542 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    Lightweight Computation Tree Tracing for Lazy Functional Languages

    Get PDF
    A computation tree of a program execution describes computations of functions and their dependencies. A computation tree describes how a program works and is at the heart of algorithmic debugging. To generate a computation tree, existing algorithmic debuggers either use a complex implementation or yield a less informative approximation. We present a method for lazy functional languages that requires only a simple tracing library to generate a detailed computation tree. With our algorithmic debugger a programmer can debug any Haskell program by only importing our library and annotating suspected functions

    Refunctionalization at Work

    Get PDF
    We present the left inverse of Reynolds's defunctionalization and we show its relevance to programming and to programming languages. We propose two methods to transform a program that is almost in defunctionalized form into one that is actually in defunctionalized form, and we illustrate them with a recognizer for Dyck words and with Dijkstra's shunting-yard algorithm

    A Semantic Framework to Debug Parallel Lazy Functional Languages

    Get PDF
    It is not easy to debug lazy functional programs. The reason is that laziness and higherorder complicates basic debugging strategies. Although there exist several debuggers for sequential lazy languages, dealing with parallel languages is much harder. In this case, it is important to implement debugging platforms for parallel extensions, but it is also important to provide theoretical foundations to simplify the task of understanding the debugging process. In this work, we deal with the debugging process in two parallel languages that extend the lazy language Haskell. In particular, we provide an operational semantics that allows us to reason about our parallel extension of the sequential debugger Hood. In addition, we show how we can use it to analyze the amount of speculative work done by the processes, so that it can be used to optimize their use of resources

    The role of computational logic as a hinge paradigm among deduction, problem solving, programming, and parallelism

    Get PDF
    This paper presents some brief considerations on the role of Computational Logic in the construction of Artificial Intelligence systems and in programming in general. It does not address how the many problems in AI can be solved but, rather more modestly, tries to point out some advantages of Computational Logic as a tool for the AI scientist in his quest. It addresses the interaction between declarative and procedural views of programs (deduction and action), the impact of the intrinsic limitations of logic, the relationship with other apparently competing computational paradigms, and finally discusses implementation-related issues, such as the efficiency of current implementations and their capability for efficiently exploiting existing and future sequential and parallel hardware. The purpose of the discussion is in no way to present Computational Logic as the unique overall vehicle for the development of intelligent systems (in the firm belief that such a panacea is yet to be found) but rather to stress its strengths in providing reasonable solutions to several aspects of the task

    αCheck: a mechanized metatheory model-checker

    Get PDF
    The problem of mechanically formalizing and proving metatheoretic properties of programming language calculi, type systems, operational semantics, and related formal systems has received considerable attention recently. However, the dual problem of searching for errors in such formalizations has attracted comparatively little attention. In this article, we present α\alphaCheck, a bounded model-checker for metatheoretic properties of formal systems specified using nominal logic. In contrast to the current state of the art for metatheory verification, our approach is fully automatic, does not require expertise in theorem proving on the part of the user, and produces counterexamples in the case that a flaw is detected. We present two implementations of this technique, one based on negation-as-failure and one based on negation elimination, along with experimental results showing that these techniques are fast enough to be used interactively to debug systems as they are developed.Comment: Under consideration for publication in Theory and Practice of Logic Programming (TPLP
    corecore