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Abstract

Here, the use of category theory, long advocated as applicable for manipulating many abstrac-

tions found in computer programming, is extended to serve additionally as a meta-level design

tool to address a practical, software engineering problem: the design and use of effective soft-

ware execution tracing systems. Software execution tracing is a widely used technique arising

out of basic debugging practices with diverse implementations found in many software engineer-

ing processes, but it lacks a useful, theoretical foundation, resulting in engineering problems at

several levels: for the designers, implementers and users of tracing systems all of whom have no

recourse to rigorously defined and clearly understood engineering abstractions, when it comes

to either implementing or using tracing effectively. Category theory has been used widely and

successfully in computer science for decades, and more recently for a variety of applications in

software engineering, establishing it as a key mathematical basis for this engineering discipline.

Practical execution tracing systems have not used the existing theoretical concept of trace

already provided by computer science – the trace monoid – because monoidal traces, while

nevertheless useful in the theoretical investigation of concurrent and non-deterministic sys-

tems, are the consequence of an operational view of semantics, and therefore lack the complex,

compositional structure required to encode much of the source-oriented information needed in

practical execution traces. As a consequence of the categorical duality between operational and

denotational semantics, the novel, dual notion of ‘denotational trace’ is introduced, where a

‘canonical’ denotational trace contains the complete collection of source-oriented and composi-

tional, denotational semantic information required for practical execution tracing activities. To

highlight the practical, straightforward nature of both denotational tracing implementation and

usage, a canonical, denotational tracer is implemented for a simple language, sufficient to pro-

vide some simple examples of nevertheless sophisticated uses for denotational traces, including

a specification recovery from execution trace and analyses of space and time complexity using

formal reasoning applied to traces (i.e., proof by induction, as implied by categorical reasoning

based on the denotational basis, for which induction is the associated proof technique). The

novel application of category theory as a meta-level design tool, to the long standing software

engineering problem of designing and using effective software execution tracing systems, has

resulted in an elegant and systematic solution to those problems, further demonstrating that

category theory has much to offer software engineering as a practical toolset based on a solid

theoretical grounding. Thus category theory has delivered another useful result in software

engineering as further evidence of its general applicability to this field, thereby reinforcing its

usefulness for modeling, design and implementation, and suggesting this toolset should become

a standard part of the software engineering curriculum.

1



Declaration by author

This thesis is composed of my original work, and contains no material previously published

or written by another person except where due reference has been made in the text. I have

clearly stated the contribution by others to jointly-authored works that I have included in my

thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical

assistance, survey design, data analysis, significant technical procedures, professional editorial

advice, and any other original research work used or reported in my thesis. The content of my

thesis is the result of work I have carried out since the commencement of my research higher

degree candidature and does not include a substantial part of work that has been submitted

to qualify for the award of any other degree or diploma in any university or other tertiary

institution. I have clearly stated which parts of my thesis, if any, have been submitted to

qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University

Library and, subject to the General Award Rules of The University of Queensland, immediately

made available for research and study in accordance with the Copyright Act 1968.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from the

copyright holder to reproduce material in this thesis.

2



Publications during candidature

• P. Bailes, L. Brough and C. Kemp, “From Computer Science to Software Engineering

- a programming-level perspective”, to appear in Proceedings of The 13th International

Conference on Intelligent Software Methodologies, Tools, and Techniques, SOMET 14

• L. Brough and P. Bailes, ”The Denotational Basis for Software Execution Tracing”, Pro-

ceedings of the 8th IASTED International Conference on Advances in Computer Science,

ACS 2013, Phuket, Thailand, (278-286). 10 - 12 April 2013.

• P. Bailes, L. Brough and C. Kemp, “Higher-Order Catamorphisms as Bases for Program

Structuring and Design Recovery”, in Proceedings of the 12th IASTED International

Conference on Software Enginnering, SE 2013, Innsbruck, Austria, (775-782). 11 - 13

February 2013.

• P. Bailes and L. Brough, “Making Sense of Recursion Patterns”, in Proceedings of Formal

Methods in Software Engineering: Rigorous and Agile Approaches, FormSERA 2012,

Zurich, Switzerland, (16-22). 2 June 2012.

Publications included in this thesis

• L. Brough and P. Bailes, ”The Denotational Basis for Software Execution Tracing”, Pro-

ceedings of the 8th IASTED International Conference on Advances in Computer Science,

ACS 2013, Phuket, Thailand, (278-286). 10 - 12 April 2013.

Contributor Statement of contribution

L. Brough (candidate) Wrote the paper (80%), an increasing proportion with

each draft

P. Bailes Wrote the paper (20%), in particular the example of

specification recovery

Contributions by others to the thesis

No contributions by others.

Statement of parts of the thesis submitted to qualify for the award of another

degree

None.

3



Acknowledgements

I will always be grateful to my alma mater, the University of Queensland, being not only a

beautiful campus but the forge in which my youth was struck. UQ has provided me not only

with my professional education, but also many of my oldest, dearest friends including my wife,

intellectual stimulation on-and-off over more than two decades, and also a convenient source of

employment from time-to-time. Specifically, I am emdebted to the ITEE School for providing

a Confirmation Scholarship which partially funded this project.

Of far more practical and personal significance is the education and on-going conversa-

tion in computer science provided to me by my advisor Prof. Paul Bailes. Paul’s unfailing

patience, tolerance, but nevertheless insistence on clearly enunciatiated concepts derived from

the fundamentals is something not only I hope will be with me for life, but something I wish

to spread to others. It has been a great pleasure – over almost a decade now – to not only find

an intellectual mentor but develop a much-valued, enriching personal friendship.

This project would never have been possible if I had not had sound and stable personal

circumstances; the unfailing support of my spouse Rachel has been fundamental. Since this

project began, two beautiful children, Caitlin and James, have graced our lives, and life has

presented many adventures. Nevertheless, this project has never been a sacrifice to be pursued

at the expense of other values, but rather an enriching pleasure to be pursued for its own sake

– an enterprise impossible without the support of a like-minded student-in-life.

Keywords

category theory, semantics, execution tracing, trace analysis

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080202 Applied Discrete Mathematics, 50%

ANZSRC code: 080309 Software Engineering , 50%

Fields of Research (FoR) Classification

FoR code: 0802, Computation Theory and Mathematics, 50%

FoR code: 0803, Computer Software, 50%

4



Contents

1 Introduction 17

1.1 Motivation and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Why Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Category Theory for

Software Engineering 23

2.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Associativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Exploiting Associativity and Identity . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Initial Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Tracing in Practice 48

3.1 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Software Engineering Processes . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Implementation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Practical Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Source Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Compositional Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Generalised Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Engineering Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Theoretical Foundations for Tracing 70

4.1 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 The Trace Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5



4.4 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Fit with Tracing in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Denotational Trace 77

5.1 Denotational is Dual to Operational . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Operational Semantics are Final-Coalgebraic . . . . . . . . . . . . . . . . 79

5.1.2 Denotational Semantics are Initial Algebraic . . . . . . . . . . . . . . . . 80

5.2 Tracing Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Monads for Modular Semantics . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Canonical Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 Canonical Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Two Sides to the Semantic Coin . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 A Denotational Tracer 89

6.1 Executable Semantic Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 A Simple Denotational Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Trace Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 A Simple Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.1 Specification Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1.1 ‘readable’ Trace Analysis Tool . . . . . . . . . . . . . . . . . . . 101

6.4.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.2.1 ‘timecomp’ Trace Analysis Tool . . . . . . . . . . . . . . . . . . 105

6.4.3 Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.3.1 ‘spacecomp’ Trace Analysis Tool . . . . . . . . . . . . . . . . . 106

7 Conclusions 108

7.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.1 Modeling of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.2 Design of the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.3 Implementation of an Example . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Implications and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Further Exploration of Tracing via Category Theory . . . . . . . . . . . 112

7.3.2 Categories as Domain Specific Languages . . . . . . . . . . . . . . . . . . 112

7.3.3 Categorical Programming Language Design . . . . . . . . . . . . . . . . 112

7.3.4 Category Theory in Software Engineering Education . . . . . . . . . . . 113

6



Preface

The presentation of this thesis follows the one-sentence synopsis convention: at each level of

the document structure, starting with the entire document itself – then the chapters, sections,

subsections and so forth – a précis of the contents is provided, in the form of a single sentence.

For the convenience of the reader, the next section provides a summary of all of the summary

sentences in this thesis, being a précis of the entire document, organised as per its hierachical

structure. This presentation makes explicit the logical and hierachical structure to the argument

presented in this thesis, with summary sentences for each part of the thesis being justified by

or developed in the sub-sentences for each of the corresponding document substructures.
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Denotational Trace:

A Category-Theoretic Solution to

the Practical Problems of

Software Execution Tracing

A novel application of category theory as a meta-level design tool, to the long standing

software engineering problem of designing and using effective software execution tracing

systems, has resulted in an elegant and systematic solution to those problems, further

demonstrating that category theory has much to offer software engineering as a practical

toolset based on a solid theoretical grounding.

1 Introduction 17

Here, the use of category theory, long advocated as applicable for describing and ma-

nipulating many abstractions found in computer programming, is extended to serve

additionally as a meta-level design tool to address a practical, software engineering

problem: the design and use of effective software execution tracing systems.

1.1 Motivation and Aims 17

The practice of engineering in any discipline rests on the foundation of rigorously

defined, clearly understood, engineering abstractions based on sound, justified,

mathematical theory; here category theory is explored as just such a basis for the

practical problem of software execution tracing, sufficient to support the practical

requirements of tracing system designers and users.

1.2 Why Category Theory 18

Category theory was chosen as a meta-level design tool because isomorphism

makes it possible to discuss tracing in abstract, categorical terms, independent of

language syntax and semantics, and thereby use the fact that every category has

a dual to show there exists a unique alternative to the existing notion of trace

found in computer science.
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2 Category Theory for

Software Engineering 23

Category theory has been used widely and successfully in computer science for decades,

and more recently for a variety of applications in software engineering, establishing it

as a key mathematical basis for this engineering discipline.

2.1 Categories 23

Consisting of just the basic template of an associative composition operation,

categories can be used to describe many composable artefacts found in computing.

2.1.1 Associativity 26

By enforcing the associative law, categories provide a minimal and ab-

stract, yet effective system of composition for a wide variety of possible

applications.

2.1.2 Identity 27

With the addition of the identity law, categories support a precise notion

of abstract sameness, isomorphism.

2.2 Exploiting Associativity and Identity 30

Categories provide an effective basis for domain specific languages both in math-

ematics where they originated and in computer programming, and come equipped

with a notion of equivalence that gives precise description to a programmer’s in-

tuition as to how two program artefacts may be abstractly ‘the same’, thereby

establishing category theory not only as a mathematical basis for programming

but as a rigorously specified program design pattern catalogue.

2.2.1 Monads 32

The monad extends the categorical notion of composition to include func-

tions that manipulate state or return exceptions, perform input and out-

put and exhibit a wide variety of other program phenomena including

non-determinism, concurrency and parsing.

2.2.2 Functors 36

Functors provide a mechanism to combine the functionality of various

categories in a consistent fashion that preserves the category laws; a pat-

tern already familiar to programmers as type-level operators, as well as

many other program phenomena.

2.2.3 Initial Algebras 39

Initial algebras can describe not only concrete and abstract data types, but

the pattern of recursion naturally associated with these, in generic terms,

for any type.
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2.3 Duality 42

Category theory is useful not only for describing categories but also for manipu-

lating and reasoning about them at the meta-level; categorical duality ensures that

every category has a dual, i.e., every category-theoretic structure has a unique

(up to isomorphism) ‘opposite’.

2.4 Applications 46

This project adds to the diverse range of applications to which category theory

has been successfully applied in both computer science and software engineering,

by using several categorical ideas already well established in computing, for the

novel application of systematically exploring the semantic foundations for prac-

tical software execution tracing.

3 Tracing in Practice 48

Software execution tracing is a widely used technique arising out of basic debugging

practices with diverse implementations found in many software engineering processes,

but it lacks a useful, theoretical foundation, resulting in engineering problems at several

levels: for the designers, implementers and users of tracing systems all of whom have

no recourse to rigorously defined and clearly understood engineering abstractions, when

it comes to either implementing or using tracing effectively.

3.1 Origins 48

Execution tracing arises naturally as a systematic extension of basic debugging

practices.

3.2 Examples 51

Execution tracing is a widely used technique, with diverse implementations found

in many software engineering processes and application domains.

3.2.1 Software Engineering Processes 51

Tracing, by providing an aid to program comprehension, is applicable to

a range of software engineering processes.

3.2.2 Application Domains 53

Tracing is found in diverse application domains, including the develop-

ment of object-oriented systems, concurrent and distributed systems, and

servers and operating systems.

3.2.3 Implementation Approaches 54

A diverse range of implementations exist for practical tracing systems,

the norm being ad hoc solutions, tuned to the problem at hand.

3.3 Practical Requirements 57

Practical traces, useful for software engineering tasks, need to refer to entities in

the program source; this source-orientation in turn requires traces to be compo-

sitional, and contain events including information of varying types.
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3.3.1 Source Orientation 65

Because all activities involving execution tracing involve some aspect of

program comprehension, traces must refer to entities in the program source

text, i.e., be source-oriented.

3.3.2 Compositional Structure 66

Source-orientation in turn requires a trace to reflect complex, nested struc-

tures, corresponding to those found in the source code.

3.4 Generalised Tracing 67

Category theory has not previously been applied to the software engineering prob-

lem of designing and using effective execution tracing, and there has otherwise

been little attention paid to the abstract, theoretical basis for practical execution

tracing systems.

3.5 Engineering Problems 68

The lack of a sound and useful theoretical basis for practical execution tracing

results in engineering problems at several levels; for the designers, implementers

and users of tracing systems all of whom have no access to sound, useful theo-

retical guidance or tools.

4 Theoretical Foundations for Tracing 70

Practical execution tracing systems have not used the existing theoretical concept of

trace already provided by computer science – the trace monoid – because monoidal

traces, while nevertheless useful in the theoretical investigation of concurrent and non-

deterministic systems, are the consequence of an operational view of semantics, and

therefore lack the complex, compositional structure required to encode much of the

source-oriented information needed in practical execution traces.

4.1 Origins 70

The term ‘trace’ has been linked to an operational model of semantics since the

early days of computer science.

4.2 Operational Semantics 71

The central idea of operational semantics is that of the transition system, the

operation of which automatically induces a trace.

4.3 The Trace Monoid 73

Execution of a transition system inherently generates a monoid.

4.4 Application Domains 75

The trace monoid is the foundation of process algebrae, and has been useful in

the study of concurrency and non-determinism.

4.5 Fit with Tracing in Practice 75

The trace monoid is too simple a structure to encode the compositional, source-

oriented details of practical interest for many tracing activities.
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5 Denotational Trace 77

As a consequence of the categorical duality between operational and denotational se-

mantics, the novel, dual notion of ‘denotational trace’ is introduced, where a ‘canon-

ical’ denotational trace contains the complete collection of source-oriented and com-

positional, denotational semantic information required for practical execution tracing

activities.

5.1 Denotational is Dual to Operational 78

Denotational semantics is dual to operational semantics.

5.1.1 Operational Semantics are Final-Coalgebraic 79

The basis for the structure of operational semantics is the abstract ma-

chine, or in categorical terms, the final coalgebra.

5.1.2 Denotational Semantics are Initial Algebraic 80

Final coalgebras have a dual: initial algebras, that provide the structural

basis for denotational semantics, otherwise known as initial algebra se-

mantics.

5.2 Tracing Denotational Semantics 82

The transformation of denotational semantics by the addition of execution tracing

is modelled by an algebra homomorphism, more specifically a canonical isomor-

phism.

5.2.1 Monads for Modular Semantics 82

Monads allow denotational semantics to be structured in a modular fashion.

5.2.2 Canonical Tracing 83

The morphism required to transform an initial algebra describing denota-

tional semantics into semantics augmented with tracing output is a homo-

morphism, more specifically an isomorphism, which should be canonical

with respect to the original semantics.

5.2.3 Canonical Traces 84

We call the maximal set of trace information available from a dual-

consequent, denotational perspective, a “canonical trace”, when produced

by canonical tracing.

5.3 Two Sides to the Semantic Coin 85

Operational and denotational traces are complementary.
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6 A Denotational Tracer 89

To highlight the practical, straightforward nature of both denotational tracing imple-

mentation and usage, a canonical, denotational tracer is implemented for a simple lan-

guage, sufficient to provide some simple examples of nevertheless sophisticated uses

for denotational traces, including a specification recovery from execution trace and

analyses of space and time complexity using formal reasoning applied to traces (i.e.,

proof by induction, as implied by categorical reasoning based on the denotational basis,

for which induction is the associated proof technique).

6.1 Executable Semantic Specifications 90

The denotational semantics specified here are implemented in the meta-language

Haskell; execution of the denotational specification constitutes an interpreter, a

useful experimental tool.

6.2 A Simple Denotational Interpreter 90

A simple language with just enough structure to exercise some interesting ex-

amples is constructed: the syntax is a simple variant of ML-style languages, the

semantics are simple, with a strict/eager execution order, and the value domain

contains just a few basic types.

6.3 Trace Generation 94

In a straightforward way, canonical trace structures are defined for the language,

and modified semantics with tracing added are generated by application of a suit-

able monad transformer.

6.4 A Simple Example Program 96

As a demonstration of the practical usefulness of denotational trace to users of

tracing systems, a simple example program is executed using the denotational

tracer and the resulting execution traces are used to perform several software

engineering tasks, including specification recovery and analyses of space and time

complexity, with mathematical induction being a natural proof technique.

6.4.1 Specification Recovery 99

Denotational trace is used to recover a specification for the program.

6.4.1.1 ‘readable’ Trace Analysis Tool 101

More specific traces can be derived from canonical traces via

structural induction over the trace structures.

6.4.2 Time Complexity 102

The time complexity of the program is analysed using proof by induction.

6.4.2.1 ‘timecomp’ Trace Analysis Tool 105

A measure of algorithmic time complexity can be derived by

structural induction over trace structures.

6.4.3 Space Complexity 106

The space complexity of the program is analysed using proof by induction.
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6.4.3.1 ‘spacecomp’ Trace Analysis Tool 106

A measure of algorithmic space complexity can be derived by

structural induction over trace structures.

7 Conclusions 108

Thus category theory has delivered another useful result in software engineering as fur-

ther evidence of its general applicability to this field, thereby reinforcing its usefulness

for modeling, design and implementation, and suggesting this toolset should become a

standard part of the software engineering curriculum.

7.1 Summary of Results 108

Category theory has delivered another useful result for the engineering of software

by identifying, justifying and describing precisely a unique, abstract alternative

to the existing notion of the trace monoid, that turns out to fit well with the

requirements for practical tracing systems, and provides an elegant, integrated

solution to the software engineering problems inherent in tracing systems of ad

hoc design.

7.2 Significance 110

Category provides a powerful and appropriate mathematical basis for software

engineering.

7.2.1 Modeling of the Problem 110

The flexible and powerful notions of the category and categorical notions

of sameness, provide an effective basis for modeling software abstractions

at many levels.

7.2.2 Design of the Solution 111

Tools such as duality can be used for the design of justified, valid solutions.

7.2.3 Implementation of an Example 111

Category theory provides a design pattern catalogue for program imple-

mentation.

7.3 Implications and Future Directions 111

There is interesting work remaining to be done in exploring how operationally and

denotationally based traces are complementary, based on the duality and corre-

spondence between operational and denotational semantics, and more broadly in

continuing to explore the uses of category theory in software engineering.

7.3.1 Further Exploration of Tracing via Category Theory 112

There is interesting work remaining to be done in exploring how opera-

tionally and denotationally based traces are complementary, based on the

duality and correspondence between operational and denotational semantics.

7.3.2 Categories as Domain Specific Languages 112

Categories provide an effective template for domain specific languages.
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7.3.3 Categorical Programming Language Design 112

While categorical ideas can be ported into any programming language, the

usefulness of category theory to software engineering suggest that pro-

gramming languages should explicitly support categorical notions, to de-

rive the full benefits of automated tool support.

7.3.4 Category Theory in Software Engineering Education 113

Given the useful and appropriate tools that category theory brings to soft-

ware engineering, and the promise it offers as a mathematical basis for

robust software engineering abstractions, category theory should become

part of the software engineering curriculum.
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Chapter 1

Introduction

Here, the use of category theory, long advocated as applicable for describing and ma-

nipulating many abstractions found in computer programming, is extended to serve

additionally as a meta-level design tool to address a practical, software engineering

problem: the design and use of effective software execution tracing systems.

1.1 Motivation and Aims

The practice of engineering in any discipline rests on the foundation of rigorously

defined, clearly understood, engineering abstractions based on sound, justified, math-

ematical theory; here category theory is explored as just such a basis for the practical

problem of software execution tracing, sufficient to support the practical requirements

of tracing system designers and users.

This project springs out of the conviction that software engineering and computer science

are both at their best when operating as complementary disciplines: just as older fields of

engineering rest on mathematical, theoretical foundations found in the physical sciences, the

practical problem of developing and maintaining useful computer programs is tackled most

systematically and effectively when it is grounded in relevant computer science. Category

theory has long been advocated as useful in both computer science and software engineering

(see chapter 2). This thesis provides further evidence of its usefulness by applying it as a

strategic design tool at multiple levels to a commonly used technique in software engineering:

software execution tracing (see chapter 3).

Execution tracing – a widely-used and effective practical technique presenting non-trivial

design, implementation and use issues – has spawned a considerably body of peer-reviewed

research documenting the variety of software processes (see section 3.2.1) and applications

(see section 3.2.2) where it is found, and the various implementation techniques used (see

section 3.2.3). Nevertheless, the topic of the theoretical foundations of tracing as it used in
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practice has been neglected (see section 3.4), resulting in most extant tracing systems having

the problem of an ad hoc rather than an engineered design (see section 3.5). The ad hoc

approaches currently in use produce pragmatic, but nevertheless arbitrary designs for tracing

systems, being a product of the accidents of the programmer’s experience, the requirements of

the specific problem domain being addressed, and the available tools at hand. Furthermore, no

guidance is provided as to how the resultant traces can or should be used. Finally, automated

tool support for working with ad hoc traces is difficult to provide, due to the absence of a

clearly specified understanding of what traces are, what they contain and how these contents

relate to program semantics.

Despite the diverse tracing systems in existence, they share some practical requirements

in common; they provide source-oriented, compositional information about the execution of

the program (see section 3.3). These practical requirements are not supported by the existing

notion of trace provided by computer science (see chapter 4, which nevertheless provides a

sound and useful basis for the theoretical investigation of concurrency and non-determinism –

see section 4.4). An effective theoretical basis for practical tracing has been lacking.

This project uses category theory to address the lack of a theoretical basis for execution

tracing, thereby grounding this important practical activity in formal computer science by

providing general, abstract principles underlying the design of useful tracing systems – i.e.,

that they have a denotational-semantic basis – as well as conceptual tools for reasoning about

the traces generated (see chapter 5). Some simple examples of the nevertheless sophisticated

tasks supported by denotational traces are provided in chapter 6, including a specification

recovery from trace and formal reasoning about space and time complexity from traces.

Thus this thesis constitutes a proof-by-example that category theory is ideally suited to the

task of describing and manipulating abstract concepts from the world of practical computing.

The problem of execution tracing illustrates the fundamental point that category theory illumi-

nates software engineering. In this case, not by producing yet-another-better trace system, but

rather by providing a well-justified theoretical basis for all correctly engineered tracing systems

and tools in general, adequate to support practical tracing requirements for any given language,

independent of the specific details of syntax and semantics.

1.2 Why Category Theory

Category theory was chosen as a meta-level design tool because isomorphism makes

it possible to discuss tracing in abstract, categorical terms, independent of language

syntax and semantics, and thereby use the fact that every category has a dual to show

there exists a unique alternative to the existing notion of trace found in computer

science.

18



No prior knowledge of category theory is assumed on the part of the reader. As categorical

concepts are used they are introduced with the necessary explanation.

Two specific benefits are derived from category theory here, the details of which are elabo-

rated in chapters 4 and 5:

i. It order to achieve the aims of this project, it is necessary to discuss abstract notions

of tracing (i.e., independently of any specific programming language), while nevertheless

retaining mathematical clarity and precision. Without clarity of definition and precise rea-

soning, any discussion regarding abstract or general matters can quickly become uselessly

vague.

