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Abstract

This paper presents a multi-classifier system design controlled by the topology of the learning data. Our
work also introduces a training algorithm for an incremental self-organizing map (SOM). This SOM is used
to distribute classification tasks to a set of classifiers. Thus, the useful classifiers are activated when new
data arrives. Comparative results are given for synthetic problems, for an image segmentation problem from
the UCI repository and for a handwritten digit recognition problem.
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1 Introduction

As document analysis systems grow more sophisticated, it becomes increasingly important to be able to carry
out learning and classification tasks more accurately. Machine learning techniques have received a great deal of
attention over the last decades. With the emergence of neural networks [Hay95] and Support Vector Machines
(SVM) [Vap95], important fundamental developments have led to accurate performances. The reasons for this
success essentially come from their universal approximation property and, above all, their good generalisation
behavior, which has been proved for many simple applications in recent years. Comparisons of various al-
gorithms have shown that the superiority of one algorithm over another cannot be claimed [GRB00][SBR96].
Performances strongly depend on the characteristics of the problem (number of classes, size of the learning
set, dimension of the feature space, etc) and on the efforts devoted to the ”design task” of the algorithms (i.e.,
classifier architecture determination, tuning of learning parameters, etc). Authors in [GRB00] also noticed that
a sufficient level of classification accuracy may be reached through a reasonable design effort, and further im-
provements often require an increasingly expensive design phase. Two other drawbacks can be noticed for the
best known methods. The first one concerns the ability of the system to provide an estimation of the confidence
of the decision. To achieve good reject behavior most applications in pattern recognition need parameters that
can only be defineda posterioriaccording to the results obtained. The second limitation of classical approaches
concerns the incremental learning capacity. This is one of the main challenges in the design of evolutionary,
efficient and robust decision systems. Indeed, in many applications, new data sets are continuously added to
an already huge database. One way to tackle this challenge is to introduce a decision system that operates
incrementally (able to learn new data). To overcome these problems, several authors have proposed the idea
of developing multi-expert decision systems. This idea is mainly justified by the need to take into account
several sources of information -which can be complementary- in order to reach high classification accuracy and
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to make the decisions more reliable, and/or to facilitate the classifier design. Several strategies covering most
aspects including the nature of experts, methods of decision combination, etc, have been reported in the litera-
ture in recent years [Dui02][Kun02][GS98]. Following this strategy, this paper introduces a new scheme for the
general problem of classification task-solving by designing a multi-classifier system. The distribution process
respects the data topology in the feature space in order to reach reliable decisions. Extracting the topology of
the learning data supposes starting the design process by a clustering phase. To this end and with the objec-
tive of designing an incremental decision system, we introduce a new self-organizing map (SOM) clustering
algorithm which operates incrementally. During the decision process this SOM is used to activate the appro-
priate classifiers among a set of committee experts (SVMs). Two levels of reject power are introduced in order
to increase the decision reliability. In the next section, a brief review of the most important multiple classifier
design approaches and self-organizing maps is given. Section 3 introduces our new incremental clustering algo-
rithm. The design of the decision system is presented in Section 4. Section 5 reports some experimental results
and comparisons conducted on the problem of handwritten digit recognition. Finally, concluding remarks and
future works are given in Section 6.

2 Related work

2.1 Distributed classification system

Numerous contributions are to be mentioned in the field of the design of multiple and cooperative classifier
systems. Three major categories can be identified in this field according to their principles.

The approaches such as Boosting or Bagging are based on principles of data re-sampling, or a re-estimation
of the training data weights and attempt to reach an optimal set of classifiers.

The second category of approaches operates only with supervised data [JJNH91]. The classification task is
distributed to a committee of experts using only the supervised information. The main disadvantage of such
approaches is that no real distribution of the data in the feature space, or particular distribution of classes is
taken into account.
The last category concerns the hybrid approaches which attempt to combine both supervised and unsupervised
tools.

