 5 Section 5.6. In the

setting of this chapter, this is even more pronounced: both the forgetting calculus and

the expressivity of the language in which the problem is set are extended. As a result,

the range of possible inferences that can be made using the calculus in Figure 7.3 is

wider in scope.

Therefore, for the proposed KB abduction approach, the focus is instead on avoid-

ing unnecessary inferences in the first place. This differs to the approach used in

Chapters 5 and 6, for which the aim was to eliminate the unnecessary entailments in

V as a post-processing step. Effectively, this means that the result of the forgetting

step, Step (2) of Figure 7.2, is an approximation of the reduced forgetting solution V∗.

Note, however, that this approximation does not necessarily have the same properties

as the annotation-based approximation V∗
app discussed in Chapter 5. As a result, the

approximation obtained in this chapter will be referred to as Vs
app to differentiate from

V∗
app. The fully reduced forgetting solution will be referred to as V∗ as before, since

this is the same in both cases. Differences between the two approaches to avoiding or

eliminating redundancy will be discussed in Section 7.5.

Inferences made using the calculus in Figure 7.3 are restricted using a set-of-

support [Pla94] inspired strategy similar to the one suggested in [KS14a]. Clauses

in the normalised form of K,¬Ψ are split into two sets: the background set ΦB, which

contains all clauses in the normalised form of K, and the support set ΦS, which con-

tains all clauses in the normalised form of ¬Ψ. For each symbol in the forgetting

signature F , the following steps are repeated making use of the calculus in Figure 7.3

until all symbols have been covered, where each inference is restricted so that at least

one of the premise (parent) clauses comes from the support set ΦS:

1. Perform all inferences on symbols in the forgetting signature F , as well as all
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possible inferences via the rules RA and R∀-2 on definer symbols. As with

IntALC , all inferences using the role propagation and role instantiation rules

that enable further inferences on symbols in F are also performed. All inferred

clauses are added to the support set ΦS, provided that they have not already been

derived previously.

2. Remove clauses containing symbols in F from ΦS.

3. If a clause containing a definer is derived and thus added to ΦS, move all clauses

containing this definer from ΦB to ΦS.

To ensure that this approach terminates, it is necessary to store any clauses that have

been derived and added to the support set previously in a separate set so that they are

not derived more than once. This is due to the fact that previously forgotten symbols

could potentially be reintroduced to ΦS during the process, so repeat derivations must

be avoided. The need to add all clauses containing definers, in (3) above, is an exten-

sion of the set of support style approach. This ensures that all connections between

clauses and definers are retained in the support set ΦS, enabling further inferences on

definer symbols.

By restricting inferences performed using the calculus in Figure 7.3 to cases where

one of the premises is not contained in the background knowledge, i.e. clauses from the

support set, the number of consequences that do not depend on the negated observation

¬ψ that are computed using the calculus in Figure 7.3 is reduced. As shown in Lemma

5.4.1, consequences that are not dependent on ¬ψ are guaranteed to be redundant with

respect to the abduction problem.

Note that any TBox axioms in Vs
app will not be dependent on the negated observa-

tion ¬Ψ, since any inference on the representation of ¬Ψ will instead result in an ABox

assertion over an existing individual or over the fresh individual a∗ used to represent

the negation of TBox axioms in Ψ. The only other TBox axioms will be introduced for

the sole purpose of eliminating definer symbols, as described in the next section. Thus,

all TBox axioms in V∗
app can be discarded prior to performing the entailment checks
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for the dual of Definition 7.3.1 condition (iii) to obtain V∗.

In this way, the set-of-support inspired strategy provides an in-built way to compute

an approximation, Vs
app, of the reduced forgetting solution V∗. This fulfils a similar

role as the annotation-based filtering utilised in Chapter 5. However, it is first necessary

to denormalise the set of clauses returned by the set-of-support inspired approach taken

above, in order to eliminate definers and return Vs
app as a KB.

Denormalisation

Once all inferences using the calculus in Figure 7.3 have been computed using the set-

of-support inspired approach, it is necessary to transform the resulting set of clauses

into a KB that does not contain any definer symbols. The set of clauses returned

by the set-of-support inspired approach, i.e., the final saturated state of the support

set ΦS. Definer elimination is performed so that all ALC entailments of the input are

preserved, aside from those which use definer names. As a result, the set of entailments

required to preserve all ALC explanations in the final hypothesis are preserved.

As in the forgetting procedure of IntALC [KS15b], definers are eliminated via the

introduction of concept inclusions (CIs) of the form Di ⊑ C where Di is a definer

and C is a concept. However, previously clauses could not contain concepts of the

form ¬Di(a). For the extended calculus, it is possible to produce clauses of the form

¬Di(a)∨φ where φ is an arbitrary clause. Thus, the definition of a definer may in fact

refer to an individual a, for which nominals are required. This is also relevant when

there are clauses of the form φ ′ ∨∀r.D(t), since it is then necessary to utilise inverse

roles and substitute ¬D(a) with ∀r−.C(a), where C is a concept corresponding to φ ′.

To introduce the required CIs, it is necessary to first introduce a representation for

negative definer literals ¬Di. Note that each time a new definer Di is introduced, a

clause of the form ¬Di(x)∨C(x) is added. Therefore, if we assume that all possible

inferences using the Resolution rule in Figure 7.3 have been applied on positive de-

finers, it is not necessary to introduce a representation for clauses containing positive

definer literals of the form D(t)∨ φ . This is due to the fact that all positive definer
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literals will be resolved with a corresponding negative definer literal.

For each definer Di in the set of clauses derived from K,¬Ψ during the forgetting

step, the negation ¬Di is replaced by a fresh definer Di. For a concept C, the concept

obtained by replacing all occurrences of ¬Di in C with Di is denoted as C−. For a

clause φ = L1 ∨ ...∨Ln, a concept Cφ = Lc
1 ∨ ...Lc

n is introduced. Each Lc is defined as

follows:

C− if L =C(x)

∃∇.({a}⊓C−) if L =C(a)

∃∇.({a}⊓∃r.{b}) if L = r(a,b)

∃∇.({a}⊓∀r.¬{b}) if L = ¬r(a,b)

where in each case, the new axioms are added before the corresponding clause is re-

moved after replacement. As mentioned earlier, no clause mixes both variables and

individual names. Thus, the two cases can be treated separately: clauses containing

only variables are handled by applying the first translation rule above to all disjuncts in

the clause, while the latter three are sufficient for clauses containing only individuals.

It is then possible to introduce a concept inclusion to give meaning to each definer

symbol. For each clause containing a definer symbol, a corresponding concept inclu-

sion is introduced. For a clause containing a definer Di, the following case is handled

similarly as in [KS15b]:

¬Di(x)∨φ introduce Di ⊑Cφ

while the following cases require the introduction of nominals and inverse roles:

φ ∨∀r.Di(x) introduce Di ⊑ ∀r−.Cφ

φ ∨∀r.Di(a) introduce Di ⊑ ∀r−.(¬{a}⊔Cφ )

¬Di(a)∨φ introduce Di ⊑ ¬{a}⊔Cφ
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Any remaining occurrences of literals of the form ¬Di(a) are replaced by Di and all

clauses that are not disjunctions of ABox assertions are replaced with ⊤ ⊑ Cφ . Once

this is done every definer Di, including each corresponding Di, has an associated axiom

of the form Di ⊑C. As a result, the meaning of each definer symbol is represented via

a concept inclusion.

The definer elimination technique shown in Figure 3.3 [KS15b] can then be applied

to obtain the forgetting solution not containing definer symbols. Since the introduced

axioms are only needed for the purpose of definer elimination, they can be discarded

once the elimination process is complete. This leaves the definer-free set of clauses

capturing all the required entailments of K,¬Ψ, with respect to the abduction problem,

of K,¬Ψ within the signature of abducibles SA.

7.4.3 Eliminating Remaining Redundant Explanations

Once the set-of-support inspired approximation of the reduced forgetting solution VS
app

is returned, the full filtering procedure as in Step (3) of Figure 7.2 can be performed.

If the aim is to eliminate all inter-disjunct redundancies, including those nested

inside concepts, then disjunctions must be pulled out. The steps for this are standard

rules to transform the result into disjunctive normal form (DNF) as in Chapter 5, where

a disjunction of KBs is in DNF if every disjunctive concept C⊔D occurs only in a con-

cept inclusion of the form E ⊑C⊔D or in an assertion under a universally quantified

role restriction. In this way, disjuncts are checked with respect to the inter-axiom

redundancy notion discussed in Section 7.1, where here each disjunct is a K. The

intra-axiom redundancy notion is not addressed by this approach, since disjunctions

may occur within CIs.

As with the ABox abduction approaches, filtering can be performed either approx-

imately or fully. The approximate or initial hypothesis is obtained by directly negating

the result of the set-of-support inspired approach after denormalisation, and satisfies

the notions of consistency, explanation and semantic minimality without the inter-

disjunct redundancy condition. For the approximate case, it is necessary to perform
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an additional check K∧H ̸|=⊥ to ensure that the initial hypothesis is not inconsistent.

Once disjunctions have been pulled out, the full filtering procedure can be per-

formed to obtain a hypothesis satisfying Definition 7.3.1, i.e., a set of independent

explanations. The following entailment check is performed for each Ki in the hypoth-

esis.

K∧Ki |=K1 ∨ ...∨Ki−1 ∨Ki+1 ∨ ...∨Kn

for each disjunct in the hypothesis. If the entailment check returns true, then the dis-

junct Ki is redundant with respect to Definition 7.3.1 and is removed. As in Chapter 5,

in practice it is not possible to determine if a disjunct containing a fixpoint operator is

redundant with respect to Definition 7.3.1 condition (iii). This is due to the fact that the

above check is performed using an external reasoner, and there are at present no DL

reasoners that can handle fixpoint operators. Therefore, the entailment check proceeds

as follows in practice:

K∧K1 ∧ ...∧Ki−1 ∧Ki+1 ∧ ...∧Kn ∧¬Ki |=⊥

where for K j, j ̸= i, greatest fixpoints νX .C[X ] are simulated by replacement with

D ⊑ C[D → X ] where D is a fresh concept name for the purpose of eliminating any

redundant disjuncts KBi in H that do not contain fixpoints.

7.4.4 Negating the Forgetting Solution

To obtain the final hypothesis, it is necessary to negate the KB obtained either im-

mediately after the set-of-support inspired strategy (VS
app), or after the full filtering

procedure has been applied to this result (V∗).

The concept inclusions introduced to eliminate definers can be removed prior to

filtering, since these are no longer needed once the denormalisation step is complete.

The result is a conjunction of disjunctions of assertions, since the negated observation

in Step (1) is represented as ∃∇.(C⊓¬D)(a∗) where a∗ is a fresh individual.
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At this point, occurrences of the top role ∇ can be removed. When introduced,

these only occur under existential quantifiers: during the negation of Ψ, by inference

via the R∃ rule in the calculus in Figure 7.3 during Step (2) and during the denormal-

isation phase of the forgetting procedure. Upon negating the result, once all negations

have been pushed inwards the top role will only occur under universal quantification.

The following equivalences, as well as standard DNF transformations, are used to pull

out these occurrences:

∃r.(C1 ⊓∀∇.C2) ⇐⇒ ∃r.C1 ⊓∀∇.C2

∀r.(C1 ⊔∀∇.C2) ⇐⇒ ∀r.C1 ⊔∀∇.C2

(∀∇.C)(a) ⇐⇒ ⊤⊑C

For fixpoint operators, pushing the negation inwards ensures that all occurrences

of fixpoints in the hypothesis obtained will be least fixpoints. This is due to the fact

that during the denormalisation phase of the forgetting process in Step (2), the definer

elimination procedure only introduces greatest fixpoints.

To show that the presented abduction approach computes hypotheses satisfying

Definition 7.3.1, up to possible inter-disjunct redundancy of disjuncts containing fix-

point operators, it is necessary to show that the set-of-support inspired approach to

applying the calculus in Figure 7.3 during Step (2) computes the set of all relevant

entailments of K,¬Ψ, i.e., those with an ancestor in ¬Ψ. Additionally, it is necessary

to show that all of these relevant entailments that do not involve definer symbols are

retained during the denormalisation phase. Once the set of relevant entailments is ob-

tained in Step (2), the soundness of the abduction approach can be shown similarly as

in Chapter 5. The aforementioned proofs, originally presented in the extended version

of [KDTS20], can be found in the appendix.

The following abduction problem is used to illustrate the full approach:
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Example 7.4.2. Consider the following background KB:

K = {A ⊑C,

∃r.B ⊑C,

F ⊑ G,

C ⊑ I,

A⊓H ⊑⊥,

H(a)}

and the observation Ψ from Example 7.4.1:

Ψ = {∃s.F ⊑ ∃s.E,

C(a)}

Let the set of abducible symbols be SA = {A,B,E,G,H, I,r}. In Step (2), forgetting

non-abducibles proceeds as follows. First, K and ¬Ψ are transformed into normal

form, resulting in the background ΦB and supported ΦS clause sets:

ΦB ΦS

bg1)¬A(x)∨C(x) 1)∃∇.D1(a∗)∨¬C(a)

bg2)∀r.D4(x)∨C(x) 2)¬D1(x)∨∃s.D2(x)

bg3)¬D4(x)∨¬B(x) 3)¬D1(x)∨∀s.D3(x)

bg4)¬F(x)∨G(x) 4)¬D2(x)∨F(x)

bg5)¬C(x)∨ I(x) 5)¬D3(x)∨¬E(x)

bg6)¬A(x)∨¬H(x)

bg7)H(a)

Inferences under the calculus in Figure 7.3 are used to eliminate the non-abducible
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symbols F = {s,C,F}, which proceeds as follows. Starting with C:

6)∃∇.D1(a∗)∨¬A(a) Resolution(bg1, 1)

7)∃∇.D1(a∗)∨∀r.D4(a) Resolution(bg2, 1)

where, for example, the resolution between bg1 and bg5 on C is avoided. Following

this, clause (1) is removed from ΦS, since it contains C, while bg2 and bg3 are added

to ΦS due to the definer D4. Next, inferences proceed as follows, where the symbol F

can also be eliminated:

8)∀r.D4(x)∨ I(x) Resolution(bg3, bg5)

9)¬D2(x)∨G(x) Resolution(bg4, 4)

where clause (4) is then removed from ΦS. Now, s must be eliminated:

10)¬D1(x)∨∃s.D23(x) Role propagation(2, 3)

11)¬D23(x)∨D2(x)

12)¬D23(x)∨D3(x)

13)¬D23(x)∨G(x) Resolution(9, 11)

14)¬D23(x)∨¬E(x) Resolution(5, 12)

15)¬D1(x)∨∃∇.D23(x) R∃(10)

The final state of the support set ΦS contains clauses (5–9), clauses (11–15) as well as

the introduced background clauses bg2 and bg3. Following the denormalisation phase,

the set-of-support based approximation of the reduced forgetting solution, VS
app, is:

{∃∇.(¬E ⊓G)(a)∨∀r.¬B(a),

∃∇.(¬E ⊓G)(a)∨¬A(a)}

noting that any remaining TBox axioms can be discarded. Negating VS
app, as in the
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approximate filtering approach, results in the initial hypothesis:

H= {G ⊑ E,A(a)}∨{G ⊑ E,∃r.B(a)}

while applying the full filtering procedure eliminates the redundant disjunct, resulting

in the final hypothesis (independent explanations) as follows:

H= {G ⊑ E,∃r.B(a)}

7.5 Comparing Redundancy Elimination Strategies

The set-of-support inspired approach has the advantage that it limits the number of

inferences made using the extended calculus, unlike the annotation-based approach

which is applied as a form of post-processing once all inferences have been made.

