
The Role of Computational Logic as a Hinge 
Paradigm among Deduction, Problem 
Solving, Programming, and Parallelism 

M . H e r m e n e g i l d o 

Facultad de Informática 
Universidad Politécnica de Madrid (UPM) 
28660-Boadilla del Monte, Madrid - Spain 
herme@fi.upm.es 

Abstrac t 

This paper presents some brief considerations on the role of Computat ional 
Logic in the construction of Artificial Intelligence systems and in programming 
in general. It does not address how the many problems in AI can be solved 
but, rather more modestly, tries to point out some advantages of Compu­
tational Logic as a tool for the AI scientist in his quest. It addresses the 
interaction between declarative and procedural views of programs (deduction 
and action), the impact of the intrinsic limitations of logic, the relationship 
with other apparently competing computational paradigms, and finally dis-
cusses implementation-related issues, such as the efficiency of current imple-
mentations and their capability for efficiently exploiting existing and future 
sequential and parallel hardware. The purpose of the discussion is in no way 
to present Computational Logic as the unique overall vehicle for the develop-
ment of intelligent systems (in the firm belief that such a panacea is yet to be 
found) but rather to stress its strengths in providing reasonable solutions to 
several aspects of the task. 

K e y w o r d Codes : 1.2.3, 1.2.4, 1.2.5 
Keywords : Deduction and Theorem Proving, Kncwledge Representation Formalisms 
and Methods, Programming Languages and Software. 

1 The Role of Logic 
Logic has been the foundation of computing since the seminal work of Church [7], Turing 
[55], and Gódel [16] which was materialized by von Neumann and by Turing himself in 
the first digital computers. Today it is used as an essential tool both in computer design 
and in computer programming. Regarding the latter task, logic can be viewed to have 
two primary roles. The first one, part of which is generally referred to as the "logic of 
programs", is to provide a tool in order to formally reason about properties of programs 

mailto:herme@fi.upm.es


such as, for example, their correctness with respect to some specification. This was already 
mentioned by Turing and von Neumann and then developed by Hoare, Dijkstra, Floyd 
and others [44, 15, 26]. The second role, part of which is generally referred to as "logic 
programming" (in the widest meaning of the term), is as the instrument of the task of 
programming itself: Turing already suggested this possibility when he stated, referring to 
the ideal means to communicate with digital computers, tha t "in principie, one should be 
able to communicate in any symbolic logic". This prediction has actually materialized in 
practice since two symbolic logic formalisms - Church's lambda calculus [8] and Robinson's 
Horn-clause resolution predícate calculus [47] - are the formal underpinning of two of the 
four main programming paradigms - functional programming (as exemplified by Lisp [38], 
ML, etc.) and relational programming (as exemplified by Prolog [48, 9]). The other two 
paradigms, imperative and object-oriented programming, will be returned to later. 

Above, and following a suggestion made by Robinson, the term "relational program­
ming" has been used instead of the usual "logic programming" since functional program­
ming also has its roots in logic. The term "declarative" or "deductive" programming is 
frequently used as well to refer to programming which is based on logic formalisms. In 
any case the relation between functional and relational programming is very tight, and 
quite successful languages have been recently proposed which combine the characteristics 
of both (e.g. [41, 5, 34, 1]). The term "logic programming" will be used for simplicity 
in the rest of the paper to refer to logic-based programming formalisms, although our 
emphasis will be to some extent on systems based on relations. 

The issue of programming paradigm is directly relevant to the designer of intelligent 
systems from two points of view: knowledge representation and procedural knowledge 
encoding. From the knowledge representation point of view it is well known that logic 
is a natural formal basis for the standard representation mechanisms (e.g. semantic nets 
or frames) usually used to perform this task. This is not to say that logic should be 
the only representation tool, of course, since other, higher-level representations may oífer 
syntactical convenience, but rather to stress that these representations map naturally to 
logic and find in logic their natural formal underpinning. We will return to the issue of 
higher level abstractions later. From the procedural knowledge encoding point of view 
it is important to note that the development of intelligent systems generally results in 
large programs (in the sense of both consisting of a large program text and also needing 
large amounts of memory and many machine cycles to execute) which typically include 
a mix of symbolic and numerical processing. Examples are expert systems, intelligent 
design systems, and AI systems in general. Two characteristics common to most of these 
systems are their difficulty in programming due to the large complexity involved and 
the often limited performance of the resulting systems (at least, slower than one would 
ideally like). It is obviously desirable to remedy this situation. We will take a practical, 
"problem-oriented" view in order to deal with the issues involved in building of such 
systems: we will concéntrate on identifying the fastest and easiest economical path that 
will take us from problem description to high-performance solution. Thus we will be 
concerned simultaneously with the issues of ease and speed of programming, execution 
performance, and overall cost. 