In this paper we are more particularly interested in this third category, for which little work is reported in the
literature. Authors in [GS98] start with an unsupervised training of the learning set by a Kohonen’s feature map
[Koh82]. This map makes it possible to specialize hidden layer neurons of a Multi-Layer Perceptron (MLP)
according to the detected clusters. Because of the use of a Kohonen’s map, the user must give the number of
clustersa priori, which is not easy for real problems and does not seem a suitable choice for an incremental
training system design.

[Rib98] also uses an unsupervised analysis of the problem to distribute it on several MLPs. The authors use
a hierarchical clustering to determine the clusters in the training data, and an MLP is then associated to each
detected cluster. The results obtained are equivalent to a K Nearest Neighbor classifier (KNN) for maximum
recognition rate, and much better when the error must be very low. However, hierarchical clustering, although
very efficient, presents a significant space and time complexity.

In [HPG99] the authors try to bring a solution to these disadvantages with the use of an unsupervised SOM
model : theGrowing Neural Gasnetwork [Fri95b] which does not require any preliminary knowledge of the
problem such as the number of clusters.This SOM is also used to specialize the hidden layer of an MLP ac-
cording to the clustering result. This approach can be considered as an extension of [GS98].

All the approaches previously presented use an unsupervised algorithm to distribute the classification tasks
either to several neurons of the same MLP or to a population of MLPs. None of them attempts to exploit the



60 Y. Prudent and A. Ennaji / Electronic Letters on Computer Vision and Image Analysis 5(2):58-71, 2005

diversity of the classifiers proposed in the literature review and/or to use different strategies of resolution.

2.2 An overview of Self-organizing Maps

We first would like to state the properties shared by all the models described below. The network structure is
a graph consisting of a set of nodes (units or neurons)A and a set of edgesN connecting the nodes. Each
unit c has an associated position ( or reference vector)wc in the input space. Adaptation, during learning, of
the reference vectors is done by moving the position of the nearest (or the ”winning”) unit (neuron)c1 and its
topological neighbors in the graph toward the input signal. For an input signalξ the nearest unitc1 is :

c1 = min
c∈A

dist(ξ, wc) (1)

and the position is updated as follows :

∆wc = ε(t)hc,c1 ‖ξ − wc‖ (2)

whereε(t) is the adaptation step andhc,c1 is a neighborhood function.
We can differentiate two kinds of SOM, Static Self-organizing Maps and Growing Self-organizing Maps. The
Static SOMs have a pre-defined structure which is chosena priori and does not change during the parameter
adaptation. Growing SOMs, however, have no pre-defined structure; this is generated by successive additions
(and possibly deletions ) of nodes and/or connections.
• Static Self-organizing Maps
TheKohonen’s Self-Organizing Feature Map(SOFM) [Koh82] method considers a hyper-rectangular struc-

ture on the graph. Adaptation steps as described above are performed with:

ε(t)hc,ci =
{

f(t) if c ∈ Nc1(t)
0 otherwise

where0 ≤ f(t) ≤ 1 is a decreasing monotonous function and:

Nc1(t) = {c ∈ A/there is a path betweenc1 andc that is smaller thanRc1(t)}

Rc1(t) is a decreasing integer function.
The decreasing behavior of both function f and neighborhood area of the winning unit during learning, makes

it possible to roughly explore the input space at the beginning of the training process, and to carry out a refine-
ment of the unit position in the final phase.

Neural Gas(NG) [MS91] is a pure vector quantization method which does not define any topology among
the units. Rather, adaptations are done based on the distance computation in the input space.

The main principle of NG is to adapt thek nearest units for each input signalξ. During the learning,k
decreases from a large initial to a small final value.

This approach supposes a constant number of units, and it is necessary to predefine the total number of adap-
tation steps due to decreasing parameters during learning. Indeed, a large initial value ofk causes adaptation
of a large number of units. Thenk is decreased up to a final value, namely value one, and so only the nearest
center for each input signal is adapted.