This is more impactful in this setting, since the calculus has been extended and thus

the number of possible inferences if the calculus was applied without restriction is

likely to be larger than for the calculus in Figure 3.2.

In [KDTS20], redundancy elimination focuses on two notions: the inter-axiom

redundancy between disjunctions of GCIs as discussed earlier in this chapter and the

redundancy between disjuncts as concept and role assertions analogous to the inter-

disjunct redundancy notion used in Chapter 5. To illustrate:

Example 7.5.1. For the following abduction problem:

O ={A ⊑C,

B ⊑C,

B⊓F ⊑⊥,

∃r.C ⊑ D,

D ⊑ E,

C(b)}
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ψ ={F ⊑C,

E(a)}

SA ={A,B,D,r}

Consider the following three candidate hypotheses:

H1 ={F ⊑ A,D(a)}∨{F ⊑ A,r(a,b)}

H2 ={F ⊑ A⊔B,D(a)}

H3 ={F ⊑ A,D(a)}

under Definition 7.3.1, H1 is not an acceptable solution since the second disjunct is

redundant: O,r(a,b) |= D(a) and thus the second disjunct is stronger than the first

under O. Both H2 and H3 are acceptable hypotheses under the definition, despite the

fact that the B in the superclass of the GCI in H2 is somewhat redundant: since B and

F are disjoint, it cannot be the case that B ⊑ F.

In fact, for the above example the system described in this section computes the

hypothesis H2. It is worth noting that, as discussed earlier, applying the intra-axiom

redundancy notion would further reduce unnecessary complexity and redundancy in

the hypothesis. However, the consideration of whether or not it is worthwhile is a

practical one. In this setting, disjunctions may be more common than in the TBox

abduction setting due to the presence of ABox axioms in the observation, a possibil-

ity that is examined in the experimental results in Section 7.6. This, combined with

the increased complexity of the result in terms of the language used means that the

intra-axiom redundancy notion may be too expensive to apply in practice, given that

entailment checks are already used to eliminate redundant disjuncts occurring between

GCIs and within disjunctive ABox assertions.

However, there are some redundancies that are not captured by the set-of-support

approach that would otherwise be detected via annotations as demonstrated below:
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Example 7.5.2. Consider the following abduction problem:

O ={G ⊑ A,

∃s.A ⊑C,

C ⊑ E,

F ⊑ ∀r.A

∃r.¬A(a)}

ψ =C(a)

SA ={s,E,F,G}

Under the set of support inspired approach, the following are the background and

support sets:

ΦB ΦS

bg1)∀s.D1(x)∨C(x) 1)¬C(a)

bg2)¬D1(x)∨¬A(x)

bg3)¬C(x)∨E(x)

bg4)¬F(x)∨∀r.D2(x)

bg5)¬D2(x)∨A(x)

bg6)∃r.D1(a)

bg7)¬G(x)∨A(x)

the following inferences are then performed using the calculus in Figure 7.3, applied

under the strategy described in Section 7.4.2:

2)∀s.D1(a) Resolution(1,bg1)
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due to this inference, all clauses that contain the definer D1 are added to the support set

as described in point (3) of the forgetting step in Section 7.4.2. This includes clauses

bg1, bg2 and bg6. As such, the inferences resulting in clauses 3 and 9 below are now

permitted as at least one parent is present in the support set.

3)¬F ∨∃r.D12(a) Role propagation(bg4,bg6)

4)¬D12(x)∨A(x)

5)¬D12(x)∨¬A(x)

6)¬D12(x) Resolution(4,5)

7)¬F ∨∃∇.D12(a) R∃(3)

8)¬F(a) R∇(6,7)

9)¬D1(x)∨¬G(x) Resolution(bg2,bg7)

this results in the approximately reduced forgetting solution Vs
App:

Vs
App ={∀s.¬G(a),

¬F(a)}

which if directly negated gives the candidate hypothesis:

Hs = ∃s.G(a)∨F(a)

However, if instead the annotation-based filtering approach in Chapter 5 is used to

extract V∗
app, the following result is obtained:

H= ∃s.G(a)

Thus, the redundancy F(a) is retained via the set of support based approach, unless

annotations are also used during the process. In practice, this requires an additional

entailment check during the strict filtering procedure when using the set-of-support
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inspired approach alone, which would likely increase the cost.

The redundancy retained by the set of support based approach in Example 7.5.2 is

due to the fact that once a clause containing a definer symbol has been inferred and

added to the support set, it is also necessary to move all background clauses containing

this definer to the support set.

Combining the annotation-based approach with the set-of-support inspired approach

may be promising. Each entailment in V∗
app must be checked against the dual of Defi-

nition 7.3.1 condition (iii) to ensure that the reduced forgetting solution V∗ is extracted.

As a result, eliminating any given redundancy in V reduces the number of entailment

checks that must be made. Therefore, combining these approaches would likely reduce

the time taken to perform the full filtering required to ensure that each explanation in

H is both as informative as possible and independent from the other explanations.

7.6 Experimental Evaluation

The aim of the experiments in this section was to evaluate the performance of the

KB abduction approach across a variety of scenarios, split primarily into abduction

problems for which the observation was a set of ABox axioms, a set of TBox axioms

or a KB including both types of axioms.

To run these experiments, a prototype was implemented in Java (and Scala). The

prototype makes use of the OWL-API. The latest implementation of LETHE, at the

time of writing, was extended with the set-of-support inspired forgetting approach and

the filtering steps required to eliminate redundant disjuncts from the hypothesis.

7.6.1 Corpus

The experiments were carried out over a corpus of ontologies extracted from the 2017

snapshot of NCBO Bioportal [MP17]. The ontologies in the corpus were restricted to

those satisfying a set of requirements, the aim of which was to find a balance between
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the practicality of running the experiments on the available resources and emphasising

interesting and non-trivial abduction problems. These requirements are as follows:

• They must contain between 100 and 40,000 axioms. This was done to ensure that

there was sufficient background information to provide a non-trivial abduction

problem and to increase the number of non-empty hypotheses. The upper limit

was imposed for the purpose of practicality, both in generating a sufficient num-

ber of satisfactory abduction problems for the experiments as well as performing

the experiments within a reasonable time limit.

• The ontology must contain both a TBox and an ABox. By providing both of

these components, KB, TBox and ABox observations must all be explained with

respect to existing knowledge. If both of these components are present, the hy-

pothesis must be situated appropriately with respect to the schema defined by

the TBox, but also cover the data on existing individuals. For example, an ABox

observation may be explained with respect to the relationship between observed

individuals and existing individuals. Without existing data on individuals, these

cases would be excluded. Similarly, without an upper schema, the abduction

problem becomes significantly less interesting: either there will be no expla-

nation for an observation or the explanation could be trivial since there are no

existing constraints.

• They must be consistent and parsable using the OWL-API, LETHE and the rea-

soner HermiT. Otherwise, the process of explanation is trivial since all observa-

tions will already be entailed by the ontology and any arbitrary “explanation”

is permissible. Thus, the abduction problem is separated from the problem of

explanation under inconsistent knowledge. If an error was encountered when

checking the consistency of the ontology, then it was excluded from the corpus.

Ontologies satisfying these criteria were then restricted to their ALC fragment.

The final experimental corpus consisted of 115 ontologies, the statistics for which are

summarised in Table 7.1.
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Min Mdn. Mean 90th Percentile Max
TBox Axioms 27 948 2411 5841 29770
ABox Axioms 1 60 1564 2829 30887
Concept Symbols 5 432 1435 3554 10939
Role Symbols 0 44 97 308 1390
Individuals 0 39 609 1323 12153

Table 7.1: Characteristics of the experimental corpus.

7.6.2 Generating Abduction Problems

A primary goal behind these experiments was to avoid making simplifying assump-

tions regarding the abduction problem. Few computationally efficient abduction ap-

proaches exist for large ontologies, particularly in the case of KB abduction for which,

to the best of the author’s knowledge, no implemented systems currently exist. In the

context of DLs, no works address the form of the abduction problem solved in this

thesis: generating spaces of independent explanations. Therefore, the exact nature

of abduction problems in real application scenarios is not well understood, meaning

no guidelines or benchmarks exist for the abduction problems that form the subject

of these experiments. Therefore, strong assumptions on the structure, size and inter-

relatedness of statements in the observations were avoided. For example it is not as-

sumed that, for a given observation, each axiom in the set is somehow related to each

other axiom in the set. In effect, this means that the user is not expected to know

exactly how each new statement in a given observation relates to one another.

For each experiment, the algorithm was tested across three types of abduction prob-

lems, based on the type of observation: ABox observations, TBox observations and KB

observations. For the first two, only ABox or TBox axioms respectively were present

in the set of axioms that made up a given observation. For the KB observations, both

TBox and ABox axioms were permitted in the observation, where each observation

contained at least one TBox axiom and at least one ABox axiom to ensure that the

problem was a KB abduction problem. The ratio of TBox to ABox axioms was de-

cided at random up to the total number of axioms specified for the observation.

The observation generation procedure is similar to the ones used in [DS19a, DS19b,



200 CHAPTER 7. TBOX AND KNOWLEDGE BASE ABDUCTION

KDTS20]. However, since there are several fundamental differences, it is described

here for clarity. For each abduction problem, the observation was first generated us-

ing the procedure described below and was then passed along with the corresponding

background ontology and signature of abducibles to the KB abduction algorithm.

The ABox axioms in the observations were generated randomly using the signature

of concept and role symbols in the given background ontology. Concept assertions of

the form C(a) were combined at random with ALC operators: disjunction (⊔), ex-

istential restrictions (∃), universal restrictions (∀) and negation (¬) to produce ALC
concept expressions. Conjunction was excluded since the observations are already

provided as sets, interpreted conjunctively, of new statements and thus the use of con-

junction is based on the number of axioms in each observation. For role assertions, the

object property was used to construct a statement of the form r(a,b). The individuals

to which each axiom were applied were chosen from the existing individuals in the

background ontologies. If too few individuals (< 5) were present in the ontology, then

fresh individual names were used to supplement the set from which individuals were

drawn. The reasoning behind this strategy was to provide diverse sets of observations

that conformed to the language requirements of the abduction problem being inves-

tigated, without being too simple. Drawing the observations from the ABox of each

ontology was considered, but the generation approach was preferred to ensure that the

statements occurring in ABox observations covered a range of different complexities,

making use of each of the operators in ALC.

The TBox axioms in the observations were selected at random from the given back-

ground ontology. These axioms were then removed from the background ontology to

ensure that the resulting observation was not entailed by it. The aim was to ensure that

a reasonable number of non-empty hypotheses were obtained for observations con-

taining TBox axioms. Therefore, the selection approach was preferred over generating

inclusion axioms, in a similar way to the ABox observation case above, to ensure that

the TBox axioms conformed to the schema of each given ontology. The selection ap-

proach also confers the advantage that it is easier to generate suitable, i.e., consistent
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observations for the KB and TBox cases.

For each abduction problem, 20 attempts were made to generate an observation sat-

isfying the abduction problem, i.e., a consistent and non-entailed observation under the

given background ontology. If no such observation was generated in 20 attempts, then

an inconsistent observation was permitted and the algorithm was applied as usual. This

methodology strikes a balance between the practicality of running the experiments and

the need for interesting abduction problems. Despite the fact that these observations

were inconsistent, contrary to the assumptions in Definition 7.3.1, this still provided

data on the runtime of the algorithm and the effectiveness of the filtering procedure,

since each step must be completed as normal. The difference is that for these cases,

the hypothesis was guaranteed to be empty since no explanations satisfying Definition

7.3.1 would exist for an inconsistent observation.

Signatures of abducible symbols were chosen randomly based on the frequency of

occurrence in the given background ontology: the chance of a symbol being speci-

fied as an abducible was proportional to how often it occurred in the ontology. This

way, symbols used extensively in an ontology were less likely to be excluded from

the explanations produced. For each abduction problem, a random percentage of the

background ontology was specified as abducible between the limits specified for each

experiment.

An additional requirement for the signature of abducibles was that, for each ab-

duction problem, at least one symbol in each axiom in the observation must be non-

abducible. While this is a strong requirement, this ensures that the problem that is

solved is the most challenging and most interesting case: each new axiom provided

must be explained in a new way. If the signature of an axiom in the observation does

not contain a non-abducible symbol, then in the semantically minimal hypothesis re-

turned, the axiom will simply be returned as it is which is not a particularly interesting

case. One exception to this requirement is that role symbols in the observation were not

forcibly specified as additional non-abducibles in this way. Preliminary testing showed

that the number of empty hypotheses increased significantly when role symbols were
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forcibly specified as additional non-abducibles. This is likely because the ontologies in

the corpus often contain far fewer role symbols, but the role symbols that are used are

used frequently and play a key part in many statements, as indicated in Table 7.1. For

example, attempting to produce explanations that exclude the “hasPart” role symbol in

an ontology about anatomy was found to result in a large number of empty hypotheses.

7.6.3 Experiments Performed

For the ABox, TBox and KB observation problems described above, three experiments

were performed as follows:

• Experiment 1: Observations containing between 1 and 10 axioms, with 1–30%

of the total symbols being specified as non-abducibles.

• Experiment 2: Observations containing between 1 and 10 axioms, with 31–

60% of the total symbols being specified as non-abducibles.

• Experiment 3: Observations containing between 11 and 20 axioms, with 1–

30% of the total symbols being specified as non-abducibles.

Each experiment was run over three sets of abduction problems: 30 ABox, 30

TBox and 30 KB observations for a total of 90 abduction problems per experiment.

These three sets of experiments are intended to investigate the effect of varying

two of the main inputs to the abduction system, under the conditions described in the

previous section. These are the size of the observation in terms of the number of

axioms it contains, and the total number of symbols specified as non-abducibles. In

this sense, experiment 1 can be viewed as a baseline against which experiments 2 and

3 are compared.

The proportion of non-abducibles and the number of axioms in the observation are

expected to influence the time taken to compute a hypothesis. As the number of ax-

ioms in the observation increases it is likely that further inferences will be performed,

assuming that each axiom in the observation must be explained, i.e., at least one sym-

bol in each axiom is specified as non-abducible. As the proportion of non-abducible
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symbols increases, the number of symbols to be forgotten is increased, which is also

expected to impact the total number of inferences required to compute the hypothesis.

