
Using Portable Monitoring for Heterogeneous Clusters on Windows and
Linux Operating Systems*

Daniel Kikuti Paulo S. L. Souza Simone R. S. Souza

Informatics Department (DeInfo), State University of Ponta Grossa (UEPG)

Av. Carlos Cavalcanti, 4748
84.030-000 – Ponta Grossa – PR – Brazil

{danielkikuti@yahoo.com.br - pssouza@uepg.br - srocio@uepg.br}

* This work has the CNPq financial support, an entity of Brazilian Government directed for technologic and scientific
development.

* Preliminary results of this work have been presented at the VI Workshop on Distributed Systems and Parallelism of
the Chilean Computing Week 2002.

ABSTRACT

This paper describes the advances obtained with the
XPVM-W95 2.0, a novel monitoring tool for parallel
applications that employ PVM-W95 (PVM for
Windows) as well as PVM for Linux. The tool
provides, at runtime, the appropriate information
about parallel virtual machine configuration, parallel
applications and workload from each node. The
three more important aspects of the XPVM-W95
are: friendly graphical interface, portability and
ability to deal with heterogeneity. These items were
improved by version 2, mainly when considering the
modularity rearrangement. Experiments demonstrate
that XPVM-W95 has a stable behavior and reached
the objectives proposed. XPVM-W95 allows a great
portability of its source code and also allows the
monitoring using different metrics. Empirical
studies, realized by means of one single application,
demonstrated an intrusion of 17,0% on Windows
and 0,13% on Linux.

Keywords: Monitoring, PVM, Windows, Linux,
Clusters.

1. INTRODUCTION

Parallel computing practice is encouraged mainly by
the need to obtain shorter response-time. PVM
(Parallel Virtual Machine) is a message-passing
environment for parallel processing in
heterogeneous environments. By means of PVM,
hosts1 connected by a network may be considered as
a parallel platform (a cluster), with both good
performance and lower cost [6][10].

Activities involved in computing processes must be
evaluated, in order to certify if they correspond to
the expectances considering efficiency and
reliability [8].

1 The terms host, node, processor and machine are
used as synonymous in this work.

There are basically two techniques of performance
evaluation: modeling techniques and measurement
techniques [4][12]. Modeling techniques abstract the
most important characteristics of the system into a
model. This model must use formal techniques of
representation, which make possible the resolution
of the model through simulations or analytically.
Performance evaluations are extrapolated later to the
real system (if it already exists), without affecting its
behavior. Examples of modeling techniques are:
queue nets, petri nets and statecharts [11].

Measurement techniques allow collecting data
directly in a computing system and, potentially, they
can obtain more accurate data than obtained by the
solution of models. However, the measurement acts
directly in the system, many times disputing
resources with the applications being appraised. In
this way, the measurement can affect the obtained
results. The three principal measurement techniques
are: prototypes, benchmarks and monitoring [4][12].
Prototypes are simplified implementations of the
system, which try to maintain its essential features.
Benchmarks are programs used as patterns for
performance evaluation. They are widely used with
comparison purposes and usually evaluate particular
features of a computing system.

Monitoring is the third measurement technique. It
gathers data directly from the executing computing
system, allowing, potentially, higher precision than
all the other mentioned techniques. Monitoring is a
generic method that could be used in several areas of
computing and in different problems [4][12].
Gathering data at runtime of the system can distort
the results. Thus, monitoring must guarantee that the
overload is low as much as possible.

This paper describes the advances obtained with the
XPVM-W95 2.0, a monitoring software-tool for
parallel applications that employ PVM-W95
(Parallel Virtual Machine for Windows Operating
System) and it is in accordance with the principles
previously discussed [9][10]. The main objective of

this work is providing, at runtime, the appropriate
information about the performance of the distributed
platform (the parallel virtual machine) and about the
parallel applications too.

When designing the first version of XPVM-W95 [5],
some aspects were pointed out. The tool should be
able to inform, at runtime, how the current
configuration of the virtual machine is, which tasks
are being executed and where they are running. It
should also notify about the workload of each host,
thus helping the correct distribution of the tasks,
considering their particular features.