Category theory provides an effective solution to this problem. The fundamental, category-

theoretic idea of isomorphism provides a useful notion of abstract sameness, which makes

it possible to discuss execution trace independently of any specific programming language

syntax or semantics. Nevertheless, this abstract treatment of tracing allows a precise

specification of what a trace can contain, given a specification of syntax and semantics for

a particular language. Isomorphism is explained in detail in section 2.1.2.

ii. Any programmer who might be starting from a point of dissatisfaction with the existing

concept of the trace monoid found in computer science as a basis for a practical execution

tracing system (the reasons why this happens are explored in details chapters 3 and 4)

is apparently faced with an insurmountable task to select a suitable alternative from the

multiplicity of potential designs, unconstrained by any guidance as to what constitutes a

useful and effective design. Any search for an alternative model of execution trace would

be presented with a seemingly infinite array of possibilities, with no suggestion as to which

should be chosen.

The fundamental, category theoretic concept of duality is used in this thesis to identify the

single alternative to the existing, abstract notion of trace found in computer science (the

trace monoid), by identifying a dual to the semantic basis for that abstraction. Duality is

explained in detail in section 2.3.

The (1) trace monoid (8) denotational trace.

is induced
by

(2) operational
semantics

(7) denotational
semantics

that
induces a

which has the
abstract, categorical

formalisation as

(3) final
coalgebra
semantics

(6) initial
algebra

semantics

the abstract,
categorical
formalisation of

that is
semantics

structured as

(4) a final object in
the category of
F -coalgebras.

(5) An initial object in
the category of

F -algebras

is the
structural basis
for

Table 1.1: The Argument from Categorical Duality for Denotational Trace
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As an aid to the reader who is already well versed in computer science and the applications

of category theory to computer science and software engineering, the argument from categorical

duality that is presented in this thesis is summarised in table 1.1. A reader who is not already

familiar with the concepts referred to in the table can find an explanation of these in the cor-

responding sections referenced below. In either case, the table provides a convenient reference

as to the relevance of key notions introduced later. Table 1.1 is meant to be read down the

two left-hand columns, then back up the two right hand columns, the argument proceeding as

follows: The

1. trace monoid (see section 4.3) is induced by

2. operational semantics (see section 4.2) which has the abstract, categorical formalisation

as

3. final coalgebra semantics (see section 5.1.1), that is, semantics structured as

4. a final object in the category of F-coalgebras (see section 2.3).

At this point, the argument quite literally hinges on the duality between initiality in the

category of F -algebras and finality in the opposite category of F -coalgebras (see section 2.3).

Having formally identified operational semantics as final object in the category of F -coalgebras,

the categorical tool of duality is used to determine a unique, dual alternative: the initial object

in the category of F -algebras (see section 2.2.3). Reversing the logic by which the basis for the

trace monoid was deconstructed, an alternative theory of trace from this alternative, dual basis

is built:

5. An initial object in the category of F -algebras (see section 2.2.3) is the structural basis

for

6. initial algebra semantics (see section 5.1.2) the abstract, categorical formalisation of

7. denotational semantics (see section 5.1.2) that induces a

8. denotational trace (see section 5.2).

The generation of this novel concept of denotational trace would not have been possible

without the use of category theory. Firstly, via the categorical notion of sameness provided

by isomorphism it is possible to precisely characterise the mathematical basis for operational

semantics, the semantic basis for the trace monoid. Then, via the categorical notion of duality,

a unique and justified alternative basis was found for tracing. In chapter 5, it is shown that this

alternative basis for tracing is not only sound and justified from a categorical perspective, but

critically, also addresses the practical requirements for execution tracing (see section 3.3) unmet

by the existing trace monoid (see section 4.5) — thereby solving the problem that motivated

this thesis.
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However, the use of category theory is not without challenges. A key difficulty in making

use of category theory for software engineering (or any other discipline, for that matter) is

inherent in the challenge of grasping any new, abstract notion; usually this is done by reflecting

upon one or more familiar, motivating examples that are abstractly ‘the same’, as examples of

the ‘pattern’ of interest. It is often the realisation that familiar artefacts previously considered

distinct, are in fact examples of an abstract pattern shared in common, that provides an ‘aha’

moment where the abstraction is understood at least partially, if not in its full generality. Thus

the examples presented here to illustrate key abstractions from category theory, are deliberately

chosen to appeal to the intuitions of a programmer, be they a computer scientist or software

engineer. This differs somewhat from the more usual presentation of category theory as it is

described to a general, mathematical audience or for the computer scientist.

Mac Lane’s seminal Categories for the Working Mathematician [Mac98] is considered the

foundational textbook in category theory, and both Pierce [Pie91] and Asperti and Longo [AL91]

have written books introducing category theory to computer scientists. However, textbooks

explaining the relevance of category theory to the software engineer are yet to be written.

In their absence a helpful source of category-theoretic examples appealing to the intuitions

of programmers is the so-called ‘blogosphere’. These Internet articles are written with the

practical programmer in mind with a view to popularising category theory, as opposed to the

peer-reviewed computer science literature which tends to be more mathematical in nature and

speaking to a different audience who face different practical problems. Internet sources such

as these will be cited sometimes, when they provide examples particularly well suited to a

programmer, in preference to strict formal definitions or examples from mathematical fields

normally unrelated to practical programming.

Here the goal when introducing each category theoretic abstraction is to foster a sound

intuition as to why that abstraction matters, i.e., to use these abstractions to solve a real

problem in practical software engineering, rather than provide exhaustive treatment of their

definitions and properties. Here Strachey’s injunction is followed: “our motto should be ‘No

axiomatisation without insight’” [Str00]. A mathematically-inclined reader can access a wide

array of resources on category theory starting with the textbooks listed above in the previous

section.

Category theory has been famously called “abstract nonsense” by enthusiasts and detractors

alike. Behind this humorous comment lies a real, potential risk when using category theory: that

it can be mis-applied; used where it adds no other value than a new set of obscure terminology,

thereby turning an otherwise simple problem into one that is obfuscated by mathematics,

resulting in high walls inaccessible to outsiders. This risk was recognised by Goguen, a pioneer

in the use of category theory in computer science, who warned against “specious generality”

and “categorical overkill” [Gog89]. Here, concepts and abstractions from category theory have

been introduced sparingly and specifically to derive the benefits outlined above. Two concepts

from category theory are leaned upon particularly heavily here in order to derive these benefits:
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isomorphism and duality. But before these two ideas can be introduced, the basic concept of a

category and its relevance to software engineering needs to be explained.
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Chapter 2

Category Theory for

Software Engineering

Category theory has been used widely and successfully in computer science for decades,

and more recently for a variety of applications in software engineering, establishing

it as a key mathematical basis for this engineering discipline.

2.1 Categories

Consisting of just the basic template of an associative composition operation, cate-

gories can be used to describe many composable artefacts found in computing.

On the face of it, from the pragmatic programmer’s näıve point of view, it’s not obvious there

is any deep fit between mathematics and program code. The obvious mathematical model

of functions as found in set theory makes a poor substitute for functions in programming.

While it is certainly the case that it is possible to model many functions found in programming

as a mathematical function between sets, in general set theory does not provide a framework

adequate to describe typical program behaviours. For example, consider some Pascal function1:

function f ( a : Char ) : Char;

begin

result := b ( a );

end;

We might attempt to model this in set theory as:

1In the Pascal language variant used for examples here and later, result is a special identifier for the function

result, a convention found in the popular Borland implementations of the language. Otherwise these examples

should be intelligible to anyone familiar with any variant of Pascal, or for that matter most programming

languages since 1960.
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f(a) = b(a) (2.1)

where

f : Char→ Char (2.2)

where Char is the set of ASCII characters2.

However objections immediately arise:

1. What would b look like if b has either zero or multiple arguments, or doesn’t return a

result (i.e., is a procedure)?

2. What happens if an exception is thrown by the Pascal function b? What then is the type

of the mathematical function b?

3. What if b performs some input or output? How do we then attempt to write b?

4. What if b modifies some internal or global state?

A software engineer is also likely to be considering questions such as:

• What if b enters an infinite loop and fails to terminate?

• What can I know about the memory consumption of mathematical function f?

In general, a programmer will have in mind computational considerations such as non-term-

ination, non-determinism, concurrency, algorithmic space and time complexity, etc.

The first objection can be easily dismissed. Procedures can be easily accommodated via

functions which return the unit type, often written as “()”, known as “void” in the C pro-

gramming language family, indicating a type which contains only one value, and therefore no

information. Functions which take no arguments are handled similarly. Finally, a function of

two (or more) arguments can be described equivalently as a function of a single argument that

returns a function that in turn handles the next argument and so forth, i.e., the well known

technique known as “Currying” in honour of the famous logician Haskell B. Curry (although

the technique itself is due to Schönfinkel) [Rey72].

Nevertheless, basic set theory is not sufficient here; it has no answer for the remaining

objections enumerated above. Instead, we are seeking a mathematical framework that is rich

enough to describe the abstractions found in programming. In the words of Scott (in [Pie91],

p. xi):

2Here the symbol “:” indicates a type signature, and can be pronounced, “has type,” and “→” is used in the

conventional way to mean that the type on the left is the domain or input type, and the type on the right is

the output type or range.
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What we are probably seeking is a “purer” view of functions: a theory of functions

in themselves, not a theory of functions derived from sets. What then, is a pure

theory of functions? Answer: category theory.

Asperti and Longo [AL91] explain how category theory answers Scott’s question in their sum-

mary of the value of category theory to the computer scientist:

. . . a crucial point, though, is that the categorical notion of morphism generalizes

the set-theoretical description of function in a very broad sense, which provides a

unified understanding of various aspects of the theory of programs

The morphisms referred to by Asperti and Longo (sometimes called arrows), are fundamental

to the structure of categories: categories are defined in terms of such morphisms between

objects. By design, category theory says nothing about the internal details or structure of

the objects, except to define objects solely in terms of the morphisms relating them together.

Here we find Scott’s “pure theory of functions”, the notion of morphism is sufficiently general

and abstract that it can accommodate notions found outside of set theory, in the domain of

computer programming.

Definition 2.1. Every category consists of three components:

1. a collection of objects,

2. a collection of morphisms (also known as arrows) relating those objects, with each mor-

phism having specific and in general different objects for their range and domain, and

3. a binary operation called composition, written as ◦ in infix manner, which composes

morphisms (assuming the objects that are the range and domain of the morphism corre-

spond).

Thus a category C with morphisms:

f : A→ B (2.3)

g : B → C (2.4)

h : C → D (2.5)

over objects A, B, C and D has by definition a binary composition operation ◦ such that

g ◦ f : A→ C (2.6)
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and

h ◦ g : B → D. (2.7)

In addition a category must obey two laws:

1. The associative law requires that composition is an associative operation. For f , g and

h in the category C above, this means:

h ◦ (g ◦ f) = (h ◦ g) ◦ f (2.8)

i.e., composition of multiple morphisms produces the same results regardless of the order

in which sub-compositions are applied.

2. The identity law requires that categories have an identity morphism for every object, X:

1X : X → X (2.9)

such that for every morphism, e.g. f above with domain object A and range object B

1B ◦ f = f ◦ 1A = f. (2.10)

i.e., for every morphism there are both left and right identity morphisms under composi-

tion.

2.1.1 Associativity

By enforcing the associative law, categories provide a minimal and abstract, yet

effective system of composition for a wide variety of possible applications.

Any (so-called composition) operator conforming to these laws above provides the basis for a

category. In effect, these laws provide a system where morphisms can be ‘composed’ together to

combine them, that simply ‘works’ as would reasonably be expected: the composition operator

for any category is associative, i.e., three or more morphisms composed together in the same

order, have the same meaning, regardless as to the order in which the composition operator is

applied, or the expression is constructed.

Without this requirement that composition is associative, the semantics of morphisms when

composed would be dependent on the order of definition of their sub-components. Historical

issues due to the one-pass compilers of the past aside, computer programmers in general expect

that the meaning of their programs or contents of their data structures are not affected by the

precise order in which their various sub-components are declared or constructed, e.g., in the case
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of the ubiquitous string of characters found in computer programming, a programmer certainly

expects that ("a" + "b") + "c" results in the same string as "a" + ("b" + "c") (where

+ performs string concatenation). Because it is associative, + provides a suitable composition

operator as the basis for a category, where the empty string "" acts as both left and right

identity (in section 4.3 this category is identified as a monoid). The programmer’s expectation

is that the same string results for either example above, regardless as to the order in which the

concatenation operators are applied. Conversely, if a composition operator were defined that

was not associative, then the resulting system for the construction of strings would be difficult

to use and reason about, because the order in which substrings are concatenated would matter,

violating the programmer’s expectation above.

The programmer’s intuitive expectation of associativity extends to many other situations

when programming, for example in a C/Java-like language where calls are made to some func-

tions or methods a, b and c:

{

a(...);

b(...);

}

c(...);

is assumed to be effectively the same as:

a(...);

{

b(...);

c(...);

}

Here again, if we imagine the “;” syntax element as an infix statement separator (and ignore

the trailing “;”s at the end of the blocks), then once again an associative assumption is at play:

{a ; {b ; c}} is equivalent to {{a ; b} ; c}.

2.1.2 Identity

With the addition of the identity law, categories support a precise notion of abstract

sameness, isomorphism.

Thus far the discussion above has focused on how the associative category law enforces a system

where composition behaves reasonably, raising the question as to what purpose the identity law

serves. For the first of the examples given in the previous section, it is clear that character

strings would be more difficult and in some cases impossible to work with in programs if there
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was no way to specify an empty string. More generally however, identity is an essential property

for a category, because the existence of identity morphisms in a category makes it possible to

define the fundamental, categorical notion of isomorphism. This concept of isomorphism is of

key relevance to programmers because isomorphism provides a precise and formal definition

of their intuition as to the ‘abstract sameness’ between two (categorical, software) artefacts.

Isomorphism provides a looser, but nevertheless precise, notion of sameness than the familiar

mathematical idea of equality.

Mazur’s When is one thing equal to some other thing? [Maz08] provides a brief but excellent

explanation of how isomorphism as a notion of abstract sameness is central to the basic aims,

capabilities and concepts of category theory3. Mazur’s observation that,

The heart and soul of much mathematics consists of the fact that the “same” object

can be presented to us in different ways.

could be said equally well of the task of computer programming, where patterns of abstraction

arise frequently, in diverse situations, nevertheless recognised as “the same” by the programmer.

It is an essential instinct for an experienced programmer to identify and ‘factor out’ common

code, or to capture a repeated pattern or design in a type, function, object, module etc (as

provided by the features of their programming language). Similarly, Mazur’s further observation

that,

Few mathematical concepts enter our repertoire in a manner other than ambiguously

a single object and at the same time an equivalence class of objects. [author’s

emphasis]

could be said as easily of the abstract ideas found in computer programming.

Thus, one of the great virtues of category theory for computer programmers is that it

provides a precise and formally-defined notion of an abstract object or abstraction, that is

entirely compatible with their intuitive notions here.

Definition 2.2. An isomorphism is a morphism which admits an inverse, i.e., for some mor-

phism f :

f : X → Y (2.11)

if there exists another morphism, by convention called an inverse and written f−1:

f−1 : Y → X (2.12)

such that

3While targeted at the general mathematical reader, Mazur’s paper should be quite readable to a wide audi-

ence including most programmers, except the latter sections which require a deeper mathematical background.
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f−1 ◦ f = idX (2.13)

and

f ◦ f−1 = idY (2.14)

then f (and for that matter f−1) is called an isomorphism, and X and Y are by definition

isomorphic.

Equation 2.13 and equation 2.14 state that the ‘inverse’ morphism works as would be ex-

pected, i.e., that identity is preserved and the application of a morphism followed by its inverse

gives back the original object as we would anticipate. These two equations also show the

importance of the identity law: the existence of the identity morphisms makes it possible to

define isomorphism, the foundational concept of sameness provided by category theory.

Given that it is possible to undo or reverse an isomorphism via its inverse, an isomorphism

must by definition provide a faithful translation of one object to another, with no loss of

information. This means that any two categories (or objects) that are related by an isomorphism

can be used interchangeably and are in this sense effectively ‘the same.’ A programmer or

computer scientist might say they are, “the same, just renamed,” or “the same pattern” where

f would be the “renaming” function, and f−1 an ‘undo’ function which reverts back to the

original naming. All objects that are isomorphic are said to form an isomorphism class –

the collection of objects which share the abstraction in common. In this way, by providing a

formal notion of abstraction derived from isomorphism, category theory facilitates statement

of abstract, general ideas while retaining mathematical precision.

Isomorphism is such a fundamental notion in category theory that when declaring the

uniqueness of an abstraction, the unstated qualifier “up to isomorphism” is rarely explicitly

stated. It is common to refer to a specific example of a category or abstraction, when in fact

the entire isomorphism class is implicitly under discussion. For example, the expression “the

monad” might be used when what is actually meant more precisely is “this monad or any other

monad up to isomorphism.”

Mazur goes on to say,

One of the templates of modern mathematics, category theory, offers it’s own for-

mulation of equivalence as opposed to equality ; the spirit of category theory allows

us to be content to determine a mathematical object, as one says in the language

of that theory, up to canonical isomorphism.

. . .

A uniquely specified isomorphism from some object X to an object Y characterized

by a list of explicitly formulated properties—this list being sometimes, the truth

be told, only implicitly understood—is usually dubbed a “canonical isomorphism.”
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The “canonicality” here depends, of course, on the list. It is this brand of equiva-

lence, then, that in category theory replaces equality : we wish to determine objects,

as people say, “up to canonical isomorphism.” [author’s emphasis]

Thus we can say not only that two artefacts are abstractly the same, but that in addition, they

are equivalent: a looser notion than equality, but stronger than isomorphism. The additional

constraint that there must be no choice involved in the isomorphism — that it is unique —

makes the isomorphism by definition canonical. There may be many example artefacts that

are isomorphic to a particular abstraction, but only one canonical isomorphism is admitted4.

Conversely the concept of equivalence of categories is a slightly looser notion of sameness

than isomorphism, that is consequently useful in a wider range of situations. In this case,

a morphism between two categories, composed with its ‘inverse’, does not necessarily result

in the same object as the original source object, as would be required by strict isomorphism.

Instead all that is required for categories to be equivalent is that the target of the morphism

composed with its ‘inverse’ is isomorphic to the identity morphism on the original source object.

Equivalence is effectively isomorphism up to isomorphism.

The essential point here is that category theory provides various formal concepts of same-

ness, looser than strict equality, but in alignment with the intuitive notions programmers have

regarding objects that are ‘essentially’ or ‘abstractly’ the same. This is of great practical sig-

nificance, because in large part computer programming is concerned with the identification and

use of repeated abstractions at many levels.

2.2 Exploiting Associativity and Identity

Categories provide an effective basis for domain specific languages both in mathe-

matics where they originated and in computer programming, and come equipped with

a notion of equivalence that gives precise description to a programmer’s intuition as

to how two program artefacts may be abstractly ‘the same’, thereby establishing cat-

egory theory not only as a mathematical basis for programming but as a rigorously

specified program design pattern catalogue.

To put all this in terms more familiar to programmers, an important motivating example of what

a category provides – via the associative law – is a set of basic requirements for an effective,

minimal, domain specific language (DSL)5. The notation presented in the example of string

concatenation above provides a tiny but sufficient DSL for constructing character strings, and

4In this thesis most examples of isomorphism are of the former kind (examples of abstract sameness),

although critically, the notion of canonical isomorphism is used in chapter 5 in defining a key result of this

thesis: canonical trace.
5From this perspective essentially all of mathematics can be seen as various categorical DSLs.
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the second example above is a DSL for constructing sequences of statements, i.e., the familiar

notion of block structured sequences of statements as found in most languages since Algol 60.

The purpose behind any DSL is to make it convenient to combine elements of interest into

some larger expression, data structure, computation, etc. Any such language must include,

either implicitly or explicitly, a composition operation to achieve this combination of elements

into a larger whole. What the associative law requires is that this DSL should behave reasonably

from the point of view of a programmer, such that the meaning of an expression in that

language is independent of the order in which the components of that expression are defined or

constructed. This understanding of a category as a minimal but sufficient system for effective

composition has been called the “composition design pattern” [Gon12a]. It is this very basic and

highly generic system of composition that ‘works’, provided by the category — requiring that

a category fulfill just two simple laws — that underlies the widespread existence of categories

throughout many fields of mathematics as well as in the domains of computer science and

practical programming.

The relevance and usefulness of category theory to computer programming is not limited to

the fact that category theory provides a descriptive framework suitable for discussing artefacts

found in computing in abstract terms. In recent decades, computer scientists have discovered

many structures already documented in category theory which are isomorphic to those found in

computing. The realisation that a structure in computer science is already known in category

theory, gives a programmer immediate recourse to whatever formal properties and governing

laws have been already established in precise, mathematical terms. It should perhaps not be

surprising that computer programmers and mathematicians may face some similar intellectual

challenges for which similar solutions have been found.

From the point of view of a software engineer, isomorphism is the category-theoretic notion

which precisely captures the concept of abstract sameness inherent in the notion of design

pattern. In this sense category theory can be used as a descriptive framework for program

design patterns6. It has already been observed that the basic structure of the category itself

provides a design pattern for compositional domain specific languages, however a number of

other, more specific patterns exist within category theory, each serving various useful purposes

in programming.

This perspective on category theory as a design pattern catalogue has been used partic-

ularly fruitfully in the development of the Haskell Typeclassopedia [Yor09] that provides a

design pattern catalogue, in the tradition of the famous Design Patterns book [GHJV93], but

specifically for functional programming in the Haskell language. Another, similar catalogue

of standard categorical constructions has been implemented in the ML language [RB88]. The

primary weakness of the Design Patterns book and “pattern” meme as it stands is that ad hoc

methods are used to describe and categorise the patterns which are themselves selected in an

6Isomorphism provides a more abstract concept than that of just program design pattern, although this

provides an intuitive and fairly general example, familiar to programmers.
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ad hoc fashion, based solely on the intuition and experience of the authors. Certainly many

useful patterns have been identified and catalogued. But the significance of category theory as

a rigorous framework for describing program design patterns and the corresponding laws which

govern them, is that it is both more precise and powerful because it is mathematically – and

therefore programmatically – tractable. Among other benefits discussed later in this chapter,

category theory offers the software engineer a collection of well defined, composable (program)

abstractions governed by clearly understood laws, for use when formulating a design, as is taken

for granted in other engineering disciplines.

2.2.1 Monads

The monad extends the categorical notion of composition to include functions that

manipulate state or return exceptions, perform input and output and exhibit a wide

variety of other program phenomena including non-determinism, concurrency and

parsing.

Having identified that the category provides a design pattern for compositional systems such as

DSLs, we can return to the remaining objections raised but not yet addressed in section 2.1: i.e.,

how to model exceptions, I/O and mutable state? Wadler [Wad90] was the first to show how

monads can be used to model many program phenomena including mutable state, exceptions,

parse text and invoke continuations. Monads also subsequently provided an elegant solution

for I/O, concurrency, exceptions and foreign-language calls – the so-called “awkward squad”

[Pey01] – being practical necessities that had previously proven difficult to accommodate in

pure, functional languages.

The consequence of these practical successes for the monad is that it has become the stan-

dard structuring notion used in Haskell – by effectively providing embedded DSLs – for all of

the various applications already mentioned and a great many others. The Haskell language has

been extended with special syntactic sugar for specifying monadic computations, the “do” no-

tation, making monads particularly easy to use in practice. However the usefulness of monads

is not limited to either the Haskell language specifically, or the domain of functional program-

ming more generally. In fact monads arise naturally in many places when programming, by no

means limited to the functional programming paradigm; they are also ubiquitous in imperative

programming [Pip06]. The broad applicability of the monad to describing many commonly

found and interesting notions in programming is due to its very abstractness.

Because the monad captures precisely some notions underlying a wide variety of artefacts

that are normally considered distinct, is a topic that is famous for having spawned a large

number of tutorials [Has14], each providing one or more different software artefacts already

familiar to programmers as intuitive examples. Here the tradition is continued by providing a

simple motivating example, in the hope that by identifying explicitly the monad that arises in
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a familiar context, the same abstraction can be seen elsewhere, especially with the aid of the

many other tutorials.