The effect of these changes are investigated with respect to the runtime statistics

and statistics regarding the structure of the hypotheses obtained. Both of these sets of

statistics are presented for two hypotheses:

• Initial Hypothesis: refers to the hypothesis obtained by simplifying then negat-

ing the result of performing all inferences under the calculus in 7.3, restricted

using the set-of-support inspired strategy to avoid unnecessary inferences. This

hypothesis obtained at this point can be seen as an approximation of the hypoth-

esis satisfying Definition 7.3.1, since it is not guaranteed to satisfy conditions (i)

or condition (iii): consistency and independence of the explanations (disjuncts).

• Independent Explanations: refers to the hypothesis obtained by checking each

disjunct in the initial hypothesis for the independence constraint in Definition

7.3.1 condition (iii). This check is performed using an external reasoner, in this

case HermiT [GHM+14]. The result is a hypothesis that is a space of indepen-

dent explanations for the given observation.

For these experiments, a separate consistency check K,H ̸|=⊥ was not performed

over the initial hypothesis. Therefore, the consistency of the initial hypothesis is not

guaranteed. However, the aim during the experiments is for filtering to be applied

to check the independence of each disjunct. Since this also eliminates inconsistent

hypotheses, the separate check for the initial hypothesis was deemed unnecessary. This

also enables an assessment of the computational cost and effectiveness, in eliminating

redundant explanations, of the filtering step as well as the initial forgetting procedure.

As a result of the approach taken to generating observations, inconsistent obser-

vations were permitted only in a minority of cases. For the TBox observations, no

inconsistent observations were permitted. For the KB observations, only 0–1% of

observations were inconsistent. Finally, for the ABox observations 4%–21% of the

observations were inconsistent, where the latter bound corresponds to experiment 3:
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observations consisting of 11–20 axioms. The differences in the proportions of incon-

sistent observations is a consequence of the way in which observations were generated:

selection from the background ontology for TBox axioms, and random generation for

ABox axioms.

Note that the steps to compute the initial hypothesis and to filter to obtain indepen-

dent explanations are performed sequentially. The time limit for each experiment was

set to a total of 10 minutes for each abduction problem. All of the experiments were

performed on a machine using a 3.10GHz Intel Core i5-2400 CPU and 8GB of RAM.

Evaluation of the results will be divided into two perspectives: the runtime and the

structure of the hypotheses obtained.

7.6.4 Runtime

In this section, statistics for the times taken to compute solutions to the generated ab-

duction problems are presented. The statistics regarding runtimes were calculated over

the set of completed abduction problems, i.e., excluding timeout cases. The success

rate field indicates the proportion of cases that succeeded before the 10 minute limit

was reached and without any memory issues.

It is worth noting that the filtering time in each case depends heavily on the size

of the initial hypotheses: the more disjuncts there are in the initial hypothesis, then

the more entailment checks are made during the filtering step. Therefore, the runtime

statistics for computing independent explanations will be discussed with reference to

the number of explanations (disjuncts) in the hypotheses produced.

Table 7.2 shows the runtime results for experiment 1. The results for computing

the initial hypothesis indicate that, in the majority of cases for ABox, TBox and KB

observations, the forgetting step took a matter of seconds to complete as indicated by

the median values. The mean and 90th percentile run times indicate that, for a smaller

proportion of difficult cases, the forgetting step took far longer to complete. This may

be due to the presence of commonly occurring symbols in the set of non-abducibles,

which may lead to a higher number of inferences. The success rates for computing the
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Computation of Initial Hypothesis (sec)
Observation Min. Median Mean 90th Percent. Max. Success Rate (%)
ABox 0.2 4.4 54.4 192.1 591.9 92.7
TBox 0.3 5.8 53.2 177.6 593.3 81.9
KB 0.3 6.5 58.8 197.2 596.3 86.1

Filtering for Independent Explanations (sec)
Observation Min. Median Mean 90th Percent. Max. Success Rate (%)
ABox 0.0 0.1 5.3 4.3 533.9 91.0
TBox 0.0 0.7 21.1 59.9 553.2 74.7
KB 0.0 0.2 11.2 9.1 584.4 83

Table 7.2: Runtime statistics for abduction over observations of size 1–10 axioms, with
1–30% of background symbols non-abducible. Time limit was set to 10 minutes.

Computation of Initial Hypothesis (sec)
Observation Min. Median Mean 90th Percent. Max. Success Rate (%)
ABox 0.2 5.1 57.4 198.1 594.7 87.4
TBox 0.3 8.4 62.3 219.3 579.9 70.2
KB 0.3 9.2 68.8 242.4 596.3 77.1

Filtering for Independent Explanations (sec)
Observation Min. Median Mean 90th Percent. Max. Success Rate (%)
ABox 0.0 0.0 4.7 1.6 562.1 86.6
TBox 0.0 0.4 14.8 20.6 579.9 66.1
KB 0.0 0.1 7.4 4.4 590.5 74.9

Table 7.3: Runtime statistics for abduction over observations of size 1–10 axioms, with
31–60% of background symbols non-abducible. Time limit was set to 10 minutes.

Computation of Initial Hypothesis (sec)
Observation Min. Median Mean 90th Percent. Max. Success Rate (%)
ABox 0.3 23.4 96.1 331.1 596.3 64.9
TBox 0.7 19.9 74.6 243.8 587.3 58.1
KB 0.4 30.0 99.5 324.9 596.5 57.4

Filtering for Independent Explanations (sec)
Observation Min. Median Mean 90th Percent. Max. Success Rate (%)
ABox 0.0 0.0 0.8 0.1 211.3 64.3
TBox 0.0 0.4 9.0 7.0 580.3 53.3
KB 0.0 0.0 3.0 1.1 472.9 56

Table 7.4: Runtime statistics for abduction over observations of size 11–20 axioms,
with 1–30% of background symbols non-abducible. Time limit was set to 10 minutes.
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initial hypothesis indicate that abduction problems for which the observation contained

only TBox axioms were the most difficult to complete in the allotted time, followed

by KB observations and then ABox observations. This may indicate that the presence

of TBox axioms in the observation increases the time taken for the forgetting step,

compared to ABox axioms.

In most cases, the filtering step took under a second to complete for each type of

observation. The proportion of non-empty initial hypotheses, shown in column 1 of

Table 7.5, likely explains the easiest cases. For TBox observations, a higher propor-

tion of the initial hypotheses were non-empty: 94.3% as opposed to 43.0% for ABox

and 58.1% for KB observations respectively. This may explain the median filtering

time for TBox observations, which is the highest of the three. The number of disjuncts

in the non-empty hypotheses also impacts the filtering time, since each additional dis-

junct in the initial hypothesis is another entailment check that must be made. As shown

in Table 7.6, in most cases ABox observations resulted in hypotheses with more expla-

nations. ABox observations also resulted in the largest hypotheses overall, as indicated

by the 90th percentile and maximum values. Despite this, the time taken to filter for

independent explanations is lowest for ABox observations, both in most cases and in

the longest cases, followed by the KB observations and finally the TBox observations.

This may indicate that the presence of TBox axioms in the explanations has a larger

effect on the filtering time taken than the number of disjuncts. This may be due to the

difficulty of entailment checking over TBoxes as opposed to ABoxes.

The success rates within the 10 minute time limit are also lower when the filtering

step is performed in addition to forgetting, as to be expected, particularly if the forget-

ting step takes the majority of the 600 second time limit. This difference in success

rates is most noticeable for abduction problems with TBox observations: a decrease

of 7.2% compared to 1.7% and 3.1% for the ABox and KB observations respectively.

This likely reflects the effect noted above.

Table 7.3 shows the results for experiment 2, in which the proportion of non-

abducibles was increased from 1–30% to 31–60% over the previous experiment. The
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results show that the time taken to compute an initial hypothesis increased across all

observation types, both in terms of the most common run times and the most difficult

cases. This is also reflected in the success rates, which decreased by 5.3%, 11.7% and

9% compared to the results in experiment 1 for abduction problems with ABox, TBox

and KB observations respectively. This is likely due to an increase in the number of

inferences required to eliminate the additional non-abducibles using the calculus in

Figure 7.3. The drop in success rates compared to experiment 1 was most significant

over the TBox observations, followed by KB observations, indicating that the effect of

increasing the number of non-abducibles is more costly proportionally for observations

containing TBox axioms.

The reduction in success rates when additionally performing the filtering step was

0.8%, 4.1% and 2.2% respectively. The reduction in 10 minute success rates when

filtering, compared to the corresponding results in experiment 1, are similar: the cost

of filtering is most pronounced for TBox observations, then KB and finally ABox ob-

servations. This is also reflected in the comparative proportion of non-empty initial

hypotheses for each type of observation, shown in column 2 of Table 7.5, which is

similar to experiment 1. However, as before, the hypotheses produced for TBox obser-

vations generally contained fewer explanations than those produced for KB or ABox

observations, indicating that the presence of TBox axioms has a more significant im-

pact on the cost of the filtering step.

The magnitude of the decrease in success rate when filtering for independent ex-

planations is lower across all three cases for experiment 2, though this is likely due to

the additional cost incurred during the forgetting step. Since the success rates are al-

ready lower when computing the initial hypothesis, the difference in success rate when

performing filtering in addition may be less significant.

Table 7.4 shows the results for experiment 3, which examines the effect of increas-

ing the number of axioms in the observations from 1–10 to 11–20, with 1–30% of sym-

bols specified as non-abducible as in experiment 1. The results indicate that increasing
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the observation size increased the time taken to compute a solution across all three ab-

duction types, as expected. Compared to increasing the proportion of non-abducibles

as in experiment 2, increasing the size of the observation had a larger impact on the

time taken to compute a solution. This is true for the majority of cases, as indicated

by the median values which are higher than the corresponding results for both of the

previous experiments. The most difficult problems follow a similar trend. The mean

and 90th percentile values across ABox, TBox and KB cases all increased compared

to the previous two experiments, while the success rates decreased by 27.8%, 23.8%

and 28.7% across ABox, TBox and KB observations respectively compared to experi-

ment 1. This is likely due to the assumption that each axiom in the set of observations

should be explained, i.e., there is at least one non-abducible symbol in the signature

of each axiom. As a result, the number of inferences under the set-of-support inspired

approach will likely increase as the number of axioms in the observations increases,

since inferences are focused on axioms in the observation.

The times taken for the filtering step did not increase as significantly. In addition,

the decrease in success rate when filtering for independent explanations was similar

to experiments 1 and 2: a decrease of 0.6%, 4.8% and 1.4% for the ABox, TBox and

KB observations respectively. However, across all three observation types the 90th

percentile times are lower, i.e., there were fewer cases for which the filtering step took

a significantly longer time. This indicates that the effect of increasing observation size

was not as pronounced with respect to the time taken to filter the initial hypothesis as

it was to compute it. In the ABox abduction case, this may be due to the fact that only

7.4% of the initial hypotheses were non-empty, as shown in column 3 of Table 7.5. In

other cases, this may be due to the lower success rates in the computation of the initial

hypothesis. It is possible that computing the initial hypothesis for the more difficult

abduction problems had mostly already exceeded ten minutes, leaving fewer difficult

cases during the filtering step.
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Cases with Non-Empty Initial Hypothesis %
Observation Ψ axioms: 1–10, Ψ axioms: 1–10 Ψ axioms: 11–20
Type sig(O)\SA: 1–30% sig(O)\SA: 31–60% sig(O)\SA: 1–30%
ABox 43.0 28.2 7.4
TBox 94.3 83.2 80.8
KB 58.1 45.3 59.1

Cases with At Least One Independent Explanation %
Observation Ψ axioms: 1–10, Ψ axioms: 1–10 Ψ axioms: 11–20
Type sig(O)\SA: 1–30% sig(O)\SA: 31–60% sig(O)\SA: 1–30%
ABox 36.1 23.2 4.2
TBox 67.4 41.3 39.1
KB 43.8 32.0 43.0

Table 7.5: Percentage of hypotheses that were non-empty. Ψ axioms: total axioms in
the observation. sig(O)\SA: percentage of symbols that were non-abducible.

7.6.5 Hypothesis Structure

This section discusses the results regarding the structure of the hypotheses obtained for

experiments 1, 2 and 3 above. Since the observations and signature of abducibles are

selected randomly, it is expected that in many cases there may be no suitable hypothesis

satisfying Definition 7.3.1 in the given signature. Therefore, only results regarding the

non-empty hypotheses, the proportion of which are shown in Table 7.5, are used to

calculate statistics regarding hypothesis structure.

The results in Table 7.5 indicate that the filtering process eliminated a significant

number of “false” initial hypotheses, i.e., those that did not contain an explanation for

the observation. These cases are abduction problems for which no valid explanation

existed within the given signature of abducibles. This can be seen by the decreases

in the proportion of non-empty hypotheses post filtering for each set of abduction

problems. This was expected, since the set-of-support inspired approach to restrict-

ing inferences during the forgetting step is not guaranteed to avoid all inferences that

are redundant with respect to the abduction problem. The number of false candidate

hypotheses eliminated by the filtering procedure was highest for the TBox observa-

tions, for which the proportion of non-empty hypotheses decreased by 26.9%, 41.9%
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Number of Explanations (disjuncts)
Initial Hypothesis Independent Explanations

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 1 2 11.0 18 576 1 1 5.1 8 576
TBox 1 1 1.6 2 113 1 1 1.1 1 18
KB 1 1 4.4 8 432 1 1 2.8 5 160

Table 7.6: Number of explanations in hypotheses for observations of size 1–10 axioms,
with 1–30% of background symbols non-abducible.

Number of Explanations (disjuncts)
Initial Hypothesis Independent Explanations

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 1 1 5.1 9 320 1 1 2.4 5 70
TBox 1 1 2.4 3 101 1 1 1.2 1 25
KB 1 1 4.4 8 216 1 1 2.5 4 105

Table 7.7: Number of explanations in hypotheses for observations of size 1–10 axioms,
with 31–60% of background symbols non-abducible.

Number of Explanations (disjuncts)
Initial Hypothesis Independent Explanations

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 1 12 59.0 141 1000 1 8 20.4 48 220
TBox 1 1 3.3 4 162 1 1 1.6 2 120
KB 1 2 8.8 18 440 1 2 6.4 15 80

Table 7.8: Number of explanations in hypotheses for observations of size 11–20 ax-
ioms, with 1–30% of background symbols non-abducible.

and 41.7% for experiments 1, 2 and 3 respectively. This indicates that the number

of redundancies remaining after the set-of-support inspired forgetting strategy may be

higher in general when there are TBox axioms in the observation.