The version 2 of XPVM-W95 kept on the main
aspects of version 1, however, the source code and
the information updating among modules were
restructured, in order to minimize the intrusion
caused by the tool. The monitoring of the platform
workload was also redefined (source code and user
interface), in order to enable the portability of the
XPVM-W95 for other operating systems, like Linux.

Some features of XPVM-W95 are based on XPVM
(PVM graphical interface for UNIX systems), but
they have completely distinct implementations and
also some different functionality [7]. Besides of the
information already available through XPVM, the
tool proposed here shows information in a graphical
way to allow the analysis of workload of each host.
It is expected from this tool to diffuse the monitoring
of parallel machines among programmers that utilize
the PVM on Windows Operating System, as well as
on other platforms, such as Linux.

This paper is organized in 6 sections. Section 2
describes some of the monitoring activity main
features, which are necessary to classify our
proposal according to an accepted taxonomy.
Section 3 approaches the design options and also the
implementation details of XPV-W95. The results
obtained from this software tool are discussed in
Section 4. Ending this paper, Sections 5 and 6
present respectively the main difficulties and the
conclusions of this work.

2. MONITORING ACTIVITY

Monitoring can be implemented by software,
hardware, firmware or in a hybrid way [11].
Monitors by software are normally used to evaluate
basic softwares (such as operating systems) or
applications. They have the flexibility as the main
profit with a relatively low cost. However, monitors
by software dispute resources with the system and
can present a larger overload, when compared with
monitors by hardware. Monitors by hardware use
devices coupled to the system, which will capture
the necessary data. As the device monitor is
separated from the system being monitored, it will
cause a practically null overload. The lack of
flexibility and the higher implementation cost are
usually the main disadvantages of monitoring by

hardware, when compared with software version.
Both implementations above collect information in
different levels [8]. In a general way, a monitor by
hardware does not have access to the information
related to the application, and vice-versa.

Hybrid monitors try to join the advantages of both,
presenting a combination between software and
hardware. Monitors by firmware include the
monitoring into the processor microcode [8].

The mechanism that activates the monitoring is
another important feature of the monitors. It can be
by event or time. A monitor based on events is
activated when a relevant activity happens (for
instance the inclusion of a new node in the
platform). A monitor based on time (or in sampling)
is periodically activated. This usually occurs when
the rate of observation is high. Monitors based on
events are used with low rates of observation, due to
the overload.

Data collected by monitors can be presented and
analyzed at runtime, characterizing an on-line
monitor. Batch monitors, on the other hand, just
allow the data analysis after gathering conclusion.

Considering the information described in this
section, the monitoring tool proposed in this work
has the following classification: it is implemented by
software; the mechanisms that active the monitoring
are based on events - in same cases - and also on
time – in other cases – (see section 3); and it is an
on-line monitor.

3. THE XPVM-W95 TOOL

XPVM-W95 is a monitoring software tool for
parallel platforms, not commercial and with open
source. Through XPVM-W95, the collected
information is showed by means of a friendly
graphical user interface (GUI). The tool is
interactive in order to provide a better interaction
between users and PVM. Users are able to choose
which information is more useful to be displayed
and, with the information, users can tune the
environment according to their requirements.

The capacity of dealing with platform heterogeneity
is another feature of the XPVM-W95. To reach this
aim, the XPVM-W95 source code is modular and
each module was built using portable software tools,
such as ANSI C and TCL/TK. The most dependent
module of the platform is the workload monitoring,
which needs operating system support directly.

The ANSI-C language was chosen because it offers
enough resources to the development of this project,
it is widely disseminated in the academic
environment and it is also used in PVM source code.
It allows the tool to be easily carried to other
platforms, considering the features of each operating
system and the language version available. Another
factor that contributed to the language choice was

the availability of free versions of the compiler.

TCL (Tool Command Language) is a script
interpretation language. It is able to provide the
same functionality that is available in other
command languages currently used in shells. TCL is
a multi-platform and has a wide variety of built-in
commands. TK is a tool kit initially designed to the
X-window system. It allows the creation and
manipulation of widgets2 through TCL commands.
TK is a popular tool kit due to its flexibility and easy
development of systems. Another positive aspect is
the capability of controlling the interaction between
applications, including their look and feel and their
functionality.