The essential insight behind the notion of the monad, and thus the usefulness of category

theory here, is that computer program functions that cannot be described in basic set theory

are still ‘function-like’ in the mathematical sense, if the range of the function is modified

appropriately. For example, consider functions that might sometimes return nothing, versus

some other value(s) of interest, such as the lookup of a database. Here we can model the

lookup of a key in an index or map, with an intentionally näıve and incorrect function7 (i.e.,

by deliberately ignoring that fact that a lookup might fail):

lookup :: key -> Map key val -> val

where the lookup function takes a key of some type, a Map8 from keys to values, and returns

the value corresponding to the given key. This lookup function can then be used to interact

with a particular database of information stored in maps, such as9:

type AutoDB = Map String

( Map String

(Map String Integer) )

autos :: AutoDB

autos = fromList

[ ("Ford" , fromList [("Falcon", fromList [ ("XE", 1986)

, ("XA", 1973) ]]

, ("Porsche", fromList [("928" , fromList [ ("S2", 1986) ]]

, ("Volvo" , fromList [("850" , fromList [ ("T-5", 1997) ]]]

Now it is possible to construct a compound lookup for some information of interest, e.g.:

lookup "S2" (lookup "928" (lookup "Porsche" autos))

which would return the result 1986. This specific lookup can alternatively be expressed explic-

itly as function composition:

(lookup "S2" . lookup "928" . lookup "Porsche") autos

7Here we use the Haskell language for the example, because it is the language in which the notion of the

monad is most commonly and explicitly expressed. It is therefore the most convenient language in which to

express a monad explicitly.
8The Map type used here is essentially the same as the standard Haskell Data.Map type of the same name.
9Here the fromList function creates a Map from a list of key, value tuples, exactly like the Haskell Data.Map

version.
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However, as was noted earlier, the database can fail to find information in response to a

lookup, so we need to define a new type to represent an enhanced range for a lookup morphism:

data Maybe x = Nothing | Just x

The constructor Nothing represents lookup failure, or otherwise the value of interest, some x,

is returned as Just x10. Now the type signature of our new, improved lookup function is:

lookup' :: Map key value -> key -> Maybe value

Now it is clear how to handle lookups that find nothing, but it is no longer possible to

compose the lookups as was done above with lookup, and the cross-cutting concern of handling

lookup failure and short-cutting with a Nothing result is intermixed throughout the function:

f :: String -- manufacturer

-> String -- model

-> String -- type

-> AutoDB

-> Maybe Integer

f man mod typ

= case lookup man autos of

Nothing -> Nothing

Just models -> case lookup mod models of

Nothing -> Nothing

Just types -> case lookup typ types of

Nothing -> Nothing

Just (_, year) -> year

Composition no longer works, because the range of the morphism has been changed, i.e.,

the output type of the lookup function has changed, so the types no longer allow the functions

to compose. Whereas previously these types allowed easy composition, with each subsequent

call to lookup producing the result needed by the next:

(lookup "Porsche") :: Map ... -> Map ...

(lookup "928") :: Map ... -> Map ...

(lookup "S2") :: Map ... -> ...

Now the following types are at play:

(lookup' "Porsche") :: Map ... -> Maybe (Map ...)

(lookup' "928") :: Map ... -> Maybe (Map ...)

(lookup' "S2") :: Map ... -> Maybe (...)

10This type Maybe is already defined in the Haskell standard prelude.

34



Following the programmers’ instinct to factor out the repeated, housekeeping code asso-

ciated with Maybe as found in the function f above, we define a new composition operator,

conventionally called bind:

bind f g = case f of

Nothing -> Nothing

Just x -> g x

It is once again possible to compose lookup functions:

f' man mod typ = bind ( bind (lookup man autos)

(lookup mod) )

(lookup typ)

However what we really want here is an infix operator, as this is the usual form in which we

encounter a function composition operation. Haskell already has a synonym for the infix version

of bind:

(>>=) = bind

This provides an application operator, which we can in turn use to define a true composition

operator11:

g >=> h = \x -> g x >>= h

Now it is once again possible to use an infix composition operator to define a query, with

the bookkeeping details of the Maybe type now hidden under the hood of the new composition

operator:

f'' :: String -- manufacturer

-> String -- model

-> String -- type

-> AutoDB

-> Maybe Integer

f'' man mod typ = lookup man

>=> lookup mod

>=> lookup typ

At this point, we have potentially defined a new category where >=> is the composition

operator. All that remains is to prove that the category laws (as defined in the previous

section) are met. The identity law can be met by identifying a function, conventionally called

return:

11Already defined in the Control.Monad Haskell module.
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return >=> g = g -- left identity

h >=> return = h -- right identity

Here, the constructor Just provides a suitable function. >=> as the composition operator needs

to meet the associative law, i.e.:

k >=> (h >=> g) ≡ (k >=> h) >=> g (2.15)

This technique whereby a new composition operator is defined in order to allow functions

with a modified range to compose and thereby form a category is due to Kleisli [Mac98]. The

operator >=> is often called Kleisli composition.

Since the type Maybe – introduced here so as to illustrate the motivation for monads –

already exists in the Haskell standard prelude, this abstraction can be used as-is as a software

engineering abstraction governed by well understood laws. Maybe is already known to fulfill not

only the category laws, but the monad laws as well, the additional stricture being that a single

function (usually called return) acts as both left and right identity. This additional restriction

with respect to the structure of a category, makes the monad an example of a monoid, an

abstraction explored further in chapter 4.

There is no engineering basis here to re-invent the wheel and prove that Maybe obeys the

category and monad laws. Nevertheless, the programmer should be able to convince themselves

easily enough that Just when composed with any other lookup will simply pass along the result

unmodified, so it will indeed act as left and right identity. Similarly, it should be relatively

easily apparent that composing multiple lookups with >=> will result in a compound query

where lookups occur in the same order, regardless as to the order in which the components of

the lookup were constructed. By complying with the category laws, a well-behaved DSL for

database lookups has been produced.

2.2.2 Functors

Functors provide a mechanism to combine the functionality of various categories in

a consistent fashion that preserves the category laws; a pattern already familiar to

programmers as type-level operators, as well as many other program phenomena.

It has been shown in the previous section how the functions, procedures and operators in a

language or program can be given a categorical description as morphisms with objects corre-

sponding to the various program types over which they range, even when those functions etc.

exhibit a wide variety of program phenomena. Together the morphisms (functions etc.) and

objects (types) form a category, with the composition operation being the familiar notion of

(program) function composition in the simple case of pure mathematical functions, or Kleisli

composition in the case of various other program behaviours in the context of a monad. By

enforcing the associative law for composition, category theory provides a framework in which
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these program functions can be composed consistently. One such example category is Hask,

having the types in the Haskell language as its objects, with the morphisms being the various

functions between them.

However the categorical notion of morphism is, as was observed in section 2.1, a very general

one indeed, and not limited to the description of program functions, procedures etc. Morphisms

can equally well be used to describe type-level operations, which rather than manipulating pro-

gram data at run time, instead manipulate program types statically, to derive new, compound

or derived types. To extend the example of Hask, a type operator can be applied to any

Haskell type, i.e., the entire category of types (objects), such that it constitutes an operation

where both the source and target are categories (in this case both are Hask). Such mappings

between categories are known as functors. More specifically, the example of a type operation is

an endofunctor, meaning that the source and target categories for the functor are the same (i.e.,

whatever category contains the types of the language in question as objects). The “endo” prefix

indicates that the domain and range are the same. In the case of Hask we want the category

of Haskell types to be closed under any conceivable type operation, so these operations must be

endofunctors. Nevertheless, in general, functors do not necessarily have the same source and

target category.

Functors are morphisms in the category of categories12. Functors provide a mapping be-

tween categories, and must preserve composition. Morphisms that previously composed (their

domains and ranges permitting) in the source category must still compose when mapped into

the target category, and the identity morphisms from the source category must continue to

work as identity morphisms when mapped into the target category. Functors map objects

and morphisms in the source category to corresponding objects and morphisms in the target

category in this ‘structure-preserving’ way.

To continue with the example of (type) operations applied to Hask, we can define the well-

known polymorphic cons-list as a type operation that takes an existing type and produces a

new type being a cons-list of such elements:

data List a = Cons a (List a)

| Nil

where a can be any type. We can now say List Integer to define a List of Integer.

Here the functor List provides the required mapping from the object Integer in Hask to

the object List Integer (also in the category Hask). However, a mapping between morphisms

12Readers familiar with Russell’s paradox will note that the same problem lurks within this category of

categories, which apparently is required to contain itself. To solve this, a distinction is drawn between small and

large categories, where small categories contain morphisms between objects, versus the other large categories

(i.e., non-small categories). This allows the non-paradoxical definition of the large category Cat, which is

implicitly in use in the discussion in this section, being the large category that contains all of the small categories

and functors between them (but not itself).
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is still required to define a complete functor. A mapping from morphisms with the domain of

Integer and morphisms with the domain of List Integer is needed, and more generally,

similar handling for any type. This functorial mapping is conventionally called fmap:

fmap :: (a -> b) -> f a -> f b

where f is some functor. For the List functor specifically what we have is:

fmap :: (a -> b) -> List a -> List b

fmap f Nil = Nil

fmap f (Cons x xs) = Cons (f x) (fmap f xs)

This is a mapping which, when applied to any function that operates on an element con-

tained in a List, promotes that function to operate over the entire list (historically, fmap is

known in functional programming as map when applied to a cons-list type as it has been done

above). The significance of this is not trivial. Instead of having to write a raft of specialised

functions for operating on Lists, we can reuse any function which operates on a single element

of the list. Here the traversal of the compound data structure of a list is encapsulated in the

single function fmap.

This functorial mapping of morphisms provided by fmap is sometimes referred to as ‘lifting’

a morphism from one category into another. This terminology is usually applied where the

target category is a monad, e.g., from the standard Haskell module Control.Monad:

liftM :: Monad m => (a -> b) -> m a -> m b

This function liftM takes a function from the category composed using (.) with identity

function id and ‘lifts’ it into a monad, being the category using Kleisli composition with identity

provided by return. This function liftM means that monads are also functorial, because any

regular function can be applied within a monadic context by lifting it, using liftM.

Functors provide a consistent and effective way to reuse the functionality provided by one

category, within another. Instead of having to construct a single category containing all of the

operations, structure and features required, an existing category can be used in the context

of another category, as needed, by simply implementing a suitable functor (e.g., the relevant

fmap function above). The effectiveness of this approach rests on the fact that a categorical

approach was used consistently throughout; the functor is structure-preserving, in that it pre-

serves the category laws from the existing category in the context of another category. It must

be emphasised that the role played by functors above as a type system operation (in the cases

above implementing lists and monads), is just one example of where functors can be found.

Gonzalez gives several other examples of the diverse places in programming where functors

exist [Gon12b]. Nevertheless, in every case, the usefulness of functors in programming stems

from the fact that they allow the functionality of categories to be combined easily and safely

(with composition and identity preserved).
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2.2.3 Initial Algebras

Initial algebras can describe not only concrete and abstract data types, but the pattern

of recursion naturally associated with these, in generic terms, for any type.

Perhaps the most famous, early example of isomorphism as it applies to computing was the

recognition by Goguen, Thatcher and Wagner that abstract data types are so-called initial

algebras [GTW78]. The term ‘abstract’ used with respect to data types in this context refers to

machine independence, where the precise encoding of primitive types such as Booleans, char-

acters in various encodings, integers, floating point numbers, etc., is not the focus of attention.

Instead the data types of interest are portable, compound types, that combine existing types

to form new derived types. Datatypes as known by programmers – that happen to be abstract

with respect to the precise representation of the data – are structurally identical to what math-

ematicians already understand to be an initial algebra. They are abstractly the same (i.e.,

isomorphic, or the same up to isomorphism), in that they both capture precisely the same

abstract notion, while having different terminology and referents for the specific objects in each

case. But the sense in which a programmer considers all abstract data types to be the same, is

identical to the mathematician’s view of all initial algebras as the same.

The insight that initial algebras are structurally the same as abstract data types starts first

with the realisation that a concrete data type is a many-sorted algebra, an observation first

made by Goguen [GTW78]. The mathematical notion of an algebra consists of a set together

with a collection of operations on that set. The set associated with the algebra is the (concrete)

data type of interest (called the carrier type), and the operations on that set are the constructors

for that data type. So the observation that concrete data types are algebras is tantamount to

saying that concrete data types are defined by their type name and constructors. For example,

given a concrete data type, say a list of integers, the following algebra could be constructed to

describe this:

< IntList, Cons,Nil > (2.16)

where IntList is the type and Cons and Nil are the constructors for it.

Effectively, the algebra packages up the type and associated constructors of interest into a

single object. The algebra is ‘many-sorted’ in that it can accommodate not just a single type,

but a collection of mutually recursive types. The mathematical concept of an algebra introduces

an addition requirement that constrains the types of the associated operations: the operations

must operate on the type of interest. Algebras like the example above are traditionally called

Ω-algebras (or sometimes Σ-algebras) and provide a signature characterising the concrete data

type of interest.

The connection between algebras and concrete data types can be extended to cover abstract

data types, that are parameterised with respect to other types. In the previous section, it
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was shown how functors provide just such type operators, when applied to the category of

the types in a programming language of interest. Type operators allow other data types to

be composed together into more complex types. Typically, in a language which allows user-

defined, compound types, there is some concept of both sum and product types (named after

the corresponding set theoretic operations). The sum of two types is a data type which can

contain either of those types but not both; examples include unions in the C programming

language family. The product of two types is a data type which contains both of those types,

examples include structs in the C programming language family and records in many others.

Other, familiar examples of functorial, compound types include array of ... in Pascal-style

languages, generics and templates in C++ and Java. All of these operations, whether user-

definable as they are in C++, Java and functional programming languages like Haskell, or

inbuilt syntax used to access a pre-determined and limited selection as in the case of Pascal or

C, can be understood categorically as functors. Just as Ω-algebras can model concrete data

types, F -algebras — defined in terms of some functor, F — can model abstract data types:

Definition 2.3. For an endofunctor, F,

F : C→ C (2.17)

an F -algebra consists of:

< A,α > (2.18)

where A, the carrier type, is an object in C, and α is a morphism in C, of the type:

α : FA→ A (2.19)

So far the identification of algebras with data types, including abstract data types, has

achieved very little from the point of view of a computer programmer. An alternative ter-

minology adds very little value in and of itself. In addition, the mathematical concept of an

algebra provides a description of some features of data types as understood in programming,

but not all. In particular, a great many Ω-algebras or F -algebras can be defined which do not

describe data types — the operations associated with the type need not be its constructors.

Data types are in some sense ‘special’ algebras, with additional constraints.

In particular, programmers are aware of the fact that there is a unique, natural way to

recurse over abstract (and concrete) data structures. Functional programmers know this pattern

of recursion as ‘fold’, which has been explored extensively in its application to cons-lists, as

well as many other structured data types [Hut99]. Object-oriented programmers are familiar

with the analogous, ‘visitor’ design pattern, being a standard pattern for traversing arbitrary

recursive data types [GHJV93]. A second, related feature of data types as understood in
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programming is that for any give type, there is a single way to construct each value — each

value in the type is distinct. This is a corollary of the unique pattern of recursion associated

with each type: each value can be constructed (recursively) in a single way.

The great practical usefulness of the algebraic and categorical approach introduced by

Goguen is that it provides a precise definition of these special features of data types: they

are initial algebras (in the category of all algebras for a given functor, or type constructor).

This mathematical definition captures precisely and formally the programmer’s intuition that

for any arbitrary data type, there is a unique way to recurse over it, and a unique construction

for each (consequently distinct) value. Initiality is formalised as follows.

Definition 2.4. An object, typically written 0 is said to be initial if for every object A, there

is precisely one morphism from 0 to A.

In order to specify what makes an F -algebra initial, we consider the category of F -algebras

(for any given functor/data type constructor, F ), F-Alg, containing objects such as

< A,α > (2.20)

and

< B, β > (2.21)

etc. The morphisms of F-Alg between these algebras are called homomorphisms. A homo-

morphism is structure preserving in the functorial sense, in that the relationship between the

carrier type and operations must be retained.

Definition 2.5. An F -algebra is an initial algebra in the category F-Alg when it is unique

(up to isomorphism) and there is a single homomorphism from it to every other F -algebra.

For an algebra to have this universal property of initiality it must contain the largest set

of information, with distinct values. It is in this sense that the initial algebra is special:

homomorphisms can lose distinctness, but the initial algebra is the once from which any other

algebra (in the same category) can be constructed.

The homomorphisms from an initial algebra to the others algebras in the same category

use the unique pattern of recursion naturally associated with a data type. While this has

been defined in mathematical terms, it nevertheless describes the operation already know to

programmers as constructor replacement. In this light, the objects of the category of algebras,

F-Alg, consists of all of the possible replacements for the constructors of that data type. The

abstract data type itself is the (initial) algebra from which all other algebras can be reached.

Returning to the example 2.16 above of the (initial) algebra associated with IntList, one such

constructor replacement might be:
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< Int, (+), 1 > (2.22)

i.e., the length function for IntLists.

In categorical terms the unique pattern of recursion associated with each data type is known

as a catamorphism. Here category theory has been able to formalise this familiar notion, and

generalise it to arbitrary data types. In effect, from the point of view of a programmer, initiality

gives arbitrary data types consistent semantics, i.e., it defines how to ‘fold’ over them in the

general case. Thus the intuition of an experienced programmer, developed through experience,

is formalised precisely, in general terms. An extended example of an initial algebra and the

associated fold operation is given in chapter 6.

Based on Goguen’s insight, patterns of recursion as they relate in general to arbitrary, ab-

stract data types have been a particular focus of research using category theory, and produced

results of practical relevance to computer programming. Meijer, Fokkinga and Patterson have

presented various well-known patterns of recursion categorically, as composable recursion com-

binators, that can be used to calculate programs from their specifications [MFP91]. Augusteijn

has used these recursion patterns to classify sorting algorithms and shown that the choice of

recursion pattern is the key design decision for these algorithms, as few remaining decisions

remain for the programmer once the pattern of recursion is chosen [Aug98]. In a similar, vein

Bailes and Brough have shown how these recursion patterns can be used as the basis for a

simplified, sub-recursive style of programming [BB13], and with Kemp, that this can therefore

provide a useful basis for program structuring as well as recovery of designs from source code

[BBK12]. Because category theory applies well to describing abstract type system structures, it

has therefore also been used as a basis for generic (polytypic) programming [BJJM99, Hin12].

Hagino has taken this categorical approach to programming to its logical conclusion, and de-

veloped a research programming language based explicitly on category theory [Hag87].

2.3 Duality

Category theory is useful not only for describing categories but also for manipulating

and reasoning about them at the meta-level; categorical duality ensures that every

category has a dual, i.e., every category-theoretic structure has a unique (up to

isomorphism) ‘opposite’.

Not only does category theory provide a powerful descriptive framework for abstract constructs

via isomorphism, and an effective basis for DSLs, equally importantly it allows mathematically

precise manipulation of the (categorical) program artifacts of interest it describes. In this way,

category theory can be used as a strategic design tool, to manipulate program artefacts at

the meta-level. One such categorical tool, central to the arguments presented in this thesis, is

duality – the fact that for every category there is a corresponding dual, ‘opposite’ category.
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Definition 2.6. Each category C has a dual or opposite category Cop, which has the same

objects as C, and morphisms in a 1:1 correspondence, such that if C has the morphisms:

f : A→ B (2.23)

g : B → C (2.24)

h : C → D (2.25)

where

h ◦ (g ◦ f) = (h ◦ g) ◦ f (2.26)

i.e., composition is associative, then Cop has the corresponding opposite morphisms, for each

of which the domain and range types are swapped:

f op : B → A (2.27)

gop : C → B (2.28)

hop : D → C (2.29)

where

f op ◦ (gop ◦ hop) = (f op ◦ gop) ◦ hop (2.30)

i.e., composition remains associative in the opposite category, as is required.

Not only do duals exist for the morphisms, but also for any statement made about the

category. We see this above in the relationship between the equations 2.26 and 2.30, being

the statement of the associative law in the original category C and the opposite statement of

associativity for the opposite category Cop. In general for some statement about a category,

lets call it S, we know that opposite law with statement Sop is also true of the opposite category.

This is known as the duality principle. Thus, not only can a dual be constructed from any

category, but also a dual exists for any statement made about that category. Pierce points out

that in this way, the necessary existence of duals is, “a convenient source of “free theorems”

about categories: once a theorem is proved, its dual follows immediately” [Pie91].

Duality is used in this thesis to justify and then develop a new theory of trace, dual to that

of the existing abstraction used in current theoretical approaches to tracing. By identifying

the existing category-theoretic structures underlying the existing notion of trace in computer

science (the trace monoid, presented in chapter 4), the dual structures are thus also known to
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exist, ‘for free’ (explored in chapter 5). By using duality this way, this thesis is most closely

related methodologically to the work of Meijer and Bierman [MB11], who use category theory

to explore the relationship between SQL and NoSQL, finding that these two models of data

storage are in fact unique alternatives to each other, being each other’s duals. A number of

other interesting duals have been identified in computer science, including the duality between

operational and denotational semantics [Ong95]. It is this fact that is ultimately used to identify

the alternative to the existing notion of trace in computer science (see chapter 5).

The duality between operational and denotational semantics (explored further in section 5.1)

is based on the duality between initial algebras and final coalgebras13. Coalgebras are con-

structed similarly to algebras, consisting of a carrier set and associated operations. However

unlike the requirement for algebras that the operations operate on the carrier set, in the case

of coalgebras, the operations produce the carrier type.

Definition 2.7. For an endofunctor, F,

F : C→ C (2.31)

an F -coalgebra consists of:

< A,α > (2.32)

where A, the carrier type, is an object in C, and α is a morphism in C, of the type:

α : A→ FA (2.33)

The F -coalgebra is the dual of the F -algebra. Similarly, just as an algebras may have the

universal property of initiality, a coalgebra may be final14:

Definition 2.8. An object, typically written 1, is said to be final (or sometimes terminal) if

for every object A, there is precisely one morphism from A to 1.

While initiality requires that any algebra can be reached from the initial algebra, finality says

the reverse: that final coalgebra is the target of a homomorphism from every other coalgebra

(in the category of F -coalgebras, F-CoAlg, for some functor F ):

Definition 2.9. An F -coalgebra is a final coalgebra in the category of F -coalgebras, F-CoAlg,

when it is unique (up to isomorphism) and there is a single homomorphism to it from every

other F -coalgebra.

13The “co-” prefix, conventionally means “dual of”.
14 Note that it is also possible for an F -algebra to be final, or an F -coalgebra to be initial, however these

structures have not proven to be of as much interest as the initial algebra and final coalgebra for computing

applications.
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The particular relevance of final coalgebras to computer programming is that they capture

a programmer’s intuition as to an abstract machine. Consider the familiar example of a stream:

of elements that can potentially be infinite (i.e., they might be produced by a non-terminating

process, but need not necessarily be so):

data Stream a = Another a (Stream a)

| Finished

With some functions to manipulate it:

head :: Stream a -> a

tail :: Stream a -> Stream a

and the corresponding coalgebra:

< Stream, head, tail > (2.34)

Here the coalgebra consists of the carrier type, but instead of constructors, the associated

operations are destructors.

Note that the Stream data structure is deliberately chosen to be isomorphic to:

data List a = Cons a (List a)

| Nil

This is to emphasise that this is just the familiar list structure in disguise, which when given

lazy constructor semantics as indeed it does have in Haskell, operates as a potentially infinite

stream.

Just as there is a unique pattern of recursion associated with each data type, there is a

unique pattern of corecursion for the Stream data type:

unfoldS :: (b -> Maybe (a, b)) -> b -> Stream a

unfoldS f b =

case f b of

Just (a,new_b) -> a : unfold f new_b

Nothing -> []

Functional programmers already know this design pattern as ‘unfold,’ and will recognise this

function as unfoldr, the ‘unfold’ for the basic list type, in disguise [HHJ13]. Looking at the

signature of unfoldS, the first argument to unfoldS is a generator function which takes a seed

(type b), and produces either a result (type a) and another seed, or nothing if it is finished.

Thus unfoldS takes a generator function and a seed, and repeatedly invokes the generator

function as long as it continues to return a result and a new seed, using the new seed for each

subsequent invocation.
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Here unfoldS captures a quite general and abstract idea (with respect to Stream): it

describes an abstract machine – the exact behaviour is parameterised – which is repeatedly

invoked using a seed to produce a list value and another seed, to be used in the next invocation.

If we generalise the ‘unfold’ to any type, x:

unfold :: (b -> Maybe (a, b)) -> b -> x a

then with a suitable choice of a, b and x types, an arbitrary selection of transition systems can

be implemented. This pattern of corecursion associated with final coalgebras, generalised to

arbitrary types is known as an anamorphism, the dual of the catamorphism presented in the

previous section.

