440 research outputs found

    Pattern reconfigurable dielectric resonator antenna using capacitor loading for internet of things applications

    Get PDF
    This research study presents a cube dielectric resonator antenna (DRA) with four different radiation patterns for internet of things (IoT) applications. The various radiation patterns are determined by the grounded capacitor loading to reduce interference. The DRA is constructed of ceramic material with a dielectric constant of 30 and is fed via a coaxial probe located in the antenna’s center. Capacitors are used to load the four parasitic microstrip feed lines. Each pattern of radiation is adjustable by adjusting the capacitors loading on the feed line. The proposed antenna works at 3.5 GHz with -10 narrow impedance bandwidth of 74 MHz

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies

    A Study on Frequency Reconfigurable Antennas for Applications in Frequency Agile Radio and mm-Wave.

    Get PDF
    As the current technologies in mobile communications are constantly growing it is becoming a necessity for researchers to investigate and deliver novel, versatile and agile devices providing adaptive performance in order to fulfil the ever changing requirements for communication engineering standards in the next and currently developing generation of mobile communications known as 5G. The current technologies in adaptive antennas have provided optimal numbers using comprehensive technologies that are compatible with the past generations of mobile communications. However, the increasing amounts of data exchanged by mobile devices nowadays require multiple services to be covered by reduced number of devices. In order to overcome this inconvenience, the use of reconfigurable antennas, specifically frequency reconfigurable antennas introduce an adaptive and innovative concept for versatile devices with applications in radio agility that overcomes the limitations of the current devices that are unable to cover multiple services by a single antenna. Two different kinds of frequency reconfigurable antennas are discussed in this work. The design, simulations, manufacture, and measurements for the discussed antennas are developed in this thesis. The first discussed designs are three prototypes of 1×2 triple-slotted antennas with different positions in the board. These boards offered independent frequency tuning using varactor-loaded slots that are electrically tunable by voltages from 0 – 25 V offering a fully tunable frequency range from 0.57 GHz and up to 2.73 GHz. The commented antennas offered independent metrics for frequency response and radiation patterns as well as good agreement between simulations and measurements. Moreover, the three slot antenna prototypes were object of a study in diversity metrics as they present spatial diversity schemes. The simulated and measured diversity parameters observed agreed on optimal numbers for frequencies above 750 MHz for the three prototypes with correlations well below 0.3 and diversity gains near the ideal value of 10 dB which allows reduction of required power in multi-antenna systems and determines its capacity to operate in MIMO systems for 5G. The second kind of antennas discussed in this is a dielectric resonant antenna (DRA) designed to operate at 28 GHz using bioplastics with relatively low dielectric constants and filled by different materials in order to achieve frequency reconfiguration including electrically tunable substances such as graphene oxide covering a frequency range from 26.3 GHZ to 28.3 GHz presenting good agreement between measured and simulated reflection coefficients and radiation patterns

    Design and optimization of microstrip filtering antenna with modified shaped slots and SIR filter to improve the impedance bandwidth

    Get PDF
    This paper presents a new compact microstrip filtering antenna with modified shaped slots to improve the impedance bandwidth. The proposed microstrip filtering antenna consists of three parts; the monopole radiating patch antenna, the SIR filter, and the feeding microstrip line. The design structure is achieved on one sided glass epoxy FR-4 substrate with dielectric constant ε_r = 4.4 and thickness of h = 1.6 mm. The design procedures of the proposed filtering antenna starts from the second order Chebyshev low pass filter prototype. The simulation results throughout this article are done by a computer simulation technology (CST) software. The simulated results have been achieved show good performance of S11-parameter and broad side antenna gain on +z-direction. This design has two transmission zeros at 5.4 GHz and 7.7 GHz, and bandwidth (B.W) of about 1.66 GHz so; it is suitable for high speed data communication. This design has good skirt selectivity

    A comprehensive survey on 'circular polarized antennas' for existing and emerging wireless communication technologies

    Get PDF
    Circular polarized (CP) antennas are well suited for long-distance transmission attainment. In order to be adaptable for beyond 5G communication, a detailed and systematic investigation of their important conventional features is required for expected enhancements. The existing designs employing millimeter wave, microwave, and ultra-wideband (UWB) frequencies form the elementary platform for future studies. The 3.4-3.8 GHz frequency band has been identified as a worthy candidate for 5G communications because of spectrum availability. This band comes under UWB frequencies (3.1-10.6 GHz). In this survey, a review of CP antennas in the selected areas to improve the understanding of early-stage researchers specially experienced antenna designers has presented for the first time as best of our knowledge. Design implementations involving size, axial ratio, efficiency, and gain improvements are covered in detail. Besides that, various design approaches to realize CP antennas including (a) printed CP antennas based on parasitic or slotted elements, (b) dielectric resonator CP antennas, (c) reconfigurable CP antennas, (d) substrate integrated waveguide CP antennas, (e) fractal CP antennas, (f) hybrid techniques CP antennas, and (g) 3D printing CP antennas with single and multiple feeding structures have investigated and analyzed. The aim of this work is to provide necessary guidance for the selection of CP antenna geometries in terms of the required dimensions, available bandwidth, gain, and useful materials for the integration and realization in future communication systems

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Study on the effect of the substrate material type and thickness on the performance of the filtering antenna design

    Get PDF
    This article presents a new design of a four-pole microstrip filtering antenna. The filtering antenna consists of a bandpass filter, which has four resonators integrated to a monopole patch antenna. The filtering antenna is designed with a relatively high bandwidth of about 1.22 GHz to satisfy a high-speed data transmission. Three types of dielectric substrate materials were used for the design of the filtering antenna, which is RT/Duroid 5880, RO3003, and FR-4. The simulation results of the filtering antenna design, which are established on the three different dielectric substrate materials, are done by using Computer Simulation Technology (CST) software. Comparison results of the filtering antenna that is established on the three different dielectric substrate materials are done at a fixed substrate height and different substrate heights. The filtering antenna is designed at a center frequency f0 = 2.412 GHz, which is suitable for WLAN applications

    Antenna Element Design Using Characteristic Mode Analysis: Insights and Research Directions

    Full text link
    [EN] This article provides a comprehensive review of recent applications of characteristic mode analysis (CMA) to innovative antenna element designs, including multi port, circularly polarized, wideband, reconfigurable, and dielectric resonator antennas (DRAs). Emphasis is placed on the interpretation of the characteristic modes (CMs) for those unfamiliar with the method and physical insights gained from the characteristic eigenvalues and eigenvectors of an antenna. In addition, we review CMA-based design strategies and specific design examples that highlight the application of CMA to vari ous types of antennas. Ultimately, this article seeks to dem onstrate the value of CMA-based design insights for antenna engineering and look toward promising new research directions for CMA and antenna research.Adams, JJ.; Genovesi, S.; Yang, B.; Antonino Daviu, E. (2022). Antenna Element Design Using Characteristic Mode Analysis: Insights and Research Directions. IEEE Antennas and Propagation Magazine. 64(2):32-40. https://doi.org/10.1109/MAP.2022.3145718324064
    • …
    corecore