In fact, in "logic programming" the two roles of logic (as an instrument of both rea-
soning about programs and programming) merge since the programs themselves are their 
specifications, and their correctness is given by the correctness of the underlying proof 
procedure used to "execute" them (resolution, for example). This corresponds to the 
"declarative" view of of logic programming. Logic programming also has a "procedural" 
view to which we will return to later. It is the fact that one can freely choose between 
the declarative or procedural interpretations that gives logic programming its hinge or 



209 

mediator role between traditional and declarative programming, or between the "formal" 
or "ad-hoc" views of AI. 

2 The Declarative View 
The case for the use of logic programming in a declarative way can be supported for 
example as follows. At our (relatively modest) current s tate of development in human 
interaction with computers, our main means for instructing them what to do is by writing 
a program, i.e. a list of instructions which are to be executed by it.1 These instructions 
are expressed in a particular language that the computer can understand: a programming 
language. Conventional programming languages generally express these instructions as 
a series of precise "actions" that are to be performed by the computer one after the 
other. This is known as an imperative style, a program being a sequence of commands. 
Programs today come in this format largely as a consequence of the fact tha t the first 
computers were no more sophisticated than one of today's hand-held calculators and that 
early programs were just sequences of the basic instructions tha t a particular machine 
could directly execute. Programming languages then emerged as a tool for making it 
easier for a human being to express the actions required from the computer. However, it 
is a fact that computers already existed in a particular form before these languages were 
designed, and this undoubtedly invited a "machine-oriented" style in these designs which 
still lingers in today's programming languages [3]. These languages are often so apart 
from the natural way in which humans think and express themselves tha t programming a 
computer is frequently a difíicult and error-prone task for any sizeable problem, let alone 
trying to reproduce intelligence. 

The question of course is whether we can design a means of communicating with 
the computer which is free from the imperative style. If we avoid any machine-oriented 
considerations, the first language to come to mind is, of course, the human natural lan­
guage: the user's mother tongue. However, such a language presents a number of serious 
drawbacks. These drawbacks include its verboseness, which is only made worse by its 
vagueness and ambiguity if not provided with a suitable context or a great deal of (nor-
mally assumed) knowledge. This fact was already realized by mathematicians in ancient 
times (and therefore long before computers carne to being) and "logic" was devised as a 
means of clarifying and/or formalizing the human thought process. Logic lets us express 
facts and rules about the world in a precise and concise way and draw conclusions from 
them which can be formally proven to be correct. Symbolic logic is simply a shorthand 
for expressing conventional logic. 

It is the ability of symbolic logic to express knowledge in a way that is very precise 
and compact, while at the same t ime cióse to the natural way in which humans express 
themselves, that led to the concept of using logic as a means for communicating with 
computers. But simply describing a problem is not sufficient by itself for actually solving 
it. Being able to sol ve problems specified in logic is akin to being able to automatically 
prove theorems in that logic, as pointed out by Green [17] in his early work on question-
answering systems. An effective proof procedure is a necessary addition. Such a proof 

1The neural computing approach, where rather than explaining the task and/or its solution to the 
computer the computer itself learns to solve the problem through training, is an alternative [49]. This is 
an área in which interest has recently grown again, and several successes have been reported in a number 
of application áreas, most of them related to pattern recognition, where other approaches have obtained 
weak results. However, the neural approach, although promising, does not seem yet to be capable of 
solving the large range of problems that general-purpose computers need to tackle, so we will limit the 
discussion for the moment to "programmed" approaches. 