The dual concepts presented in this section are summarised in table 2.1.

object: initial algebra final coalgebra

familiar example: data codata

recursion strategy: fold unfold

morphism: catamorphism anamorphism

intuition: abstract data type abstract machine

Table 2.1: Initial Algebras vs Final Coalgebras

2.4 Applications

This project adds to the diverse range of applications to which category theory has

been successfully applied in both computer science and software engineering, by using

several categorical ideas already well established in computing, for the novel appli-

cation of systematically exploring the semantic foundations for practical software

execution tracing.

Given the ubiquitous nature of the category, due to its basic and therefore widely applicable

structure – providing just associative composition and a notion of abstract equivalence – it

should be no surprise that category theory has proved useful in computer science since the late

1970’s, with Goguen’s identification of the isomorphism between abstract data types and initial

algebras being the earliest work to have a major impact on the field [GTW78]. This result is

used further in chapters 5 and 6. The use of category theory in computer science is now well

established having generated a huge body of literature, with textbooks by Pierce [Pie91] and

Asperti and Longo [AL91] giving an overview of the wide range of applications for which it has

been useful. Ehrig also provides an overview of the applications of category theory to computer

science [EGW98].

46



Category theory has also been useful in a diverse range of applications within software en-

gineering. It has been used to model multi-agent systems and communications [JMP05, Sob08,

Hua11, OD10] and to support model driven engineering [DM12]. Industrial applications include

“specification, synthesis and maintenance of industrial strength software” [HW00], the syntac-

tic problem of merging program sources in a commercial software system [NES05], industrial

applications of software synthesis [WHB01], tool support for complex software systems, us-

ing category theory as modeling language [KOK10], and for configuration of complex software

systems [Hil93]. Category theory has also been used in software engineering as both a meta-

ontology [JD01] and abstraction mechanism [CDJ01] for information systems, for database

engineering [Tot08] and as a unifying concept for information fusion systems [DK99].

Although Wadler was the first to explain the widespread usefulness of monads in computing

(as explained in section 2.1.1), the concept was popularised by Moggi who empasised their

ubiquity. Moggi used monads specifically for the study of programming language semantics

because they allow for a modular description of semantics [Mog89], in contrast to domain theory

as first introduced by Scott [Sco70], that despite having a long history of use in the description

of semantic domains, has the shortcoming that it is not suited to such modular descriptions of

semantics. In this thesis, category theory is used in exactly this way (among others) to make

it possible to speak in abstract, unified terms about the nature of execution tracing in relation

to program semantics (see chapter 5).

More generally, Goguen’s “A Categorical Manifesto” [Gog89] outlines several possible uses

of category theory in computer science:

1. formulating definitions and theories,

2. carrying out proofs,

3. discovering and exploiting relations with other fields,

4. formalising conjectures and research directions, and

5. dealing with abstraction and representation independence.

Category theory is used in this thesis for all of Goguen’s purposes. It is used to formulate

and define the problem being explored, by providing a formal characterisation of the semantic

basis for the trace monoid (see chapter 4). In chapter 5 duality is used to identify (and thereby

implicitly prove) the existence of a unique, well justified alternative semantic basis to the

existing one underlying the trace monoid. This use of duality exploits the relation between

concepts found in computer programming and in the mathematical field of universal algebra

— specifically the duality between initial algebras and final coalgebras, and the correspondence

these have to abstract data types and abstract machines respectively. Finally, the results derived

here are presented in abstract, categorical terms, independently of any specific representation,

or the specifics of any particular language syntax or semantics.
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Chapter 3

Tracing in Practice

Software execution tracing is a widely used technique arising out of basic debug-

ging practices with diverse implementations found in many software engineering

processes, but it lacks a useful, theoretical foundation, resulting in engineering prob-

lems at several levels: for the designers, implementers and users of tracing systems

all of whom have no recourse to rigorously defined and clearly understood engineer-

ing abstractions, when it comes to either implementing or using tracing effectively.

Software execution tracing is a practical technique whereby an automatic record is made of the

execution of a program, for either interactive or later analysis by a programmer. By providing

a history of the execution of a program, a trace aids the programmer in comprehending the

relationship between the program source code and the corresponding execution behaviour.

Unlike interactive debuggers which only show the state of the program at a single point in

time, traces contain a record of the history of the program which is useful as an aid to program

comprehension for a range of activities, including but not limited to, debugging.

3.1 Origins

Execution tracing arises naturally as a systematic extension of basic debugging prac-

tices.

One of the most basic, widespread, and fundamental techniques for debugging is to add a

statement or function call to the program, to output a value of interest. This technique al-

lows the programmer an insight into various values that might not otherwise be known, or to

understand the control flow of the program at run-time, e.g., determine in which order some

functions are executed, or perhaps which branch of an ‘if’ statement is executed. In any case,

this technique is intended as an aid to the comprehension of the program (and the problem)

under investigation. For example, consider some Pascal functions:

function A ( i : Integer ) : Integer;
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begin

...

end;

function B ( j : Integer ) : Integer;

begin

...

result := A ( j );

...

end;

function C ( k : Integer ) : Integer;

begin

...

result := B ( k );

...

end;

where “...” indicates some arbitrary sequence of Pascal statements.

If, in order to better understand the behaviour of the program, the programmer wishes to

know the value of i when the function A is called, then a very standard procedure would be to

modify the function:

function A ( i : Integer ) : Integer;

begin

WriteLn ( i );

...

end;

In a similar fashion, the programmer may wish to inspect simultaneously the result returned

by the function B, for example, in order to debug an incorrect result being returned from the C

function. This might be done as follows:

function B ( j : Integer ) : Integer;

begin

...

result := A ( i );

...

WriteLn ( result );

end;
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These modifications might in turn produce program output like this:

...

5

7

12

17

32

58

...

At this point, the program is now writing out the two integer values of interest, but it will quickly

become confusing as to which integer in the program output corresponds to the argument i of

function A and which to the result of function B. So it is natural to add some more output, e.g.:

function A ( i : Integer ) : Integer;

begin

Write ( 'A: i = ' );

WriteLn ( i );

...

end;

function B ( j : Integer ) : Integer;

begin

...

result := A ( i );

...

Write ( 'B = ' );

WriteLn ( result );

end;

Rather than the confusing output above, this would instead produce:

...

A: i = 5

B = 7

A: i = 12

B = 17

A: i = 32

B = 58

...
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Now it is clear which numbers in the output correspond to the program values of interest: the

result of B and the argument i to function A.

It is a relatively small step from this extremely commonplace debugging and program com-

prehension technique, to two fairly obvious extensions:

1. systematic application of these modifications to every function argument and result, for

every function of interest, and

2. refactoring these output statements into generic function entry and exit trace functions.

At this point, the programmer has progressed from debugging by inserting ad hoc WriteLn

statements, to having developed a primitive tracing system, for the systematic, albeit manual

application of execution tracing to a program in their language of interest. In this way, system-

atic execution tracing arises naturally from the practice of adding output for debugging and

program comprehension purposes.

3.2 Examples

Execution tracing is a widely used technique, with diverse implementations found in

many software engineering processes and application domains.

Except where explicitly noted to the contrary, all of the academic case studies of tracing systems

presented here involve tracing systems developed with some other primary research or practical

goal in mind, and hence have an application-driven, ad hoc design. While an extensive survey

of the industrial practice of tracing is yet to be done, it seems likely that a great many extant

tracing systems have ultimately developed along similar, pragmatic lines. In addition to the

evidence of the widespread use of tracing presented here as found in the academic literature,

anecdotal evidence suggests that bespoke tracing systems are ubiquitous, and a part of many

industrial software engineering projects.

3.2.1 Software Engineering Processes

Tracing, by providing an aid to program comprehension, is applicable to a range of

software engineering processes.

There are many case studies of practical execution tracing systems, indicating that tracing is

both widely used and suitable for a range of applications, being commonly used in software

engineering processes including debugging, testing, reverse-engineering, program comprehen-

sion, profiling and dynamic visualisation — examples found in various application domains are

presented in the next section. Tracing has been found to be useful for “design, development,

tuning and sustaining of hardware, libraries and applications” [Cur94].
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Tracing is commonly used to support testing, since it provides insight into the operation of

routines which are not closely involved in user interaction – in effect, it provides a test harness.

Traces of execution can be used for either manual unit testing (where the programmer inspects

the behaviour of routines on an ad-hoc basis) or as input to a more sophisticated, automatic

tracing framework. Examples include: automatic testing against formal specifications [Ezu95];

testing whether legacy behaviour is preserved correctly when re-engineering existing object-

oriented systems [DGW06]; and comparing execution with and without a woven aspect in an

aspect-oriented language [SKB03].

Algorithmic debugging, a semi-automatic procedure for debugging, proceeds by interactively

prompting the user to check whether successive values the program are correct or not. Some

form of tracing is therefore a necessary component of algorithmic debugging systems in order to

record and present source-oriented, run-time values to the user for checking. Execution tracing

has therefore been a particular focus of interest in the algorithmic debugging community. The

1990s was a busy period for research into algorithmic and declarative debugging, particularly for

functional and logic languages which were an increasing focus of interest at that time, but also

for imperative languages. The proceedings of the First Workshop on Algorithmic Debugging

(AADEBUG ’93) include tracing related research, including Ducassé [Duc93], Nilsson [NF93],

Ball [BH93] and Reiss [Rei93].

Ducassè’s focus appears to have been automatic debugging of logic programming languages

[Duc93], and declarative debugging using logic programming languages [Duc92]. The two ideas

are combined in her primary project, Opium, an extensible trace analyser for Prolog [Duc99].

Ducassè also developed the COCA debugger for an imperative language: C [Duc98].

Nilsson developed Freja for his master’s thesis. It is a subset of Miranda, with support for

algorithmic debugging added [NF93]. He later collaborated with Sparud to develop a tracing

structure called the Evaluation Dependence Tree (EDT) designed for lazy functional languages

[NS96]. Sparud’s dissertation combines the EDT with a source-to-source transformation to

produce an algorithmic debugging system for Haskell. Sparud later collaborated with Runciman

to develop Redex Trails for Haskell, also a source-to-source transforming system [SR97].

Naish and Barbour developed a declarative debugging system for NUE-Prolog (a language

including both logic and functional programming elements), based on Sparud and Nilsson’s

EDT. This work does not include a formal analysis of their system [NB95]. Naish later

collaborated with Pope to develop Buddha, a declarative debugging system for Haskell [Pop98].

This work also builds on the EDT developed by Sparud and Nilsson. Later work is focused on

the practicalities of making declarative debugging for Haskell work effectively [PN03].

Watson and Salzman did further work on the tracing of lazy function evaluation. Source

code is instrumented so that the application returns a pair including the unmodified output

of the program and the trace of execution. Their work is based on a formal statement of lazy

function evaluation [WS97b]. They have also developed a ‘browser’ for the trace, which allows

the history of the execution of a program to be traversed [WS97a].
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Chitil, Runciman and Wallace at the University of York did an informal comparative eval-

uation of the usefulness of three different systems for tracing Haskell programs that use lazy

function argument evaluation [CRW00]. Chitil, Runciman and Wallace describe Hat, a tracing

system for Haskell [CRW03]. Further work by this group at the University of York produced an

improved version of Hat based on an augmented version of Sparud and Nilsson’s Redex Trails

[WCBR01].

3.2.2 Application Domains

Tracing is found in diverse application domains, including the development of object-

oriented systems, concurrent and distributed systems, and servers and operating

systems.

Although tracing has wide usefulness and applicability in software engineering, there are several

application domains in which execution trace is particularly helpful:

Object-Oriented Systems introduce additional run-time complexities (in particular late

binding and polymorphism), which are not readily understood via static analysis of source-

code. This encourages the use of tracing in order to understand and analyse dynamic, run-time

relationships of which there are many examples [LN97, RR99, PHKV93, JS94, Sys98, GM01,

JSB97, BJW+01, RD99]. Maintenance of legacy object-oriented systems, including reverse-

and re-engineering, program comprehension and dynamic analysis, is also therefore a common

application for tracing [GOA05, GO03, FOGG05]. It has also been noted that tracing is very

helpful when extending object-oriented frameworks because effective comprehension of their

behaviour is required [RDW98]. Hamou-Lhadj and Lethbridge performed a survey of tools and

techniques for the visualisation and analysis of execution traces for object-oriented systems.

They note that the analysis of large traces is effectively impossible without suitable tools.

They observe that the maintenance and reverse-engineering of legacy object oriented systems

requires dynamic as well as static analysis tools (again as a consequence of polymorphism and

late binding) [HL04].

Concurrent and Distributed Processes are more easily understood by exploring a trace

that shows the interactions of components over time than by inspection of individual process

states at particular points in time. Traditional, interactive debuggers tend not to be effective

in distributed and parallel systems where an inspection of individual program states is often

less helpful than an insight into the interaction of software components over time. Traces pro-

vide both an alternative and a complement to debuggers, which provide a snapshot of program

state at a particular moment. Consequently, a common application for tracing is the analy-

sis, debugging, modeling and visualisation of parallel, threaded or message-passing programs,

in distributed, super-computing or grid environments [Sta95, TSS95, ZS95, TFM+01, PY93,
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FHL98, DHK+92, MC02]. At the hardware level, tracing has also been used for multiprocessor

design and performance evaluation [EKKL90].

Servers and Operating Systems are often difficult or impossible to stop or pause for

interactive debugging, and server-side systems often lack a human-focused, interactive interface

to provide insight into the values or states inside the program. For these reasons, tracing

has been used in academic case studies of kernel debugging [Kue95], profiling [TM99] and

measurement [CSL04], A great many examples of servers exist which produce execution trace

for the same reasons identified above, although these have not been the focus of academic study.

For example, many standard Unix servers will produce traces when maximally verbose logging

output is specified. Traces have an additional practical benefit in this context in that they

can be analysed off-line, in addition to being collected automatically without interrupting the

running system.

3.2.3 Implementation Approaches

A diverse range of implementations exist for practical tracing systems, the norm

being ad hoc solutions, tuned to the problem at hand.

Many of the case studies of practical tracing systems are concerned with the specific imple-

mentation details, with a view to addressing a particular practical concern. Reiss and Renieris

offer a list of implementation considerations for tracing systems that is useful for categorising

these studies [RR03] with regard to their focus. These practical considerations include:

Low usage overhead - the system should minimise the effort required by the user to imple-

ment the tracing. In other words, the tracing should occur as automatically as possible. Reiss

and Renieris suggest that ideally tracing should be implemented in the execution platform (i.e.,

as an automatic feature of the compiler or interpreter). There are three classes of automatic

instrumentation implementations:

1. Instrumentation of executables or object-code

Various practical techniques exist for implementing instrumentation by re-writing object

or executable files [LB94, GOA05]. Instrumentation of executables can potentially have

less impact on the behaviour of a program than instrumentation of source, because the

inserted code can be tuned at the machine-instruction level.

Dynamic instrumentation allows tracing to be added and removed during execution of

the program under examination, and is a popular technique. It has no effect on the

program under examination except for those routines which are currently being traced.

Applications therefore include profiling of kernels and realistic (i.e. large) applications for
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compiler research, which would otherwise be difficult to examine [CSL04, TM99, TH02,

EKKL90, HMG+97, MCC+95].

2. Instrumentation of the execution platform or environment

Wrapper functions interposed between applications and libraries have been used to col-

lect load profiles and function arguments [Cur94]. Tracing has also been inserted au-

tomatically into CORBA interfaces [MC02]. The Java language provides the Java Vir-

tual Machine Profiling Interface (JVMPI), which has been used for tracing purposes

[GM01, RR00]. However this technique is limited to interpreted Java programs as the

JVMPI is not available during the execution of compiled code.

Python [Pyt] and Freja (a subset of Miranda - [NF93]) are rare examples of languages

where the execution platform includes automatic support for tracing.

3. Instrumentation of source code

Source-to-source transformation of programs to include tracing instrumentation is a wide-

ly used technique [PY93, SR97, JZTB98, PY93, TFM+01, PHKV93, TJ98]. It has the

advantage of portability, since a source-to-source instrumentation tool can potentially be

used with any compiler or interpreter for the language of interest.

It is feasible to implement source instrumentation for tracing manually, and it seems likely

that this is a widely used technique along the lines of what was described in section 3.1. In the

simplest, least systematic form, this may consist of ad-hoc print statements added to a program

– a technique which has probably been used by every programmer at some time. However there

are distinct disadvantages to this approach for the following reasons:

• programmer error may introduce bugs into the instrumentation code;

• manual maintenance of tracing systematically applied to source is time consuming; and

• instrumentation code clutters the source thereby interfering with the readability of the

program.

Automatic tools eliminate these problems associated with manual instrumentation.

Aspect oriented languages also provide a mechanism that has also been widely used to imple-

ment automatic trace instrumentation [SKB03, DF02, KHH+01, GO03, Har02]. In languages

such as Java that provide no source pre-processor or macros, aspect oriented programming

(AOP) provides a valuable source-to-source transformation tool. Tracing is arguably one of the

key motivations for AOP, and examples of the tracing ‘development aspect’ are common on

the Internet. Goldsmith, O’Callahan and Aitken have a comparison of their source-to-source

instrumentation system and AspectJ [GOA05].
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Low execution overhead - the system should minimise the resource requirements at run-

time. Both the storage/memory requirements and CPU usage required need to be such that

traces are not prohibitively large, and do not slow the execution of the program to an unaccept-

able degree. Reiss and Renieris have considered various techniques for improving the storage

requirements for traces, with various compaction and selection techniques for Java and C/C++

[RR01]. Ball and Larus provide two algorithms that can be used to significantly decrease the

cost of tracing, such that a smaller set of traces is collected, from which the full trace can be

easily reconstructed [BL94]. Eggers, Keppel, Koldinger and Levy use compiler data-flow anal-

ysis to reduce both the amount of data collected and the impact on the instrumented program

[EKKL90]. Tikir and Hollingsworth also use static analysis of the program to decrease the

number of points in the program that must be instrumented, thereby decreasing the run-time

overheads for the data collection [TH02]. Zhang and Gupta have developed techniques for

storage of complete traces for profiling of ‘realistic’ applications, used for compiler architecture

research [ZG04].

Where traces are stored can be as important a practical consideration as how they are

generated. Speed of access, data volume and availability of suitable tools for analysis all

need to be considered. A very common technique is to write traces to text files, as there are

many standard tools that can be used to analyse and manipulate plain text. However Fischer,

Oberleitner, Gall and Gschwind have used standard database technologies for trace storage,

and have found that the tables can be kept entirely in memory with sufficient computing power

and memory, resulting in usable query times [FOGG05].

Static and temporal selectivity - the user should be able to specify what they want traced,

at as fine a level as possible. While it might seem that ideally all trace information should be

collected and stored, in practice this is likely to result in excessively large traces, containing

information of no interest to the problem at hand, and an unnecessary impact on the execution

time of the instrumented program. There is normally no need to collect or see execution traces

for frequently-called, well-tested routines. Similarly, the user should be able to select traces

between particular times. This is of particular importance when debugging production systems.

Often traces must be collected for a relatively long time until an error occurs which is otherwise

impossible to replicate. When this happens, the bulk of the trace is of no relevance to debugging

the error, so the user needs to be able to exclude this information.

Richner, Ducasse and Wuyts show how declarative queries can be used [RDW98]. Goldsmith

et al. note that many of the optimisations available for SQL could also be successfully applied to

their Program Trace Query Language (PTQL) [GOA05]. Ducassé has developed a Prolog-based

query language for traces [Duc92]. The DTrace system provides a domain specific language for

trace instrumentation and queries [CSL04]. Note also that tools as simple as the ubiquitous

Unix ‘grep’ and other text searching tools can and often are used for querying and filtering

traces stored in text files.
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Frumkin, Hood and Lopez compare three different implementation approaches: source-to-

source, compiler-inserted and wrappers on message passing library functions in the context

of debugging of parallel, message passing programs [FHL98]. They conclude that “a compiler-

debugger interface could reduce the instrumentation effort and the performance overhead, while

increasing event resolution, portability, and transparency to the user”. Automatic systems for

instrumentation that have access to the source code for a program can potentially provide the

richest set of trace information.

3.3 Practical Requirements

Practical traces, useful for software engineering tasks, need to refer to entities in the

program source; this source-orientation in turn requires traces to be compositional,

and contain events including information of varying types.

Practical traces share various features in common, despite a wide variety of specific imple-

mentations for a range of different applications, and these features can be found throughout

the case studies presented in section 3.2.2. In order to illustrate the features necessary in an

execution trace to solve many typical practical problems, we develop a simple but sufficient

hypothetical example of a program that produces an incorrect result, showing how a trace of

the actual execution behaviour of the program can augment a static analysis of the source code

when debugging. Consider the mathematical specification for a program:

fib0 = 0 (3.1)

fib1 = 1 (3.2)

fibn = fibn−1 + fibn−2 (3.3)

This is simply the well known Fibonacci sequence, where fibn is the nth number in the sequence1:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . (3.4)

We might write a simple pascal program to implement this mathematical specification (but

with an error)2:

1Here we use a zero-based numbering scheme where fib0 is the 0th value, a standard practice in computing,

further justified in this case because the Fibonacci sequence is defined as starting from fib0 in this instance.
2NB: Here and elsewhere, two quite different notations are used: numbered equations in an italic font for

specification and reasoning, and a fixed-width font for program code and trace outputs. This is to highlight the

interaction between mathematical, equational reasoning by the programmer, and machine-readable source and

machine-written traces and their derivatives.
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program Test1;

function fib ( i : integer ): integer;

begin

if i = 0 then

result := 1

else if i = 1 then

result := 1

else

result := fib ( i - 1 ) + fib ( i - 2 );

end;

begin

WriteLn ( fib ( 3 ));

end.

We would expect the output of the program (ignoring the error) to be:

2

because the 3rd3 element of the sequence 3.4 is 2. But instead we see:

3

It is clear that the implementation of fib does not match the specification of fib, as we know

fib3 = 2. At this point, rather than inspecting the source code for the program to identify the

source of the bug, we may instead investigate the trace, which might look like this:

2013/05/11 11:21:53.581 ========|EXECUTION TRACE START

2013/05/11 11:21:53.666 main |Enter()

2013/05/11 11:21:53.668 fib | Enter(i=3)

2013/05/11 11:21:53.670 (=) | Enter(3,0)

2013/05/11 11:21:53.672 (=) | Return(False)

2013/05/11 11:21:53.675 (=) | Enter(3,1)

2013/05/11 11:21:53.677 (=) | Return(False)

2013/05/11 11:21:53.680 (:=) | Enter(result,<expression>)

2013/05/11 11:21:53.685 (-) | Enter(3,1)

2013/05/11 11:21:53.688 (-) | Return(2)

2013/05/11 11:21:53.691 fib | Enter(i=2)

2013/05/11 11:21:53.693 (=) | Enter(2,0)

3Again, using zero-based numbering.