Table 7.6 provides results regarding the number of explanations (disjuncts) in non-

empty hypotheses for experiment 1. The hypotheses produced to explain ABox ob-

servations contained the most disjuncts, both before and after performing filtering for

independent explanations. This is particularly true for the largest hypotheses, as illus-

trated by the 90th percentile. In addition, the hypotheses for KB observations generally

contained more explanations than those for purely TBox observations. These results
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indicate that it is more likely to obtain a disjunctive hypothesis, i.e., multiple explana-

tions for an ABox observation than a TBox observation. Across all three observation

types, the filtering process removed a number of redundant explanations. This is par-

ticularly true for the larger hypotheses in each category, as indicated by the decrease in

the means and 90th percentiles in each case. The effect of filtering on the number of ex-

planations was most pronounced over the ABox observation cases, indicating a higher

number of redundant explanations in some of the larger hypotheses. Of all non-empty

initial hypotheses, 54.7%, 10.7% and 41.4% were disjunctive for the ABox, TBox

and KB observations respectively. For the independent explanations, the correspond-

ing values were 36.2%, 3.3% and 23.4%. This further supports the notion that there

are fewer disjunctive hypotheses for TBox observations, and that filtering removes a

significant number of redundant explanations from the initial hypotheses.

The corresponding results for experiment 2 are shown in Table 7.7. The results

show a similar trend to experiment 1: the largest hypotheses for ABox observations

generally contained more disjuncts than the largest hypotheses for TBox and KB ob-

servations, supporting the possibility that disjunctive hypotheses are less common for

TBox observations. However, the number of explanations in the hypotheses for ABox

observations decreased with the increase in the proportion of non-abducible symbols.

This may be due to the fact that ABox axioms are weaker than TBox axioms. Thus,

with a less restrictive signature, more avenues of explanation may exist for ABox ob-

servations initially, resulting in more avenues of explanation being eliminated as the

signature of symbols that can be used in explanations is restricted. Of all non-empty

initial hypotheses, 47.7%, 25.3% and 45.3% were disjunctive for the ABox, TBox and

KB observations respectively. For the independent explanations, the corresponding

values were 28.1%, 6.6% and 22.8%. This also indicates a similar trend to the results

observed in the previous experiment.

Table 7.8 shows the corresponding results for experiment 3. The results indicate
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that increasing the number of axioms in the observation increased the number of dis-

juncts in the hypotheses across all three observation types. This effect was most sig-

nificant for ABox observations, followed by KB and finally TBox observations. For

ABox observations, this effect was observed across most of the abduction problems,

as indicated by the increase in the median value, while more hypotheses with a large

number of explanations were also produced as indicated by the 90th percentile and

maximum results. A significant portion of these additional explanations were removed

as redundant during filtering, as indicated by the corresponding values for the inde-

pendent explanations columns. However, the number of independent explanations was

still significantly higher for ABox observations than in experiments 1 and 2. This may

be due to there being multiple ways of explaining a number of the individual ABox

axioms in each observation, resulting in a large number of possible combinations of

explanations in the final hypothesis for the full set of observations. Meanwhile for

KB and TBox abduction the effect was less apparent in most cases, being significant

more so in the cases with the largest number of explanations. This likely reflects the

same effect noted above: it may be that it is less likely for there to be multiple expla-

nations, i.e. a disjunctive hypothesis, for TBox axioms as opposed to ABox axioms.

Of all non-empty initial hypotheses, 91.4%, 25.9% and 61.4% were disjunctive for

the ABox, TBox and KB observations respectively. For the independent explanations,

the corresponding values were 50.3%, 6.0% and 26.2%. Again, this follows a similar

trend to the previous experiments. However, the proportion of disjunctive hypotheses

decreased more significantly across all three types of observation, indicating a higher

proportion of redundant explanations as the number of axioms in the observations in-

creased.

Table 7.9 summarises the proportion of the initial hypotheses, and hence forgetting

solutions obtained in Step (2), that contained each of the additional language features:

fixpoints, nominals and inverse roles. Inverse roles were not utilised in any of the

cases observed across all three experiments. Generally, nominals were the most com-

monly used of the three additional language features, while fixpoints occurred more
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Proportion of Initial Hypotheses Containing (%)
Experiment Fixpoints Nominals Inverse Roles

ABox 2.2 10.8 0.0
1 TBox 1.9 13.3 0.0

KB 5.8 15.3 0.0
ABox 3.5 8.1 0.0

2 TBox 3.2 13.8 0.0
KB 9.0 16.1 0.0

ABox 14.1 20.9 0.0
3 TBox 6.3 23.1 0.0

KB 20.3 30.6 0.0

Table 7.9: Proportion of initial hypotheses containing at least one occurrence of fix-
points, nominals and inverse roles.

frequently for KB observations. The proportions of fixpoints and nominals were higher

across experiment 3, for which the number of observations was increased, though this

may be due to the smaller sample size of non-empty hypotheses for this experiment.

The hypothesis characteristics for experiments 1, 2 and 3 are shown in Tables 7.10,

7.11 and 7.12 respectively. The results indicate that for ABox observations, there exist

a minority of cases for which it is possible to have a TBox hypothesis. In most cases,

these TBox axioms were redundant as illustrated by the decrease in the mean, P90 and

maximum values for the number of TBox axioms across all three ABox observation

experiments. This is to be expected, since the semantic minimality constraint ensures

that TBox hypotheses are only produced for ABox observations when absolutely nec-

essary, meaning that a non-redundant TBox explanation is unlikely in this scenario. A

similar result can be observed for TBox observations: there are a minority of cases for

which ABox assertions are produced as part of an explanation and in most, though not

all, cases these are redundant in the final set of independent explanations. As expected,

KB observations generally resulted in hypotheses containing a split of both TBox and

ABox axioms. In general, increasing the size of the observation had a larger impact

on the number of axioms present in the hypotheses than increasing the proportion of

non-abducible symbols.
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Initial Hypothesis
TBox Axioms ABox Axioms

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 0 0 1.3 0 360 0 6 63.9 108 4620
TBox 0 5 6.1 10 104 0 0 0.5 0 208
KB 0 3 9.8 16 1408 0 2 14.4 21 2440

Independent Explanations
TBox Axioms ABox Axioms

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 0 0 0.2 0 72 0 4 28.9 40 4608
TBox 0 4 4.7 9 96 0 0 0.0 0 18
KB 0 2 6.1 12 336 0 2 8.7 14 684

Table 7.10: Number of axioms in hypotheses for observations of size 1–10 axioms,
with 1–30% of background symbols non-abducible.

Initial Hypothesis
TBox Axioms ABox Axioms

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 0 0 1.8 2 640 0 4 24.8 36 3104
TBox 0 4 10.3 16 827 0 0 0.5 0 101
KB 0 2 10.4 20 504 0 2 10.9 16 1164

Independent Explanations
TBox Axioms ABox Axioms

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 0 0 0.3 1 12 0 3 9.4 17 449
TBox 0 3 4.7 8 158 0 0 0.0 0 12
KB 0 2 6.1 10 420 0 2 7.0 10 710

Table 7.11: Number of axioms in hypotheses for observations of size 1–10 axioms,
with 31–60% of background symbols non-abducible.

Initial Hypothesis
TBox Axioms ABox Axioms

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 0 0 6.0 4.8 448 0 114 755.8 1997 15960
TBox 0 15 31.9 40 2641 0 0 1.2 0 150
KB 0 18 58.8 122 1848 0 6 43.3 83 1672

Independent Explanations
TBox Axioms ABox Axioms

Obs. Min. Mdn Mean P90 Max. Min. Mdn Mean P90 Max.
ABox 0 0 0.8 0 20 0 88 261.4 590 2920
TBox 0 14 21.2 20 2024 0 0 0.2 0 13
KB 0 17 50.6 116 1024 0 6 33.6 81.5 864

Table 7.12: Number of axioms in hypotheses for observations of size 11–20 axioms,
with 1–30% of background symbols non-abducible.



Chapter 8

Utilising the Abduction Approaches in

Practice

The focus in this chapter is on discussing the use of the hypotheses produced by the

signature-based abduction approaches in this thesis and the connection between these

approaches and related problems such as induction and use of data. The use of abduc-

tive reasoning to produce disjunctive hypotheses, in this case spaces of independent

explanations, has not been well investigated in terms of applications. The effect of

these hypotheses, as opposed to computing individual explanations as conjunctions

without the presence of disjunction, is not yet well understood.

Here, the aim is to propose promising directions for utilising these disjunctive hy-

potheses in practice by examining and discussing how they may be integrated into a

knowledge base and by examining examples from related reasoning problems includ-

ing concept learning and explanatory induction.

8.1 Disjunctive Hypotheses

The approaches in this thesis utilise forgetting with efficient filtering methods to pro-

duce hypotheses in the form of a space, i.e., disjunction of independent explanations.

215
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This perspective, in which the aim is to compute a disjunction of explanations satis-

fying given constraints, is generally less common than the perspective of abduction

producing a collection of individual (conjunctive) explanations.

However, several works on abduction in A.I. do focus on the aim of computing dis-

junctive hypotheses. In Lin [Lin01], abduction in propositional logic is viewed from

the perspective of weakest sufficient conditions, which are noted to be equivalent to a

disjunction of explanations, leading to the aim of capturing all possible explanations

rather than just an individual explanation. The connection between second-order quan-

tifier elimination (SOQE) and abduction [DLS01, GSS08] can also be seen as a form

of disjunctive abduction (with redundancies), since SOQE can be used to compute

weakest sufficient conditions for abduction. As discussed in Chapter 4, forgetting, and

thus the abduction approach in this thesis, is related to the problem of SOQE. There-

fore, the result of forgetting can be viewed as a strongest necessary condition as in

Theorem 3.6.1. As a result, the hypotheses in this thesis obtained by contraposition on

the forgetting solution also share the aim of capturing all possible explanations, where

the additional need to impose an independence criterion on each of the explanations

obtained by forgetting has been motivated and addressed.

Konolige [Kon92] defines the notion of a cautious explanation as a disjunction of

the subset-minimal abductive explanations for an observation, and discusses the notion

of independence between the individual explanations that is also specified in this work.

In the DL setting, however, the problem of computing disjunctive hypotheses has

received little attention and, to the best of the author’s knowledge, there are as yet no

other methods for computing disjunctions of independent explanations over DL on-

tologies. In fact, in many cases disjunction is excluded from the hypotheses produced

[KES11, HB12, HBK14]. This may be due to the difficulty of computing these disjunc-

tive hypotheses in the first place, particularly in the presence of the criteria of semantic

minimality and independence of explanations, which is problematic in the DL setting

due to the emphasis on tractability of reasoning even over large ontologies. Addition-

ally, there is a need for further investigation into the effects and utility of disjunctive
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hypotheses in practice, as this has yet to receive significant formal investigation in the

existing literature on abduction [IS19] particularly in the DL setting.

Therefore, identifying promising directions for utilising the hypotheses produced

by the approaches proposed in this work is important, particularly in the DL setting.

This also relates to issues such as the selection of an appropriate forgetting signature,

for which there is a need to devise automated approaches. The focus here is on pro-

viding suggestions on how these issues may be addressed in practice and on how the

disjunctive hypotheses relate and provide utility to several tasks in the setting of DLs.

8.2 Forgetting and Hypothesis Refinement

When presented with a disjunctive hypothesis to explain a new observation, it is un-

likely that the disjunction itself will be added to the background knowledge, since there

is a degree of uncertainty associated with which of the given explanations is the most

useful or “correct” in the given circumstance. Therefore, it is necessary to perform

refinement in order to select one, or several, of the individual explanations that com-

pose the entire disjunctive hypothesis. Given that the disjunctive hypothesis satisfies

the independence constraint, it can be assumed that any of the available explanations

would at least be consistent and in some sense unique.

When presented with a semantically minimal, i.e., least assumptive hypothesis, it

may be useful to seek stronger hypotheses, using the initial hypothesis as a starting

point. This may be desirable if the initial weaker hypothesis is too vague to provide

useful insight. For example, in tasks such as repair, the aim may be to add a hypothesis

that is as informative as possible [LWKDI13].

Another consideration is the choice of abducibles, which determines the hypothesis

obtained. For the approaches presented in this thesis, the non-abducibles are specified

as part of the forgetting signature, i.e., the symbols to be eliminated in Step (2) of

Figures 5.1 and 7.2. The task of choosing the set of abducible symbols, and thus the

forgetting signature, can be difficult in practice. In several forgetting tasks, it is often
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assumed that the user may, to an extent, already know the signature of symbols that

they wish to exclude from the given knowledge base. For example, when computing

the logical difference [ZAS+19] using forgetting the aim is to compute entailments

within the common signature of two ontologies, which provides a natural way to spec-

ify the forgetting signature as the symbols outside of this common signature.

In the abduction setting, this choice may often not be as clear. Observations may

describe previously unseen phenomena or data, and there may be no existing expecta-

tion of the signature of symbols that should be used to explain them. Even in tasks such

as diagnosis, where the signature of abducibles might be restricted to causes, it may be

desirable to find ways to guide further restrictions to the set of abducibles based upon

finding increasingly stronger explanations for the given observation.

Therefore, it is important to devise strategies to guide the selection of the forgetting

signature. Additionally, if these strategies can be automated or partially automated,

then this may be beneficial in providing a default framework with which to apply ab-

duction approaches that utilise forgetting in practice. The perspective taken here is

that one natural approach to the selection of the forgetting signature ties directly to

hypothesis refinement. Hypothesis refinement is particularly important in this setting

due to two characteristics of the hypotheses produced: they are a set of independent

explanations and they are semantically minimal.

8.2.1 Iterative Abduction

The hypothesis refinement task can be viewed as a search problem through the space of

possible hypotheses. An approach for refining hypotheses in forgetting-based abduc-

tion suggested here will be referred to as iterative abduction, and can be seen as a form

of tree search over the space of possible explanations. Here the approach in Chapter 5,

specifically the approach in Figure 5.1, will be used to illustrate this approach.

The following notation will be used during this section for each step of the sug-

gested iterative approach, viewing the approach as a tree search:

• d will be used to denote the depth of the search.
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• Nd will be used to denote the number of nodes at depth d.

• Fd
i denotes the ith forgetting signature used to progress from depth d−1 to depth

d, where 1 ≤ i ≤ Nd .

• A forgetting solution Vd
i is the result of forgetting the signature Fd

i from a pre-

vious forgetting solution Vd−1
j , where 1 ≤ j ≤ Nd−l .

• The hypothesis Hd
i denotes the corresponding hypothesis extracted from Vd

i dur-

ing Steps (3) and (4) of Figure 5.1.

Effectively, each node in the search can be viewed as the pair {Vd
i ,Hd

i }. The root

node can be viewed as the pair {O,ψ}, which would be the corresponding results with

an empty forgetting signature. A key aspect of forgetting that lends itself well to an

iterative approach such as this is the following:

Corollary 8.2.1. Let V be the result of forgetting a signature F from an ontology O,

V ′ be the result of forgetting a signature F ′ from O and V ′′ be the result of forgetting

F ∪F ′ from O. (1) The result of forgetting F ′ from V is equivalent to V ′′. (2) The

result of forgetting F from V ′ is equivalent to V ′′.

The notion behind Corollary 8.2.1 is that forgetting can be applied iteratively. By

retaining the forgetting solution of a previous step, the computation of inferences need

only be performed when necessary, and only once. By remembering previously used

forgetting signatures, the fact that forgetting leads to the same result irrespective of

order given the same signatures provides a way to limit the search space: provided

that the total signature of symbols forgotten has already been covered elsewhere in the

search, there is no need to perform the step.