However, the NG model may be combined with Competitive Hebbian Learning [Mar93] to build up a topol-
ogy during self-organization. The principle of the Competitive Hebbian Learning (CHL) method is simply to
create an edge between the winning and the second winning unit at each adaptation step. The graph generated
is a subgraph of the Delaunay triangulation corresponding to the reference vectors. The NG/CHL combination
has been called ”topology-representing networks” [MS94].
• Self-organizing Map generated by a constructive process
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The Growing Cell Structures(GCS) model [Fri94] has a structure consisting ofHypertetrahedronswith a
dimensionality chosen in advance. Ak-dimensional hypertetrahedron is ak-polyhedron having onlyk + 1
vertices. For example, k is respectively 1, 2 and 3 for lines, triangles and tetrahedrons. The model is initialized
with one hypertetrahedron. Adaptation steps, as described above, are performed with:

ε(t)hc,ci =


εb if c = ci

εn if there is an edge betweenc andci

0 otherwise

At each adaptation step local error information is accumulated in the winning unitc1.

∆Ec1 = ‖wc1 − ξ‖ 2

After a given numberλ of these adaptation steps, unitq with the maximum accumulated error is determined and
a new unit is inserted by splitting the longest edge emanating fromq. Moreover, additional edges are inserted
in order to have a structure with hypertetrahedrons. The GCS model has a fixed dimensionality, so it carries
out a dimensionality-reducing mapping from the input space into ak-dimensional space. This can be used to
visualize data.

The Growing Neural Gas(GNG) model [Fri95b] does not impose any explicit constraints on the graph
topology. The graph is generated and continuously updated by competitive Hebbian Learning [Mar93]. The
adaptation of reference vectors is identical in GNG and GCS. After a fixed numberλ of adaptation steps, unitq
with the maximum error is determined and a new unit is inserted betweenq and its neighborp in the graph that
has the maximum error. Error variables ofq andp are re-distributed with the new unit. The topology of a GNG
network reflects the topology of the input data distribution and can have different dimensionalities in different
parts of the input space. For this reason it is only possible to visualize low-dimensional input data.

TheGrowing Grid (GG) method [Fri95a] supposes a hyper-rectangular structure on the graph. Stated oth-
erwise, the graph is a rectangular grid of a certain dimensionalityk which is chosena priori. The starting
configuration is ak dimensional hypercube.

For example, a2 × 2-grid for k = 2 and a2 × 2 × 2-grid for k = 3. To keep the integrity of this struc-
ture, it is necessary to always insert complete rows or columns. Except for its structure, the Growing Grid
has the same algorithm as the Growing Cell Structures network. A new row or column is inserted at eachλ
adaptation step and the accumulated error determination is used to determine where to insert this row or column.

TheGrowing Self-Organizing Map(GSOM) [BV97] combines the reference vector adaptation of the SOFM
with a constructive procedure for hypercubal output space. It starts from an initial 2-neuron configuration,
learns according to the SOFM-algorithm, adds neurons to the output space until a specified maximum number
of units is reached. GSOM can grow by adding nodes in one of the directions already spanned in the output
space, or by adding a new dimension. It uses the back-propagation of the winning unit error along the different
directions in order to determine how to add nodes and in which direction.
Some of the neural network models presented in this section make it possible to learn new data dynamically,
but do not guarantee the preservation (stability) of old knowledge as shown in the result section. It is the most
important drawback when dealing with real and complex problems of data mining and knowledge discovery.