XPVM-W95 has three scopes of monitoring: PVM
tasks, parallel platform and workload in each host
that compose the platform. PVM tasks monitoring
informs which tasks are being executed and which
have already finished, how much processing time
each task has spent and where they are or have been
executed. This functionality permits the user to have
a notion about the task distribution through the
virtual machine. It is also possible to observe the
amount of time that each task has consumed.

Parallel platform monitoring shows information
about the current parallel platform configuration. It
describes, for each node: architecture, name and
state (idle or running some task).

Workload monitoring of each host offers
information about workload generated from other
applications in the system, not only PVM
applications. This monitoring makes the users able
to figure out whether a certain host is supporting
their applications properly or not. The metrics used
are related to processor utilization, which includes
the number of running processes and the processor
utilization percentage. Memory metrics are also
used, showing information about the percentage of
utilization or the amount of available memory.
Workload metrics are gathered directly from the
operating system and this functionality has been
implemented in a separated module. Thus, this
gathering does not keep on consuming the machine
resources unless the user requests it. This
modularization favors the portability too, because
each module is responsible for gathering information
about the host on which it is running, in compliance
with the operating system and the architecture.

The three more important aspects of the
XPVM-W95 implementation are: friendly graphical
interface, portability and ability to deal with
heterogeneity. These items were improved by
changes realized in source code of the version 2,

2 Widget is an element of a determined class that has
particular appearance and behavior. Examples of
widgets are buttons, menus, scrollbars, text box, etc.

mainly when considering the modularity
rearrangement.

 Process (physical) boundary
 Function (logical) boundary

XPVM-W95 (.exe)

FRONT END
Visual Elements from Graphical Interface

C ANSI + TCL/TK

BACK END MODULE
Functionality

C ANSI

PVM
KEEPER

PVM functions

WORKLOAD
SERVER

Information
about each host

Node 0

Workload
(.exe)

Node 1

Workload
(.exe)

Node N

Workload
(.exe)

USER

Figure 1 –XPVM-W95 structure.

Front End and Back End modules from version 1
remained, in order to assure the portability. Front
End is responsible for the interaction with user and
Back End is responsible for the functionality [5].
However, this division is not physical anymore in
two executable processes. According to showed in
Figure 1, the tool presents an executable code only,
which contains both interface and functionality
(except the workload gathering). The division of the
modules is logic only and it refers to the grouping of
common functions (or procedures). The activity of
workload gathering remained as a separate process
(workload.exe), due to its operating system
dependence. The workload.exe is responsible for
isolating the tool from operating system
particularities.

This new structure provided a clearer and organized
code for the tool, besides a better efficiency when
loading and executing it [2]. Another advantage
obtained from this union of the modules was the
overload reduction caused by the Integration Front
End / Back End, which is realized now by means of
simple parameters passing among functions inside of

the same process.

Front End was developed using ANSI-C and
TCL/TK. The portion of Front End written using C
loads all TCL visual components, which are
responsible for the interaction with the user. The
portion in C of Front End also is responsible for the
interaction with Back End. The visual components
are loaded directly from .tcl files and they do not
possess any code written in C language.

Although the Front End implementation has been
done using the positive aspects of TCL/TK, this does
not hinder the future use of other language, for
example Java, GTK+ (GUIMP Tool Kit), Qt
(acronym to cute), LessTif, and others. This freedom
to choice the language is possible due to the
standardization of the call to the modules and the use
of arguments in both Front End and Back End.

Back End was developed using C-ANSI and must
always attend the requests coming from the Front
End. When an event is triggered at the Front End, it
is translated into a TCL command that calls the
appropriate ANSI-C function. The Back End
receives this request from ANSI-C function,
performs the necessary activity and returns the
results to the Front End.

Back End module is divided in two other modules:
Workload Server and PVM Keeper (Figure 1). The
PVM Keeper module is responsible for supplying
and updating the data presented in the Network
View and Time Space View charts (both belonging
to the Front End module). PVM Keeper is also
responsible for all functions of PVM Console. The
main functions of the PVM Console attended by
PVM Keeper are: to start the execution of the PVM
Daemon (PVMD), to add/remove hosts, quit PVM,
kill tasks, list tasks that are running, send signals to
tasks and spawn new PVM tasks.