As before, the process starts with (O,¬ψ). From here, the search space is ini-

tialised by selecting a starting signature of non-abducibles to obtain an initial hypothe-

sis via the approach in Figure 5.1. For the most general case, it is assumed that there is

no prior knowledge that enables the selection of this starting signature. In this case, a

natural starting point for specifying the set of abducibles for the abduction approaches
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in this work is based upon the signature of symbols in the observation ψ itself. This is

due to the fact that the abduction approaches presented in this thesis are goal-oriented,

i.e., during Step (2), inferences are based around eliminating symbols in the set of non-

abducibles and the set of relevant inferences is based around the negated observation.

It should be the case that at least one symbol in the observation ψ is specified as non-

abducible. Otherwise, the semantically minimal hypothesis required under Definition

4.2.1 will simply be the observation ψ itself, as discussed in Chapter 5.

Therefore, the suggested first step is to compute a set of forgetting solutions: one

for each unique forgetting signature F1
i containing a single symbol from sig(ψ). This

results in the set of strongest possible forgetting solutions V1
i , i.e. those that preserve

the most entailments of (O,¬ψ). By repeating Steps (3) and (4) of Figure 5.1 for these

forgetting solutions, a set of corresponding semantically minimal hypotheses H1
i are

obtained. Each pair {V1
i ,H1

i } can be seen as a node of the tree, where 1 ≤ i ≤ Nl and

Nl is the number of nodes at depth l. To illustrate, consider the following scenario

concerning a simplified view of a reptile habitat domain:

Example 8.2.1. Let the background knowledge be the following ontology:

O ={PineWoods ⊑Woodlands,

Woodlands ⊑ Habitat,

Arid ⊓Tropical ⊑⊥

Pogona⊓ Iguana ⊑⊥,

Iguana ⊑ ∃livesIn.(Woodlands⊓Tropical),

GreenIguana ⊑ Iguana,

Pogona ⊑ ∃livesIn.(Woodlands⊓Arid),

PogonaMinor ⊑ Pogona,

PogonaMa jor ⊑ Pogona,

PogonaMinorMinima ⊑ PogonaMinor}
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for the following observation concerning an unknown specimen:

ψ =∃livesIn.Woodlands(specimen1)

if the signature of non-abducibles is F = { /0}, then no inferences are made and the ini-

tial hypothesis is simply ψ . If instead the set of non-abducibles is F1
1 = {Woodlands},

the following forgetting solution V1
1 is obtained in Step (2) of Figure 5.1:

V1
1 = {Arid ⊓Tropical ⊑⊥,

Pogona⊓ Iguana ⊑⊥,

PineWoods ⊑ Habitat,

Iguana ⊑ ∃livesIn.(Habitat ⊓Tropical),

GreenIguana ⊑ Iguana,

Pogona ⊑ ∃livesIn.(Habitat ⊓Arid),

PogonaMinor ⊑ Pogona,

PogonaMa jor ⊑ Pogona,

PogonaMinorMinima ⊑ PogonaMinor,

(¬Iguana⊔ ℓ)(specimen1),

(¬Pogona⊔ ℓ)(specimen1),

∀livesIn.¬PineWoods(specimen1)}

and the corresponding hypothesis H1
1 is returned using Steps (3) and (4) of Figure 5.1:

H1
1 = Pogona(specimen1)∨∃livesIn.PineWoods(specimen1)∨ Iguana(specimen1)

for F1
2 = {livesIn}, the following hypothesis is obtained:

H1
2 = Pogona(specimen1)∨ Iguana(specimen1)
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leaving three independent explanations for the given observation.

However, when performing abduction in the presence of large background ontolo-

gies where the signature of symbols is also likely to be large, specifying only one

symbol as non-abducible does not provide much of a restriction to the set of expla-

nations produced. These explanations will be the weakest possible ones. It may be

desirable to further refine these hypotheses to seek more specific ones. This could be

done exhaustively using a depth-first or a breadth-first approach.

Example 8.2.1 (Continued). Here a depth-first approach is followed. Continuing with

Example 8.2.1, assume that Pogona is determined to be the most promising explanation

in the previous step. Therefore, the aim here is to refine this hypothesis. By forgetting

F2
1 = {Pogona} from V1

1 , the following forgetting solution V2
1 is obtained:

V2
1 = {Arid ⊓Tropical ⊑⊥,

Pogona⊓ Iguana ⊑⊥,

PineWoods ⊑ Habitat,

Iguana ⊑ ∃livesIn.(Habitat ⊓Tropical),

GreenIguana ⊑ Iguana,

PogonaMinor ⊑ ∃livesIn.(Habitat ⊓Arid),

PogonaMa jor ⊑ ∃livesIn.(Habitat ⊓Arid),

PogonaMinorMinima ⊑ PogonaMinor,

(¬Iguana⊔ ℓ)(specimen1),

(¬PogonaMinor⊔ ℓ)(specimen1),

(¬PogonaMa jor⊔ ℓ)(specimen1),

∀livesIn.¬PineWoods(specimen1)}

for which the corresponding hypothesis is:

H2
1 =PogonaMinor(specimen1)∨PogonaMa jor(specimen1)∨ ...
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...∃livesIn.PineWoods(specimen1)∨ Iguana(specimen1)

Repeating this procedure, and forgetting F3
1 = {PogonaMinor} from V2

1 would result

in the hypothesis:

H3
1 =PogonaMinorMinima(specimen1)∨PogonaMa jor(specimen1) ∨ ...

...∃livesIn.PineWoods(specimen1)∨ Iguana(specimen1)

In Example 8.2.1, the other explanations in the hypothesis are retained while the

explanation Pogona(specimen1) is refined. If further information was gathered that in-

validated these explanations, it would be possible to discard these explanations whilst

refining the preferred one. For example, it could be the case that the specimen was

confirmed to be a Pogona, leading to the choice to refine this explanation. This would

exclude the explanation Iguana. Additionally, the user may decide that further refine-

ments on the habitat would not provide an interesting explanation. In this case, the

negations of these undesirable explanations could be removed from V1
1 , meaning that

the hypothesis during the second iteration would instead be H1
1 = Pogona(specimen1),

followed by H2
1 = PogonaMinor(specimen1)∨PogonaMa jor(specimen1).

In the above instance, guidance on how to refine the hypothesis, and hence choose

the forgetting signature, are driven by human involvement. This could alternatively be

automatically guided, for example using external data. This is often the approach taken

by approaches to the concept learning problem, which take sets of positive and negative

examples over which coverage metrics are utilised to refine inductive generalisations.

8.3 Signature-Based Abduction and Concept Learning

This section explores the use of the abduction approaches in this thesis for the problem

of concept learning. Concept learning is a common problem in the area of ontology

learning, where the aim is to learn the definition of a concept with respect to a given

background ontology. The learned definition takes the form of a potentially complex
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DL concept C, which can then be added to the background ontology via a TBox axiom

of the form Target ⊑C or, as a stronger statement, Target ≡C. The problem of concept

learning in DL ontologies can be defined as follows [LH10]:

Definition 8.3.1. Let CT be a concept called the Target, O be background knowledge

in the form of a DL ontology, E+ and E− be sets of positive and negative examples

containing elements of the form Target(a), where a is an individual a ∈ NI . The con-

cept learning problem is to compute a TBox axiom α of the form C ≡ Target, where C

is a DL concept such that Target ̸∈ sig(C), such that O,α |= E+ and O,α ̸|= E−

Similar to the perspective taken in ILP, the problem is usually seen as a search

problem through the quasi-ordered space of possible definitions for the target concept.

A quasi-ordering is a reflexive and transitive relation, and a common quasi-ordering

applied to the search space is subsumption (⊑). As is commonly the case in ILP,

refinement operators are used to traverse the quasi-ordered search space. Refinement

operators can be defined as follows [LH10]:

Definition 8.3.2. Let (S,⊑) be a quasi-ordered space, where S is a set of concepts

expressible in a language L. A downward (w.r.t. upward) L refinement operator ρ is a

mapping from S to 2S such that for all C ∈ S , C′ ∈ ρ(C) implies C′ ⪯C (C ⪯C′). The

concept C′ is then called a generalisation (specialisation) of the concept C.

To illustrate this problem, consider Example 8.3.1 which is based upon a modified

version of an example from Ray [RBR03], translated to DLs.

Example 8.3.1. Consider the following background knowledge, expressed as a DL

ontology O:

O ={Tired ⊓Poor ⊑ Sad,

Lonely ⊑ Sad,

Tired(oli),

Tired(ale),
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Tired(kb),

Lecturer(ale),

Lecturer(kb),

Student(oli)}

and the following set of positive and negative examples:

E+ = {Sad(ale), E− = {Sad(oli)}

Sad(kb)}

A possible inductive generalisation HInd that can be added to O such that O,HInd |=
E+ and O,HInd ̸|= E− is:

HInd = Lecturer ⊑ Sad

The generalisation provided in Example 8.3.1 is also the shortest result (with 100%

accuracy) returned using the DL-Learner system, treating the problem as a standard su-

pervised learning problem This is also the result returned using the system DL-Learner

[LH10], treating the problem as a standard supervised learning problem [BLW16].

As can be seen in the above example, the inductive generalisation provided makes

little use of the background knowledge contained in O: the concept symbols in the

provided TBox axioms are not utilised in the generalisation produced. For example,

rather than the relationship Lecturer ⊑ Sad, one might expect that Lecturer ⊑ Poor

or Lecturer ⊑ Lonely would also be possible generalisations since adding these to the

background ontology O also leads to full coverage of the positive examples and none

of the negative examples. However, since none of the individuals in the examples are

specified to be elements of either of the concepts Poor or Lonely, these generalisations

are unreachable without somehow enhancing the existing knowledge.

While abduction does not aim to produce generalisations, it has been suggested as a
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mechanism for making better use of background knowledge by producing a hypothesis

to explain the data in E+ and E−. Several works have proposed that abduction can be

used in this way [FK00b, RBR03, TNCKM06], enabling additional generalisations

via inductive learning. A practical realisation of this notion in the setting of Inductive

and Abductive Logic Programming is the system XHAIL [Ray09], which has been

applied in the context of learning and revising metabolic networks represented as logic

programs [RWK09]. XHAIL uses abduction over background knowledge to initialise

a preliminary ground hypothesis, which is then generalised to provide an inductive

hypothesis.

Such a realisation would also be useful in the context of induction and learning in

DL ontologies. The abduction approaches developed in this thesis provide hypotheses

that are a useful basis for the integration abduction and induction in DLs, due to the

characteristics of the hypotheses produced. Using the approach in Chapter 5, Example

8.3.1 can be framed as an instance of the problem in Definition 5.1.1 as follows.

Example 8.3.1 (Continued). Starting with the positive examples, the abduction prob-

lem can be specified as follows. Given the background ontology O and an observation

ψ ∈ E+, let the set of abducibles be SA = {Poor,Lonely}. The hypotheses satisfy-

ing Definition 5.1.1 obtained by applying the abduction approach in Chapter 5, for

ψ1 = Sad(ale) and ψ2 = Sad(kb), are as follows:

H1 = (Lonely⊔Poor)(ale)

H2 = (Lonely⊔Poor)(kb)

For the task of computing a generalisation HInd satisfying the concept learning prob-

lem, the following alternative datasets are provided based on the result of abduction:

E+
1 = {Lonely(ale), E−

1 = {Lonely(oli)}

Lonely(kb)}

E+
2 = {Poor(ale), E−

1 = {Poor(oli)}
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Poor(kb)}

Using these datasets as input to subsequent rounds of induction, the following induc-

tive generalisations can be reached:

HInd = Lecturer ⊑ Poor

HInd = Lecturer ⊑ Lonely

The benefit of the abduction approach in this context is in the form of the hypothesis

produced. Each independent explanation for the given examples can be interpreted as

a separate dataset over which generalisation can be performed. This enables a wider

range of solutions to the concept learning problem that would not be reachable without

this abductive step. In addition, the fact that each of these explanations is independent

minimises the redundancy in the resulting generalisations. Without this criterion, it is

possible in many cases to produce a number of generalisations that are redundant or

equivalent to existing ones, unnecessarily increasing the size of the search space.

The above example shows how the ABox abduction approach in Chapter 5 can

be applied to inductive problems, following the notion of abduction and induction

operating in a cycle [FK00b]. An open question is how knowledge base abduction, as

investigated in Chapter 7, and induction can be integrated successfully.

8.4 Knowledge-Base Abduction and Induction

Most existing work on abduction in DLs tackles the problems of TBox and ABox ab-

duction entirely separately. Little work exists on the problem of KB abduction and the

different forms this problem can take. Consequently, the effects and use of knowledge

base abduction has not been investigated.

Abduction and explanatory induction have been identified as closely related forms

of reasoning [Lac00, EKS06]. However, a particular characteristic of the KB abduction

system in Chapter 7 provides a clear separation between the process of induction and
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the form of abduction considered here. For example:

Example 8.4.1. Given the following abduction problem:

O = {B ⊑C,

D(a)}

ψ = {C(a)}

SA = {D,B}

In the general KB abduction case, possible consistent, explanatory hypotheses for ψ

in SA could include:

H1 = B(a)

H2 = D ⊑ B

the system discussed in this section will return H1, but not H2.

Due to the requirement of semantic minimality in Definition 7.3.1 condition (iv),

the hypothesis H2 is not an acceptable solution since O,H2 |= H1 but O,H1 ̸|= H2.

Thus, the inability to return H2 is not problematic for the abduction problem discussed

in Chapter 7. As given, there is no way to refine the hypothesis H1 to seek a stronger

hypothesis of the form of H2: the only option to obtain a stronger hypothesis would

be to further restrict the signature of abducibles SA, but this will not lead to such a

generalisation in this case as if either B or D are removed from SA, H2 will be lost.

In essence, this means that TBox hypotheses are produced only when required, i.e.,

a TBox hypothesis is the semantically minimal hypothesis for the given observation.

As a result, the KB abduction approach in this work does not perform any explicit

generalisation step from ground observations to universally quantified explanations,

but can produce them when necessary. This is illustrated by the following case:
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Example 8.4.2. Given the following abduction problem:

O ={C ⊑ ∀r.F,

C(a)}

ψ =∀r.E(a)

SA ={F,E}

The KB abduction approach in Chapter 7 proceeds as follows:

ΦB ΦS

bg1)¬C(x)∨∀r.D1(x) 1)∃r.D2(a)

bg2)¬D1(x)∨¬F 2)¬D2(x)∨¬E(x)

bg3)C(a) 3)¬C(a)∨∃r.D12(a) Role Propagation(bg1, 1)

4)¬D12(x)∨D1(x)

5)¬D12(x)∨D2(x)

6)¬D12(x)∨¬F(x) Resolution(bg2, 4)

7)¬D12(x)∨¬EF(x) Resolution(2, 5)

after the elimination of definers and symbols in F , and the completion of filtering in

Step (3) of Figure 7.2 the reduced forgetting solution is:

V∗ = {∃∇.(F ⊓¬E)(a)}

which when negated gives the hypothesis:

H= F ⊑ E

In Example 8.4.2 the hypothesis computed satisfies the requirements in Definition

7.3.1 despite the fact that it is a TBox hypothesis for an ABox observation, i.e., it is
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still the semantically minimal explanation and requires no explicit generalisation step.

