6 research outputs found

    An Efficient Hidden Markov Model for Offline Handwritten Numeral Recognition

    Full text link
    Traditionally, the performance of ocr algorithms and systems is based on the recognition of isolated characters. When a system classifies an individual character, its output is typically a character label or a reject marker that corresponds to an unrecognized character. By comparing output labels with the correct labels, the number of correct recognition, substitution errors misrecognized characters, and rejects unrecognized characters are determined. Nowadays, although recognition of printed isolated characters is performed with high accuracy, recognition of handwritten characters still remains an open problem in the research arena. The ability to identify machine printed characters in an automated or a semi automated manner has obvious applications in numerous fields. Since creating an algorithm with a one hundred percent correct recognition rate is quite probably impossible in our world of noise and different font styles, it is important to design character recognition algorithms with these failures in mind so that when mistakes are inevitably made, they will at least be understandable and predictable to the person working with theComment: 6pages, 5 figure

    Using portable monitoring for heterogeneous clusters on Windows and Linux operating systems

    Get PDF
    This paper describes the advances obtained with the XPVM-W95 2.0, a novel monitoring tool for parallel applications that employ PVM-W95 (PVM for Windows) as well as PVM for Linux. The tool provides, at runtime, the appropriate information about parallel virtual machine configuration, parallel applications and workload from each node. The three more important aspects of the XPVM-W95 are: friendly graphical interface, portability and ability to deal with heterogeneity. These items were improved by version 2, mainly when considering the modularity rearrangement. Experiments demonstrate that XPVM-W95 has a stable behavior and reached the objectives proposed. XPVM-W95 allows a great portability of its source code and also allows the monitoring using different metrics. Empirical studies, realized by means of one single application, demonstrated an intrusion of 17,0% on Windows and 0,13% on Linux.Facultad de Informátic

    A K Nearest Classifier design

    Get PDF
    This paper presents a multi-classifier system design controlled by the topology of the learning data. Our work also introduces a training algorithm for an incremental self-organizing map (SOM). This SOM is used to distribute classification tasks to a set of classifiers. Thus, the useful classifiers are activated when new data arrives. Comparative results are given for synthetic problems, for an image segmentation problem from the UCI repository and for a handwritten digit recognition problem

    Large vocabulary off-line handwritten word recognition

    Get PDF
    Considerable progress has been made in handwriting recognition technology over the last few years. Thus far, handwriting recognition systems have been limited to small-scale and very constrained applications where the number on different words that a system can recognize is the key point for its performance. The capability of dealing with large vocabularies, however, opens up many more applications. In order to translate the gains made by research into large and very-large vocabulary handwriting recognition, it is necessary to further improve the computational efficiency and the accuracy of the current recognition strategies and algorithms. In this thesis we focus on efficient and accurate large vocabulary handwriting recognition. The main challenge is to speedup the recognition process and to improve the recognition accuracy. However. these two aspects are in mutual conftict. It is relatively easy to improve recognition speed while trading away some accuracy. But it is much harder to improve the recognition speed while preserving the accuracy. First, several strategies have been investigated for improving the performance of a baseline recognition system in terms of recognition speed to deal with large and very-large vocabularies. Next, we improve the performance in terms of recognition accuracy while preserving all the original characteristics of the baseline recognition system: omniwriter, unconstrained handwriting, and dynamic lexicons. The main contributions of this thesis are novel search strategies and a novel verification approach that allow us to achieve a 120 speedup and 10% accuracy improvement over a state-of-art baselinè recognition system for a very-large vocabulary recognition task (80,000 words). The improvements in speed are obtained by the following techniques: lexical tree search, standard and constrained lexicon-driven level building algorithms, fast two-level decoding algorithm, and a distributed recognition scheme. The recognition accuracy is improved by post-processing the list of the candidate N-best-scoring word hypotheses generated by the baseline recognition system. The list also contains the segmentation of such word hypotheses into characters . A verification module based on a neural network classifier is used to generate a score for each segmented character and in the end, the scores from the baseline recognition system and the verification module are combined to optimize performance. A rejection mechanism is introduced over the combination of the baseline recognition system with the verification module to improve significantly the word recognition rate to about 95% while rejecting 30% of the word hypotheses
    corecore