procedure was first found by Robinson with his discovery of the resolution principie [47]. 
Wi th all the necessary components in place the idea of "programming in logic" was first 
proposed in a formal manner by Kowalski not many years ago [32, 33]. The resolution 
principie gives such logic programs a computational capacity which is Turing complete, 
i.e. it can express and implement all computable recursive functions. Its practical realiza-
tion in the form of the Prolog language, proposed by the group led by Colmerauer [9] and 
efficiently implemented by Warren [59, 60], has granted logic programming acceptance as 
one of the well established programming paradigms. Logic provides more concreteness 
than natural language, but it is also far less machine oriented than conventional computer 
languages. The main difference with them is its declarative nature: in logic, statements 
express facts, knowledge about the problem to be solved, rather than precise instructions 
to be followed step by step. It implements to a certain degree a class "automatic program­
ming" and "automatic problem solving" - in fact, the widest class possible with formal 
means. 

It also turas out tha t the logic programming model is specially suitable for the storing 
and retrieval of information in large knowledge bases. In fact, the model is quite suitable 
for the general class of datábase applications and a good part of modern datábase theory 
(and some practical systems) is largely based on the "deductive datábase" approach, i.e. 
on logic programming [57]. In this application the full power of first order logic is some-
times not required and proof procedures can be used which are completely decidable, 
thus implementing to a greater extent the "automatic problem solving" or "automatic 
programming" concept in this reduced context. One problem often quoted in relation 
with knowledge bases implemented using the deductive approach is the difficulty in mod-
eling changes in the datábase - the view update problem- since traditional logic has a 
static view of the set of axioms. Much work has been done by the datábase and logic 
programming communities in this área and several solutions have been found which pro-
vide a logical view of these updates , generally by having a meta-notion of "contexts" or 
theories which can be updated and within which proofs can be carried out in the normal 
way [57].2 

3 Merging with the Procedural View 
Despite the advantages of the declarative approach, one can also argüe sensibly against it. 
In particular it is t rue tha t while simply specifying a problem in logic and letting an auto­
matic decisión procedure solve it is probably the easiest way of getting to that solution, it 
may on the other hand be a very inefficient way of achieving such a goal. One can argüe 
tha t , even if more laborious, it is bet ter in some cases to work out an efficient algorithm. 
But it is important to realize that logic programming does not prevent this. This con­
troversy between procedural and declarative programming (which is in essence the same 
controversy found between the Minsky and McCarthy -"ad-hoc" and "formal"- points of 
view, which appeared in the late sixties and is still mentioned sometimes today [40]) was 
settled by Kowalski in an elegant way by viewing the "workings of resolution" on a logic 
program as its step-by-step procedural interpretation. Kowalski thus found an effective 
and practically most useful procedural interpretation of logic programs. Practical logic 
programming systems exploit this procedural interpretation to offer not just a declara­
tive language but also one tha t allows the practical and elegant description and efficient 
execution of algorithms. One can look at the logic statements* as simple logic statements 

2 "Linear" logic, which allows the addition and "consumption" of axioms is another approach which is 
currently generating considerable interest. 



or one can -by thinking of the steps that resolution would do for this p rogram- think of 
them as step-by-step commands given to the computer. Thus, logic programs can also be 
used to perform the exact same tasks performed by imperative languages when needed, in 
that case still offering advantages of compactness, rich da ta structures, automatic memory 
management, efficient implementation of recursion, etc. and with comparable efficiency. 
Thus, within the same framework one can specify a problem and have it be solved auto-
matically (within the limits of first order logic and perhaps somewhat ineíficiently), or, 
alternatively, "code" an algorithm for solving it more efficiently. One can leave parts that 
are not performance sensitive coded very cióse to specifications and, staying within the 
same paradigm, speed up other parts by building in "control". Thus , these languages can 
achieve when needed the algorithmic efficiency of the imperative approach. 

A related issue is that of the impossibility of building a system capable of solving 
automatically all problems which stems from GÓdels incompleteness results. It is t rue tha t 
even first-order logic is only semi-decidable and tha t there are limits to what can be done 
with the formal approach. But it is also t rue that many useful and difficult problems fall 
within these limits and can be tackled. Logic programming provides an ideal framework 
to do so because, as pointed above, it allows us to "go as far as the formal approach 
will go". But it is important to point out that its procedural interpretation allows the 
straightforward "coding" of any other solutions using heuristic or other approaches in 
an elegant way. Again, the procedural/declarative dichotomy allows the merging of the 
formal and ad-hoc approaches. 