Similarly, when applied to the concept learning problem described in Section 8.3,

the KB abduction approach produces the same hypotheses for the set E+ namely:

H1 = Poor(ale)∨Lonely(ale)

H2 = Poor(kb)∨Lonely(kb)

demonstrating the fact that, unlike the concept learning problem, no generalisation step

is performed. However, since the KB abduction approach can produce hypotheses for

TBox axioms, it is possible to apply KB abduction to concept learning at another step:

Example 8.4.3. Consider the generalisation obtained for the concept learning prob-

lem in Example 8.3.1:

Hind = Lecturer ⊑ Sad

Treating this generalisation as an observation for an abduction problem, it is possible

to produce an abductive hypothesis for the above generalisation. Let O be as in Ex-

ample 8.3.1, Ψ =Hind and SA = sig(O)\{Sad}, then the KB abduction approach in

Chapter 7 produces the following hypothesis:

H= Lecturer ⊑ (Tired ⊓Poor)⊔Lonely

This indicates that there may be multiple ways to integrate the form of abduction

in this work with induction, depending on the scope of the abduction problem.



Chapter 9

Conclusion

This thesis developed abductive reasoning capabilities in the setting of description

logic ontologies. Abductive reasoning is an important tool in tasks such as diagnos-

tics, ontology repair, expansion of ontologies, query explanation and automating parts

of scientific investigation. The need for abductive reasoning in the setting of descrip-

tion logic ontologies has been recognised, but there was still a lack of practical systems

for abductive reasoning in this domain, particularly for the task of computing hypothe-

ses satisfying constraints such as semantic minimality. This is not surprising, given

the inherent difficulty of abductive reasoning, especially in the presence of such con-

straints.

To develop the abduction approaches presented in this work, the understanding of

the promising connection between forgetting and abductive reasoning was developed

with respect to desirable abductive constraints in DLs. This led to the identification and

definition of a new abductive reasoning problem in the DL setting: computing a space

of independent explanations that make the fewest assumptions necessary to explain

a given observation. This problem lifts a common constraint applied to semantically

minimal hypotheses, in that disjunction is allowed in and forms a core part of the

hypotheses produced.

An algorithm for solving the identified abduction problem was proposed, and sev-

eral approaches were developed based on the above connection. In each case, the need

231
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for efficient approaches to eliminating redundant inferences from forgetting solutions

was identified and solved. The result is the first set of methods that solve the ABox ab-

duction problem of computing semantically minimal, disjunctive hypotheses for ALC
ontologies. In addition, by extending these results, the first method for computing these

hypotheses for the generalised problem of Knowledge Base abduction was developed.

The practicality of the developed approach to abduction was evaluated for ABox,

TBox and KB abduction via experiments over corpora containing a range of DL on-

tologies from repositories under active industrial and research use. Up to now, there

have been few extensive experimental evaluations of abductive reasoning in DLs, and

no evaluations of an approach that produces hypotheses that are semantically minimal

with disjunction. Therefore, a new framework for conducting meaningful experimen-

tal evaluations of abductive reasoning systems in DLs, including the generation of

appropriate, non-trivial observations, was developed and utilised.

The use of semantically minimal, disjunctive hypotheses in DLs had not received

any significant attention, likely due to a lack of systems that can produce such hypothe-

ses and a need for further investigation into the effects of these hypotheses in practice.

Thus, directions for utilising the developed abduction methods have been presented

as part of this work, providing a basis for the use of these approaches in a variety of

promising tasks.

To summarise, the main contributions of this thesis are as follows:

• The capabilities of forgetting-based abduction were developed with respect to

abductive constraints identified in the DL setting. The need to eliminate redun-

dant inferences, with respect to abduction, from forgetting solutions was identi-

fied with respect to DL ontologies.

• A new abduction problem for DLs was defined and motivated, where the hypoth-

esis takes the form of a semantically minimal space of independent explanations.

• An algorithm for solving this abduction problem was proposed. An approach
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was developed using the forgetting tool LETHE and an efficient annotation-

based approach to eliminating redundant explanations. The result is the first

method for computing semantically minimal, disjunctive hypotheses in ALC.

• The use of the semantic forgetting tool FAME was investigated for this setting,

where the use of the resolution-based and semantic forgetting approaches were

compared with respect to the forms of the hypotheses produced.

• The proposed abduction problem was extended to include TBox abduction, re-

quiring the notion of disjunctive TBoxes. Motivated by the ABox abduction re-

sults, the forgetting calculus of LETHE was extended to address more expressive

ABox abduction and TBox abduction. The result is the first approach that solves

the generalisation of these two problems, Knowledge Base abduction, producing

semantically minimal spaces of independent explanations for ALC ontologies.

• Each of the forgetting-based abduction approaches were evaluated over corpora

consisting of ontologies used in industry and research. New approaches to con-

ducting experiments for abduction in DLs, including problems such as generat-

ing non-trivial observations, was developed. The results demonstrated the prac-

ticality of forgetting-based approaches and the effect of observation size and

forgetting signature size in the KB abduction setting.

The approaches to abduction developed in this thesis provide new, practical solu-

tions for novel, expressive abductive reasoning problems for DL ontologies, that will

enable a range of important applications that require ampliative reasoning outside the

scope of existing deductive reasoning tools. The new perspective on abduction in DLs,

provided by the core problem identified in this thesis where the aim is to produce a

least assumptive space of independent explanations, also provides a promising basis

for a number of future research directions.

While this thesis considers abduction over input ontologies and observations ex-

pressed the DL ALC, the problem and methods developed within present a new per-

spective and a framework demonstrating salient findings and techniques which carry
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over to more expressive DLs.

9.1 Future Work

Abduction in More Expressive DLs. The approaches developed in this thesis have fo-

cused on forgetting-based abduction for ALC. Resolution-based forgetting and seman-

tic forgetting have been compared for this setting and an existing forgetting calculus

has been extended to cover a broader range of ALC explanations. The semantic forget-

ting approaches explored in Chapter 6 of this thesis can also be used to compute forget-

ting solutions for extensions of ALC [ZS16, ZS17, Zha18] while extensions for DLs

such as SHQ [KS14b] also exist for the resolution-based abduction calculus utilised

in Chapter 5. Utilising these forgetting systems for more expressive forgetting-based

abduction is a natural direction for future work. Though these approaches are suitable

for solving the forgetting problem in more expressive DL languages, further research

needs to be done on extending both the abduction problem identified in this thesis and

the forgetting-based approach used to solve it to more expressive DL languages.

Abduction in Lightweight DLs. This thesis has focused on forgetting-based ab-

duction in the expressive DL ALC, where the hypotheses may be expressed in ex-

tensions of ALC when necessary. Many existing ontologies use fragments of the

lightweight DL EL, particularly in domains that emphasise efficient reasoning over

large knowledge bases such as SNOMED CT [SPSW01]. Therefore, developing ef-

ficient methods for abductive reasoning over lightweight ontologies is an important

problem. Directions for utilising the approaches developed in this thesis for lightweight

DLs include investigating alternative forgetting systems such as NUI [KWW09], which

computes EL solutions for ontologies expressed in EL, or developing a new lightweight

method based on the insights gained in this work but without the additional machinery

required for ALC.

Additional Preference Relations. The focus in this work has been on computing
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hypotheses satisfying the criteria of semantic minimality and independence of explana-

tions. Consequently, other criteria such as computing explanations of minimal length,

i.e., syntactic minimality, have not been addressed. As discussed briefly in Chapter 4,

it is possible to prioritise eliminating certain equivalent explanations over others by ap-

plying an ordering to the process of checking each explanation during the filtering step

of the algorithm. However, the use of other preference relations or abductive criteria

may be worth investigating. For example, computing all explanations up to a given

length may be desirable in some applications. Solutions may be as simple as remov-

ing all returned explanations exceeding a given length or, more exhaustively, refining

hypotheses as proposed in Chapter 8 to return all explanations up to a given length

ordered by entailment.

Enhancing Efficiency of Filtering. The filtering approaches developed in this

work are essential for eliminating redundant explanations from the hypotheses pro-

duced. As demonstrated by the experimental results, both the annotation-based and

set-of-support based approaches show excellent performance in practice. Improving

further upon these filtering methods will be important in scaling the abduction ap-

proaches in this work to even larger knowledge bases. Promising directions include

integrating the two filtering approaches and perhaps devising an approach to elimi-

nating additional redundant explanations without the use of an external reasoner by

extending the scope of the approximate filtering approaches.

Forgetting-based Abduction and Learning. The connection between abduc-

tive reasoning and induction [FK00a] has been identified as a promising direction

with respect to problems such as the automation of scientific hypothesis generation

[KWJ+04, Ray05, Ray07, Ray09]. This connection has been investigated previously,

particularly in the areas of abductive and inductive logic programming (ILP) [MB00,

RBR03, Ray09, IFKN09] and has been indicated as a promising direction for future

research in these areas [MDRP+12]. The use of abductive reasoning in subsymbolic

and statistical learning has also been recently proposed as a promising combination
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[DXYZ19, Zho19]. In this work, the use of forgetting-based abduction has been pro-

posed as a promising basis for enhancing the capabilities of ILP inspired approaches

to concept learning in DLs [LH10]. This is based upon the form taken by the hy-

potheses produced. The fact that these hypotheses are both semantically minimal and

a disjunction of independent explanations is promising for top-down, refinement op-

erator based approaches: the abductive hypotheses may provide a constrained search

space starting at the weakest explanations, leveraging existing background knowledge.

However, this represents only an initial proposal and further research is required into

this combination. A possible starting point would be to combine and evaluate the use

of the algorithms presented in this thesis with algorithms for inductive learning in DLs

[LH10, SSB15]. Further research into combining the disjunctive hypotheses in this

thesis with statistical learning approaches may also be promising.

Hypothesis Refinement and Use of Data. As discussed in Chapter 8, utilising

data to guide the process of hypothesis refinement – and thus the choice of forgetting

signature – is a potentially promising direction. Further research should be done on

optimising the process of iteratively refining hypotheses and performing experiments

to determine how this process performs over larger ontologies.

Probabilistic Abduction. Abduction is a form of non-monotonic reasoning, and

thus the hypotheses produced only represent possible explanations rather than guar-

anteed truths. It is quite natural that further investigation may yield information that

invalidates one or several of the explanations produced. Therefore, probabilistic ab-

ductive reasoning is a natural direction. This is particularly true for the hypotheses

produced by the approaches in this thesis: the ability to assign probabilities to the in-

dividual explanations contained within the overall hypothesis would provide a way to

assign preference to a given way of explaining the observations. This may also be use-

ful as a natural way to direct the process of iterative hypothesis refinement suggested

in Chapter 8 based on collected data.
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Schmidt, and Cesare Tinelli, editors, Deduction Beyond Satisfiability,

volume 9, pages 23–44. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

matik, Dagstuhl, Germany, 2019.

[DK02] Marc Denecker and Antonis Kakas. Abduction in logic programming.

In Computational logic: Logic programming and beyond, volume 2407

of Lecture Notes in Computer Science, pages 402–436. Springer, 2002.

[DKMS04] Patrick Doherty, Steve Kertes, Martin Magnusson, and Andrzej Sza-

las. Towards a logical analysis of biochemical pathways. In European

Workshop on Logics in Artificial Intelligence, pages 667–679. Springer,

2004.



240 BIBLIOGRAPHY

[DLS01] Patrick Doherty, Witold Łukaszewicz, and Andrzej Szałas. Computing

strongest necessary and weakest sufficient conditions of first-order for-

mulas. In Proceedings of the Seventeenth International Joint Confer-

ence on Artificial Intelligence, IJCAI-01, pages 145–151. AAAI Press,

2001.

[DNDSD07] Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M Donini.

Semantic matchmaking as non-monotonic reasoning: A description

logic approach. Journal of Artificial Intelligence Research, 29:269–

307, 2007.

[DS17] Warren Del-Pinto and Renate A Schmidt. Forgetting-based abduction

in ALC. In SOQE, volume 2013, pages 27–35. CEUR Workshop Pro-

ceedings, 2017.

[DS18] Warren Del-Pinto and Renate Schmidt. Iterative abduction using for-

getting. In 25th Automated Reasoning Workshop, page 36, 2018.

[DS19a] Warren Del-Pinto and Renate A. Schmidt. ABox abduction via for-

getting in ALC. In Proceedings of the Thirty-Third Conference on

Artificial Intelligence, AAAI-19, pages 2768–2775. AAAI Press, 2019.

[DS19b] Warren Del-Pinto and Renate A. Schmidt. Extending forgetting-based

abduction using nominals. In Frontiers of Combining Systems Twelfth

International Symposium, FroCoS 2019, volume 11715 of Lecture

Notes in Computer Science, pages 185–202. Springer, 2019.

[DSTW04] James Delgrande, Torsten Schaub, Hans Tompits, and Kewen Wang.

A classification and survey of preference handling approaches in non-

monotonic reasoning. Computational Intelligence, 20:308–334, 2004.

[DWM17] Jianfeng Du, Hai Wan, and Huaguan Ma. Practical TBox abduction

based on justification patterns. In Proceedings of the Thirty-First AAAI



BIBLIOGRAPHY 241

Conference on Artificial Intelligence, AAAI 2017, pages 1100–1106.

AAAI Press, 2017.

[DWS14] Jianfeng Du, Kewen Wang, and Yi-Dong Shen. A tractable approach

to ABox abduction over description logic ontologies. In Proceedings

of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI

2014, pages 1034–1040. AAAI Press, 2014.

[DWS15] Jianfeng Du, Kewen Wang, and Yi-Dong Shen. Towards tractable and

practical ABox abduction over inconsistent description logic ontolo-

gies. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence, pages 1489–1495. AAAI Press, 2015.

[DXYZ19] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging

machine learning and logical reasoning by abductive learning. In Ad-

vances in Neural Information Processing Systems, pages 2815–2826.

Neural Information Processing Systems Foundation, Inc, 2019.

[EG95] Thomas Eiter and Georg Gottlob. The complexity of logic-based ab-

duction. Journal of the ACM (JACM), 42(1):3–42, 1995.

[EKS06] Corinna Elsenbroich, Oliver Kutz, and Uli Sattler. A case for abductive

reasoning over ontologies. In Proceedings of OWL: Experiences and

Directions, volume 216. CEUR Workshop Proceedings, 2006.

[EPS18] Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. A generic frame-

work for implicate generation modulo theories. In International Joint

Conference on Automated Reasoning, pages 279–294. Springer, 2018.

[EPT17] Mnacho Echenim, Nicolas Peltier, and Sophie Tourret. Prime impli-

cate generation in equational logic. Journal of Artificial Intelligence

Research, 60:827–880, 2017.