58



2013/05/11 11:21:53.696 (=) | Return(False)

2013/05/11 11:21:53.698 (=) | Enter(2,1)

2013/05/11 11:21:53.701 (=) | Return(False)

2013/05/11 11:21:53.704 (:=) | Enter(result,<expression>)

2013/05/11 11:21:53.707 (-) | Enter(2,1)

2013/05/11 11:21:53.710 (-) | Return(1)

2013/05/11 11:21:53.714 fib | Enter(i=1)

2013/05/11 11:21:53.717 (=) | Enter(1,0)

2013/05/11 11:21:53.720 (=) | Return(False)

2013/05/11 11:21:53.724 (=) | Enter(1,1)

2013/05/11 11:21:53.727 (=) | Return(True)

2013/05/11 11:21:53.731 (:=) | Enter(result,1)

2013/05/11 11:21:53.735 (:=) | Return(1)

2013/05/11 11:21:53.739 fib | Return(1)

2013/05/11 11:21:53.742 (-) | Enter(2,2)

2013/05/11 11:21:53.746 (-) | Return(0)

2013/05/11 11:21:53.750 fib | Enter(i=0)

2013/05/11 11:21:53.753 (=) | Enter(0,0)

2013/05/11 11:21:53.756 (=) | Return(True)

2013/05/11 11:21:53.760 (:=) | Enter(result,1)

2013/05/11 11:21:53.764 (:=) | Return(1)

2013/05/11 11:21:53.768 fib | Return(1)

2013/05/11 11:21:53.772 (+) | Enter(1,1)

2013/05/11 11:21:53.775 (+) | Return(2)

2013/05/11 11:21:53.778 (:=) | Return(2)

2013/05/11 11:21:53.782 fib | Return(2)

2013/05/11 11:21:53.787 (-) | Enter(3,2)

2013/05/11 11:21:53.791 (-) | Return(1)

2013/05/11 11:21:53.795 fib | Enter(i=1)

2013/05/11 11:21:53.798 (=) | Enter(1,0)

2013/05/11 11:21:53.802 (=) | Return(False)

2013/05/11 11:21:53.806 (=) | Enter(1,1)

2013/05/11 11:21:53.809 (=) | Return(True)

2013/05/11 11:21:53.819 (:=) | Enter(result,1)

2013/05/11 11:21:53.824 (:=) | Return(1)

2013/05/11 11:21:53.829 fib | Return(1)

2013/05/11 11:21:53.833 (+) | Enter(2,1)

2013/05/11 11:21:53.839 (+) | Return(3)

2013/05/11 11:21:53.843 (:=) | Return(3)
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2013/05/11 11:21:53.848 fib | Return(3)

2013/05/11 11:21:53.852 WriteLn | Enter(arg=3)

2013/05/11 11:21:53.856 WriteLn | Return()

2013/05/11 11:21:53.860 main |Return()

2013/05/11 11:21:53.865 ========|EXECUTION TRACE END (OK)

This particular presentation and layout of trace is chosen somewhat arbitrarily, as many other

possibilities exist4. However, the columns of the trace contain the following information:

1. a time stamp for when the trace event occurred,

2. the name of the function currently being executed – infix operations like assignment (:=)

and equality (=) are shown enclosed in brackets, and the function main is the system

entry point,

3. indentation, to reflect the nested nature of function applications at run-time – note that

this is simply a convenient presentation device, as this information can be calculated

easily from the function entry/exit trace events,

4. the string Enter or Return to indicate the entry and exit of functions, and

5. the zero or more arguments to the function (in the case of Entry), or the result of the

function (in the case of Return).

Returning to the problem of the erroneous program output, we can work inwards in the trace,

starting with the incorrect output from the call to WriteLn in the program5. The argument

provided to WriteLn is the result of fib(3):

2013/05/11 11:21:53.581 ========|EXECUTION TRACE START

2013/05/11 11:21:53.666 main |Enter()

2013/05/11 11:21:53.668 fib | Enter(i=3)

...

2013/05/11 11:21:53.848 fib | Return(3)

2013/05/11 11:21:53.852 WriteLn | Enter(arg=3)

2013/05/11 11:21:53.856 WriteLn | Return()

2013/05/11 11:21:53.860 main |Return()

2013/05/11 11:21:53.865 ========|EXECUTION TRACE END (OK)

The incorrect value of fib(3) is in turn derived from the values of fib(2) and fib(1):

4In fact this trace was generated by an experimental tool developed early in this research project, being

a small Pascal interpreter with inbuilt, automatic, function-level tracing, which was intentionally designed to

include many ‘typical’ features found in practical traces.
5Not to be confused with the use of WriteLn described earlier, where it is used to trace out information of

interest about the program as a debugging technique.
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2013/05/11 11:21:53.668 fib | Enter(i=3)

...

2013/05/11 11:21:53.691 fib | Enter(i=2)

...

2013/05/11 11:21:53.782 fib | Return(2)

...

2013/05/11 11:21:53.795 fib | Enter(i=1)

...

2013/05/11 11:21:53.829 fib | Return(1)

...

2013/05/11 11:21:53.848 fib | Return(3)

The value of fib(1) is correct, being 1, however the result of fib(2) is not correct, so we

investigate this further:

2013/05/11 11:21:53.691 fib | Enter(i=2)

...

2013/05/11 11:21:53.714 fib | Enter(i=1)

...

2013/05/11 11:21:53.739 fib | Return(1)

...

2013/05/11 11:21:53.750 fib | Enter(i=0)

...

2013/05/11 11:21:53.768 fib | Return(1)

...

2013/05/11 11:21:53.782 fib | Return(2)

As before, the value of fib(1) is correct, but we can see that fib returns 1 when provided

with an argument of 0, instead of the correct result 0, from the following trace lines:

2013/05/11 11:21:53.750 fib | Enter(i=0)

...

2013/05/11 11:21:53.768 fib | Return(1)

Specifically, these trace lines tell us that:

fib(0) = 1

If we wish to further investigate how this incorrect result arises, we can look at the intervening

trace lines, corresponding to the body of the function call:
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2013/05/11 11:21:53.750 fib | Enter(i=0)

2013/05/11 11:21:53.753 (=) | Enter(0,0)

2013/05/11 11:21:53.756 (=) | Return(True)

2013/05/11 11:21:53.760 (:=) | Enter(result,1)

2013/05/11 11:21:53.764 (:=) | Return(1)

2013/05/11 11:21:53.768 fib | Return(1)

Here we can see the argument to the function i is compared to 0 and found to be equal; the

function result is thus assigned the value of 1, whereas the specification of fib says it should

be 0. Herein lies the error. The significance of this example is that it shows how execution

trace provides a useful adjunct to static analysis of the program text, by showing the actual

behaviour which resulted from execution, as opposed to the behaviour the programmer infers

– quite possibly incorrectly – from inspection of the code alone.

Aside from programs which produce incorrect output, another very common scenario is the

debugging of a program which exhibits a run-time crash, error or exception (i.e., where the pro-

gram does not terminate normally), via analysis of a stack back-trace, a technique supported by

empirical evidence for its effectiveness [SBP10]. The GNU debugger, GDB [GNU14], provides

a convenient tool for inspecting crash dump ‘core’ files in order to generate a stack back-trace

on Unix and Unix-like systems where it is in widespread use. The Microsoft Windows platform

provides similar capabilities, as part of the Microsoft Visual Studio development environment

for their various languages, also allowing for the extraction of stack back-traces from crash

dumps [Mic14]. Even in the Haskell language, where graph reduction better describes the func-

tion execution order than the function call stack used by applicative-order languages, a call

stack is nevertheless considered desirable for debugging of abnormal termination [APE09].

Stack back-traces can be generated by an interactive debugger by either reading a ‘core’ or

process memory dump file, or by attaching to the excepting process and inspecting the state

of the system call stack6. One great virtue of execution traces like the one above is that they

implicitly contain a stack back-trace, when entry and exit tracing is applied systematically to

all functions and procedures. For example, suppose there is a program:

program Test2;

function A ( i : integer ) : integer;

begin

result := 10 div i;

end;

6This usage of a so-called “interactive” debugger requires none of the interactive features, instead it provides

a static snapshot of the state of the execution stack at run-time, at the time of the error. In fact this is a simple

trace extraction feature.
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function B ( i : integer ) : integer;

begin

result := A ( i ) * 2;

end;

begin

B ( 0 );

end.

When executed, it terminates prematurely with a run-time error:

exception: divide by zero

With a moment of thought it is clear that there is only one instance of division in the short

program Test2 thereby making the isolation of the source of the error quite trivial – it can be

found by a simple visual search of the short program text above. But if we assume instead

that we are looking at a much more typical, lengthy and complex program in which division is

a frequent operation, then a very common approach to debugging would be to analyse a stack

back-trace. We find the stack back-trace is available from a simple inspection of the execution

trace:

2013/05/30 02:45:40.097 ============|EXECUTION TRACE START

2013/05/30 02:45:40.167 main |Enter()

2013/05/30 02:45:40.174 B | Enter(i=0)

2013/05/30 02:45:40.178 (:=) | Enter(result,<expression>)

2013/05/30 02:45:40.196 A | Enter(i=0)

2013/05/30 02:45:40.201 (:=) | Enter(result,<expression>)

2013/05/30 02:45:40.223 (div) | Enter(10,0)

Unlike the trace shown above for Test1, this trace does not show the execution terminating

normally. The stack back-trace can be read off from the third column of the trace, based on

the Enter trace events for which there is no corresponding Return trace event (for this very

simple example, there are no Return events at all):

main

B

(:=)

A

(:=)

(div)
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Assuming a typical situation where assignment and basic arithmetic operations are inlined as

machine instructions in a compiled program, instead of being implemented via an unnecessarily

inefficient function calls, we know the state of the call stack was:

main

B

A

Having isolated the function A as the inner-most function at the time of the division by zero

error, the programmer is armed with very useful knowledge as to where in the program source

to start looking for the cause of the error. In this case, inspection of the source for function A

shows the only possible statement which could have caused a division by zero error:

result := 10 div i;

The programmer has located where the run-time error has occurred in the source. Not only is

the sequence of function calls known, but also the arguments to them – this information is also

present in the trace:

main()

B(0)

A(0)

Now the programmer also knows the specific arguments which caused the error and can answer

the question: “where did the zero value for the parameter i in function A come from?”

Software engineers who have experience of one tracing system will naturally tend to refine and

improve upon that design in the development of subsequent tracing systems they may build

for future projects. Such pragmatic, but nevertheless arbitrary designs are a product of the

accidents of the programmer’s experience, the requirements of the specific problem domain

being addressed, and the available tools at hand, many examples of which have already been

presented in section 3.2. The two examples above show how traces such as those just presented

can support debugging. Both code coverage analysis and execution profiling are software engi-

neering activities which are also enabled by execution traces such as the ones just presented as

examples. Time-stamps for trace events like the ones above can be used to generate profiling

information. Full code coverage information can be derived from a trace which includes the op-

erations of all control-flow structures (e.g., if-then statements, looping constructs etc), thereby

showing which paths are taken through the source code and the branches executed.

Since a great many of the tracing systems in use today are implemented as a library or

module within the programming language in use – rather than being a feature of the language

implementation itself – tracing of the mechanics of in-built control-flow structures is not a com-

mon phenomenon. This is a predictable consequence of there being few languages in common
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use with any inbuilt tracing features whatsoever. Python is a rare example of a mainstream

language which does provide automatic, inbuilt tracing via the “trace” module and “--trace”

option; this includes tracing of primitive control structures such as “if” [Pyt]. (This thesis also

presents an example of an automatic tracing system where all control structures are included

in chapter 6, with an example trace provided in section 6.4.)

While timing information may or may not be needed in a particular trace (e.g., this does

not matter when inspecting the stack back-trace used in the example debugging session above),

practical traces as found in the examples chosen here and the case studies presented earlier

have several features in common.

3.3.1 Source Orientation

Because all activities involving execution tracing involve some aspect of program

comprehension, traces must refer to entities in the program source text, i.e., be

source-oriented.

Most fundamentally, every application of execution tracing is as an aid to program comprehen-

sion (e.g., the case studies already cited in section 3.2.2). Consequently all existing execution

tracing systems are effectively source-oriented, in as much as the details recorded in a trace

directly relate to source-level constructs in the program. Aside from the prima facie evidence

that existing academic case studies are universally source-oriented, those who have reviewed

tracing systems in general also agree they should be source oriented [Rei93, WS97b, CRW00].

Source-oriented tracing makes the relationship between the semantics and syntax of a pro-

gram explicit: the trace directly relates the behaviour of the program to the source code. If

our aim is to help relate semantics to syntax (which is fundamental to program comprehension

and therefore many software engineering tasks including development, debugging, testing and

maintenance – in fact any activity which involves both source code and an executable program),

then source-orientation for tracing seems unavoidable. Correctly understanding the relation-

ship between the syntax and semantics of a program is arguably the most fundamental task for

a computer programmer – one that is often difficult, given the complex emergent behaviours

which can arise from even simple programs.

While the overwhelming majority of case studies of execution tracing systems are clearly

source-oriented (including all those cited earlier in section 3.2.2) there are a few examples which

at first appearances are apparently not. Richner and Ducasse use tracing to recover design-

level information from object-oriented application implementations [RD99, RD02]. Walker,

Murphy, Steinbok and Robillard are also concerned with recovering high-level architectural

information from the execution of a system [WMSR00]. Quick has implemented model- rather

than source-oriented tracing for performance evaluation of parallel programs, where the trace

is at the semantic level of a functional model of the parallel program, rather than at the level

of the source programming language [Qui93], and Klar, Quick and Sötz have also worked on
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this system, with particular emphasis on model-driven instrumentation [KQS92]. However in

all cases the argument can be made that the actual ‘source’ of interest is that of the model or

design, and that these traces are also therefore source-oriented in that they speak directly to

the semantic model presumed to be in the mind of the programmer.

3.3.2 Compositional Structure

Source-orientation in turn requires a trace to reflect complex, nested structures,

corresponding to those found in the source code.

An unavoidable consequence of source orientation is that trace structures must reflect the

compositional, nested structure of the program; the trace must show how the meaning of each

part of the program depends on the meaning of its constituent sub-components. The two

examples of debugging using trace in section 3.3 – in one case to find the cause of an incorrect

result, the other to find the cause of a run-time error – required analysis of the function entry

and exit points in relation to each other, i.e., the nested call structure; a reflection of the nested

structure of the source code as its semantics are expressed at run-time. This information on the

order of function calls is also required in many of the case studies presented in section 3.2.2. In

order to be useful generally, practical tracing must provide this information. For the example

trace in section 3.3, indentation was used as a presentation device to highlight the compositional

structure of the semantic information in the trace, and to allow easy visual correlation of the

entry and exit events in the trace (which line up in the same column, for a particular function

call instance).

Most programming languages allow more-or-less unrestricted nesting of function or proce-

dure calls, or recursion, where the run-time nesting of calls can be arbitrarily deep7. Traces of

such arbitrarily-nested function calls must therefore include arbitrarily nested traces: the trace

of each function includes the trace of each of the functions it calls, and so forth. This informa-

tion on the nesting of function calls is implicit in a “stack back-trace” and more generally is

necessary to answer many questions regarding correctness, such as why a function returns the

wrong value.

Users of practical tracing systems are often concerned with argument values on entry to a

function (or procedure) and/or the return value on exit. This information was also necessary

in the examples of debugging presented in section 3.3. In the general case, functions may be

of any arity, i.e., have any number of arguments and may also return an arbitrary number of

results (e.g., in the case of non-determinism, in the logic programming paradigm). This means

that traces must potentially record information of varying type and structure. Note that it is

very common for traces to be encoded as ASCII or Unicode text, and there are many other

7Although there will be some physical or operating system limit such as finite stack or heap space for the

process which prevents infinite call depth in practice.
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possibilities, but regardless as to the encoding, this information of varying type and structure

must be recorded faithfully within.

3.4 Generalised Tracing

Category theory has not previously been applied to the software engineering problem

of designing and using effective execution tracing, and there has otherwise been

little attention paid to the abstract, theoretical basis for practical execution tracing

systems.

Despite the many case studies of specific, practical tracing systems presented in this chapter,

there has been surprisingly little work giving abstract or general treatment to practical execution

tracing, and none which uses category theory to do so. In 1991, Kishon, Hudak and Consel

[KHC91] quoted a survey from 1981:

program execution monitoring has been neglected as a research topic; the available

literature contains mainly case studies; without adequate discussion of the funda-

mental concepts, goals and limitations [PN81]

The work of Kishon et al. goes on to provide the first example of an execution tracing

system with an explicit semantic basis. Executable, “monitoring semantics” are automatically

derived from denotational semantics of a specific type (continuation semantics), for a functional

language. However this work, which culminated in Kishon’s doctoral thesis [Kis92], is only

concerned with execution monitoring in a very general sense, and no consideration is given

to the nature, structure or content of traces, and how these relate to the semantics of the

corresponding program. Further, the choice of the specific basis of continuation-style semantics

is quite arbitrary.

Kishon was a student of Hudak, and some of the features of his execution monitoring were

included in the work on modular interpreters by Liang, Hudak and Jones [LHJ95]. Their

system is arranged along similar lines to Kishon’s: denotational semantic specifications in

a functional programming language are used to automatically derive interpreters with various

features, including an example of a very simple tracer. These features are structured as modules,

which are implemented as monad transformers, a practice followed here. However again, no

consideration was given to the nature or structure of traces and their relationship to semantics.

In the late 1990’s Jahier, Ducassé and Ridoux gave the first example of an explicit, semantic

basis for tracing logic programs. They developed a framework for specifying trace models for

logic programming languages [JDR00]. Their method derives tracing semantics automatically

from a specification of operational semantics for Prolog. Later work by Jahier and Ducassé also

demonstrates that several tracing applications (including profiling, visualization and test cov-

erage measurements) can be supported by a single, generic, formally-derived tracing framework

67



[JD02]. Jahier and Ducassè cite the work of Kishon, but do not build on this, because of the

difficulty of obtaining continuation semantics for their language of interest (Mercury, a vari-

ant of Prolog). They also note that Kishon’s framework only supports interpreted programs,

whereas in theirs, compilation is possible.

3.5 Engineering Problems

The lack of a sound and useful theoretical basis for practical execution tracing results

in engineering problems at several levels; for the designers, implementers and users

of tracing systems all of whom have no access to sound, useful theoretical guidance

or tools.

As was stated earlier and can be seen in the case studies already mentioned, practical tracing

systems are typically designed and implemented in an entirely ad hoc fashion. Nevertheless,

computer science provides an existing notion of trace, known as the trace monoid. Chapter 4

explains how this conventional notion of trace used in theoretical computer science is induced

automatically by an operational view of semantics. In section 4.5 the trace monoid is shown

to be lacking sufficient structure to encode the source-oriented semantic information of interest

needed for many practical tracing activities. It is consequently unsurprising that this existing

theoretical basis has rarely if every been used in the development of practical tracing systems,

certainly not in any of the case studies cited above.

This lack of thorough and effective, theoretical grounding results in engineering problems

at several levels:

• Designers of programming languages have no guidance as to how to include a tracing

system as part of a mature tool-chain for their language – in particular what information

traces can and should include and how they should be structured.

• Language implementers and tracing system designers have no guidance as to how to build

sound, practical tracing implementations, or the ability to know (i.e., prove) that what

they have built is correct; instead they are guided by experience and intuition only.

• Users of ad-hoc, practical tracing systems have no guarantees (i.e., proofs) that the system

they are using is correct or accurately reflects the semantics of the program.

• Users of practical tracing systems have at best ad-hoc (and possibly erroneous) tech-

niques and tools for reasoning about the contents of traces with ad-hoc structure and

organisation, again relying only on experience and intuition.

• Lacking a solid theoretical basis, it is difficult to implement generic, correct, useful tools

for the specification or implementation of tracing systems, or to support reasoning about

traces.
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In short, existing practical approaches to software execution tracing are not engineered, but

rather ad hoc, albeit pragmatic solutions.
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Chapter 4

Theoretical Foundations for Tracing

Practical execution tracing systems have not used the existing theoretical concept of

trace already provided by computer science – the trace monoid – because monoidal

traces, while nevertheless useful in the theoretical investigation of concurrent and

non-deterministic systems, are the consequence of an operational view of semantics,

and therefore lack the complex, compositional structure required to encode much of

the source-oriented information needed in practical execution traces.

4.1 Origins

The term ‘trace’ has been linked to an operational model of semantics since the early

days of computer science.

The use of the term ‘trace’ to mean a record of the history of a computation may be as old

as the field of computing; the earliest to provide a definition of the term ‘trace’ in computer

science is Scott, writing in 1964 [Sco70]:

the operational meaning will generally provide a trace of the history of the compu-

tation . . . step-by-step evolved sequences of operations on representations

Here Scott uses the term “operational” to refer explicitly to the understanding of semantics as

a transition system, as distinct from the “mathematical” semantics he was developing, which

eventually became known as denotational semantics, discussed further in chapter 5. He defines

“operational” semantics as (any) semantics that produces a “trace,” specifically, “evolved se-

quences of operations of representations.” As is explained in section 4.2, the execution of any

transition system automatically induces a trace. This particular notion of trace, being linked

directly to operational semantics, has become the conventional one in computer science, and in

section 4.3 we show how this has been formalised as the trace monoid, the object of study in

trace theory.
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4.2 Operational Semantics

The central idea of operational semantics is that of the transition system, the oper-

ation of which automatically induces a trace.

The exact origins of the term operational semantics are unknown, but as Plotkin observes of

the quotation from Scott above [Plo04], it is:

an early use in a paper of Dana’s written in the context of discussions with Christo-

pher Strachey where they came up with the denotational/operational distinction

Scott’s definition of operational semantics as involving “step-by-step evolved sequences of op-

erations on representations” describes what is conventionally known in computer science as a

transition system. This notion of transition system is arguably one of the most fundamen-

tal abstract ideas in computer science, being central to the seminal work of both Turing and

Church, as is explained below. Operational semantics provides the model of semantics for such

“step-by-step” transition systems, by describing how the system transitions, step-wise, from

one configuration to another, i.e., by defining a transition relation.

Turing’s paper from 1936 has been cited as the foundation of the science of computing

[Tur36]. His famous proof that there is no solution to the halting problem — the question as

to whether it is possible, in general, to know in advance whether any particular computation

will terminate or not — involves modeling the computations possible using a simple, hypothet-

ical, mechanical machine. This machine operates exactly as Scott describes, by “step-by-step

. . . operations on representations”: at each step, a Turing machine transitions into a new state,

with the tape and symbols in a different configuration, and as Turing proved, the machine

might or might not terminate, there is no way to know in advance.

Church independently developed an alternative proof that there is no solution to the halting

problem using his lambda calculus [Bar81]. The lambda calculus operates “step-by-step”, by

the successive re-writing of λ-terms, by applying reduction rules. Once again, as Church proved,

this process might or might not reach a λ-term for which no further reductions are possible

(known as normal form), and terminate.

Despite the superficial differences between a mechanical machine on the one hand and a

mathematical calculus on the other, the “operational”, “step-by-step” nature of both Turing

and Church’s systems are clear. Both systems define the rules for how transitions occur, i.e., a

transition relation, and in both cases the sequence of transitions might not necessarily terminate.

Turing’s machine is not just an example of a transition system, but more specifically what is

now known as a state machine [HMU03]. The operational semantics of the machine are the

rules that govern the machine interaction with the tape, i.e., the rules for moving from one state

to the next. The lambda calculus, while also an example of a transition system like the Turing

machine, is more specifically a term re-writing system [Klo92]. In this case the operational
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semantics for the lambda calculus is provided by the reduction rules. A precise, category-

theoretic definition of the structure in common between all transition systems is that they have

final co-algebra semantics, discussed further in section 5.1.1. For now it is sufficient to observe

that these two seminal examples of transition systems are inherently operational-semantic in

their structure and description.

Turing, once he became aware of Church’s work, added an appendix to his 1936 paper

in which he showed that his machine and Church’s calculus were logically equivalent [Tur36].

Given this result, and the fact that Turing subsequently completed his PhD thesis under Church,

it is inconceivable that these two thinkers were not both fully aware of the abstract similarity

and equivalence between these two foundational examples of transition systems. The fact that

not just these two systems, but any others that provide ‘universal’ computation are equivalent

(i.e., can be used to simulated each other) is a central result in computer science, now known

as the Church-Turing thesis. Through both the work of Turing and of Church an implicit,

operational-semantic perspective was at play from the beginnings of computer science, with

origins as deep as the field itself. It took until the mid-1960s when Scott and Strachey began

developing an alternative “mathematical” (later known as denotational) semantic perspective

for it to even make sense to define the existing state of affairs as “operational”. It is not

surprising therefore, that Scott would define “trace” as he does in operational-semantic terms,

given that this was the universal perspective on semantics at the time, despite going on to

develop an alternative perspective on semantics with Strachey (which, as will be shown in the

next chapter has an equally natural, associated idea of ‘trace’).

In order to illustrate Scott’s statement above that a record of the transitions of any such

“operational” understanding of behaviour is a “trace,” and to show how this differs in structure

from the example execution traces show in chapter 3, an example is presented along the lines

of Turing’s machine, rather than a term re-writing system like the λ-calculus. Turing’s work

has the significant advantage of providing a much more intuitively reasonable definition of

effective computability – via this metaphor of a machine – than the more mathematical notion

of λ-definability used by Church1. Now that digital computing is commonplace, in no small

part due to the insights and efforts of Turing as one of the pioneers of computing machinery,

this state-machine metaphor for computation is especially familiar to computer programmers,

who can recognise an abstract similarity between Turing’s machine and digital computers2. So

rather than using Turing’s original mechanical machine with tape-based storage as an example

to illustrate how trace arises in the fashion Scott describes above, we instead use an example

1This advantage was acknowledged by both Church and also Gödel who was only persuaded by Church’s

thesis, after accepting it first in the form presented by Turing [Cop04].
2The connection between the lambda calculus and generalised computation is less obvious. Nevertheless,

software engineers unfamiliar with the lambda calculus will already be familiar with at least one term re-writing

system: (high-school) algebra, where it is possible to solve for a variable by successively re-writing an equation,

following the rules of algebra at each step, in exactly the same way that λ-terms are reduced according to the

reduction rules.
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of a state machine even more familiar to programmers of modern digital computers. Consider

the following simple automaton:

s0start s1

a

b

c

It has two states, s0 and s1, with s0 being the state in which the automaton starts3. Starting

from the start state, s0, the automaton can accept either an a or a b. If the automaton

encounters an a, then it returns to state s0, which being an accepting state, means if no further

characters are available, then the automaton has accepted the string. If on the other hand, the

automaton encounters a b, then it will transition to state s1. Since s1 is not an accepting state,

if no more characters are available in the string, then the string will not be accepted by the

automaton. From this state, the only character which can be accepted is c, which will return

the automaton to s0. Thus this automaton can accept strings such as:

abcbcaaaabcaaa (4.1)

An infinite number of other possible examples exist, made up of runs of zero or more a’s and

bc’s, in any order. Since the start state is also an accepting state, the automation will accept

an empty string too.