3 Contributions

We point out that our long-term aim is to obtain an incremental learning system. Thus, for our purposes, the
algorithm for building a self-organizing map must be incremental. Therefore, in this part, we describe a new
training algorithm for a self-organizing map before presenting a possible use of the map for the design of a
distributed and multi-classifier system.
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3.1 Incremental Growing Neural Gas

Our model is like the Growing Neural Gas model in that it does not impose any explicit constraint on the graph,
which is generated and continuously updated by competitive Hebbian Learning; however unlike the networks
described here, our approch distinguishes two kinds of neurons :matureneurons, andembryoneurons. In ad-
dition, connections or edges between neurons are created dynamically during learning following the principles
of the CHL algorithm. And both neurons and edges are associated to an age which is set to zero when created
and updated during learning. When a new neuron is inserted, it is anembryoneuron and its age is set to zero.
Initially, the graph is empty. At each iteration, we search for the winning unit following (eq. 1). Then, as in
the Adaptive Resonance Theory (ART), we perform the vigilance test of eq. 3 in order to decide if the winning
unit is close enough to the input signal.

dist(ξ, wc) ≤ σ (3)

If the graph is empty, or the winning unit does not satisfy the vigilance test, we add a newembryoneuron with
wnew = ξ and the iteration is finished. This case is shown in figure 1. Figure 1(a) illustrates an IGNG network
with new data to be learned (in dimension 2). This data is too far from the winning unit, so a newembryo
neuron (fig 1(b)) is created. The reference vector of this new unit is the position of the data in the input space.
If the vigilance test is satisfied for the winning unit, we apply it to the second-nearest unit. If there is only one

(a) A new training sample (b) Creation of a new neuron

Figure 1: insertion of a new neuron when the new data is too far from its winning unit

unit in the graph, or if the test is not satisfied for the second nearest unit, a newembryoneuron is added with
wnew = ξ. Figure 2 shows this case. In this figure the new input satisfies the vigilance test, but it is too far
from the second-nearest neuron, so we create a newembryoneuron which is connected to the winning unit (fig
2(b)). The reference vector of the new unit is the position of the data in the input space. Finally, when the two
nearest units satisfy the vigilance test, the reference vectors of the units are adapted as in equation 2 with:

ε(t)hc,ci =


εb if c = ci

εn if there is an edge betweenc andci

0 otherwise

The learning algorithm is then continued throughout the adaptation of both neurons and edges. If the connection
between the two nearest units does not exist, an edge is created. Otherwise, the age of this edge is set to zero.
On the other hand, the age of all the other edges connected to the winning unit is incremented.
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(a) A new training sample (b) Creation of a new neuron

Figure 2: insertion of a new neuron when the new data is too far from its second-winning unit

Algorithm 1: The incremental growing neural gas algorithm
Data : int amature, float σ,Training DatabaseS
Result : An IGNG network
begin

while a stopping criterion is not fulfilleddo
Choose an input signalξ ∈ S;
Find the winning unitc1;
if the graph is empty ordist(ξ, wc1) ≥ σ then

insert a newembryoneurons withwnew = ξ;

else
Find the second-nearest unitc2;
if there is only one unit ordist(ξ, wc2) ≥ σ then

insert a newembryoneurons withwnew = ξ;
create a connection betweenc1 andξ;

else
Increment the age of all edges emanating fromc1;
wc1+ = εb(ξ − wc1);
wn+ = εn(ξ − wn); //(n are the directs neighbors ofc1)
if c1 andc2 are connected by an edgethen

agec1→c2 = 0;

else
create a connection betweenc1 andc2;

Remove edges with an age higher thanamax

if this results in mature neurons having no emanating edgesthen
remove them as well;

Increment the age of all direct neighbors ofc1;
foreachembryo neuron cdo

if age(c)≥ amature then
c becomes a mature neuron

end
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Afterward, we remove edges with an age higher thanamax, and if this leads to isolatedmatureneurons
(without connections), we remove them as well. Then, we increment the age of all direct neighbor neurons of
the winning unit. Consequently, if a givenembryoneuron has an age higher thanamature, this unit becomes a
mature neuron. The final graph is only made up of mature neurons, asembryoneurons are useful only for the
training.
This process is detailed in algorithm 1.