242 BIBLIOGRAPHY

[EW08] Thomas Eiter and Kewen Wang. Semantic forgetting in answer set

programming. Artificial Intelligence, 172(14):1644–1672, 2008.

[FK00a] Peter A. Flach and Antonis C. Kakas, editors. Abduction and Induc-

tion: Essays on their relation and integration, volume 18 of Applied

Logic Series. Kluwer Academic Press, 2000.

[FK00b] Peter A. Flach and Antonis C. Kakas. Abductive and inductive reason-

ing: background and issues. In Peter A. Flach and Antonis C. Kakas,

editors, Abduction and Induction: Essays on their relation and integra-

tion, pages 1–27. Kluwer Academic Press, 2000.

[GHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter

Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL.

Journal of Web Semantics, 6(4):309–322, 2008.

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe

Wang. Hermit: an OWL 2 reasoner. Journal of Automated Reason-

ing, 53(3):245–269, 2014.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark

for OWL knowledge base systems. Journal of Web Semantics, 3:158–

182, 2005.

[Gru95] Thomas R Gruber. Toward principles for the design of ontologies used

for knowledge sharing. International journal of human-computer stud-

ies, 43(5-6):907–928, 1995.

[GSS08] Dov M. Gabbay, Renate A. Schmidt, and Andrzej Szałas. Second-

order quantifier elimination: Foundations, computational aspects and

applications. College Publications, 12, 2008.

[HB12] Ken Halland and Katarina Britz. ABox abduction in ALC using a

DL tableau. In Proceedings of the Annual Research Conference of the



BIBLIOGRAPHY 243

South African Institute for Computer Scientists and Information Tech-

nologists, SAICSIT 2012, pages 51–58. ACM, 2012.

[HBK14] Ken Halland, Katarina Britz, and Szymon Klarman. TBox abduction in

ALC using a DL tableau. In Proceedings of the International Workshop

on Description Logics, DL 2014, volume 1193, pages 556–566. CEUR

Workshop Proceedings, 2014.

[Hen63] Leon Henkin. An extension of the craig-lyndon interpolation theorem.

Journal of Symbolic Logic, 28:201–216, 1963.
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Möller. On ontology based abduction for text interpretation. In Inter-

national Conference on Intelligent Text Processing and Computational

Linguistics, pages 194–205. Springer, 2008.

[Pla94] David A. Plaisted. The search efficiency of theorem proving strategies.

In International Conference on Automated Deduction, pages 57–71.

Springer, 1994.

[PMIMS17] Rafael Penaloza, C. Mencı́a, Alexey Ignatiev, and Joao Marques-Silva.

Lean kernels in description logics. In Proceedings of the Semantic

Web Fourteenth International Conference, ESWC-17, volume 10249 of

Lecture Notes in Computer Science, pages 518–533. Springer, 2017.

[Poo89] David Poole. Explanation and prediction: an architecture for default

and abductive reasoning. Computational Intelligence, 5(2):97–110,

1989.

[Pop73] Harry E. Pople. On the mechanization of abductive logic. In IJCAI,

volume 73, pages 147–152. Citeseer, 1973.

[Pop14] Karl Popper. Conjectures and refutations: The growth of scientific

knowledge. routledge, 1962/2014.
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Appendix

A.1 KB Abduction: Properties of the Forgetting Ap-

proach

This section covers the proofs necessary to show that the abduction approach can be

used to compute solutions as required by Definition 7.3.1, originally presented in the

extended version of [KDTS20]1.

A.1.1 Forgetting Approach Computes All Relevant Inferences

As in Chapter 5, the forgetting step is used to compute all relevant inferences of the

background ontology together with the negated observation. Here, the relevant infer-

ences are those that are relevant to the abduction problem, i.e., have an ancestor in ¬Ψ.

For the KB abduction approach, in Step (2) of Figure 7.2 the forgetting procedure is

applied using the set-of-support inspired approach. Therefore, it is necessary to show

that the forgetting approach in Step (2) retains all of the relevant inferences

First, some notions are defined that will be utilised in the proofs in this section. Let

Φ be a set of clauses and S ∈ F be a concept or role symbol to be eliminated. Let

NΦ
D be the set of definers introduced during the normalisation of Φ. Here, D always

1https://arxiv.org/abs/2007.00757
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refers to a definer. Each subset D of NΦ
D is mapped to a definer DD, where each DD

is effectively the conjunction of each definer in the given subset e.g. DD1 = D1 and

D{D1∪D2} = D1 ⊓D2. As before, the notation D12 will be used to represent D{D1∪D2}

for simplicity. Let I be the set of all individuals occuring in Φ together with a set

of individuals containing a single unique individual name aD corresponding to each

definer symbol in SatS(Φ). It is assumed also that Φ contains at least one individual

name.

For every definer symbol Di in sig(SatS(Φ)), a new individual aDi is introduced.

Let I be the set of all individuals occurring in Φ together with the individuals corre-

sponding to each definer.

The set of clauses SatS(Φ) denotes the set of clauses obtained by exhaustively

applying the calculus in Figure 7.3 to eliminate S from Φ. The grounding of SatS(Φ),

denoted SatgS(Φ), is defined as follows:

SatgS(Φ) = {φ [x → a] | a ∈ I,φ ∈ SatS(Φ)}

Let ≺D be a total ordering over introduced definer symbols such that for two sub-

sets Di,D j ⊆ NΦ
D , for the corresponding definers Di and D j the relation Di ≺ D j holds

if Di ⊆ D j. Now to define an ordering specifying the order in which inferences are

made using the calculus, based on the symbols being considered.

Let ≺S be a total ordering over literals. For two literals Li,L j, it is the case that

Li ≺S L j if at least one of the following holds, where D, D1 and D2 are definers:

1. Li takes the form D(t) or ¬D(t) and L j does not

2. Li takes the form D1(t) or ¬D1(t) and L j takes the form D2(t ′) or ¬D2(t ′) where

D1 ≺D D2.

3. S ̸∈ sig(Li) and S ∈ sig(L j).

4. Li takes one of the forms A(t), r(a,b) or (∃r.D)(t) and L j takes one of the forms

¬A′(t ′), ¬r′(a′,b′) or ∀r′.D′(t ′).
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5. Li takes the form ∃r.D1(t) and L j takes the form (∃r.D2)(t) where D1 ≺ D2.

The ordering ≺S is extended to clauses φ using the multiset extension, where φi ≺S

φ j if there is a literal L j ∈ φ j such that for all literals Li ∈ φi, it is the case that Li ≺S L j.

Now to the required proofs [KDTS20]. It is necessary to prove that the set-of-

support inspired strategy described in Section 7.4.2 computes all required inferences

for the abduction problem. As discussed, the following condition is assumed when

applying the calculus to eliminate a given symbol S [KDTS20]:

(*) For a given clause φ = L1(x)∨ ...∨Ln(x), inferences are performed only on

literals Li such that S ∈ sig(Li) or they are applications of the Resolution rule on

definer symbols in clauses of the form ¬D1(x)∨D2(x).

The following Lemma uses the refutational completeness of the calculus, using

condition (*), to show that all required consequences are computed when eliminating

a symbol S.

Lemma A.1.1. Given a set of clauses Φ obtained by normalising a KB K and some

concept or role symbol S, Φ is satisfiable if and only if SatS(Φ) does not contain the

empty clause.

Proof: Assume that SatS(Φ) does not contain the empty clause. Let I be a model of Φ

based on the grounding SatgS(Φ). For every individual a ∈ I, the model I has exactly

one domain element resulting in the domain ∆I = {da | a ∈ I}. This implies that if

I |= Satg
S(Φ) then I |= SatS(Φ), since SatgS(Φ) is a grounding of SatS(Φ), and also

I |= Φ, since SatS(Φ) is a set of consequences derived from Φ. The corresponding

interpretation function ·I is constructed by induction as follows.

For the base case i = 0, the interpretation I0 = ⟨∆I , ·I0 ⟩ is given by setting:

(1) For each a ∈ I, aI0 = da.

(2) For each D ∈ ND, DI0 = /0 if ¬D(x) ∈ SatS(Φ)

(3) For each concept and role symbol U, excluding definer symbols, UI0 = /0
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Now to proceed stepwise for i > 0. While Ii−1 ̸|= SatgS(Φ), the aim is to extend Ii−1

by considering the smallest clause φm ∈ SatgS(Φ) that is not yet entailed by Ii−1. Let

Ii = ⟨∆I , ·Ii ⟩ be the next interpretation that extends Ii−1, which is constructed from Ii

in the following way, where L is the maximal literal in φm according to the ordering

≺S:

(a) If L = A(a), then set AIi = AIi ∪{da}.

(b) If L = r(a,b), then set rIi = rIi−1 ∪{(da,db)}.

(c) If L = (∃r.D)(a), then set rIi = rIi−1 ∪{(da,daD)}.

(d) Else, set Ii = Ii−1.

For (c), it is the case that daD ∈ DI0 unless ¬D(x) ∈ SatS(Φ). In this case, application

of the R∃ rule in Figure 7.3 on r in φm, followed by the R∇ rule, results in a clause φ ′
m

which excludes ∃r.D from φm. However, since φ ′
m ≺S φ and given that it was assumed

Ii−1 ̸|= φm, then it must be the case that Ii−1 ̸|= φ ′
m, which is a contradiction.

The rest of the proof proceeds similarly to the proof of Theorem 2 in Koopmann

and Schmidt [KS15b], where for all φ ∈ Sat(Φ) such that φ ≺S φm, Ii |= φ and case

(d) cannot apply. Since the difference here is that the normal form includes negated

role assertions of the form ¬r(a,b), it remains to cover this case. Assume that case (d)

applies from Ii−1 to Ii and that in this case the smallest clause φm not entailed by Ii−1

contains a maximal literal L of the form ¬r(a,b). Note that, since Ii = Ii−1 in case

(d), this also means Ii |= φm. This implies (aI ,bI) ∈ rIi , i.e., a and b are related under

r. Here, both a and b must be individuals that occurred in Φ, meaning that bI is not

an individual aD corresponding to a definer D. This implies that case (b) must have

applied in some previous step to an interpretation I j where j < i, i.e., there must have

been a clause φ = φ ′∨ r(a,b) where r(a,b) is the maximal literal. As a result, it must

be the case that φ ≺S φ ′. However, inference via rule Rr in Figure 7.3 should result in

a clause φ ′∨φ ′
m, since the clause appearing in a previous step, φ , contains r(a,b) as

a maximal literal and it is assumed that the smallest non-entailed clause φm contains
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¬r(a,b). Therefore, φ ′ ∨ φ ′
m ∈ SatS(Φ). Since Ii ̸|= φ ′

m and φ ′ ∨ φ ′
m ≺S φm there is a

contradiction on the minimality of the clause φm.

Given that SatgS(Φ) is finite, a new clause in SatgS(Φ) is entailed at each step from

(a) – (c) and all smaller clauses in SatgS(Φ) remain entailed, there must exist a step

i > 0 at which the updated interpretation Ii |= SatgS(Φ). At this point, setting I = Ii

and noting that I |= SatS(Φ) and I |= Φ, it is possible to conclude that Φ is satisfiable

using I as a model.

The following two lemmata concern properties of introduced definers [KDTS20].

For the following, assume that the restriction (*) is not applied and that the rules in

Figure 7.3 are applied exhaustively, resulting in the set of clauses Sat(Φ).

Lemma A.1.2. Let Φ be a normalised set of clauses with definers NΦ
D . For every

Di ⊆ NΦ
D and every D j ⊂ Di, for which definers Di and D j are introduced in Sat(Φ),

a clause ¬Di(x)∨ D j(x) is in Sat(Φ) and there exists two clauses φ1 ∨ Q1.D j and

φ1 ∨φ2 ∨Q2.Di in Sat(Φ) such that Q1 = ∃ implies Q2 = ∃.

Lemma A.1.3. Let Φ1 and Φ2 be sets of normalised clauses with Φ1 ⊆ Φ2 and let

D, D1 and D2 be definers such that D2 ∈ sig(Sat(Φ1)) and ¬D(x)∨D1(x), ¬D(x)∨
D2(x) ∈ Sat(Φ2). Then there exists a definer D′ such that the clauses ¬D′(x)∨D1(x)

and ¬D′(x)∨D2(x) are in the set Sat(Φ1) and either: D′ = D or there is a clause

¬D(x)∨D′(x) in the set Sat(Φ2)

Proof: Let the definers D1 and D2 be the definers corresponding to the subsets D1,D2 ∈
NΦ1

D respectively. From Lemma A.1.2, there exists a definer D12 such that ¬D(x)∨
D12(x) ∈ sig(Φ2). Now to show that D12 is introduced in Sat(Φ1) by contradiction.

Assume that in a sequence of inferences, D12 is the first definer introduced in Sat(Φ2)

that is not introduced in Sat(Φ1). Let D1 and D2 occur in the clauses φ1 ∨Q1r.D1(t1)

and φ2 ∨Q2r.D2(t2) in Sat(Φ1) respectively. If the rule Role Propagation in Figure

7.3 was applied on these clauses, then this would imply that the definer D12 was

introduced in Sat(Φ1). Since it is assumed that it is not, then Role Propagation is

not applied here. For this to be the case, it must be that φ1 and φ2 each contain
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negative definer literals ¬D′
1(x) and ¬D′

2(x) where D′
1(x) ̸= D′

2(x), since this would

lead to a clause with more than two negative definers, which is not permitted. Since

the set Sat(Φ2) does contain D12, it must be the case that clauses φ ′
1 ∨ Q1r.D1(t1)

and φ ′
2 ∨Q2r.D2(t2) occur in Sat(Φ2), where these clauses have been inferred from

φ1 ∨Q1r.D1(t1) and φ2 ∨Q2r.D2(t2) respectively via a sequence of inferences. It must

also be the case that φ ′
1 and φ ′

2 do not contain negative definers, so that inference

under the Role Propagation rule is possible. As a result, φ ′
1 and φ ′

2 must contain a

definer literal D′ such that the clauses ¬D′(x)∨D′
1(x) and ¬D′(x)∨D′

2(x) are in the

set Sat(Φ2), where D′ is not introduced in Sat(Φ1) nor is there a definer D′′ such that

¬D′(x)∨D′′(x) is in Sat(Φ2). It must also be the case that D′ was introduced prior to

D12, which contradicts the assumption made that D12 was the first definer introduced

in Sat(Φ2) that was not introduced in Sat(Φ1).

Now to the key proof in this section: that the saturated set of clauses obtained

by applying the calculus using the set-of-support inspired strategy described in Sec-

tion 7.4.2 preserves all relevant consequences of the input ¬K,¬Ψ. This saturated

set is denoted Sat(ΦB,ΦS,SA), where ΦB is the background set of clauses, ΦS is the

supported set and SA is the set of symbols to be retained, i.e., the abducibles in the

abduction perspective.