Workload Server module is responsible for receiving
the workload information from all nodes, grouping
these data and later sending them for Front End
module. The workload data from each node are
obtained directly from the operating system, by
means of modules workload.exe, executed remotely
in each node of the platform (Figure 1).

Although XPVM-UNIX inspired the development of
XPVM-W95, the structure of this differs in many
aspects from that. The main differences are the
approach to this implementation, concerning
separation between the functionality and the
interface; and the performance analysis, bringing
information about external applications.

4. RESULTS

The preliminary experiments realized in this work
had two purposes. The first one was to demonstrate
the tool behavior regarding to the applications
running on PVM and on the load analysis of each

host. The second aim was to determine how
intrusive the XPVM-W95 is, when using a simple
application and executing on Windows as well as
Linux.

In order to determine the overload produced by the
tool, experiments were realized on a cluster with 5
nodes, interconnected by an IEEE 802.3 10BASET
network. Table 1 shows a description of these nodes.
The operating systems used at the experiments were
Windows 98 and Linux 2.4.5.

Quantity Processor Memory

02 Pentium III – 850 Mhz 192MB

02 Atlon – 1.1 Ghz 512MB

01 Pentium III – 733 Mhz 128MB

Table 1 – Cluster used in the experiments.

The diagram showed at Figure 2 shows information
about the current parallel platform (on Windows)
configuration and represents (with icons) the
architecture of each machine and its name. This
diagram also represents the host state, using colors
(white, if it is idle, or green, if at least one task is
being executed on it). The user just needs to click on
the icon related to that host in order to get
information about the number of tasks that are being
executed or which is the identifier of a particular
host. The upper left field informs the time interval to
collect information. This field is available in all
charts and the user can edit it to control the intrusion
factor (overload).

Figure 2 –Platform representation diagram.

Figure 3 shows the chart “Space Time View”. This
chart informs which tasks are running on the virtual
machine in relation to the space of time that each
one consumes during their execution. It is a simple
bars chart that contains, on the left side, information

about the tasks that are running, which consists of
the name (when started by spawn command) and its
task ID (TID). On the right side, the tasks are
displayed in the shape of bars, having their width
changed according to the time that they remain
executing. On the upper right side there is a field
that informs the amount of time elapsed since the
moment that space time view started until the
moment that there are no tasks executing. On the
bottom side there is the amount of time related to the
position of moveable vertical bar.

Figure 3 – Space-time view

When new PVM tasks arrive, information about
each one is displayed just below the last task already
registered. In the bars chart there is a vertical line
(considering Figure 3, it is the vertical line at the
right side) that moves continuously while at least
one task is running, indicating the total time elapsed.
The other vertical line (at the left side) has a free
orientation and is controlled by the user. It shows the
amount of time elapsed until any specific moment.

The following charts are representations of the
workload of each host, according to a selected
metric. The tool uses two metrics to analyze the
processors workload: number of processes in the run
queue (Figure 4) and percentage of processor
utilization (Figure 5). Two metrics are used to
evaluate the memory utilization: percentage of used
memory (Figure 6) and total memory used (in MB)
(Figure 7). The purpose of these charts is to offer
necessary information in order to allow a better
distribution of tasks on the platform. It is important
to observe that these charts were obtained from
Windows as well as from Linux platforms, fact that
shows the tool portability.

The chart showed in Figure 4 classifies each host as
idle (white), moderate (green) or overload (red).
Thresholds are used to define the three ranges. These
thresholds can be determined by the user, allowing a
better flexibility due to its capacity of being fitted on
the particular user needs. Column bars change
according to the number of processes in run queue.
The information above the columns refers to host
name and also to number of processes in run queue
per total of processes executing on that host.

