633 research outputs found

    "Minimal defence": a refinement of the preferred semantics for argumentation frameworks

    Full text link
    Dung's abstract framework for argumentation enables a study of the interactions between arguments based solely on an ``attack'' binary relation on the set of arguments. Various ways to solve conflicts between contradictory pieces of information have been proposed in the context of argumentation, nonmonotonic reasoning or logic programming, and can be captured by appropriate semantics within Dung's framework. A common feature of these semantics is that one can always maximize in some sense the set of acceptable arguments. We propose in this paper to extend Dung's framework in order to allow for the representation of what we call ``restricted'' arguments: these arguments should only be used if absolutely necessary, that is, in order to support other arguments that would otherwise be defeated. We modify Dung's preferred semantics accordingly: a set of arguments becomes acceptable only if it contains a minimum of restricted arguments, for a maximum of unrestricted arguments.Comment: 8 pages, 3 figure

    FrameDP: sensitive peptide detection on noisy matured sequences

    Get PDF
    Summary: Transcriptome sequencing represents a fundamental source of information for genome-wide studies and transcriptome analysis and will become increasingly important for expression analysis as new sequencing technologies takes over array technology. The identification of the protein-coding region in transcript sequences is a prerequisite for systematic amino acid-level analysis and more specifically for domain identification. In this article, we present FrameDP, a self-training integrative pipeline for predicting CDS in transcripts which can adapt itself to different levels of sequence qualities

    From preferences over arguments to preferences over attacks in abstract argumentation: A comparative study

    Get PDF
    International audienceDung's argumentation framework has been extended to consider preferences over arguments or over attacks, in a qualitative or in a quantitative way. In this paper, we investigate the relationships between preferences over arguments and preferences over attacks. We give conditions on the definition of preferences over attacks from preferences over arguments. Following these principles, we propose different instantiations of an AFvs (argumentation framework with attacks of various strength), when preferences over arguments are available. Our proposal is compared to existing work, particularly regarding the conditions in which the defence holds

    Bipolarity in argumentation graphs: Towards a better understanding

    Get PDF
    Edited by Benferhat Salem, Philippe LerayInternational audienceDifferent abstract argumentation frameworks have been used for various applications within multi-agents systems. Among them, bipolar frameworks make use of both attack and support relations between arguments. However, there is no single interpretation of the support, and the handling of bipolarity cannot avoid a deeper analysis of the notion of support.In this paper we consider three recent proposals for specializing the support relation in abstract argumentation: the deductive support, the necessary support and the evidential support. These proposals have been developed independently within different frameworks. We restate these proposals in a common setting, which enables us to undertake a comparative study of the modellings obtained for the three variants of the support. We highlight relationships and differences between these variants, namely a kind of duality between the deductive and the necessary interpretations of the support

    Graduality in Argumentation

    Full text link
    Argumentation is based on the exchange and valuation of interacting arguments, followed by the selection of the most acceptable of them (for example, in order to take a decision, to make a choice). Starting from the framework proposed by Dung in 1995, our purpose is to introduce 'graduality' in the selection of the best arguments, i.e., to be able to partition the set of the arguments in more than the two usual subsets of 'selected' and 'non-selected' arguments in order to represent different levels of selection. Our basic idea is that an argument is all the more acceptable if it can be preferred to its attackers. First, we discuss general principles underlying a 'gradual' valuation of arguments based on their interactions. Following these principles, we define several valuation models for an abstract argumentation system. Then, we introduce 'graduality' in the concept of acceptability of arguments. We propose new acceptability classes and a refinement of existing classes taking advantage of an available 'gradual' valuation
    • 

    corecore