Another argument often used against logic programming is tha t it is based on first 
order predícate logic, and that other types of higher-order and modal logics are more 
suitable for solving AI problems because of their expressive power. The point on the 
expressive power is valid in principie. On the other hand the difficulties can be overeóme 
even in the framework of first order logic by formalizing things in different ways. It is also 
important to point out the results due to Lindstróm [36] tha t first-order logic oceupies a 
unique place among logical systems because there is no logical system with more expressive 
power for which we can have an adequate formal concept of proof and many other useful 
properties tha t first order-logic does have. Thus it seems a good idea to provide first-
order logic and an effective proof procedure (resolution) as the "built-in" paradigm and 
provide hooks and mechanisms for higher-order and modal logic to be dealt with through 
"programming" in the particular way the user needs to, which is the approach taken in 
current logic programming systems. 

4 Constraint Logic Programming 
Another of the beauties of the relational nature of most logic programming systems is 
that they can be used without change for tasks which are different from the one that the 
original programmer might have had in mind. In that way, a sorting program can be used 
to genérate permutations (and the other way around), a program designed with symbolic 
derivation in mind can do symbolic integration, and a program for computing squares can 
sol ve square roots. It has been argued that the class of programs for which this is possible 
is reduced in practical systems, in particular in Prolog systems. This limitation appears 
generally in programs which use Prolog's ari thmetic, which is non-logical and, therefore, 
not "reversible" (it is also related to Prolog's search rule). 

The sound implementation of most mathematical operations has been made possi­
ble by the extensión of logic programming to Constraint Logic Programming (CLP) by 
JafFar, Lassez, and Colmerauer [28, 29, 10]. This framework, which is still in a form 



first order predicate logic, not only overcomes most of the limitations in the reversibil-
ity of tradit ional logic programming, but also greatly augments its practical expressive 
power. CLP programs can perform computations over both symbolic and non-symbolic 
domains. In such programs unification is replaced with tests for constraint satisfaction. 
Expressive power is thus greatly enhanced since the domains used can be richer than 
the usual Herbrand domain and unification is only a special case of the aforementioned 
tests for constraint satisfaction. Traditional logic programming is viewed in this context 
as a special case where the domain is that of terms, the only constraint equality, and 
the constraint solving algorithm unification. In general, practical CLP systems support 
several domains and types of constraint operations over such domains as linear equations 
and inequations over reals or rationals, interval ari thmetic, constraints over finite sets, 
boolean constraints, etc. [30, 37, 10, 45]. The solving algorithms which are used in this 
context beside unification can be incremental gaussian elimination, incremental simplex, 
forward checking, several types of finite domain relaxation, lookahead, etc. CLP systems 
have the capability of solving a much larger set of problems in a direct way than tradi­
tional systems. On the other hand the constraint satisfaction tests can be much more 
expensive than unification and may result in low run-time performance. Thus, there is a 
considerable amount of interest in the efficient sequential and parallel implementation of 
CLP systems. This is similar to the eíforts made in logic programming which eventually 
produced efficient sequential and parallel Prolog implementations. 

5 Reactiveness, Concurrency, Modeling 
In the above, the deductive approach has been mostly compared with the imperative ap-
proach. Object oriented programming, although in a way part of the imperative approach, 
has some special characteristics which deserve special mention. In a comparison between 
the "object-oriented" and "logic programming" approaches one can present some argu-
ments in favour of the former which are relevant to our discussion. One could of course 
also conversely quite easily argüe that a good number of the very desirable character­
istics of declarative programming, presented in the previous sections, are missing from 
object-oriented programming, but tha t is not the issue here. 