3.2 K Nearest Classifier design

The topological structure represented by theIncremental Growing Neural Gas(IGNG) network is used to
distribute a classification problem to a set of classifiers. We associate each mature neuronni of the IGNG
network with a subsetsi of the training database such that :

si = {ξ ∈ S/d(ξ, wni) ≤ σi}

σi is currently givena priori, but it should be estimated during the IGNG training phase in a future and more
elaborate version of our system. As we can see on fig.3, each neuron is thus associated with a hyper-spherical
zone of influence of radiusσi.

Figure 3: Distribution of the training setS on several subsetssi

This method has the advantage of closing the decision frontiers generated by the classifiers (cf fig.4).

(a) Training data (b) Decision frontiers gener-
ated by a SVM

(c) Decision frontiers generated by
our approach

Figure 4: Closing of the decision frontiers
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Figure 5: The frontiers designed by SVM with a Gaussian kernel is based only on the selected support vectors
instead of a real class distribution

Indeed, the generation of open decision frontiers is one of the principal drawbacks of many classifiers such
as MLPs or SVMs [GS98]. Thus, although efficient, they cannot reject efficiently and become not appropriate
for real and complex pattern recognition problems. Such behaviour is well known for MLPs, which have
another drawback : the so-called moving-target problem [GS98]. Concerning SVMs, their good generalization
capabilities, which have been proved for many simple applications in recent years, do not give a convincing
response to this challenge. Indeed, as illustrated in figure 5 on a very simple problem, the frontiers designed
by SVM with a Gaussian kernel (the most reliable kernel to deal with this problem) confirm the statement that
SVMs tend to draw unreliable (for reject) separation frontiers in the input data space (based only on the selected
support vectors instead of a real class distribution). In our system, the parameterσi introduces a first level of
reject. Indeed the union of all the subsetssi is not necessarily equivalent to the whole training setS.

Our system considers the data that are not in this union as noise or as unreliable and they are not learned.
When the system has to classify new data that does not belong to any area of neuron influence, a reject decision
is made.

Once the training setS is broken up into several subsetssi, for each subset we have the possibility of
training several classifiers of various kinds (MLP, SVM, KNN, etc.), or with different training parameters
(kernel, number of neurons, etc.). Hereafter, we will call the association ”neuron, classifiers, learning subset” a
GNeuron. A decision taken locally by a given GNeuron results from the combination function of the classifiers
associated with it.

When the system has to classify a new inputξ, all the GNeurons that respect the condition given in equation
4 are selected.

d(ξ − wi) ≤ σi (4)

Like in the KNN classifier, the system uses the classifiers of the K Nearest selected GNeurons, with a defined
combination rule in order to take a decision.
In order to balance the vote of each Gneuron, we introduce a coefficient that takes into account two factors
that seem significant to us : the size of the learning subset of the GNeuron (|si|), and the distance between
the neuron and the data to be classifiedξ. The coefficient given in equation 5 is an empirical proposition to
introduce a weighting of the vote of each GNeuron.

v =
|si|

|si|+ βd(ξ, wni)
(5)
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β is a constant and defines a compromise between the significance of the distance of the dataξ and the neuron,
and the significance of the learning subset size of each neuron.

4 Experimental results

The aim of these experiments is to compare our method with general well known classification methods in sev-
eral fields (image segmentation, handwritten digits recognition), and not with dedicated methods in handwritten
digits recognition such as [La03, Ba01].

