12 research outputs found

    A theory for observational fault tolerance

    Get PDF
    In general, faults cannot be prevented; instead, they need to be tolerated to guarantee certain degrees of software dependability. We develop a theory for fault tolerance for a distributed pi-calculus, whereby locations act as units of failure and redundancy is distributed across independently failing locations. We give formal definitions for fault tolerant programs in our calculus, based on the well studied notion of contextual equivalence. We then develop bisimulation proof techniques to verify fault tolerance properties of distributed programs and show they are sound with respect to our definitions for fault tolerance.peer-reviewe

    Contents

    Get PDF

    On Observing Dynamic Prioritised Actions in SOC

    Get PDF
    We study the impact on observational semantics for SOC of priority mechanisms which combine dynamic priority with local pre-emption. We define manageable notions of strong and weak labelled bisimilarities for COWS, a process calculus for SOC, and provide alternative characterisations in terms of open barbed bisimilarities. These semantics show that COWS’s priority mechanisms partially recover the capability to observe receive actions (that could not be observed in a purely asynchronous setting) and that high priority primitives for termination impose specific conditions on the bisimilarities

    A theory of monitors

    Get PDF
    We develop a behavioural theory for monitors — software entities that passively analyse the runtime behaviour of systems so as to infer properties about them. First, we extend the monitor language and instrumentation relation of [17] to handle piCalculus process monitoring. We then identify contextual behavioural preorders that allow us to re-late monitors according to criteria defined over monitored executions of piCalculus processes. Subsequently, we develop alternative monitor pre-orders that are more tractable, and prove full-abstraction for the latter alternative preorders with respect to the contextual preorders.peer-reviewe

    An Observational Theory for Mobile Ad Hoc Networks

    Get PDF
    AbstractWe propose a process calculus to study the observational theory of Mobile Ad Hoc Networks. The operational semantics of our calculus is given both in terms of a Reduction Semantics and in terms of a Labelled Transition Semantics. We prove that the two semantics coincide. The labelled transition system is then used to derive the notions of simulation and bisimulation for ad hoc networks. As a main result, we prove that the (weak) labelled bisimilarity completely characterises (weak) reduction barbed congruence, a standard, branching-time, contextually-defined program equivalence. We then use our (bi)simulation proof methods to formally prove a number of non-trivial properties of ad hoc networks

    A model of actors and grey failures

    Full text link
    Existing models for the analysis of concurrent processes tend to focus on fail-stop failures, where processes are either working or permanently stopped, and their state (working/stopped) is known. In fact, systems are often affected by grey failures: failures that are latent, possibly transient, and may affect the system in subtle ways that later lead to major issues (such as crashes, limited availability, overload). We introduce a model of actor-based systems with grey failures, based on two interlinked layers: an actor model, given as an asynchronous process calculus with discrete time, and a failure model that represents failure patterns to inject in the system. Our failure model captures not only fail-stop node and link failures, but also grey failures (e.g., partial, transient). We give a behavioural equivalence relation based on weak barbed bisimulation to compare systems on the basis of their ability to recover from failures, and on this basis we define some desirable properties of reliable systems. By doing so, we reduce the problem of checking reliability properties of systems to the problem of checking bisimulation

    A Model of Actors and Grey Failures

    Get PDF
    Existing models for the analysis of concurrent processes tend to focus on fail-stop failures, where processes are either working or permanently stopped, and their state (working/stopped) is known. In fact, systems are often affected by grey failures: failures that are latent, possibly transient, and may affect the system in subtle ways that later lead to major issues (such as crashes, limited availability, overload). We introduce a model of actor-based systems with grey failures, based on two interlinked layers: an actor model, given as an asynchronous process calculus with discrete time, and a failure model that represents failure patterns to inject in the system. Our failure model captures not only fail-stop node and link failures, but also grey failures (e.g., partial, transient). We give a behavioural equivalence relation based on weak barbed bisimulation to compare systems on the basis of their ability to recover from failures, and on this basis we define some desirable properties of reliable systems. By doing so, we reduce the problem of checking reliability properties of systems to the problem of checking bisimulation

    A model of actors and grey failures

    Get PDF
    Existing models for the analysis of concurrent processes tend to focus on fail-stop failures, where processes are either working or permanently stopped, and their state (working/stopped) is known. In fact, systems are often affected by grey failures: failures that are latent, possibly transient, and may affect the system in subtle ways that later lead to major issues (such as crashes, limited availability, overload). We introduce a model of actor-based systems with grey failures, based on two interlinked layers: an actor model, given as an asynchronous process calculus with discrete time, and a failure model that represents failure patterns to inject in the system. Our failure model captures not only fail-stop node and link failures, but also grey failures (e.g., partial, transient). We give a behavioural equivalence relation based on weak barbed bisimulation to compare systems on the basis of their ability to recover from failures, and on this basis we define some desirable properties of reliable systems. By doing so, we reduce the problem of checking reliability properties of systems to the problem of checking bisimulation

    A Survey of Challenges for Runtime Verification from Advanced Application Domains (Beyond Software)

    Get PDF
    Runtime verification is an area of formal methods that studies the dynamic analysis of execution traces against formal specifications. Typically, the two main activities in runtime verification efforts are the process of creating monitors from specifications, and the algorithms for the evaluation of traces against the generated monitors. Other activities involve the instrumentation of the system to generate the trace and the communication between the system under analysis and the monitor. Most of the applications in runtime verification have been focused on the dynamic analysis of software, even though there are many more potential applications to other computational devices and target systems. In this paper we present a collection of challenges for runtime verification extracted from concrete application domains, focusing on the difficulties that must be overcome to tackle these specific challenges. The computational models that characterize these domains require to devise new techniques beyond the current state of the art in runtime verification
    corecore