A first argument which could be made for object-oriented programming is that it is re­
active in nature and provides message communication. Actually, logic programs can also 
be reactive (and concurrent) and incorpórate sophisticated forms of message communica­
tion, as exemplified by concurrent logic programming systems such as Concurrent-Prolog 
[52], PARLOG [18] and GHC [56]. It is t rue, however, tha t these systems have until now 
been to some extent unsatisfactory because they did not implement any of the search 
capabilities usually associated with logic programming systems. Thus, they have been 
largely unsuited for the "problem solving" applications for which logic programming is 
well known. However, recent models based on the "Andorra principie" proposed by War-
ren [50, 21] successfully combine reactiveness with traditional logic programming. 

Another argument for object-oriented programming is that it could be seen as more 
flexible and bet ter capable of modeling application domains because it incorporates data 
abstraction and information hiding, inheritance, and object identity and persistence. It 
has been shown tha t one way of supporting the functions of da ta abstraction, information 
hiding, and inheritance is by considering the objects to be the terms of the language 
and by enriching the structure and properties of such termá, as well as the unification 
algorithm, in a suitable way [1]. This, which was in principie a departure from standard 
logic programming, fits however now quite naturally in the context of constraint logic 



programs. The issue of object identity is also covered in this approach. Persistence can 
be considered a mat ter of point of view (similar to assignment): an object which changes 
can be implemented logically by a new object which incorporates the change. There is 
an obvious efficiency issue if this is implemented directly this way but it not need to, and 
it is in the end an implementation / garbage collection issue, just as updates to a list 
only make copies of the list when strictly necessary in current implementations of logic 
programs. 

In any case, and when departing from more theoretical considerations, combining 
object orientation and logic languages in practice is not a problem and a good number 
of object-oriented versions of Prolog have been developed, as, for example, [27] which 
provide the advantages of both of these quite interesting and promising programming 
paradigms. Finding elegant forms of merging logic- and object-oriented programming is, 
however, still quite an interesting research topic (see, for example [39] and its references). 

6 Parallelism and Efficiency Issues 
Having dealt with high-level issues such as programming paradigm and expressive power, 
lower level issues such as efficiency and practicality are now addressed. Some arguments 
supporting the suitability of declarative languages (which seem to be the languages of 
choice for the implementation of knowledge-based and other highly complex systems) 
have been given above. In fact, most of the landmark implementations in the field of 
AI have used such declarative languages. On the other hand, lower-level languages are 
very often used in more "practical" applications and some commercial products. Two 
arguments are often quoted as justifying such a move. First, the higher execution speed 
of low-level, imperative languages. Second, their availability on s tandard platforms, in 
particular on UNIX-based systems and their seamless interface with tha t environment. 

Starting with the last point above, there is a certain belief tha t logic and functional 
languages need "strange" and expensive computers and environments. The appearance 
of Lisp- and Prolog-machines a few years ago gave rise to this impression. In fact, this 
belief is nowadays quite unfounded: modern versions of well established languages such 
as Prolog and Lisp run well on standard platforms, often having excellent public domain 
implementations - SICStus Prolog [6] and Kyoto Common Lisp are good examples of 
widely available, excellent quality implementations which run on s tandard platforms (e.g. 
UNIX) and interface seamlessly with the operating system environment. 

Regarding the first point above, there is also a belief tha t imperative languages such 
as C are fáster than Prolog or Lisp. This has been, on the other hand, t rue in some cases 
and has motivated the use of such imperative languages in some commercial products. 
Speed, thus, would appear to make a good case for such languages. However, it cannot be 
forgotten that these languages suffer from intrinsic drawbacks when used for programming 
knowledge-based systems: their lower level makes programming more tedious, having 
to deal with very low-level issues (such as dynamic memory management) which are 
otherwise automatically taken care of in logic and functional languages. This need of 
attention to low-level details can be a serious handicap when developing large systems. 
Also, the imperative nature of such languages makes programming more prone to error 
and debugging more dimcult. And their lack of a mathematical foundation makes their 
formal t reatment (and thus the development of advanced program analysis tools) a hard 
problem. The real argument left in their favor seems to be, then, execution speed. 