Figure 4 – Run queue

Figure 5 shows information about the percent of
processors utilization per elapsed time. This chart is
useful to analyze the behavior of some host when
executing a specific task. The intersection of the
vertical and horizontal lines determines the
information about the instant of time (in seconds)
and percent of utilization that is displayed at the
bottom. The slices field divides the percentage (scale
of y axis) in n parts and can be easily changed by
user to provide a better visualization.

Figure 5 – Percentage of processor utilization

Figure 6 shows information about the percent of
memory utilization. Each column informs: host
name, used memory and total of physical memory.
Horizontal bar helps to visualize the percent of
utilization printing it at the bottom of chart.

The chart showed in Figure 7 allows visualizing the
behavior of each host along the time, as well as its
current state. With this chart, a group of applications

can be analyzed considering the memory use. This
chart also contains two lines - a vertical and other
horizontal, whose intersection informs the elapsed
time till that point and the percentage of used
memory.

Figure 6 – Percent of memory utilization
considering the last updating.

Figure 7 – Percent of memory utilization
considering a time line

The calculus of the overload generated by the tool
was determined by means of the execution of the
VQpar application. This application implements a
parallel approach for the K-means VQ algorithm,
which is used in a two-stage HMM-based system for

recognizing handwritten numeral strings [1]. The
VQpar algorithm was chosen as benchmark because
it consumes a great amount of both processor cycles
and main memory. The results of the intrusion
obtained to this work, represent the average of 30
executions for each experiment.

The average intrusion of the tool when executed on
Windows was 17,0%. When executing on Linux, the
same intrusion was just 0,13%.

The largest intrusion verified on Windows can be
attributed to two main factors. The first one is the
low performance of the communication realized
among nodes that are controlled by Windows [9].
The second one is the overload generated by the
TCL/TK when used on Windows. In the empirical
studies realized at our laboratories, the TCL/TK for
Windows had a behavior significantly slower than
its version for Linux.

It is important to observe that the intrusion is
directly dependent on the selected charts and on the
time-interval to collect the information. Gathering
workload data from hosts in shorter time intervals,
majors the necessary communication to group the
information (this communication overload has been
not measured in this work). The results presented
here show that the XPVM-W95 portability was
reached. XPVM-W95 could be executed on two
distinct platforms without changing any part in its
source code. Other important point is that, although
the XPVM-W95 has been initially developed for
Windows, its behavior for Linux has been more
efficient.

5. DIFFICULTIES FOUND

The main difficulties found during the development
of this work were relative to gathering the workload
data on Windows Operating System. The Windows
9x used by PVM-W95, and consequently also used
for the monitoring tool, has some restrictions
concerning to the collection of information about the
load of the computational platform. An example of
these limitations is the difficulty to obtain the
number of processes that are executing on a host at a
certain instant [3]. Having only the information
returned by the Windows 9x API, it is not possible
to determine which processes are running, sleeping
or blocked waiting I/O. Consequently, the correct
comparisons between workloads of different nodes
become more challenging. In order to overcome this
constraint, the monitoring tool employed as a load
index, for example, the percentage of CPU
utilization available to the user. The problems
verified when using the Windows Operating System,
were not detected when using the Linux Operating
System.

Another issue to be considered is that the tool is
based on version 3.3 of PVM and, thus, some of the
trace facilities provided at version 3.4 are not present

[7]. This difference does not impose any limitation
for XPVM-W95 concerning the final result;
however it imposes some extra work to collect PVM
information. Thus, to overcome the absence of some
functionalities (that are present on PVM 3.4), the
XPVM-W95 utilizes the pvm_tasks() function to
obtain information about the tasks and the
pvm_notify() function to learn about when a task has
finished. The diagram of the virtual machine is
created through the information returned by the
pvm_config() function, which obtains the number of
hosts and their respective configuration. Through the
pvm_notify() function, the tool is informed about
when a host has been added to or removed from the
virtual machine.

6. CONCLUDING REMARKS

The main contribution of this work is the multi-
platform monitoring realized by XPVM-W95.
XPVM-W95 is a new monitoring software tool for
parallel platforms that uses PVM message passing
environment. This tool was projected initially to be
executed on the Windows 9x operating system, and
using the PVM-W95. The actual XPVM-W95
source code was restructured, favoring the
monitoring at different operating systems, such as
Windows and Linux. The changes in the code source
were realized in order to guarantee the portability as
well as to reduce the intrusion caused by the tool.