Note however, that the string accepted by the automaton above, like the example 4.1, is in

an obvious sense a ‘trace’ – it records the sequence of transitions taken by the automaton. This

operational-semantic notion of trace of the kind defined by Scott is unsurprisingly pervasive,

e.g., Jacobs and Rutten also give an example of how this sort of trace arises automatically from

a transition system [JR97].

4.3 The Trace Monoid

Execution of a transition system inherently generates a monoid.

In line with the operational perspective on semantics, it has become customary when using

formal, mathematical approaches, to model traces of transition systems as monoids [DR95]:

abstract, algebraic structures which support a single, associative binary operation, i.e., a se-

quencing operation which allows abstract trace events to be ordered. In order to understand

the trace monoid, it first helps to understand the free monoid (where “free” is used in the con-

ventional mathematical sense here, where it means ‘unencumbered by any properties inessential

3Here the double circles around state s0 have the conventional meaning, indicating that this is an ‘accepting’

state, where the automaton can stop successfully.
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to the definition,’ i.e., the simplest and most general structure supporting the laws that define

it).

The free monoid is typically described as the set of of all finite strings Σ? over some finite

alphabet Σ, including the empty string ε. If Σ is a set of symbols, then Σ? is a set of all words,

composed of those symbols (where the unary, postfix operator ? used here is known as the

Kleene star). For example, if the alphabet Σ contains:

Σ = {a, b, c, d} (4.2)

and there is a binary operation written � (we choose to make it infix), then various strings can

be defined including the empty string ε, a, a � b � c etc.

This operator � must be associative, such that:

∀f, g, h ∈ A : (f � g) � h = f � (g � h) (4.3)

And the empty string is required to act as a left and right identity:

∀f ∈ A : f � ε = ε � f = f (4.4)

At least one example of the free monoid is already familiar to all programmers: the character

string (e.g., [Moe11]). In this interpretation of the free monoid for the example strings above,

i.e., ε, a and a � b � c, the corresponding program objects would be "", "a" and "abc". Here

the operation � is interpreted as string concatenation. More generally, the free monoid is

best understood by programmers as the abstract notion of a list. Differing implementation

structures, e.g., arrays and linked lists, can be used to represent lists, but they both share in

common an abstract notion of list – they are isomorphic to the free monoid.

The identity rule 4.4 and associativity rule 4.3 are also the category laws in disguise. Equa-

tion 4.3 is the category associative law (equation 2.8) where the symbol ◦ is renamed to �, and

equation 4.4 is the category identity law (equation 2.10). Thus, the monoid is also a category.

The free monoid is, however, more restrictive in structure than a free category, in that ε serves

as both left and right identity, in equation 4.4 above. This in turn tells us that the type of �:

� : A? → A? (4.5)

Thus a monoid is simply a category with only one object, or from the perspective of a pro-

grammer, a free monoid is an abstract list containing only one type.

Here we see that in the operational-semantic tradition, computer science chose the most

obvious, simple, abstract, mathematical model that can describe the list of transitions taken by

a transition system, as a basis for the associated ‘trace’. In section 4.5 it will be shown how the

fact that a monoid is inhabited by a single type is a distinct disadvantage when working with

practical execution traces like those described in section 3.2.2. However first it is important to

understand what the trace monoid is useful for.
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4.4 Application Domains

The trace monoid is the foundation of process algebrae, and has been useful in the

study of concurrency and non-determinism.

In the preceding sections in this chapter, it has been shown how the notions of operational

semantics, transition system, and traces structured as a monoid involves a nexus of ideas,

defined in terms of each other (originally by Scott), with its genesis found in the early days

of computer science. Thus far only the free monoid has been described; here we explore the

additional feature present in the trace monoid, and the applications to which it is therefore use-

ful. The trace monoid is by definition a partially-commutative free monoid [DR95]. It extends

the free monoid by adding the ability to commute (or re-order) sub-strings and letters. This

makes the trace monoid useful for modeling concurrent and non-deterministic computations,

that may have sub-computations which may appear in any order. As a result the trace monoid

has a long history of being used in computer science in the study of concurrent systems and

non-determinism.

In recent decades operational semantics has most commonly be expressed in the form of

structural operational semantics [Plo81], which consist of inference rules in predicate logic

defined via a set of transition relations, expressed as inference rules. It is “structural” in the

sense of being syntax oriented, which is not in general a necessary feature of an operational

semantics. Structural operational semantics has become the de facto standard for process

algebrae [Plo04]. By providing partial commutativity, the trace monoid provides a unifying

mathematical basis for process algebrae, such as Milner’s CSS and π-calculus [Mil99], and

Hoare’s CSP [Hoa78].

4.5 Fit with Tracing in Practice

The trace monoid is too simple a structure to encode the compositional, source-

oriented details of practical interest for many tracing activities.

As was observed in chapter 3, practical tracing systems must be source-oriented, requiring

that for an operational semantic basis to be practically useful for tracing, it must also be

source-oriented – a so-called ‘big-step’ semantics, the most well known of which is structural

operational semantics [Plo81]. While not all operational semantics are source-oriented and

therefore compatible with the requirements of practical tracing, nevertheless, with a suitable

choice of operational semantics, source-oriented trace can be produced. For example, the trace

of a Pascal program describing the execution of machine-level instructions will be unhelpful

to a Pascal programmer; instead what is needed is a record of the transitions taken by some

virtual Pascal machine, in terms of the Pascal source structures of which the program consists.
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This operational but source-oriented trace is the record of what a programmer would see when

stepping through the execution of a program, statement by statement, using a source-level

interactive debugger. In effect, this type of trace is a history of the transitions taken by a

virtual (for the example above, Pascal) machine – a snapshot of the machine state at each step

of execution.

However, as has been observed in section 4.3, the monoid induced by any operational se-

mantics is a structure that is inhabited by a single type. The monoid is therefore unable to

support the practical requirement that tracing be source oriented and compositional — it can-

not describe the various nested relationships between the source code entities — it is typical for

the abstract syntax of a program to be structured as a tree, rather than as the simpler, flatter,

list-like monoid. The trace monoid is therefore too simple a structure to support many practi-

cal tracing tasks, specifically those requiring the generation and analysis of arbitrarily nested

sub-structure, e.g., anything involving the (often complex) run-time relationship between the

various function and procedure calls in the program, reflecting the nested relationships between

the function and procedure calls found in the source code. Many practical uses for tracing re-

quire function (and/or procedure) argument values on entry and return values on exit (see

chapter 3 for many examples) — there may be varying numbers and types of arguments to

functions. Object oriented programming adds additional semantic artifacts of interest, once

more with hierarchical structure.

A reader familiar with algebraic data types might raise the objection here that it is possible

to specify a sum type as the single type inhabiting a monoid, thereby effectively allowing

multiple types within a monoid. Similarly, a C programmer might propose the type (void *)

as the single object for a monoid, thereby effectively allowing it to contain ‘anything’, or an

object-oriented programmer might suggest some polymorphic object type. While it is certainly

the case that the single object within a monoid can accommodate a complex, structured type,

the fact remains that the knowledge that the structure in use is a monoid tells us nothing about

the structure of its contents and how these are related to each other (except, of course, that

they are of the same type and ordered). Instead the relational information of interest is to be

found inside the type suggested as the object for the monoid.

In a similar fashion it is certainly possible to encode arbitrarily structured information in

a monoid and this is completely routine practice in computing: it is very common to encode

complex information as a character string, perhaps the most obvious example is the source code

for a program. But knowing nothing more about a program than it is a string of characters,

we know very little about it that is of any usefulness. It is only when such a string is decoded

via the grammar of the language into an abstract syntax tree (either by machine parsing or by

the programmer as they read the text of the program) that it becomes possible to reason about

the program and its structure. Once again, because it contains just a single type, the monoid

is too simple a structure to express such compositional information.
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Chapter 5

Denotational Trace

As a consequence of the categorical duality between operational and denotational

semantics, the novel, dual notion of ‘denotational trace’ is introduced, where a

‘canonical’ denotational trace contains the complete collection of source-oriented

and compositional, denotational semantic information required for practical execu-

tion tracing activities.

In chapter 4, the existing theoretical notion of trace already found in computer science – the

trace monoid – was found to have an unsatisfactory fit with the source-oriented, compositional

requirements for practical execution tracing as found in chapter 3. Faced with this inadequacy,

an alternative theoretical basis for practical tracing must be sought. In this chapter, the

existing semantic basis for the trace monoid is explored, with a view to finding an alternative

semantic basis for tracing; one that does support the requirements of practical tracing outlined

in chapter 3.

Duality provides a powerful meta-level design tool here for the task of discovering or design-

ing a novel, yet effective theory of tracing, alternative to that provided by the trace monoid.

One of the few basic facts known about every category is that it has a unique dual (up to

isomorphism). By characterising the (operational) semantic basis for the trace monoid in cat-

egorical terms, the simple fact that it must have a categorical dual can be exploited; here it is

used to generate the well justified and unique, alternative basis for tracing — the denotational

semantic basis. This argument from duality for what is called here ‘denotational trace’, was

foreshadowed at the beginning of this thesis in table 1.1. Revisiting this here in table 5.1, many

of the components of this argument from duality have now been established (ideas already

introduced have a grey background). The remaining (italicised) concepts are explained in this

chapter.

The relationship between the trace monoid and operational semantics was identified in

chapter 4. Chapter 2 introduced initial algebras and final coalgebras and the duality between

them. What remains is to establish that:

• final coalgebras provide a categorical, abstract basis for operational semantics (section 5.1.1
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The trace monoid denotational trace.

is induced by operational semantics denotational semantics that induces a

which has the
abstract, categorical

formalisation as

final
coalgebra
semantics

initial
algebra

semantics

the abstract,
categorical
formalisation of

that is
semantics

structured as

a final object in
the category of
F -coalgebras.

An initial object in
the category of

F -algebras

is the
structural basis
for

Table 5.1: The Argument from Categorical Duality for Denotational Trace, Revisited

below), and that dually,

• initial algebras provide a categorical, abstract basis for denotational semantics (sec-

tion 5.1.2 below).

Having identified the alternative, denotational basis for trace it is finally possible to explore

how this fits with execution tracing in practice: below we find that the essential denotational

properties of source orientation and compositionality correspond exactly to the requirements

for practical traces as found in section 3.3, i.e., source-orientation and compositionality. Thus,

based on this argument from duality as summarised in table 5.1, in section 5.2 below the novel

idea of denotational trace is introduced, being trace structures derived from a denotational

semantic basis, rather than the operational semantic basis presented in chapter 4. Denotational

trace addresses exactly the inadequacy of the trace monoid for practical purposes identified in

section 4.5, i.e., that it has insufficient structure to describe the compositional, source-oriented,

semantic information required for the myriad of tracing applications presented in chapter 3.

5.1 Denotational is Dual to Operational

Denotational semantics is dual to operational semantics.

As explained above, an existing category theoretic duality known to computer science is ex-

ploited here: operational and denotational semantics are each-other’s dual. This result was

first formalised categorically by Ong [Ong95], and has been summarised most explicitly and

clearly by Hutton [Hut98], as is elaborated in the following subsections. As Hutton explains,

it is an insight, the distant origins of which are unclear, that developed gradually over a long

period of time.

In the following, the abstract semantic basis for the trace monoid is presented as final co-

algebra semantics. As was observed in section 2.3, this category-theoretic structure necessarily

has a dual, namely initial algebra semantics. Just as operational semantics is formalised ab-

stractly as final co-algebra semantics, then, so too is initial algebra semantics the abstract basis

for denotational semantics.
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5.1.1 Operational Semantics are Final-Coalgebraic

The basis for the structure of operational semantics is the abstract machine, or in

categorical terms, the final coalgebra.

Thus far, the trace monoid has been shown to have an explicitly operational semantic basis, and

operational semantics has been explained loosely in terms of a transition system or ‘machine’

which transitions through a series of states, possibly producing a final result. Thus far three

examples of transition systems have been presented:

1. Church’s lambda calculus as a rewriting system under reduction/conversion,

2. the Turing machine and

3. a simple automaton (i.e., the example presented in section 4.2).

All three of these examples are ‘operational’ in the classical sense being examples of Scott’s,

“step-by-step evolved sequences of operations on representations” as discussed in section 4.1.

Here Scott captures the programmer’s intuition that these are three examples of ‘machines’

sharing some abstract similarity.

As was explained in chapter 4, operational semantics has been a part of computer science

since the dawn of the field in the 1930’s. Despite the fact that the practice of defining opera-

tional semantics developed well before there was any formalised, mathematical basis established

for it, over time the realisation formed that it could be abstractly but formally captured by the

mathematical, algebraic perspective. Jacob and Rutten describe how, “the insight gradually

grew that . . . state-based systems should not be described as algebras, but as so-called coalge-

bras” [JR97]. Turi and Plotkin have provided a categorical account of such transition systems

[TP97], whereby the sense in which these and other transition systems are abstractly the same

is precisely captured by the idea of final coalgebra semantics. Final coalgebra semantics, refers

to semantics structured as a final coalgebra, i.e., a view of semantics as an abstract machine.

Hutton explains [Hut98]:

. . . the operational approach, in which the meaning of programs is defined using

a transition relation that captures single execution steps in an appropriate abstract

machine. The transition relation is defined using a set of inference rules, and the

meaning of a program is given by repeatedly applying the relation to generate a

transition tree that captures all possible execution paths of the program. In fact,

the pattern of recursion used to construct transition trees is precisely the pattern of

recursion captured by unfold. Hence, an operational semantics can be characterised

as a semantics defined by unfolding to transition trees.
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This pattern of recursion captured by unfold was formally identifed with the final coalgebra

in section 2.3. Thus the relationship between operational semantics and finite coalgebras is

established via the pattern of recursion known as unfold. Hutton also points out that this

categorical basis for operational semantics is not widely known, and that “most functional

programmers are not aware of this connection”.

5.1.2 Denotational Semantics are Initial Algebraic

Final coalgebras have a dual: initial algebras, that provide the structural basis for

denotational semantics, otherwise known as initial algebra semantics.

Having identified the specific, category-theoretic basis for operational semantics as final coal-

gebra semantics, we can ask what is dual to this? The answer is initial algebra semantics. It

has already been observed in section 2.3 how the notions of initial algebra and final coalgebra

are dual to each other. In order to establish that initial F -algebras form the structural basis

for denotational semantics, it is necessary to be clear about what, precisely, makes a semantic

description ‘denotational’. Stoy describes the essence of the denotational approach [Sto77]:

We give “semantic valuation functions”, which map syntactic constructs in the

program to the abstract values (numbers, truth values, functions etc.) which they

denote. These valuation functions are usually recursively defined: the value denoted

by a construct is specified in terms of the values denoted by its syntactic sub-

components, and it is this emphasis on the values denoted by all these constructs

that gives the approach it’s name. There may or may not be an obvious way of

working out the results of these functions in any particular case: that is, the defining

equations may or may not suggest a way of implementing the language. [author’s

emphasis]

In effect, Stoy is describing a source-oriented system (“which maps syntactic constructs”) that

is compositional (“the value denoted by a construct is specified in terms of the values denoted

by its syntactic subcomponents”). As explained below, this compositional structure can be

recognised as initial algebraic, i.e., constructor replacement applied to the abstract syntax tree

for a program.

The two essential denotational features of source-orientation and compositionality can be

seen even in a very simple example of denotational semantics:

M Ja+bK = M JaK + M JbK (5.1)

The double brackets due to Scott and Strachey are a notational device whereby denotational

semantics is explicitly source-oriented: the contents of the brackets are syntax objects. The

meaning function represented by the symbol M (often pronounced ‘means’) maps each abstract
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source entity to its corresponding meaning or value in the semantic domain. Note the careful

use of notation here, + on the left-hand side is different from + on the right-hand side, where

the former refers to an abstract syntax element, whereas the latter refers to addition in the

denotational domain: + is the single semantic function defined for this tiny semantics.

The identifiers a and b stand for any abstract syntax element. Their use above in defining

the meaning of + is explicitly compositional — the meaning of the addition syntax is recursively

composed of the meaning of the two arguments a and b (which might in turn consist of other

additions).

Note that equational reasoning is explicit in the structure of the semantics here, in contrast

to operational semantics, where semantic rules are typically expressed as inference rules in

predicate calculus. This is no accident, as both Scott and Strachey were seeking this very

feature, precisely to allow easy reasoning about program correctness, without the problems of

determining when a transition system is finished processing (e.g. by reaching normal form, in a

term-rewriting system), and the halting problem in general. Scott’s comment that there “may

or may not be an obvious way of working out the results of these functions in any particular

case” [Sco70] makes this exact point.

Initial algebras are the natural structure for expressing denotational semantics, as Hutton

explains [Hut98]:

One of the most popular styles of semantics is the denotational approach, in

which the meaning of programs is defined using a valuation function that maps

programs into values in an appropriate semantic domain. The valuation function is

defined using a set of recursion equations, and must be compositional in the sense

that the meaning of a program is defined purely in terms of the meaning of its syn-

tactic subcomponents. In fact, the pattern of recursion required by compositionality

is precisely the pattern of recursion captured by fold. Hence, a denotational seman-

tics can be characterised as a semantics defined by folding over program syntax.

[author’s emphasis]

This relationship between denotational semantics via folds (over program syntax) to initial

algebras (as were defined formally in section 2.2.3) was made explicitly first by Rutten and

Turi [RT94], but as Hutton points out this connection is “widely known in certain circles”.

Thus, in a deep and mathematically-precise sense, operational and denotational semantics

are dual to each other. It should perhaps not be surprising, that computer science developed two

different, complementary models of semantics – operational and denotational – that turned out

to be, at core, mathematical duals. Therefore, when looking for an alternative to the operational

semantic basis for tracing, denotational semantics presents itself via duality as the compelling

alternative to consider.
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5.2 Tracing Denotational Semantics

The transformation of denotational semantics by the addition of execution tracing is

modelled by an algebra homomorphism, more specifically a canonical isomorphism.

Given that the two essential, defining features of denotational semantics are source-orientation

and compositionality, and that these are the two key requirements for practical execution traces

identified in chapter 3, a semantic basis has been found that appears to be a precise fit. So

far it has been shown that:

1. denotational semantics is the dual of operational semantics, the latter providing the im-

plicit, and later explicit basis for the trace monoid, and

2. the essential properties of denotational semantics — source-orientation and composition-

ality — are an exact fit for the needs of practical execution tracing, i.e. a source-orientated

record with complex, nested semantic structure.

It is now possible to ask, in categorical terms: what relationship does tracing have to

denotational semantics? More specifically, how can tracing be derived from a denotational-

semantic basis by direct analogy with the obvious and automatic derivation of the trace monoid

from an operational basis?

We need something to transform existing semantics into semantics which also produces a

trace. We want to systematically augment (all) the semantic productions so they produce trace,

and we also want to change the type of our semantics. We want to be able to say something

like:

MT = T (M ) (5.2)

Where MT is a new semantic specification, augmented by execution tracing, created by

applying some tracing transformer T to an existing denotational semantics M . The essential

idea here is that the trace is systematically derived from the existing semantics, rather than in

an ad hoc fashion.

5.2.1 Monads for Modular Semantics

Monads allow denotational semantics to be structured in a modular fashion.

In the very early stages, denotational semantics did not have a suitable, mathematical structure

with which to model the semantic domain, and Strachey proceeded on the basis that something

suitable would be found in due course [Str00]. Indeed, shortly thereafter Scott identified a class

of suitable structures, now known as Scott domains [Sco70]. One deficiency of Scott domains

82



(the first viable denotational model identified) is that the resulting semantics is not modular.

Subsequently, various other mathematical structures have been used to model the semantic

domain, for this reason as well as others.

The requirement that semantic values are available immediately means that the semantic

domain required for denotational semantics may contain some strange entities. In order to

support just the lambda calculus ([Bar81]), the semantic domain needs to contain some pretty

odd things, including infinite types. Similarly, given that the lambda calculus supports universal

computation, it can therefore express programs which do not terminate. This requires the

semantic domain to support a ‘value’ which means ‘did not terminate’. Now of course the fact

that such a value exists in the semantic domain does not mean that it is effectively calculable

for an arbitrary program - in fact it cannot be, as to do so would involve solving the halting

problem.

Here we use the monadic approach introduced by Moggi, specifically for the purpose of

allowing modular semantics [Mog89]. It has already been seen in section 2.2.1 that monads

provide a means to accommodate a wide range of program behaviours in a categorical setting.

Modularity in the semantics allows a clear separation between basic semantics for a language of

interest and semantics augmented with trace generation. Further, this separation of concerns

makes it possible to investigate how tracing can be added to any denotational semantics con-

sistently, as we show in the next section. Moggi’s ideas have been successful in the practical

exploration of modular (denotational) semantics, such as the work of Liang, Hudak and Jones

on modular interpreters [LHJ95]. In particular, they use monad transformers to add features

to an existing semantics, a practice that is followed here. One additional, advantageous feature

of the denotational approach – which is exploited in the next chapter – is that the semantic

equations can be expressed directly in a functional programming language, as a (monadic)

interpreter for the language of interest, and a (monad) transformer which can be used to trans-

form this interpreter into one which automatically produces execution trace, in addition to the

original semantics.

Because a monadic basis has been chosen for the semantics here (since it is useful subse-

quently for illustrative purposes), the structure we use for implementation purposes is a monad

transformer. This allows us to transform our semantic monad in the fashion above, by ap-

plying a monad transformer to it. Chapter 6 contains a concrete example of a tracing monad

transformer, for a concrete example of semantics1.

5.2.2 Canonical Tracing

The morphism required to transform an initial algebra describing denotational se-

mantics into semantics augmented with tracing output is a homomorphism, more

1 Monad transformers have become the standard way of combining the features of two monads in Haskell –

the concept is in widespread use in this language [OGS08].
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specifically an isomorphism, which should be canonical with respect to the original

semantics.

Despite the fact that the current discussion is completely abstract with respect to semantics –

no specific example is under discussion – there are some ways in which the monad transformer

T , can be characterised in more general terms. The observation that T can be seen as a

monad transformer derives from the specific choice of using monads to structure the semantic

domain. While this is a useful approach for practical reasons, it is not the most abstract

perspective that can be taken on T .

Firstly, and most fundamentally, it must be remembered that denotational trace as a

concept results from an exercise in algebraic semantics: the recognition that that initial F -

algebras and final F -coalgebras capture abstractly the consequently dual semantic notions of

denotational and operational respectively. This perspective requires simply that denotational

semantics are expressed as an initial F -algebra. This means that, most abstractly, T is an

algebra homomorphism. However we can qualify T even more precisely.

The operation T , that adds tracing to denotational semantics, admits an inverse — an

operation T −1, to remove tracing from traced denotational semantics. It is axiomatic when

tracing that the addition of tracing should not alter the denotational semantics, which means

that recovery of the original semantics is assured. T is therefore an isomorphism.

Section 2.1.2 described several notions of isomorphism — the concept of a canonical iso-

morphism captures precisely the important property of “no choice” in the derivation of trace

from denotational semantics. There is only one sensible option for a ‘canonical’ isomorphism

to apply tracing, and that is to trace ‘everything’. Thus we find the important abstract notion

of canonical tracing, being tracing applied to ‘everything’ in the denotational semantics.

Knowing also that the canonical tracing morphism is an algebra homomorphism means

that canonical tracing has implementation implications: each semantic function in the algebra

should be traced. This in turn provides an exact specification for the operations to be recorded

in what we accordingly call a canonical trace.

5.2.3 Canonical Traces

We call the maximal set of trace information available from a dual-consequent, de-

notational perspective, a “canonical trace”, when produced by canonical tracing.

