283 research outputs found

    Revisiting Language Support for Generic Programming: When Genericity Is a Core Design Goal

    Get PDF
    Context Generic programming, as defined by Stepanov, is a methodology for writing efficient and reusable algorithms by considering only the required properties of their underlying data types and operations. Generic programming has proven to be an effective means of constructing libraries of reusable software components in languages that support it. Generics-related language design choices play a major role in how conducive generic programming is in practice. Inquiry Several mainstream programming languages (e.g. Java and C++) were first created without generics; features to support generic programming were added later, gradually. Much of the existing literature on supporting generic programming focuses thus on retrofitting generic programming into existing languages and identifying related implementation challenges. Is the programming experience significantly better, or different when programming with a language designed for generic programming without limitations from prior language design choices? Approach We examine Magnolia, a language designed to embody generic programming. Magnolia is representative of an approach to language design rooted in algebraic specifications. We repeat a well-known experiment, where we put Magnolia’s generic programming facilities under scrutiny by implementing a subset of the Boost Graph Library, and reflect on our development experience. Knowledge We discover that the idioms identified as key features for supporting Stepanov-style generic programming in the previous studies and work on the topic do not tell a full story. We clarify which of them are more of a means to an end, rather than fundamental features for supporting generic programming. Based on the development experience with Magnolia, we identify variadics as an additional key feature for generic programming and point out limitations and challenges of genericity by property. Grounding Our work uses a well-known framework for evaluating the generic programming facilities of a language from the literature to evaluate the algebraic approach through Magnolia, and we draw comparisons with well-known programming languages. Importance This work gives a fresh perspective on generic programming, and clarifies what are fundamental language properties and their trade-offs when considering supporting Stepanov-style generic programming. The understanding of how to set the ground for generic programming will inform future language design.publishedVersio

    Automated Formal Analysis of Internet Routing Configurations

    Get PDF
    Today\u27s Internet interdomain routing protocol, the Border Gateway Protocol (BGP), is increasingly complicated and fragile due to policy misconfigurations by individual autonomous systems (ASes). To create provably correct networks, the past twenty years have witnessed, among many other efforts, advances in formal network modeling, system verification and testing, and point solutions for network management by formal reasoning. On the conceptual side, the formal models usually abstract away low-level details, specifying what are the correct functionalities but not how to achieve them. On the practical side, system verification of existing networked systems is generally hard, and system testing or simulation provide limited formal guarantees. This is known as a long standing challenge in network practice --- formal reasoning is decoupled from actual implementation. This thesis seeks to bridge formal reasoning and actual network implementation in the setting of the Border Gateway Protocol (BGP), by developing the Formally Verifiable Routing (FVR) toolkit that combines formal methods and programming language techniques. Starting from the formal model, FVR automates verification of routing models and the synthesis of faithful implementations that carries the correctness property. Conversely, starting from large real-world BGP systems with arbitrary policy configurations, automates the analysis of Internet routing configurations, and also includes a novel network reduction technique that scales up existing techniques for automated analysis. By developing the above formal theories and tools, this thesis aims to help network operators to create and manage BGP systems with correctness guarantee

    Logic-based techniques for program analysis and specification synthesis

    Full text link
    La Tesis investiga técnicas ágiles dentro del paradigma declarativo para dar solución a dos problemas: el análisis de programas y la inferencia de especificaciones a partir de programas escritos en lenguajes multiparadigma y en lenguajes imperativos con tipos, objetos, estructuras y punteros. Respecto al estado actual de la tesis, la parte de análisis de programas ya está consolidada, mientras que la parte de inferencia de especificaciones sigue en fase de desarrollo activo. La primera parte da soluciones para la ejecución de análisis de punteros especificados en Datalog. En esta parte se han desarrollado dos técnicas de ejecución de especificaciones en dicho lenguaje Datalog: una de ellas utiliza resolutores de sistemas de ecuaciones booleanas, y la otra utiliza la lógica de reescritura implementada eficientemente en el lenguaje Maude. La segunda parte desarrolla técnicas de inferencia de especificaciones a partir de programas. En esta parte se han desarrollado dos métodos de inferencia de especificaciones. El primer método se desarrolló para el lenguaje lógico-funcional Curry y permite inferir especificaciones ecuacionales mediante interpretación abstracta de los programas. El segundo método está siendo desarrollado para lenguajes imperativos realistas, y se ha aplicado a un subconjunto del lenguaje de programación C. Este método permite inferir especificaciones en forma de reglas que representan las distintas relaciones entre las propiedades que el estado de un programa satisface antes y después de su ejecución. Además, estas propiedades son expresables en términos de las abstracciones funcionales del propio programa, resultando en una especificación de muy alto nivel y, por lo tanto, de más fácil comprensión.Feliú Gabaldón, MA. (2013). Logic-based techniques for program analysis and specification synthesis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33747TESI