Our thesis is that this argument may very soon be unfounded. First , sequential imple­
mentations of logic and functional languages are getting highly competitive through the 



use of advanced implementation and compilation technology based on efBcient abstract 
machines [60] and program analysis techniques such as abstract in terpre taron [12, 13]. 
Current Prolog implementation technology offers performance which slowly approaches 
tha t of, for example, C [58]. And, while still slower than C, if the speed of current se-
quential systems is preserved in each processor, an order of magnitude speedup in logic 
programming obtained from parallelism would already represent a faster execution than 
C. 

Thus, parallelism greatly aífects the balance. In fact, efficient, high-performance mul-
tiprocessors are now a practical reality and in the very short term desktop workstations 
with several processors will be the norm. Unfortunately, making effective use of such com-
puting power from lower-level imperative languages is a tedious and error-prone manual 
task. Furthermore, any automation of this task is very much complicated by the very 
nature of such languages. However, if more declarative languages are used, then most 
of the additional work involved in programming for multiprocessors can be simplified or 
eliminated altogeíher by using advanced program analysis tools. In addition, the declar-
ativeness and mathematical foundation of such languages makes it feasible to prove the 
correctness of the parallelization techniques. 

One question that may immediately come to mind is why one should consider par­
allelism and multiprocessors at all. In fact, such machines offer clear advantages at (at 
least) two levéis of cost/performance tradeoff. At the high end, i.e. when trying to achieve 
the ul t imate performance, parallelism is a must because technology has been pushed to 
the limit and we simply don't know how to make a faster machine. At this point the 
only way to achieve bet ter performance is by adding more CPUs as exemplified by the 
Cray-XMP. At a lower and more practical end there is another point where parallelism 
can offer extremely good performance in a cost-eífective way: at any point in t ime there is 
a "fastest, reasonably priced" machine, which is often exemplified by the high-end work-
station. Elements being used in such a workstation are the fastest current microprocessors 
(probably with RISC architecture) and a large cache and memory. Having used most of 
the "tricks" in the bag of the architecture designer a further increase in speed can be 
obtained by moving to a diíferent technology (at a very large cost), or, alternatively, by 
put t ing together several of these microprocessors to build a multiprocessor, the latter be­
ing often a much more cost-eífective alternative. A similar argument can be made at the 
"mini" level. In general, in this view parallelism makes it possible to increase performance 
linearly with cost while avoiding a highly expensive jump to a diíferent technology. 

The question, then, might remain on whether multiprocessors are practical today. In 
fact, efficient, practical, high-performance UNIX multiprocessors are now a market reality 
as exemplified by machines such as the Sequent Balance/Symmetry [51], Encoré, BBN 
Butterfly, and, most importantly, by the current generation of desktop multiprocessor 
workstations pioneered by the Sun Galaxy, which offer extremely good cost /performance 
ratios. DOS-based multiprocessors are also starting to appear in the market and to be 
widely used as compute and file servers. Most of these machines use the latest generation 
of microprocessors. 

The question then may not be so much whether practical multiprocessors are available 
but how one can tap a performance potential that is already available on one's desktop. 
However, the answer to this question is the real key to multiprocessing: using the power 
of multiprocessors is still difficult. The amount of software that can exploit the perfor­
mance potential of these machines is still very small. This is largely due to the difficulty 
in mapping the inherent parallelism in problems on to diíferent multiprocessor organiza-
tions. There are in general at least two ways in which such a mapping can be performed: 
it can be done explicitly in the program by the user by means of a language that includes 



parallel constructs, or it can be automatically uncovered by a "parallelizing" compiler 
from a program which has no explicit parallelism in it. Both approaches have their merits 
and drawbacks. A parallelizing compiler makes it possible to t ap the performance po-
tential of a multiprocessor without burdening the programmer. However, the capabilities 
of current parallelizing compilers are relatively limited, specially in the context of con-
ventional programming languages. Parallelism explicitly expressed by the programmer 
using specialized constructs can be used when the programmer has a clear understanding 
of how the parallelism in the problem can be exploited in the target machine. However, 
this adds in general an additional dimensión of complication to the already complicated 
and bug-prone task of programming.3 In reality, although experienced users may often 
have a correct intuition on which of the parts of a problem (and which of the parts of 
the associated program) can be solved in parallel, the task of correctly determining the 
dependencies among those parts and the sequencing and synchronization needed to reflect 
such dependencies is proving to be very dimcult and error-prone. This was recently also 
pointed out by Karp [31] who states that "the problem with manual parallelization is tha t 
much of the work needed is too hard for people to do. For instance, only compilers can be 
trusted to do the dependency analysis needed to parallelize programs on shared-memory 
systems." 