In order to answer the question as to what information will be provided by a denotational

trace, we would like to have a correspondence between trace objects and the corresponding

semantics for each element of syntax. The requirement that the tracing morphism is canonical

with respect to the addition of tracing to semantic functions, ensures that all semantic functions

will be traced. We might imagine this tracing transformation as consistently wrapping each

semantic function in the denotational semantics, i.e., each of the morphisms in the algebra for
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the semantics, with trace start and end logging, and the details of the argument(s) and result(s).

Each semantic function will typically map to many separate instances of entries in a trace,

since each semantic function is generally executed more than once. (So from the programmer’s

perspective every item of trace can be mapped back to the corresponding semantic function,

but many other trace entries may map to that same semantic function.)

By tracing all of the denotational semantic functions – resulting from the use of a canonical

isomorphism – a canonical trace is produced, that contains all semantically relevant informa-

tion. A canonical trace therefore represents a maximal bound with respect to the execution

tracing information that can be collected, given a denotational semantic specification. A con-

crete example of a full trace is given in section 6.

It should be emphasised that canonical traces are unlikely to be optimally useful in unmod-

ified form. For example, profiling activities will only focus on timing information and execution

counts, which require only a subset of information available in the canonical trace, i.e. a derived

trace. In fact, it is an essential feature of many practical uses of tracing that canonical traces

will not be used, because appropriate selection of the essential information needing to be in-

cluded in a derived trace is key to enabling the associated activities effectively. In short, as was

pointed out in section 3.2.2, practical tracing systems need “temporal and static selectivity”.

The practical filtering and query of traces is explored in more detail in chapter 6.

Nevertheless, the purpose here is to highlight that canonical traces represent the maximal set

of execution information available, derived via a completely straightforward, canonical trans-

formation applied to the language semantics, and that many (and perhaps all) source-oriented,

trace-based activities can be enabled by canonical traces.

5.3 Two Sides to the Semantic Coin

Operational and denotational traces are complementary.

There is no reason per se why the mathematical dual of a familiar, useful structure might itself

have concrete realisation as a similarly familiar or useful structure. However, as observed in

section 2.3, in many cases mathematical duals do turn our to be familiar, useful objects. To

aid the reader in understanding how the the various useful dualities discussed in this chapter

are related, their relationships are summarised in table 5.2.

There is also no reason why mathematical duals, even if they are interesting or useful,

should necessarily correspond by applying meaningfully to the same concrete object of interest

(e.g., share the same carrier type). Nevertheless, once again there are many useful cases where

this does happen, such as the example of the types List and Stream presented in section 2.3,

highlighting that cons-lists have a dual nature, being both data and codata. A cons-list can be

manipulated through the interface provided by its constructors (i.e., Cons and Nil, as an initial
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object: initial algebra final coalgebra

familiar example: data codata

recursion strategy: fold unfold

morphism: catamorphism anamorphism

intuition: abstract data type abstract machine

semantics: denotational operational

sameness: equality bisimilarity

proof technique: induction coinduction

Table 5.2: Duality Quick Reference

algebra), or the interface provided by its destructors (i.e., head and tail, as a final coalgebra).

In addition, there is a much investigated correspondence between operational and denota-

tional semantics when relating to the same programming language [Ong95]. A denotational

semantics is said to be adequate if, for any equality between denotations, the corresponding

operational semantics is observationally equivalent (i.e., bisimilar). When (observationally) dis-

tinct operational semantics are also distinct in the corresponding denotational semantics, the

denotational semantics is termed fully abstract. Thus, not only does duality tells us that initial

algebra semantics are dual to final coalgebra semantics, and that this means that both must

exist as unique alternatives to each other, but furthermore, each provides a complementary

perspective when applied to the same language: they are two sides of the semantic coin. Turi

and Plotkin [TP97] explain that both are necessary:

Both operational and denotational semantics are necessary for a complete descrip-

tion of a programming language: the former for specifying the execution of programs

and the latter for reasoning about them in terms of abstract, mathematical entities.

Meseguer and Goguen [MG86] make this point more generally for initial algebras and final

coalgebras:

Much confusion can be avoided by distinguishing sharply between (concrete or ab-

stract) data types that are just algebras, and (concrete or abstract) machines that

in addition may have internal states . . . The fact that many common examples can

be viewed from either perspective contributes to the potential confusion.

There is for instance, the rather pointless controversy about whether final or initial

algebra semantics is ‘best’. For abstract machines, it is behavior that matters.

Machines that represent and manipulate their internal states differently (i.e., are

non-isomorphic as data types) can still have the same behavior. A software module

can usually be realized in many different ways; among these, the final one uses as

little storage as possible for internal states, while the initial one has no sharing at all
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for storage of states. Because the space efficiency of the final realization can greatly

reduce its time efficiency, there are many cases where the pragmatically correct

choice of data representation is neither initial nor final, but rather something in

between . . .

In summary, initial realizations are appropriate in case all behavior is visible behav-

ior; final realizations may be appropriate in case there are hidden internal states, but

often the most practical realizations, although neither initial nor final, are rather

close to being initial. [author’s emphasis]

The reality is that the world of programming is inhabited by both species of structure, and they

are equally useful for different applications. Neither initial algebra nor final coalgebra semantics

are suited to all applications, providing, as they do, the complimentary notions of abstract data

and machine. These complimentary perspectives are suited to answering different questions.

Each of these dual perspectives come equipped with tools for formal reasoning about them.

Notably, coinduction/bisimilarity have been useful in exploring concurrency [RT94], and more

recent work has exploited the connections between the trace monoid, co-algebraic structures

and coinduction [HJS07]. Jacobs and Rutten provide an overview of the relationship between

these dual structures, and the associated tools which come with them (bisimilarity/coinduction

vs equality/induction) [JR97]. Jacobs and Rutten provide a tutorial on coinduction, which in-

cludes several examples of coinductive reasoning. Section 6.4.3 and section 6.4.2 have examples

of reasoning by mathematical induction.

Duality suggests we should find that denotational traces are good for questions of correct-

ness (via equality), will be source-oriented and compositional (as required for practical tracing

in section 3.3), and that induction should be a natural proof technique. Knowing that the

denotational perspective is unique and dual to the operational one, we get some hints as to

what denotational traces might be good for – i.e., precisely those domains where operationally-

based trace has traditionally not been used, being the practical tracing activities described in

chapter 3.

A key contribution of this thesis is that the semantic basis for tracing is considered explicitly, as

is how tracing in both practice and theory relates to both operational and denotational notions

of semantics. It is this result which answers the questions:

• Why is the existing trace monoid used so little in practice when it is by contrast a founda-

tional concept in the study of concurrent, distributed and non-deterministic systems with

process algebrae? What explains the difference in utility of the trace monoid in these two

problem domains?

• Why are practical tracing activities not grounded upon some formal concepts and ideas as

is so typically the case of other artefacts in computing? What would a suitable theoretical

basis for tracing as it is found in practice look like?
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The explanation in both cases is provided by the recognition that the existing theoretical basis

provided by the trace monoid is only describing half of the semantic story. The operational and

denotational perspectives are complimentary. This duality suggests we will find that practical

tracing – the requirements of which cannot be met by the trace monoid – must instead be

based on an implicit, denotational semantic assumption. This is indeed what we have found:

the common requirements for practical tracing (see section 3.3) of source-orientation and com-

positionality also are the two key defining features of denotational semantics.
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Chapter 6

A Denotational Tracer

To highlight the practical, straightforward nature of both denotational tracing imple-

mentation and usage, a canonical, denotational tracer is implemented for a simple

language, sufficient to provide some simple examples of nevertheless sophisticated

uses for denotational traces, including a specification recovery from execution trace

and analyses of space and time complexity using formal reasoning applied to traces

(i.e., proof by induction, as implied by categorical reasoning based on the denota-

tional basis, for which induction is the associated proof technique).

In order to demonstrate how easily a denotational trace can be derived from the denotational

semantic specification of a language, and thereby show the practical usefulness of denota-

tional traces, a very simple sequential language has been deliberately chosen as the basis for

an example to trace. Firstly, this is because simple sequential programming problems are of

fundamental importance to most programming tasks, even those involving elements of concur-

rency. The language we use here is in the tradition of Scott’s LCF and Plotkin’s PCF, which

have a long history of supporting useful research into programming language semantics (and

in particular the exploration of the correspondence between denotational and operational se-

mantics [Ong95]). The great usefulness of such tiny, exemplary languages — in this case based

ultimately on Church’s lambda calculus [Bar81] — is that they are uncluttered by a mass of

syntactic and semantic details, making it possible to focus efficiently on a few key details of

interest. In general such languages are as simple as possible, although universal. Named decla-

rations are included in the language (i.e. a ‘let’ or ‘while’ declaration can be specified). Without

this, recursive programs (and therefore loops) cannot be expressed without the use of a recur-

sion combinator, severely impacting readability of source code, for even trivial programs. The

execution order is applicative (aka eager evaluation), the familiar order of argument evaluation

found in most mainstream languages today. All functions are curried (i.e., have exactly one

argument) as this can be used easily to model n-ary functions with any number of arguments.

The concrete syntax for the language is a small subset of Haskell, although this is of little

consequence here as we are interested in the abstract syntax only. The meta-language used to
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implement the denotational semantics here is Haskell [Mar10].

Canonical tracing is added to the denotational semantics, and a simple example program

and its traces are explored, as well as the associated reasoning and tools needed for some

example software engineering activities, including specification recovery and reasoning about

space and time complexity.

6.1 Executable Semantic Specifications

The denotational semantics specified here are implemented in the meta-language

Haskell; execution of the denotational specification constitutes an interpreter, a use-

ful experimental tool.

One additional, advantageous feature of the denotational approach to semantics – which we

exploit here – is that the semantic equations can be expressed directly in a functional pro-

gramming language, as a (monadic) interpreter for the language of interest, and a (monad)

transformer which can be used to transform this interpreter into one which automatically pro-

duces execution trace, in addition to the original semantics.

As early as the 1980’s, it was recognised that it is convenient to implement denotational

semantics in a form where they can be executed [Wat86]. Advantages include machine-checking

of syntax and largely automated testing. Executable denotational semantics effectively provide

an interpreter, which can be an extremely useful research platform in itself. In the context of

this project, an interpreter provides a natural integration point for automatic tracing.

While denotational semantics is structured such that the semantic domain contains val-

ues which in principle are immediately available, these values (such as oddities like ‘did-not-

terminate’) may not be effectively calculable in practice. This presents no contradiction – the

existence of denotational semantics does not somehow solve the halting problem. We simply

have to accept that if denotational semantics are executable (i.e., computable), then some

values (e.g. ‘did-not-terminate’) are not effectively calculable.

Nothing here is intended to imply this implementation of a denotational tracing system is

optimal for any particular application – most practical systems would be quite optimised to the

problem at hand – the approach used here is chosen because it is well suited to the exploration

of the relationship between semantics and tracing.

6.2 A Simple Denotational Interpreter

A simple language with just enough structure to exercise some interesting examples

is constructed: the syntax is a simple variant of ML-style languages, the semantics

are simple, with a strict/eager execution order, and the value domain contains just

a few basic types.
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The concrete syntax for the language is a Haskell-like variant of the lambda calculus. The

abstract syntax is very simple. A program consists of an expression, and an optional list of

declarations. Expressions may include literals, identifiers, conditional expressions, function

applications and lambda expressions:

data Prog = Prog Expr [Decl]

data Decl = Decl String Prog

data Expr = Number Integer

| Boolean Bool

| Ident String

| Lambda String Expr

| IfStmt Expr Expr Expr

| Apply Expr Expr

The semantic domain supports a few basic types of values. Lambda function values are asso-

ciated with the environment prevailing at the time of their declaration (i.e. the environment is

bound statically as is usual in almost all languages).

data Value = ValInteger Integer

| ValBoolean Bool

| ValLambda String EnvId (() -> Meaning)

The meaning of a program or expression is the value it denotes, augmented by both an

environment and trace information.

type Means a = Env a

The monad Env provides the mappings of bindings to their values. It can be thought of as a

type modifier applied to the value type, that associates appropriate environment bindings with

semantic values. We will only be applying Means to Value, and this will appear many times

in subsequent type declarations, so we define a convenient type alias for the semantic value

domain:

type Meaning = Means Value

Being denotational, the semantics here consist of a single function for each of the abstract

syntax data structure elements above.

declare :: Meaning -> [Meaning] -> Meaning

declare expr decls = local $ do sequence_ decls

expr
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A declaration, or a program, is simply the meaning of an expression, evaluated in the context

of a local environment with a set of associated identifier bindings.

abstract :: String -> Meaning -> Meaning

abstract arg expr = do

env <- getEnv

return $ ValLambda arg env $ \_ -> expr

Lambda abstractions are evaluated in the context of the environment that prevailed at the

time of definition - the function getEnv simply returns an identifier for the current environment

state. Application of lambdas occurs in the context of the environment at the time of abstraction

(using withEnv), extended with the additional binding of the argument value to the lambda

argument variable identifier. Function application is strict: first the function expression is

evaluated to derive a lambda value or error, then the argument is evaluated and bound to the

argument in the environment, before finally the body of the lambda is evaluated.

apply :: Meaning -> Meaning -> Meaning

apply fn expr = do

ValLambda arg env str lambda <- fn

e <- expr

withEnv env $ do bind arg $ return e

lambda ()

Choice, provided by the if statement, evaluates a (Boolean) condition, then evaluates the then

or else consequent. Binding and finding of identifiers via the bind and find functions in the

algebra operate exactly as would be expected, i.e., they add a new binding to the environment,

or lookup the environment via an identifier, using the mapping provided by Env.

choose :: Meaning -> Meaning -> Meaning -> Meaning

choose p e1 e2 = do ValBoolean b <- p

if b then e1 else e2

Denotational semantics provides an explicit mapping from each abstract syntax element

to a meaning in the semantic domain, composed as necessary from the meanings of syntactic

sub-components. It is therefore natural to express such semantics as structural induction over

the data types describing the abstract syntax, such as those above. The pattern of recursion

involved is known as ‘fold’ to functional programmers [Hut99], and recognised as a functional

programming design pattern known as a catamorphism [MFP91]. At this point, the semantics

are explicitly structured as initial algebra semantics, and we see how naturally this arises in the

context of denotational semantics, in particular due to source-orientation and compositionality.

Using these ideas, we define the type of the fold algebra for the abstract syntax of the essen-

tial functional language, in particular we use updatable fold algebras as described in [KLV00]:
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data SynCataAlg uProg uDecl uExpr = SynCataAlg

{ fProg :: uExpr -> [uDecl] -> uProg

, fDecl :: String -> uProg -> uDecl

, fBoolean :: Bool -> uExpr

, fNumber :: Integer -> uExpr

, fIdent :: String -> uExpr

, fLambda :: String -> uExpr -> uExpr

, fIfStmt :: uExpr -> uExpr -> uExpr -> uExpr

, fApply :: uExpr -> uExpr -> uExpr }

The fold operation (i.e. pattern of recursion) is then defined for the abstract syntax algebra:

class Fold alg t a where

fold :: alg -> t -> a

instance

Fold (SynCataAlg uProg uDecl uExpr) Prog uProg

where

fold alg (Prog e ds) =

fProg alg (fold alg e) (map (fold alg) ds)

instance

Fold (SynCataAlg uProg uDecl uExpr) Decl uDecl

where

fold alg (Decl i p) = fDecl alg i (fold alg p)

instance

Fold (SynCataAlg uProg uDecl uExpr) Expr uExpr

where

fold alg (Literal s) = fLiteral alg s

fold alg (Number n) = fNumber alg n

fold alg (LambdaL i e s) = fLambdaL alg i (fold alg e) s

fold alg (LambdaS i e s) = fLambdaS alg i (fold alg e) s

fold alg (IfStmt p e1 e2) = fIfStmt alg (fold alg p)

(fold alg e1)

(fold alg e2)

fold alg (Apply f e) = fApply alg (fold alg f) (fold alg e)

fold alg (Ident i) = fIdent alg i

We can now express the meaning of a program as an instance of the syntax fold algebra:

evalA :: (Meaning -> Meaning -> Meaning)

-> SynCataAlg Meaning Meaning Meaning
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evalA = SynCataAlg declare

bind

(return . ValBoolean)

(return . ValInteger)

find

abstract

choose

apply

The primary disadvantage of this technique becomes apparent here: significant boilerplate

code needs to be written and maintained for each type. In this case, this is not of concern

as the examples we are working with are deliberately chosen in order to be simple and clear

for illustrative purposes, rather than entailing all of the details which would be inherent in a

full-blown, practically-oriented system, for a complete, general purpose language. As a result

of these intentionally small semantics, the boilerplate involved in constructing a syntax fold

algebra here is minimal.

Denotational semantics usually uses Scott brackets, to provide an explicit mapping from

(abstract) source constructs to semantic domain values. We do not have access to these special

symbols in Haskell, however the transliteration between the two is trivial and purely notational.

More importantly, in effect what we have here are denotational semantics structured as

initial algebra semantics, i.e. a fold applied to the associated algebra, gives us an interpreter

which can be applied to any abstract syntax element:

interpret = fold evalA

6.3 Trace Generation

In a straightforward way, canonical trace structures are defined for the language,

and modified semantics with tracing added are generated by application of a suitable

monad transformer.

For the purposes of this thesis, the answer to the question, “what should be traced?” is answered

with, “everything,” i.e., we want a complete record of the semantics, because we are interested

in the limits to the information available on this basis. The trace structure thus directly reflects

the compositional structure of the semantic equations in 1:1 correspondence:

data Trace

= Prog [Trace] -- bindings

Trace -- execution

| Bind Identifier Trace Value
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| Boolean Bool

| Number Integer

| Choose Trace -- condition

Trace -- consequent

| Find Identifier Value

| Abstract Identifier Value

| Apply Trace -- function

Trace -- argument

Trace -- binding

Trace -- execution

Value -- result

Tracing is added to our semantic domain as follows:

type Means' a = (TraceT Means) a

TraceT is a monad transformer, i.e., a type modifier applied to our existing value domain

that associates appropriate state information with semantic values, being the trace information

collected thus far during execution. Once again, we define a convenient type alias:

type Meaning' = Means' Value

Canonical tracing as specified above is implemented here by defining a transformation (traceT

- a higher-order function) that can be applied to the existing semantic fold algebra constructed

earlier for the example language:

traceT :: SynCataAlg Meaning Meaning Meaning

-> SynCataAlg Meaning' Meaning' Meaning'

traceT alg = SynCataAlg

(\ expr decls -> trace "prog" [] $ fProg alg expr decls)

(\ ident prog -> trace "bind" [ident] $ fDecl alg ident prog)

(\ bool -> trace "boolean" [show bool] $ fBoolean alg bool)

(\ num -> trace "number" [show num] $ fNumber alg num)

(\ ident -> trace "find" [ident] $ fIdent alg ident)

(\ arg thunk str -> trace "abstract" [arg, str]

$ fLambda alg arg thunk str)

(\ p e1 e2 -> trace "choose" [] $ fIfStmt alg p e1 e2)

(\ fn expr -> trace "apply" [] $ fApply alg fn expr)

This allows us to define a modified interpreter, which augments the original one by collecting

trace information as well:
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interpret' = fold $ traceT evalA

The practical motivations for tracing often involve programs that are long-running or do not

terminate, or programs that terminate with an exception or error. This suggests that traces

should be structured as an ordered, potentially infinite collection of abstract trace events.

At the lowest level we model traces similarly here, using the inbuilt Haskell list type:

type Trace = [Event]

Further, a list allows us to have ‘begin’ events which do not have a corresponding ‘end’ event,

which provides a convenient description for programs which terminate in error, with one or

more semantic steps incomplete. While this model of a sequence of events provides a suitable

low-level basis, it does not describe richer, compositional structures relating directly to syntax.

Without events indicating both the start and end of semantic operations, their exact hierar-

chical relationship cannot be recorded. Thus, each trace event must encode the details of the

associated semantic function beginning (inputs) or ending (outputs) and the time-stamp.

In practice, all that the traceT transformer does is to wrap each function in the existing al-

gebra in a call to trace which has the side-effect of logging begin and end trace events associated

with that function; the semantics described by the original algebra are not altered.

trace str details action = do bgn

result <- action

end $ printVal result

return result

where bgn = log Bgn $ args details

end = log End

The log function records a trace message, with args formatting a list of arguments appropri-

ately.

When working with these low-level traces we will first be parsing them into the trace struc-

tures defined above — note that the trace structures could have been generated directly in

principle.

6.4 A Simple Example Program

As a demonstration of the practical usefulness of denotational trace to users of

tracing systems, a simple example program is executed using the denotational tracer

and the resulting execution traces are used to perform several software engineering

tasks, including specification recovery and analyses of space and time complexity,

with mathematical induction being a natural proof technique.
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Having defined canonical tracing for the simple language in previous sections, we can now

explore the concept of canonical traces in practice with an example program. Consider the

function f (factorial) defined by:

f(n) = ff(1, n) (6.1)

ff(m, 0) = m (6.2)

ff(m,n+ 1) = ff(m× n, n) (6.3)

This function f is in turn defined as a tail-recursive version ff corresponding to the familiar

iteration often seen in introductory programming texts. Restating f in the concrete syntax of

our simple language1, we have:

f = \n -> ff 1 n;

ff = \m -> \n -> if eq n 0

then m

else ff (mul m n) (sub n 1);

Because canonical traces are inherently and indeed maximally verbose, a small and simple

example was chosen deliberately here for reasons of space. Bearing in mind that the semantics

of the simple language defined for this example language specify that functions are applied in

applicative order (i.e., the function argument is evaluated before the body of the function),

executing the expression f 0 results in the trace below. Some longer trace lines are elided for

readability, ellipses at the right-hand side indicate where this has been done. Also, a time-

stamp could be included as was done in the example traces in chapter 3, but this was not done

here, because the examples explored in this chapter do not require this information, so again,

this is elided for readability. Otherwise the trace is exactly as it is produced in full form. The

indentation is a simple presentation device to help visualise and highlight the nested structure.

> prog

> bind f

> prog

> abstract n (ff 1 n)

< abstract = \n -> ff 1 n

< prog = \n -> ff 1 n

< bind = \n -> ff 1 n

> bind ff

> prog

> abstract m (\n -> ...)

1The standard library for the simple language includes just three inbuilt, prefix, binary, primitive functions:

eq, mul and sub, being equality, multiplication and subtraction respectively.
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< abstract = \m -> \n -> ...

< prog = \m -> \n -> ...

< bind = \m -> \n -> ...

> apply

> find f

< find = \n -> ff 1 n

> number 0

< number = 0

> bind n

< bind = 0

> apply

> apply

> find ff

< find = \m -> \n -> ...

> number 1

< number = 1

> bind m

< bind = 1

> abstract n (if ...)

< abstract = \n -> ...

< apply = \n -> ...

> find n

< find = 0

> bind n

< bind = 0

> choose

> apply

> apply

> find eq

< find = \v1 -> eq v1

> find n

< find = 0

> bind v1

< bind = 0

< apply = \v2 -> eq 0 v2

> number 0

< number = 0

> bind v2

< bind = 0

< apply = True

> find m

< find = 1

< choose = 1

< apply = 1

< apply = 1

< prog = 1
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6.4.1 Specification Recovery

Denotational trace is used to recover a specification for the program.

Some examples showing how traces can be useful for reasoning about correctness have already

been shown in section 3.1. Beyond these simple examples of debugging already provided, more

sophisticated analyses of correctness can be supported, such as specification recovery, where

the specification for a program is recovered from its traces. This scenario is directly relevant

to a programmer engaged in the practical problem of software maintenance, by attempting to

understand a program via reflection on the source code and corresponding traces.

Consider the evaluation of f 3:

> f 3

> ff 1 3

eq 3 0 = False

mul 1 3 = 3

sub 3 1 = 2

> ff 3 2

eq 2 0 = False

mul 3 2 = 6

sub 2 1 = 1

> ff 6 1

eq 1 0 = False

mul 6 1 = 6

sub 1 1 = 0

> ff 6 0

eq 0 0 = True

< = 6

< = 6

< = 6

< = 6

< = 6

The trace above consists of just the apply events. A simple program was built to generate

this derived trace. Nothing is reordered; some information that is irrelevant to the task at hand

has been removed.2

Laying out this information a little differently, we can see the execution tracing of f with a

sample selection of inputs (arguments) n = 0, 1, 2, etc. will yield respective information:

2Details of the tool used to generate this derived trace can be found in section 6.4.1.1.
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f 0 = ff 1 0

= 1

f 1 = ff 1 1

= ff (mul 1 1) (sub 1 1)

= 1

f 2 = ff 1 2

= ff (mul 1 1) (sub 2 1)

= ff (mul 1 2) (sub 1 1)

= 2

f 3 = ff 1 3

= ff (mul 1 3) (sub 3 1)

= ff (mul 3 2) (sub 2 1)

= ff (mul 6 1) (sub 1 1)

= 6

. . . etc.