4.1 Incremental Growing Neural Gas

In this section, we will report some experimental results to demonstrate the general behavior and performances
of the IGNG network. To visualize data, we use two synthetic problems with a low-dimensional input data
space. The first one has been proposed by Martinetz and Schulten [MS91] to demonstrate the non-incremental
”Neural Gas” model and was also used by Fritzke [Fri95b] to validate the ”Growing Neural Gas” model. We
propose a second synthetic problem which allows us to show the limits of the GNG model in incremental
learning. In order to validate our model for high-dimensional problems, we report some results obtained for the
handwritten digit recognition problem over a subset of the NIST database 3. The feature vector considered is
composed of the 85 (1+4+16+64) gray levels of a 4-level-resolution pyramid [BB82]. Fig.6a gives an example
of digits from the NIST database while Fig.6b shows an example (digit 2) of the representation retained.

(a) Figures of NIST database (b) Pyramid resolution of digit ”2”

Figure 6: Examples of digits in the Nist database and the retained vector representation

In this experiment, each neuron is labeled for a classification task using a simple majority vote rule of the
labelled learning data that have activated each neuron during the training process. Two subsets from the NIST
database of respectively 2626 digits for training and 2619 other digits for testing are used in this experiment.

4.1.1 IGNG vs GNG in offline learning

• Martinetz Distribution The data distribution given in fig. 7 has been proposed by Martinetz and Schulten
and used by Fritzke [Fri95b] to show that his model quickly learns the important and complex topological
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relations in this distribution by forming structures of different dimensionalities.

Figure 7: Topological map structure obtained over Martinez distribution

As we can see, our approach performs well in this example. The topological structure of the data is well
reproduced in the map topology. Neurons and connections retained in the network represent the real distribution
of the learning set data.
• Handwritten Digit Recognition
This experiment is done to compare our approach to the GNG and LVQ approaches for a classification

problem. The three networks are compared using part of the NIST database described below. A learning
cycle corresponds to a presentation to the network of all the training database samples. Table 1 shows that our

Cycles λ εb εn σ amature Units Recognition
LVQ 50 - - - - - 330 89.65%
GNG 50 400 0.1 0.006 - - 330+0 91.44%
IGNG 10 - 0.01 0.002 2.7 450 313+9 91.71%

Table 1: Recognition rate of the three networks

approach leads to faster learning (5 times faster) than the GNG network for a comparable accuracy, and with
a fewer number of neurons. Note that in this experiment, 9embryoneurons are generated during the learning
process.

4.1.2 IGNG vs GNG in incremental learning

• A Synthetic Problem
The synthetic problem we consider here is composed of two classes. The first class has a spherical distri-

bution, while the second one has a cubic shape. The network was first trained with the spherical class. Then,
to produce incremental learning, a data subset with only samples from the second class was presented to the
trained network. Fig.8 shows the result obtained with the GNG and our IGNG models. On this figure, we
can observe the degradation of the topology learned with the GNG model, reflecting a deterioration of the
previously learned class. Such a phenomenon is avoided with our approach which allows a good behavior
concerning the stability/plasticity dilemma in an incremental learning context.
• Handwritten Digit Recognition
For the digit recognition problem, the portion of the NIST database used was split into four parts. Each

model was then trained on one part after another. Results reported on table 2 confirm the previously observed
behavior.



68 Y. Prudent and A. Ennaji / Electronic Letters on Computer Vision and Image Analysis 5(3):58-71, 2005

(a) GNG (b) IGNG

Figure 8: GNG (a) and IGNG (b) behavior in an incremental learning

Cycles λ εb εn σ amature Units Recognition
GNG 50 400 0.1 0.006 - - 328+0 81.29%
IGNG 10 - 0.01 0.002 2.7 450 244+16 90.18%