    Executable Structural Operational Semantics in Maude

    Get PDF
    This paper describes in detail how to bridge the gap between theory and practice when implementing in Maude structural operational semantics described in rewriting logic, where transitions become rewrites and inference rules become conditional rewrite rules with rewrites in the conditions, as made possible by the new features in Maude 2.0. We validate this technique using it in several case studies: a functional language Fpl (evaluation and computation semantics, including an abstract machine), imperative languages WhileL (evaluation and computation semantics) and GuardL with nondeterminism (computation semantics), Kahn’s functional language Mini-ML (evaluation or natural semantics), Milner’s CCS (with strong and weak transitions), and Full LOTOS (including ACT ONE data type specifications). In addition, on top of CCS we develop an implementation of the Hennessy-Milner modal logic for describing local capabilities of processes, and for LOTOS we build an entire tool where Full LOTOS specifications can be entered and executed (without user knowledge of the underlying implementation of the semantics). We also compare this method based on transitions as rewrites with another one based on transitions as judgements

    Prototyping the Semantics of a DSL using ASF+SDF: Link to Formal Verification of DSL Models

    Full text link
    A formal definition of the semantics of a domain-specific language (DSL) is a key prerequisite for the verification of the correctness of models specified using such a DSL and of transformations applied to these models. For this reason, we implemented a prototype of the semantics of a DSL for the specification of systems consisting of concurrent, communicating objects. Using this prototype, models specified in the DSL can be transformed to labeled transition systems (LTS). This approach of transforming models to LTSs allows us to apply existing tools for visualization and verification to models with little or no further effort. The prototype is implemented using the ASF+SDF Meta-Environment, an IDE for the algebraic specification language ASF+SDF, which offers efficient execution of the transformation as well as the ability to read models and produce LTSs without any additional pre or post processing.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    Industrial Experience Report on the Formal Specification of a Packet Filtering Language Using the K Framework

    Get PDF
    Many project-specific languages, including in particular filtering languages, are defined using nonformal specifications written in natural languages. This leads to ambiguities and errors in the specification of those languages. This paper reports on an industrial experiment on using a tool-supported language specification framework (K) for the formal specification of the syntax and semantics of a filtering language having a complexity similar to those of real-life projects. This experimentation aims at estimating, in a specific industrial setting, the difficulty and benefits of formally specifying a packet filtering language using a tool-supported formal approach

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Revisiting Language Support for Generic Programming: When Genericity Is a Core Design Goal

    Get PDF
    ContextGeneric programming, as defined by Stepanov, is a methodology for writing efficient and reusable algorithms by considering only the required properties of their underlying data types and operations. Generic programming has proven to be an effective means of constructing libraries of reusable software components in languages that support it. Generics-related language design choices play a major role in how conducive generic programming is in practice.InquirySeveral mainstream programming languages (e.g. Java and C++) were first created without generics; features to support generic programming were added later, gradually. Much of the existing literature on supporting generic programming focuses thus on retrofitting generic programming into existing languages and identifying related implementation challenges. Is the programming experience significantly better, or different when programming with a language designed for generic programming without limitations from prior language design choices?ApproachWe examine Magnolia, a language designed to embody generic programming. Magnolia is representative of an approach to language design rooted in algebraic specifications. We repeat a well-known experiment, where we put Magnolia’s generic programming facilities under scrutiny by implementing a subset of the Boost Graph Library, and reflect on our development experience.KnowledgeWe discover that the idioms identified as key features for supporting Stepanov-style generic programming in the previous studies and work on the topic do not tell a full story. We clarify which of them are more of a means to an end, rather than fundamental features for supporting generic programming. Based on the development experience with Magnolia, we identify variadics as an additional key feature for generic programming and point out limitations and challenges of genericity by property.GroundingOur work uses a well-known framework for evaluating the generic programming facilities of a language from the literature to evaluate the algebraic approach through Magnolia, and we draw comparisons with well-known programming languages.ImportanceThis work gives a fresh perspective on generic programming, and clarifies what are fundamental language properties and their trade-offs when considering supporting Stepanov-style generic programming. The understanding of how to set the ground for generic programming will inform future language design.</p
    corecore