The great value of these execution traces is that from them may now be inferred an invariant

for ff. While invariant analysis is usually presented in iterative procedural contexts, it’s equally

applicable in tail-recursive functions. For initial argument values to ff of m = M0 and n = N0,

then for any subsequent invocation of ff we hypothesise:

m× fact(n) = M0× fact(N0) (6.4)

where:

fact(0) = 1 (6.5)

fact(n+ 1) = (n+ 1)× fact(n) (6.6)

Note that this fact, while potentially executable, plays the role of a specification rather

than an implementation artifact in this scenario.

Subsequently, this invariant hypothesis can be separately validated and used in the discovery

of specifications of other components. Deductive validation can be achieved using correctness

proof techniques (e.g. fold-unfold program transformations [Dij76] involving factorial). The

specification for ff can be derived from conjoining the invariant with the termination condition

ff(m, 0) = m, thus

ff(M0, N0) = M0× fact(N0) (6.7)

The specification for f is then derived directly
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f(X) = ff(1, X) = 1× fact(X) = fact(X) (6.8)

The key to this process, as exemplified by the recovery of a specification for f from its

implementation, was the presentation of denotational traces that facilitated reasoning about

the source code.

6.4.1.1 ‘readable’ Trace Analysis Tool

More specific traces can be derived from canonical traces via structural induction

over the trace structures.

In order to produce the ‘readable’ summary of the example, canonical trace in this section, we

do structural induction over the trace structures:

readable (Prog _ p) = readable p

readable (Number _) = ""

readable (Literal _) = ""

readable (Bind _ _ _) = ""

readable (Choose t1 t2) = readable t1 ++ readable t2

readable (AbstractL _ _) = ""

readable (AbstractS _ _) = ""

readable (Find _ _) = ""

readable (Delay _) = ""

readable (Force fs) = concatMap (\(_, ts, _) -> concatMap readable ts) fs

readable a@(Apply _ t1 t2 Nothing r) =

concat [ maybeReadable t1

, readable t2

, name a , " " , args a, " = ", r, "\n" ]

readable a@(Apply _ _ _ (Just t2) r) =

concatMap readable (argTraces a) ++

concat [ "> ", name a, " ", args a, "\n"

, readable t2

, "< = ", r, "\n" ]

args = unwords . argVals

maybeReadable Nothing = ""

maybeReadable (Just x) = readable x
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The algorithm functions by walking the trace structures and producing a human-readable subset

of the elements encountered. Functional programmers will recognise this as structural induction,

i.e., fold-expressible, or in category-theoretic terms, this is a catamorphic algorithm in structure.

As a simple presentation device, some indentation can be added to the output of readable

based on the < and > characters:

indent :: String -> String

indent = unlines . ind' 0 . lines

where

ind' :: Int -> [String] -> [String]

ind' i (('>':x):xs) = (spaces i ++ ('>':x))

: ind' (i + 2) xs

ind' i (('<':x):xs) = (spaces (i - 2) ++ ('<':x))

: ind' (i - 2) xs

ind' i (x:xs) = (spaces i ++ x)

: ind' i xs

ind' _ [] = []

spaces n = replicate n ' '

Indentation helps highlight the nested relationships found in the (denotational) trace.

6.4.2 Time Complexity

The time complexity of the program is analysed using proof by induction.

Because a canonical trace contains a record of all semantic function, the length of such a trace

can be used as a direct measure of the time taken to execute a program. A small program

was built to compute this metric from a canonical trace (the details of the tool used to extract

this information from the trace can be found later in this section). Other measures of time

complexity derived from the canonical trace are certainly possible, for example varying time

costs could be associated with each syntax element/semantic production.

n steps (f n) steps (f n) - steps (f (n-1))

0 28

1 56 28

2 84 28

3 112 28

Table 6.1: Time Complexity of “f”

Using this simple tool for the factorial example above, we can tabulate the number of semantic

steps involved in executing the f function in table 6.1. Because the number of steps increases

by the same amount with each increment of n, we can infer the relationship:
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steps(f(n+ 1)) = steps(f(n)) + 28 (6.9)

i.e., that for each increment of n, 28 more steps will be required. In other words, the programmer

at this point may now suspect, based on inspection of the traces for the various inputs above,

that the time complexity of this algorithm is linear with respect to the size of the input value.

This relationship clearly holds at least for the first few values shown in the table, and is also

suggested by the ‘shape’ of the readable trace above, which shows an extra nested, recursive

call to ff for each decrement of its second argument:

...

> ff 1 3

eq 3 0 = False

mul 1 3 = 3

sub 3 1 = 2

> ff 3 2

eq 2 0 = False

mul 3 2 = 6

sub 2 1 = 1

> ff 6 1

eq 1 0 = False

mul 6 1 = 6

sub 1 1 = 0

> ff 6 0

eq 0 0 = True

< = 6

< = 6

< = 6

< = 6

...

If the programmer now wishes to prove via deductive reasoning that this relationship holds for

all (positive) values provided to f — say in order to prove to themselves that this function is not

implicated in a run-time performance problem they may be debugging — then partial traces

like the one above are not sufficient. It is not possible to know whether other paths through the

code might be taken, for example when the argument to f is 4, no trace has been seen for this

scenario. Because this trace contains only a subset of all denotational-semantic information, it

is not in general possible for the programmer to know what else might be happening that is

not shown in the trace.

Here the canonical trace comes into its own as a tool, precisely because by definition it

provides a complete record, containing all denotationally relevant information. The programmer
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can inspect the canonical trace, and in particular the entries relating to the use of the if

construct in the language, e.g., the relevant extract from the canonical trace provided above

for f 0 is:

...

> choose

> apply

> apply

> find eq

< find = \v1 -> eq v1

> find n

< find = 0

> bind v1

< bind = 0

< apply = \v2 -> eq 0 v2

> number 0

< number = 0

> bind v2

< bind = 0

< apply = True

> find m

< find = 1

< choose = 1

...

Here the programmer can see that ff terminates whenever its second argument is 0. An

inspection of the surrounding trace shows that for f 0, this is what will happen, because the

argument to f is supplied unmodified as the second argument to ff. This fact can consequently

be taken as the base case for an inductive argument that the time complexity of the algorithm

is linear. We know from table 6.1 that the base case holds, i.e., steps(f(0)) = 28, so we can

assert:

steps(f(n+ 1)) = 28 + n× 28 (6.10)

The time complexity of f for these inputs inspected so far is obviously linear with respect to

n, or in the familiar “big-oh” notation: O(n). However at this point it is not clear if this

relationship holds for values larger than 3.

The inductive step required for an inductive proof of the time complexity of the algo-

rithm, requires that the programmer convince themselves that for each subsequently larger

value supplied to f, a fixed number of additional computational steps will be required. Here

the programmer already knows from inspection of canonical trace, that there is only one if

construct in the function ff, where the result of the calls to eq are used to choose either the

then or else branch. The then branch has already been, seen being the base case cited above.

The else branch occurs when the second argument to ff is not equal to 0, in which case this
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value is decremented, and then supplied recursively as the second argument to ff once more.

There are no other if cases encountered in the canonical trace, so there are no other possible

paths through the code; the traces show complete code coverage. Since the same additional

steps will be required each time the second argument to ff is decremented, the programmer

can confidently conclude that with each subsequently larger value supplied to f, it will require

a fixed, additional number of computation steps.

Having established both the base and inductive cases, the inductive proof is complete, and

the programmer can be confident that the time complexity of f is linear as they inferred from

the examples in table 6.2. At this point, the programmer is now confident that the relationship

in equation 6.10 holds, as implied by the values in table 6.1; for any given n, an additional 28

steps will be required for n+1.

Note that at no time did this proof require an inspection of or direct understanding of

the source code — canonical traces are sufficient in this case to support a proof by induction,

something that would otherwise not have been possible, using traces alone. It is the essential

feature of canonical traces that they contain by definition all denotationally semantic informa-

tion, that makes such reasoning possible, precisely because the programmer can be confident

that ‘everything’ that is happening is visible in such traces. There are obvious limitations to

this inductive proof technique as applied to canonical traces, at the very least the function of

interest must be idempotent. Nevertheless, it is both somewhat surprising and useful, that at

least in some cases such proofs are possible, using trace information alone. This approach, i.e.,

inferring important relationships from trace information which might subsequently be proven

deductively, is complementary to reasoning about the source code itself. In the style of rea-

soning presented here, the programmer observes the actual behaviour of the program, and

from that infers something about the program rather than the reverse. In one case, reasoning

starts with what the programmer expects from the code, in the other it begins with the actual

behaviour – closing this gap to achieve correspondence between the programmer’s intention

as expressed in source code and the resulting behaviour is arguably at the core of computer

programming, and it is equally useful to approach this problem from either direction.

6.4.2.1 ‘timecomp’ Trace Analysis Tool

A measure of algorithmic time complexity can be derived by structural induction

over trace structures.

In order to compute a measure of the time complexity, the algorithm used here counts the num-

ber of trace structure elements. Again, this is a simple example of fold-expressible, structural

induction. However, the implementation below is optimised to simply divide the number of

trace event lines by two and thereby avoids an unnecessary parsing step. This relies on the fact

that each trace structure element has a corresponding ‘begin’ and ‘end’ trace event, i.e., there

are two trace events recorded for each trace structure.
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main = do xs <- getContents

putStrLn $ show $ (length $ lines xs) `div` 2

6.4.3 Space Complexity

The space complexity of the program is analysed using proof by induction.

Given the simple nature of the example language – which has no heap-allocated space, just a

call stack, and where all functions have precisely one argument – a measure of stack space usage

can be derived from the canonical trace by counting the depth of nesting of apply semantic

steps. As for time complexity, other measures of space complexity could also be computed,

but are not considered here. NB: the calculation of space complexity here requires access to

information about the compositional structure of the events in the trace, i.e., the depth of

function call application nesting – without this nothing is known about the nested relationship

of function/procedure calls. Therefore a trace monoid cannot support this kind of calculation.

n space (f n) space (f n) - space (f (n - 1))

0 4

1 6 2

2 7 1

3 8 1

Table 6.2: Space Complexity of “f”

Table 6.2 tabulates the maximum stack depth for various values of n. Now we can infer, for

n > 1, that:

space(f(n+ 1)) = 5 + n× 1 (6.11)

i.e., that the space complexity is linear, or O(n). As before, we can go further – given that

the canonical traces provide complete coverage of the if branch – and prove via induction in

exactly the same was as was done for time complexity. An inspection of the canonical trace

shows there is no other if branch in the source code which we have not already seen executed,

which could result in nesting of function applications differing from the pattern identified above,

given any value of n. Once again we do not need to refer to the source here or collect any further

information – the canonical trace is sufficient in this case to show us that there are no branches

that have not already been executed.

6.4.3.1 ‘spacecomp’ Trace Analysis Tool

A measure of algorithmic space complexity can be derived by structural induction

over trace structures.
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Once again the tool to compute space complexity was in essence very simple and used the

structural information in the trace provided by the nesting of function application events:

main = do t <- readTrace

let depths = map fst

$ indent 1

$ keepOnly "apply" t

print depths

print $ maximum depths

In this case, it is simplest to filter the trace events so that only the apply events are kept – all

other details of the trace structure were discarded.

keepOnly name = filter $ \ (Event _ _ _ name' _) -> name == name'

An ‘indent’ is computed for each event, i.e., the level of nesting, based on the nesting of apply

begin and end events.

indent :: Int -> [Event] -> [(Int, Event)]

indent i [] = []

indent i (e:es) =

let Event _ _ et _ _ = e

in case et of

Bgn -> (i, e) : indent (i+1) es

End -> (i-1, e) : indent (i-1) es

The maximum depth encountered is the metric used in this case, a reasonable proxy for

memory usage bearing in mind that each apply event corresponds to a function application,

which in turn will require storage for its argument (e.g., on the stack).
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Chapter 7

Conclusions

Thus category theory has delivered another useful result in software engineering as

further evidence of its general applicability to this field, thereby reinforcing its use-

fulness for modeling, design and implementation, and suggesting this toolset should

become a standard part of the software engineering curriculum.

7.1 Summary of Results

Category theory has delivered another useful result for the engineering of software by

identifying, justifying and describing precisely a unique, abstract alternative to the

existing notion of the trace monoid, that turns out to fit well with the requirements

for practical tracing systems, and provides an elegant, integrated solution to the

software engineering problems inherent in tracing systems of ad hoc design.

Having developed the concept of denotational trace in chapter 5 and illustrated how this works

in practice with an example language, program, traces and associated formal reasoning and

tools in chapter 6, we can ask how well this denotational tracing fits with the requirements

for practical tracing systems identified in chapter 3, summarised in section 3.3 (and the corre-

sponding deficiencies of the existing notion of the trace monoid noted in section 4.5).

The use of category theory in developing the basis for denotational trace has provided par-

ticular benefits here. Not only does category theory provide a convenient descriptive framework

for discussing tracing independently of specific language semantics and syntax, but more impor-

tantly it provides a solid theoretical justification for the existence and usefulness of denotational

trace. Denotational trace is not just an arbitrary solution to the practical problems of execution

tracing. On the contrary, it is justified by the category-theoretic concept of the duality between

operational (final coalgebra) and denotational (initial algebra) semantics. As such it provides

a unique, dual alternative to the trace monoid (having an operational semantic basis). It is to

be expected, given that these dual models of trace are necessarily complementary, that each
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will provide solutions to problems for which the other is poorly suited. In section 4.5 it was

shown that in general, the trace monoid lacks the necessary structure to provide source-oriented

traces with complex, nested organisation, necessary for the practical activities found in the case

studies and examples in chapter 3. We might then expect, that the dual concept of trace, using

the dual of the semantic basis, would be suitable for source-oriented tracing. This is indeed

what we find – a completely unsurprising result when it is considered that this dual semantic

basis is denotational, that by definition is explicitly source-oriented. Similarly, we might ex-

pect that many or all of the concepts on the left-hand side of the Duality Quick Reference (i.e.,

the ‘denotational’ side of table 5.2) might apply somehow to denotational traces, in particular

mathematical induction might be useful for reasoning about traces, and structural induction

might be useful for constructing trace analysis tools. Again, we find that this is the case in the

examples of tools and reasoning found in chapter 6.

In fact we have found that the denotational (vs. operational) theory of tracing introduced

in chapter 5, offers a satisfactory, integrated solution to all of the practical problems identified

in section 3.5 arising from the use of ad hoc bases for existing tracing systems, for both the

designers and users of tracing systems:

• The concept of canonical denotational traces is introduced in section 5.2.3 to provide a

language designer or implementer with the complete set of semantic information available

for tracing, including how it is structured and precisely how it relates to a (denotational)

semantic specification for the language. The question as to what traces may contain,

and how they should be structured, is answered. This in turn provides the users of such

traces a clear and precise definition of how they relate to the semantics of a program of

interest. A practical example of a simple language extended with denotational trace is

provided above, to show the completely straightforward relationship between denotational

semantics and canonical traces.

• An example of a program in the simple language and the corresponding traces illustrate

how denotational trace can support a complex, high-value software engineering tasks such

as the recovery of specification from trace – something of considerable usefulness to an

engineer engaged in the maintenance of poorly or incorrectly documented code.

• Given this mathematical basis for practical tracing, the user of a denotational tracing

system has access to mathematical tools for reasoning such as proof by induction. In

section 6.4.2 and section 6.4.3 examples are given of back-of-the-envelope proofs from

traces using mathematical induction – for the space and time complexity of a program –

techniques of great usefulness to anyone needing to analyse or debug the performance of

real programs.

• Formal, mathematical techniques offer the potential for easy automation, thereby provid-

ing better tool support for trace users. Several examples of tools for the analysis of traces
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have been provided, being both simple to implement and useful. Structural induction was

found to be a useful implementation technique for the implementation of trace analysis

tools.

Courtesy of the categorical notion of duality, denotational trace provides a valid, justified

alternative to the trace monoid, but unlike the latter provides a good fit with the source-

oriented requirement for practical execution tracing as it is found in chapter 3. This in turn

addresses the fundamental, practical problems for designers and users outlined in section 3.5,

due to the use of ad hoc bases for existing trace systems.

7.2 Significance

Category provides a powerful and appropriate mathematical basis for software engi-

neering.

The specific result derived here has broader implications for the relevance of category theory

to practical software engineering. The aim of this thesis was to address a theoretical deficiency

— the lack of theoretical basis for execution tracing as it is found in practice. Category theory

has been used to solve a long standing, real-world, practical software engineering problem.

Taken alongside the growing body of literature showing the relevance of category theory to

software engineering (see section 2.4) this thesis further confirms how category theory can

enable and illuminate software engineering. In abstract, general terms, category has been used

at three levels to provide an integrated solution to a practical, software engineering problem:

for modeling, design and implementation.

7.2.1 Modeling of the Problem

The flexible and powerful notions of the category and categorical notions of same-

ness, provide an effective basis for modeling software abstractions at many levels.

The practice of computer programming consists in large part of managing complexity through

a suitable choice of abstractions. The flexible categorical notions of sameness, such as isomor-

phism and the equivalence of categories, are useful because the give precise description to the

intuitive notion of ‘abstraction’.

Duality could never have been leveraged in this thesis without first resting on a categorical

characterisation of the problem space. It seems likely that the method of analysis used here

— i.e., to explore the mathematical foundations of a practical problem space, and then use

duality to justify an alternative theoretical basis — could be equally useful when focused on

other practical problems unrelated to execution tracing. There is undoubtedly much to explore

in the potential for category theory to provide solid mathematical underpinnings for software
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engineering. Key to further exploring this useful, engineering relationship between theory and

practice, will be introducing key concepts from category theory to software engineers, motivated

by real solutions to their practical problems.

7.2.2 Design of the Solution

Tools such as duality can be used for the design of justified, valid solutions.

In this project, category theory has been found to provide a uniquely useful set of conceptual

tools, not just for discussing software design patterns in abstract yet precise terms, but also with

meta-level design capabilities making to possible to cut the Gordian knot of the ad hoc bases for

existing practical tracing systems. Here category theory provided an especially powerful and

convenient tool in the notion of duality. The task of designing an alternative theory of tracing

was greatly simplified, to the point of being derived ‘for free’. Not only does duality provide

an uniquely well justified, single alternative, but furthermore, this alternative is guaranteed to

be well formed in the categorical sense — validity does not need to be proved as would be the

case for some other, arbitrary alternative that might have been proposed. Thus, a complex,

open-ended design space, i.e., the development of a new, effective, valid and justified theoretical

basis for tracing, suitable for execution tracing as it is used in practice, has been collapsed into

a single, uniquely well justified answer. Without the categorical notion of the duality between

initial algebras and finite coalgebras, this elegant and appropriate result would not have been

possible.

7.2.3 Implementation of an Example

Category theory provides a design pattern catalogue for program implementation.

Having used category theory firstly to model the problem of tracing and then to design the de-

notational trace, it’s usefulness further extended to implementing an example of a denotational

trace, and the tools used to inspect and analyse the resultant traces. The practice of engineer-

ing stands on the use of clearly defined mathematical abstractions. Category theory provides

just such a set of robust, well-understood engineering abstractions for practical programming,

i.e., a mathematically-grounded design pattern catalogue. The example denotational tracer in

chapter 6 was implemented using categorical constructs.

7.3 Implications and Future Directions

There is interesting work remaining to be done in exploring how operationally and

denotationally based traces are complementary, based on the duality and correspon-

dence between operational and denotational semantics, and more broadly in contin-

uing to explore the uses of category theory in software engineering.
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7.3.1 Further Exploration of Tracing via Category Theory

There is interesting work remaining to be done in exploring how operationally and

denotationally based traces are complementary, based on the duality and correspon-

dence between operational and denotational semantics.

It is clear that tracing has a dual nature. Just as the semantics of languages and programs can

be viewed from the complementary, dual perspectives of operational and denotational seman-

tics, so too there are corresponding notions of trace, being the trace monoid and denotational

trace respectively. Neither model of tracing is more ‘correct’ or ‘justified’ in purely theoretical

terms, although there seems to be a clear alignment between the routine practical needs of

source-oriented tracing and the source-oriented structure of denotational traces. Nevertheless,

these dual perspectives on trace are necessarily complementary. Existing results in computer

science which have established full abstraction between operational and denotational semantics

under various conditions [Ong95], suggest that it may be possible to both prove the correctness

of and/or automatically derive, an (operational) implementation of a language including deno-

tational tracing, given a (denotational) specification of semantics. Further research is required

to explore the full potential of these ideas, and their practical implications.

7.3.2 Categories as Domain Specific Languages

Categories provide an effective template for domain specific languages.

It has already been observed in section 2.2 that all of mathematics can be viewed as various

categorical domain specific languages. The associative composition provided by the category is

also a unbiquitous pattern in computer programming, and thus provides an effective template

for a wide range of domain specific languages. A software engineer engaged in developing a

domain specific language would be well advised to use a categorical approach to the design.

7.3.3 Categorical Programming Language Design

While categorical ideas can be ported into any programming language, the useful-

ness of category theory to software engineering suggest that programming languages

should explicitly support categorical notions, to derive the full benefits of automated

tool support.

The usefulness of category theory as a basis for domain specific languages extends more broadly

to the design of general-purpose programming languages. Not only does category theory provide

a template for the design of languages themselves, but in addition, programming languages can

directly support categorical notions. While categorical concepts can in principle be implemented

in a programming language which lacks explicit support for these, the disadvantage is that no
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automated tool support is available. In this project the Haskell language was used, which

allowed direct expression of some categorical concepts in the type system. To the extent that

this was possible, it had the significant advantage that the type system provided automated

checks that the implementation was correct. Hagino has developed a research programming

language explicitly based on category theory [Hag87], but categorical concepts are yet to be

applied to mainsteam languages.

7.3.4 Category Theory in Software Engineering Education

Given the useful and appropriate tools that category theory brings to software engi-

neering, and the promise it offers as a mathematical basis for robust software engi-

neering abstractions, category theory should become part of the software engineering

curriculum.

Category theory has had a considerable impact on theoretical computer science in recent

decades, to the extent that several textbooks presenting category theory to the computer sci-

entist already exist (see chapter 1). The impact of category theory on practical programming

and software engineering is newer, and textbooks are yet to be written with the mainstream,

pragmatic programmer in mind. Section 2.4 summarises many applications to which category

theory has been applied in computing. Given the diverse, useful applications of category the-

ory in software engineering, Zheng, Shi and Xue have investigated the introduction of category

theory into the software engineering curriculum [ZSX07]. As they observe, category theory

provides a promising, mathematical basis for software engineering.
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[SBP10] Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. Do stacktraces help

developers fix bugs? In MSR ’10: Proceedings of the 2010 International Working

Conference on Mining Software Repositories, pages 118–122. IEEE, 2010.

[Sco70] Dana Scott. Outline of a mathematical theory of computation. Technical report,

Oxford University, 1970.

[SKB03] Maximilian Störzer, Jens Krinke, and Silvia Breu. Trace analysis for aspect appli-

cation. In Workshop on Analysis of Aspect-Oriented Software (AAOS), 2003.

[Sob08] Thomas Soboll. On the construction of transformation steps in the category of

multiagent systems. In Serge Autexier, John Campbell, Julio Rubio, Volker Sorge,

Masakazu Suzuki, and Freek Wiedijk, editors, Intelligent Computer Mathematics,

volume 5144 of Lecture Notes in Computer Science, pages 184–190. Springer Berlin

Heidelberg, 2008.

[SR97] Jan Sparud and Colin Runciman. Tracing lazy functional computations using

redex trails. In Proceedings of the Ninth International Symposium on Programming

Languages, Implementations, Logics, and Programs, volume 1292 of LNCS, pages

291–308. Springer, 1997.

[Sta95] John T. Stasko. The PARADE environment for visualizing parallel program exe-

cutions: A progress report. Technical Report GIT-GVU-95-03, Georgia Institute

of Technology, 1995.

124



[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-

ming Language Theory. The MIT Press Series in Computer Science, 1977.

[Str00] C. Strachey. Fundamental concepts in programming languages. In Higher-Order

Symbolic Computation, volume 13, pages 11–49. Springer-Verlag, 2000.
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