XPVM-W95 offers a friendly graphical interface for
the PVM console, it allows parallel environment
monitoring and it also offers support for workload
analysis. The tool is flexible, portable and now it can
be easily adapted for other platforms, based on the
UNIX operating system.

The results described here demonstrate that XPVM-
W95 has a stable behavior and reached the
objectives proposed. Besides owning functionality
that is similar to the existent in the tool XPVM for
UNIX, XPVM-W95 allows a great portability of its
source code and also allows the performance
monitoring of the parallel virtual machine, using
different metrics.

Although XPVM-W95 has been projected initially
to execute on the Windows environment, the
realized experiments demonstrated that the tool is
more efficient when used on the Linux operating
system. The results demonstrated an overload of
17,0% and of 0,13% in the execution time of the
parallel applications, when the monitoring has been
used on Windows and Linux, respectively.

From now on, necessary changes will be made in
order to improve the workload monitoring. It is
expected that Linux impose fewer limitations that
Windows, making possible the expansion of the tool.
It is also expected that the XPVM-W95 will be able
to offer the necessary support to the processes
scheduling activity on multi-user parallel machines.

7. REFERENCES

[1] A.S. Britto, R. Sabourin, F. Bortolozzi and
C.Y. Suen, “A two-stage HMM-based system for
recognizing handwritten numeral strings”, Proc. of
the Inter. Conf. on Document Analysis and
Recognition, Seattle, USA, 2001, pp. 396-400.

[2] B. Welch, Practical Programming in Tcl and
Tk Draft. January 13, 1995.
http://www.sunlabs.com/~bwelch/book/index.html.

[3] BonAmi Software Corporation.
“Supplementing Windows 95 and Windows 98
Performance Data for Remote Measurement and
Capacity Planning”, Proceedings of Computer
Measurement Group 1998 International Conference,
Anaheim, CA, December 1998.

[4] C.R.L. Francês, Stochastic Feature Charts -
Uma Extensão Estocástica para os Statecharts.
Master Dissertation. ICMC-USP, São Carlos, May,
1998.

[5] D. Kikuti, P.S.L. Souza and S.R.S. Souza,
“XPVM-W95 - A Performance Monitoring Tool for
PVM Clusters on Windows Operating Systems”,
XXII International Conference of the Chilean
Computer Science Society - VI Workshop on
Distributed Systems and Parallelism, v. 1 Copiapo -
Atacama, Chile, 2002.

[6] G.A. Geist, A. Beguelin, J. Dongarra, W.
Jiang, R. Manchek, and V. Sunderam, PVM:
Parallel Virtual Machine, A User’s Guide and
Tutorial for Networked Parallel Computing. The
MIT Press, 1994a

[7] J.A. Kohl and G.A. Geist, “The PVM 3.4
Tracing Facility and XPVM 1.1”, Proceedings of
29th Hawaii International Conference on System
Sciences (HICSS`96). January, 1996.

[8] K. Kant, Introduction to Computer System
Performance Evaluation. McGraw-Hill, 1992.

[9] P.S.L. Souza, L.J. Senger, M.J. Santana, R.C.
Santana, “Evaluating Personal High Performance
Computing with PVM on Windows and Linux
Environments”, Proceedings of Euro PVM-MPI,
1997.

[10] P.S.L. Souza, Máquina Paralela Virtual em
Ambiente Windows. Master Dissertation.
ICMSC/USP – São Carlos - Brazil. May, 1996.

[11] R. Jain, The art of Computer Systems
Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling.
John Wiley & Sons, Inc, 1991.

[12] R.C.G.S. Orlandi, Ferramentas para Análise de
Desempenho de Sistemas Computacionais
Distribuídos. Master Dissertation. ICMC-USP, São
Carlos, March, 1995.

	footer15: -15-
	header: JCS&T Vol. 3 No. 2 October 2003
	footer16: -16-
	footer17: -17-
	footer18: -18-
	footer19: -19-
	footer20: -20-
	footer21: -21-