Recall also the steps in applying the calculus in Figure 7.3 via the set-of-support

inspired approach as follows. For each symbol in the forgetting signature F , the steps

in the final strategy are as follows:

1. Perform all inferences on symbols in the forgetting signature F , as well as all

possible inferences via the rules RA and R∀-2 on definer symbols. As with

IntALC , all inferences using the role propagation and role instantiation rules

that enable further inferences on symbols in F are also performed. All inferred

clauses are added to the support set ΦS.

2. Remove clauses containing symbols in F from ΦS.

3. If a clause containing a definer is derived and thus added to ΦS, move all clauses
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containing this definer from ΦB to ΦS.

where all derived clauses are stored in a separate set to ensure that they are not derived

repeatedly.

Theorem A.1.1. Let ΦB and ΦS be normalised sets of clauses and SA be a signature.

Let M= Sat(ΦB,ΦS,SA). For any Boolean KB K expressed in ALC such that sig(K)⊆
SA, ΦB ∪ΦS |=K if and only if ΦB ∪M |=K.

Proof: The set-of-support inspired algorithm for computing Sat(ΦB,ΦS,SA) loops

over each non-definer symbol S ∈ ΦS such that S ̸∈ SA. For each such S, it is nec-

essary to show that the first two steps (1) and (2) in the set-of-support strategy above

preserve all entailments that do not utilise the symbol S. This can be shown by induc-

tion, starting with the base case: let Φ0
S be the initial set of supported clauses before

applying the calculus to S, Φ1
S and Φ2

S be the results of step (1) and step (2) in the

set-of-support strategy above respectively.

For both steps, Φ0 ∪ Φ1
S |= K and Φ0 ∪ Φ2

S |= K hold if and only if Φ0 ∪ Φ1
S ∪

¬KB |=⊥ and Φ0 ∪Φ2
S ∪¬KB |=⊥ hold respectively. The negated KB ¬K can be rep-

resented as a set of clauses Φ¬K as described in Section 7.4.1. Now it is necessary

to show that for M1 = Φ0 ∪Φ1
S ∪Φ¬K and M2 = Φ0 ∪Φ2

S ∪Φ¬K, the set M2 is un-

satisfiable if and only if M1 is unsatisfiable. From Lemma A.1.1, this can be shown by

showing that SatS(M2) contains the empty clause (⊥) if and only if SatS(M1) does also.

The forward direction is straightforward: SatS(M2) contains only clauses that are

present also in SatS(M1), and so contains ⊥ only if SatS(M1) does also. The reverse di-

rection can be shown by proving that clauses that are in SatS(M1), but not in SatS(M2)

can be recovered. This amounts to showing that the following holds:

• (**) For every clause φ ∈ SatS(M1) inferred by applying the calculus on the

symbol S, there exists a clause φ ′ ∈ SatS(Φ0)∪Φ1
S such that: (a) φ = φ ′ or (b)

φ = ¬D1(x)∨φr,φ
′ = ¬D2(x)∨φr and ¬D1(x)∨D2(x) ∈ SatS(M2).

which can be shown by induction on the possible inferences. Let φ be a clause in
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SatS(M1) that was the result of an inference on the symbol S, i.e., a clause with par-

ent φ1 that contains S and possibly a second parent φ2 that also contains S. Under

condition (*), one of the following are possible:

(I) φ1 occurs in Φ0 ∪Φ0
S

(II) φ1 is the result of an inference on the symbol S

(III) φ1 is the result of an inference on ¬D1(x)∨D2(x) ∈ SatS(M1).

If (III) holds, it must be the case that φ1 = ¬D1(x)∨φ ′
1, ¬D1(x)∨D3(x) ∈ SatS(M1)

and ¬D3(x)∨φ ′
1 ∈ SatS(M1), where the clause ¬D3(x)∨φ ′

1 falls under cases (I) and

(II). If case (I) applies to both premises, then the claim holds as a result. If (I) or

(II) apply and φ1,φ2 ∈ Sat(Φ0)∪Φ1
S, then φ ∈ Sat(Φ0)∪Φ1

S by the construction of

Φ1
S. If φ ̸∈ Sat(Φ0)∪Φ1

S, then this must be due to the fact that φ contains a definer

symbol that is not present in Sat(Φ0)∪Φ1
S, i.e., it must be the case that φ =¬D(x)∨φr.

Now assume that (II) applies and that the claim above holds for φ1 and φ2. Then the

set SatS(M2) contains the following clauses: φ1 = ¬D(x)∨ φr1, φ2 = ¬D(x)∨ φr2,

¬D(x)∨D1(x) and ¬D(x)∨D2(x). Meanwhile, the set SatS(Φ0)∪Φ1
S contains the

following clauses: ¬D1(x)∨φr1 and ¬D2(x)∨φr2. From Lemma A.1.3, it must be the

case that there is a definer D′ such that the set SatS(Φ0)∪Φ1
S contains the clauses

¬D′(x)∨φr1 and ¬D′(x)∨φr2 and the set SatS(M2) contains ¬D(x)∨D′(x) or it is the

case that D′ = D. Any inference performed on the clauses φ1 and φ2 also applies to

the aforementioned clauses, and as a result the set SatS(Φ0)∪Φ1
S contains the clause

¬D′(x)∨φr. As a result, the statement (**) above holds.

From statement (**), all relevant consequences resulting from inferences on S are

derived during the computation of SatS(Φ0)∪Φ1
S, and the set Φ2

S is obtained by re-

moving all clauses that contain the symbol S. From condition (*), inferences on either

the symbol S or positive definers are performed before any others when computing

SatS(M1). As a result, for every clause φ ∈ SatS(M1) there is a clause φ ′ in SatS(M2)

such that either φ = φ ′ or the set SatS(M2) contains the clauses φ = ¬D1(x)∨ φr,
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φ ′=¬D2(x)∨φr and ¬D1(x)∨D2(x). From this, if SatS(M1) contains ⊥ then SatS(M2)

does also.

A.1.2 Denormalisation Preserves All Relevant Inferences

The denormalisation phase aims to capture the meaning of all the definers present in

the result of the set-of-support inspired forgetting approach, i.e., the set of clauses

Sat(ΦB,ΦS,SA). This requires the introduction of concept inclusions and correspond-

ing definers Di referring to each negative occurrence of the existing definers Di. The

set of CIs, and the replacement of negative occurrences of definers, is constructed as

described in Section 7.4 of Chapter 7 by the following steps:

(1) φ ∨∀r.Di(x) introduce Di ⊑ ∀r−.Cφ

(2) φ ∨∀r.Di(x) introduce Di ⊑ ∀r−.(¬{a}∨Cφ )

(3) φ ∨∀r.Di(a) introduce Di ⊑ ∀r−.(¬{a}⊔Cφ )

(4) ¬Di(a)∨φ introduce Di ⊑ ¬{a}⊔Cφ

(5) Replace all occurrences of negative definers ¬D(a) by D(a)

(6) Replace every remaining clause φ that does not take the form of a disjunction of

ABox assertions by ⊤⊑Cφ .

where each concept Cφ = Lc
1 ⊔ ...⊔ Lc

n corresponds to a clause φ = L1 ∨ ...∨ Ln and

each literal Lc is defined as follows for each corresponding literal L:

• If L =C(x) then Lc =C−, where C− is the result of replacing all negative definer

occurrences ¬D by D.

• If L =C(a) then Lc = ∃∇.({a}⊓C−).

• If L = r(a,b) then Lc = ∃∇.({a}⊓∃r.{b}).

• If L = ¬r(a,b) then Lc = ∃∇.({a}⊓∀r.¬{b})
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Now it remains to show that replacing the definers by these concept inclusions

retains all relevant consequences, i.e., that eliminating definer symbols eliminates only

consequences relating using definers. Starting with Lemma A.1.4.

Lemma A.1.4. Let K0 be the result of introducing the concept inclusions in (1) and

(2) above to Sat(ΦB,ΦS,SA). Every model of K0 can be transformed into a model of:

K0∪{D≡¬D|D∈ sig(Sat(ΦB,ΦS,SA)} by changing only the interpretation of definer

symbols.

Proof: Let I be a model of K0 such that for a definer D ∈ sig(ΦB), I ̸|= D ≡ ¬D.

Both the normalisation procedure and the calculus in Figure 7.3 ensure that definers

occur only under existential or universal role restrictions. With respect to (1) and (2)

above, for the existential case no CI is introduced for D and a model I ′ can be obtained

such that I ′ |= D ≡ ¬D by just setting DI ′
= (¬D)I . For the universal case, I can be

transformed into a model I ′ of D ≡ ¬D by setting DI ′
= DI \DI and DI ′

= ∆I \DI ′

where ∆I is the domain. From this, I ′ |= D ≡ ¬D. It can also be shown that I ′ |=K0.

To do this, occurrences of the definers D and D must be considered.

For D, it is the case that DI ′ ⊆DI , and so only positive occurrences of D in K0 need

to be considered. The only occurrences of D are in clauses of the form φ ∨∀r.D(t),

since D does not occur under existential role restrictions and all clauses containing

literals D(t) are eliminated during the computation of Sat(ΦB,ΦS,SA). As before, no

clause mixes variables and individuals as terms.

Therefore, starting with a clause L1(x)∨ ...∨Ln(x)∨∀r.D(x) ∈ K0. Assume there

exists (d,e) ∈ rI such that e ∈ (DI ∩DI
), where d and e are individuals. Since e ∈ DI

and I |= D ⊑ ∀r−.(Lc
1 ⊔ ...⊔ Lc

n), it follows that d ∈ (Lc
1 ⊔ ...⊔ Lc

1)
I . From this, for

some literal Li with 1 ≤ i ≤ n it is the case that d ∈ Li. As such, there is no need for e

to be in DI to satisfy the clause, and thus I ′ |= L1(x)∨ ...∨Ln(x)∨∀r.D(x).

Next, a clause without variables φ ∨∀r.D(a)∈K0 such that I ̸|= φ and (aI ,d)∈ rI .

In this case, the CI D ⊑ ∀r−.(¬{a}⊔Cφ ) is introduced in K0. Since I ̸|= φ , it is the

case that (Cφ )I = /0. As a result, I |= D ⊑ ∀r−.¬{a} and aI cannot have a successor

under r satisfying D. Thus, I |= φ ∨∀r.D(a) implies I ′ |= φ ∨∀r.D(a).
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Now D must be considered. Since DI ⊆ DI ′
, the negative occurrences of D in K0

must also be considered. These all occur in CIs of the form D ⊑ ∀r−.C for domain

elements d ∈ DI ′
\DI . For all of these domain elements d, it is the case that d ̸∈ DI ,

since d ̸∈ DI and d ∈ DI would imply d ∈ DI ′
and d ̸∈ DI ′

. Now to show that for every

e such that (e,d) ∈ rI , it is the case that d ∈C. Consider each of the possibilities for

the CI D ⊑ ∀r−.C ∈ K0, with the aim of showing that in each case e ∈CI ′
.

First, where C corresponds to the concept generated for a clause L1(x)∨ ...∨
Ln(x)∨ ∀r.D(x) ∈ K0, i.e., D ⊑ ∀r−.(Lc

1 ⊔ ...⊔ Lc
n) ∈ K0. Since d ̸∈ DI , it follows

that e ̸∈ (∀r.D)I , and therefore e ∈ (L1 ⊔ ...⊔Ln)
I ′

.

Second, where C corresponds to the concept generated for a clause φ ∨∀r.D(a),

i.e., D ⊑ ∀r−.(¬{a}⊔Cφ ) ∈ K0. If e ̸= aI , then e ∈ (¬{a}⊔Cφ )I
′
. Else, if e = aI

then I ̸|= ∀r.D(a) since d ̸∈ DI . As a result, I |= φ , implying that e(Cφ )I = ∆I and

e ∈ (¬{a}⊔Cφ )I
′
.

From the above, it follows that I ′ |= D ⊑ ∀r−.C for every D ⊑ ∀r−.C ∈ K0. This

process can be repeated for every definer D ∈ sig(Sat(ΦB,ΦS,SA)), resulting in a

model I∗ of K0 ∪{D ≡ ¬D|D ∈ sig(Sat(ΦB,ΦS,SA))}.

Now let K1 be the result of performing all introductions of CIs in (1)–(6) above.

Lemma A.1.5. Every model of K1 can be transformed into a model of Sat(ΦB,ΦS,SA)

by changing only the interpretation of definers. Every model of Sat(ΦB,ΦS,SA) can be

extended to a model of K0 by setting DI
=¬DI for all definers D in sig(Sat(ΦB,ΦS,SA)).

Proof: By examining the axioms introduced in (3) – (6) above, it follows that

K1 |= K0 and K0 ∪{D ≡ ¬D|D ∈ sig(Sat(ΦB,ΦS,SA))} |= K1. From Lemma A.1.4,

it is possible to transform any model I of K1 into a model I ′ of K0 by changing the

interpretation of the definer symbols in I. As such, I ′ is a model of K1 also. Every

clause φ ∈ Sat(ΦB,ΦS,SA) has a corresponding axiom β ∈K0 such that I ′ |= φ if and

only if I ′ |= β . As such, I ′ is a model of Sat(ΦB,ΦS,SA).

Now let I be a model of Sat(ΦB,ΦS,SA) and let I ′ coincide with I except for the in-

terpretation of definer symbols (D)I
′
=¬DI for every definer symbol D in sig(Sat(ΦB,ΦS,SA).
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For every axiom β ∈K0, there is a clause φ ∈ Sat(ΦB,ΦS,SA) such that I ′ |= φ if and

only if I ′ |= β . From this, I ′ is a model of K1.

From Lemma A.1.5, all consequences of Sat(ΦB,ΦS,SA) that do not use definers

are retained and every negative occurrence of a definer symbol has a corresponding CI.

As such, it is possible to use the same definer elimination technique as in Figure 3.3

[KS15b].

For the resulting definer-free KBs, the following theorem follows directly from

Lemma A.1.1, Lemma A.1.2, Ackermann’s Lemma [Ack35] and the Generalised Ack-

ermann’s Lemma [NS95].

Theorem A.1.2. Let K be a definer-free KB. Then, the following holds: K2 |=K if and

only if Sat(ΦB,ΦS,SA) |=K.

As a consequence of Theorems A.1.1 and A.1.2, Theorem A.1.3 holds for the nega-

tion of the result of denormalising Sat(ΦB,ΦS,SA), i.e., the approximately reduced

forgetting solution VS
app described in Chapter 7.

Theorem A.1.3. For a given abduction problem ⟨K,Ψ,SA⟩, applying the set-of-support

inspired forgetting approach (including denormalisation) results in a disjunction of

ALCOIµ KBs that satisfies conditions (i), (ii) and (iv) of Definition 7.3.1 but does not

satisfy the inter-disjunct redundancy requirement in condition (iii).

Performing the following check in Step (3) of Figure 7.2 over the above result:

K,Ki |=K1 ∨ ...∨Ki−1 ∨Ki+1 ∨ ...∨Kn

as described in Chapter 7 then yields a hypothesis fully satisfying Definition 7.3.1, up

to potential inter-disjunct redundancy in explanations (disjuncts) containing fixpoint

operators if they are present.
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