Table 2: Recognition rate on test datasets in incremental learning

4.2 K Nearest Classifiers (KNC)

As this part is still under development, the results presented in this section are only preliminary results. For
this reason, the classifiers used for GNeurons are only SVMs and the vote rule used for classification is a
unanimous vote. Our system, called KNC (K Nearest Classifiers) was compared to well-known classifiers, the
KNN (K Nearest Neighbors) and the SVM (Support Vector Machine). The SVM used was libsvm [CCCJ04]
(pairewise svm). The kernel used for the SVM was determined by atry/error process with the following
kernels: linear kernel (K(x, y) = x ∗ y), polynomial kernel (K(x, y) = (γxy + c0)degree), Gaussian kernel
(K(x, y) = exp(−γ|x − y|2)), and sigmoid kernel (K(x, y) = tanh(γxy + c0)), while varyingγ between0
and1 per step of0.1, anddegree between2 and5 per step of1, we tookc0 = 0.
In this section, we report some results obtained for two problems : the image segmentation problem of the UCI
dataset and the handwritten digit recognition problem over the NIST database 3.
• Image segmentation of UCI data
This problem is composed of a training set of 210 instances and of a test set of 2100 instances. The feature

space is of dimension 19 for a-class problem (BRICKFACE, SKY, FOLIAGE, CEMENT, WINDOW, PATH,
GRASS). A linear kernel is used for the SVM. Table 3 shows the results obtained.

classifier recognition(%) error(%)
KNN 87.57 12.43
SVM 93.95 6,05
KNC 94.34 5.66

Table 3: Recognition and error rate of the three classifiers

• Handwritten Digit Recognition
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As in section 4.1, two subsets of the NIST database of respectively 2626 digits for training and 2619 other
digits for testing are used in this experiment. For these subsets we consider the feature vector constituted by the
85 (1+4+16+64) gray levels of a 4-level-resolution pyramid [BB82]. To improve our experiment we use two
other subsets of the NIST database of respectively 10000 digits for training and 60000 other digits for testing.
For this problem, the feature space is composed of 33 Fourier-Mellin based invariants [AOC+00]. The kernel
used for the SVM is a Gaussian one withγ = 0.2.

classifier\ feature 85 33
KNN 96.83% 85.72%
SVM 97.90% 90.15%
KNC 97.90% 90.79%

Table 4: Recognition rate on the NIST database

classifier\ error Max ≤ 1.2% ≤0.4% ≤ 0.2%
KNN 96.83% 93.5% 81.59% 73.73%
SVM 97.90% - - -
KNC 97.90% 96.06% 90,34% 81.6%

Table 5: Recognition rate/Error rate on the NIST database

Figure 9: Error/Recognition for the KNN and the KNC for NIST database

The results of table 5 and the curves of figure 9 present the evolution of the recognition rate as a function of
the error rate. The results of table 5 were obtained for each classifier in the following way:

-The results of the KNN were obtained by a unanimous vote of the K Nearest neighbors by increasing K
until the required error rate is reached (the maximum recognition rate is obtained with k=1).

-In the same way, the results of the KNC were obtained by a unanimous vote of the K Nearest Gneuron
classifiers by increasing K until the error required rate is respected (the maximum recognition rate is obtained
for k=1). SVMs are not able to reject efficiently, thus it is impossible to obtain a curve in figure 9 for this
classifier.
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5 Conclusion

A new approach to designing a multi-classifier system is presented. This approach uses an incremental self-
organizing map, introduced in this paper, in order to distribute several experts over the feature space. Prelimi-
nary results obtained with our approach are promising. The performances are equivalent to the other classifiers
for a maximum error rate, but appear to be better when a low error rate is required. Indeed, the results obtained
up to now show that if a maximum rate of recognition is necessary, our system is at least as powerful as SVMs.
However, if the error rate must be low, the KNC obtains much better results, whereas the SVMs are not, to
our knowledge, able to reject data efficiently. Our approach thus makes it possible to combine the recognition
performances of classifiers such as SVMs and an effective rejection ability. The choice of the IGNG network,
and the total freedom in the choice of classifiers, enable us to see this system as a new contribution toward
the design of an incremental and robust decision system. Finally, onlySupport Vector Machinesare associated
each neuron of the IGNG network. Multiplying the classifiers on this level will probably make it possible
to improve the results obtained and allow us to consider various and cooperative decision task strategies for
complex problems.
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