30 research outputs found

    Logic-Based Decision Support for Strategic Environmental Assessment

    Full text link
    Strategic Environmental Assessment is a procedure aimed at introducing systematic assessment of the environmental effects of plans and programs. This procedure is based on the so-called coaxial matrices that define dependencies between plan activities (infrastructures, plants, resource extractions, buildings, etc.) and positive and negative environmental impacts, and dependencies between these impacts and environmental receptors. Up to now, this procedure is manually implemented by environmental experts for checking the environmental effects of a given plan or program, but it is never applied during the plan/program construction. A decision support system, based on a clear logic semantics, would be an invaluable tool not only in assessing a single, already defined plan, but also during the planning process in order to produce an optimized, environmentally assessed plan and to study possible alternative scenarios. We propose two logic-based approaches to the problem, one based on Constraint Logic Programming and one on Probabilistic Logic Programming that could be, in the future, conveniently merged to exploit the advantages of both. We test the proposed approaches on a real energy plan and we discuss their limitations and advantages.Comment: 17 pages, 1 figure, 26th Int'l. Conference on Logic Programming (ICLP'10

    Probabilistic logic programming in 2P-KT

    Get PDF
    The work introduces an elastic and platform-agnostic approach to probabilistic logic programming aimed at linking this paradigm with modern mainstream programming platforms, thus widening its usability and portability (e.g. towards the JVM, Android, Python, and JavaScript platforms). We design our solution as an extension of the 2P-Kt symbolic AI ecosystem to inherit its multi-platform and multi-paradigm nature

    The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty

    Full text link
    Many real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability. Each of these approaches -- general PLP, restricted PLP, and Possibilistic Logic Programming -- can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption

    On the Implementation of the Probabilistic Logic Programming Language ProbLog

    Get PDF
    The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.Comment: 28 pages; To appear in Theory and Practice of Logic Programming (TPLP

    Tabling and Answer Subsumption for Reasoning on Logic Programs with Annotated Disjunctions

    Get PDF
    Abstract Probabilistic Logic Programming is an active field of research, with many proposals for languages, semantics and reasoning algorithms. One such proposal, Logic Programming with Annotated Disjunctions (LPADs) represents probabilistic information in a sound and simple way. This paper presents the algorithm "Probabilistic Inference with Tabling and Answer subsumption" (PITA) for computing the probability of queries. Answer subsumption is a feature of tabling that allows the combination of different answers for the same subgoal in the case in which a partial order can be defined over them. We have applied it in our case since probabilistic explanations (stored as BDDs in PITA) possess a natural lattice structure. PITA has been implemented in XSB and compared with ProbLog, cplint and CVE. The results show that, in almost all cases, PITA is able to solve larger problems and is faster than competing algorithms

    Integration of Logic and Probability in Terminological and Inductive Reasoning

    Get PDF
    This thesis deals with Statistical Relational Learning (SRL), a research area combining principles and ideas from three important subfields of Artificial Intelligence: machine learn- ing, knowledge representation and reasoning on uncertainty. Machine learning is the study of systems that improve their behavior over time with experience; the learning process typi- cally involves a search through various generalizations of the examples, in order to discover regularities or classification rules. A wide variety of machine learning techniques have been developed in the past fifty years, most of which used propositional logic as a (limited) represen- tation language. Recently, more expressive knowledge representations have been considered, to cope with a variable number of entities as well as the relationships that hold amongst them. These representations are mostly based on logic that, however, has limitations when reason- ing on uncertain domains. These limitations have been lifted allowing a multitude of different formalisms combining probabilistic reasoning with logics, databases or logic programming, where probability theory provides a formal basis for reasoning on uncertainty. In this thesis we consider in particular the proposals for integrating probability in Logic Programming, since the resulting probabilistic logic programming languages present very in- teresting computational properties. In Probabilistic Logic Programming, the so-called "dis- tribution semantics" has gained a wide popularity. This semantics was introduced for the PRISM language (1995) but is shared by many other languages: Independent Choice Logic, Stochastic Logic Programs, CP-logic, ProbLog and Logic Programs with Annotated Disjunc- tions (LPADs). A program in one of these languages defines a probability distribution over normal logic programs called worlds. This distribution is then extended to queries and the probability of a query is obtained by marginalizing the joint distribution of the query and the programs. The languages following the distribution semantics differ in the way they define the distribution over logic programs. The first part of this dissertation presents techniques for learning probabilistic logic pro- grams under the distribution semantics. Two problems are considered: parameter learning and structure learning, that is, the problems of inferring values for the parameters or both the structure and the parameters of the program from data. This work contributes an algorithm for parameter learning, EMBLEM, and two algorithms for structure learning (SLIPCASE and SLIPCOVER) of probabilistic logic programs (in particular LPADs). EMBLEM is based on the Expectation Maximization approach and computes the expectations directly on the Binary De- cision Diagrams that are built for inference. SLIPCASE performs a beam search in the space of LPADs while SLIPCOVER performs a beam search in the space of probabilistic clauses and a greedy search in the space of LPADs, improving SLIPCASE performance. All learning approaches have been evaluated in several relational real-world domains. The second part of the thesis concerns the field of Probabilistic Description Logics, where we consider a logical framework suitable for the Semantic Web. Description Logics (DL) are a family of formalisms for representing knowledge. Research in the field of knowledge repre- sentation and reasoning is usually focused on methods for providing high-level descriptions of the world that can be effectively used to build intelligent applications. Description Logics have been especially effective as the representation language for for- mal ontologies. Ontologies model a domain with the definition of concepts and their properties and relations. Ontologies are the structural frameworks for organizing information and are used in artificial intelligence, the Semantic Web, systems engineering, software engineering, biomedical informatics, etc. They should also allow to ask questions about the concepts and in- stances described, through inference procedures. Recently, the issue of representing uncertain information in these domains has led to probabilistic extensions of DLs. The contribution of this dissertation is twofold: (1) a new semantics for the Description Logic SHOIN(D) , based on the distribution semantics for probabilistic logic programs, which embeds probability; (2) a probabilistic reasoner for computing the probability of queries from uncertain knowledge bases following this semantics. The explanations of queries are encoded in Binary Decision Diagrams, with the same technique employed in the learning systems de- veloped for LPADs. This approach has been evaluated on a real-world probabilistic ontology

    Probabilistic Inductive Querying Using ProbLog

    Get PDF
    We study how probabilistic reasoning and inductive querying can be combined within ProbLog, a recent probabilistic extension of Prolog. ProbLog can be regarded as a database system that supports both probabilistic and inductive reasoning through a variety of querying mechanisms. After a short introduction to ProbLog, we provide a survey of the different types of inductive queries that ProbLog supports, and show how it can be applied to the mining of large biological networks.Peer reviewe
    corecore