Therefore, the best programming environment would appear to be one in which the 
programmer can freely choose between only concentrating on the conventional program­
ming task itself (letting a parallelizing compiler uncover the parallelism in the resulting 
program) or, alternatively, performing, in addition, the task of explicitly annotat ing parts 
of the program for parallel execution. In the latter case, the compiler should be able to 
aid the user in the dependency analysis and related tasks. Ideally, different choices should 
be allowed for different parts of the program. 

However, automatic parallelization has up to now been an elusive goal. It can be 
done in some trivial cases: for example, operating system processes can be executed in 
parallel. An interesting case is parallel compilation, which can also often be done in par­
allel in UNIX systems. In this case the hard-to-find dependency information is routinely 
provided by the user in the "makefile." However, efforts in parallelizing user programs 
in imperative languages, mainly represented by parallelizing compilers for FORTRAN, 
have met with only limited success. Karp also points out the lack of good parallelizing 
compilers, and predicts that the technology is still several years away. One reason for this 
is that the programming languages that are conventionally parallelized have a complex 
imperative semantics which makes compiler analysis difflcult and forces users to employ 
control mechanisms tha t hide the parallelism in the problem. It is very dimcult to de-
velop parallelization algorithms for such languages tha t are both effective and amenable 
to proof. 

On the other hand, declarative languages require far less explication of control (thus 
preserving much more of the parallelism in the problem). In addition, their semantics 
makes them comparatively more amenable to compile-time analysis and program paral­
lelization. In other words, such programs preserve more the intrinsic parallelism in the 
problem, make it easier to extract in an automatic fashion, and allow the techniques being 

3In fact, the progress from systems which require from the programmer explicit creation and mapping 
of processes to a particular processor interconnection topology and extensive granularity control, to 
systems which don't require at least some of these tasks appears to be a leap forward comparable to 
the appearance of the concept of virtual memory (compared to overlays) or even high-level languages 
(compared to programming in machine code). Of course, in the same way as there is sometimes a case 
for assembler programming in particularly performance sensitive parts of a program, there will be some 
cases in which complete explicit control of parallelism is indicated. 



used to be proved correct. It is our thesis that through advanced compiler techniques, such 
as abstract interpretaron, automation of parallelization is indeed feasible for languages 
that have a declarative foundation. 

The two main types of parallelism which can be exploited in logic programs are well 
known[ll]: (1) and-parallelism and (2) or-parallelism. Several models have been proposed 
to take advantage of such opportunities (see, for example, [14], [46], [4], [25], [35], [63], [20], 
[62], [54], [2] and their references). Significant research effort has been and is being applied 
to developing or-parallel execution models (see, for example, [61] and its references). 
The associated performance studies have shown good performance for non-deterministic 
programs in a number of practical implementations, as exemplified by the Aurora [54] 
and MUSE [2] systems. The resulting speedups obtained over state-of-the-art sequential 
systems for programs which have this type of parallelism support the thesis defended in 
this paper. 

Exploiting (independent) and-parallelism [23, 24, 14, 25] is more complicated because 
several kinds of dependency analysis must be performed on the programs. Goal inde-
pendence is a function of the run-time instantiations of the variables in the goals being 
considered, and, therefore, is in general query-dependent. Emcient annotation requires 
either a priori knowledge of the binding patterns of the variables in the programs at run-
time, or introducing in the program checks which can dynamically determine at run-time 
which goals should be executed in parallel. The latter can be done quite simply with only 
minor modifications to Prolog (as exemplified by the &-Prolog language [22]). The for-
mer has been one of the central research issues in the implementation of and-parallelism. 
Promising results have recently been obtained on how correct and efficient annotations 
can be generated automatically [43], how the peculiar characteristics of practical Prolog 
programs (for example, those with side-effects) are dealt with [42] and how much paral­
lelism can be obtained from such automatic annotations. The latter point, which is the 
most relevant to our thesis is discussed in [22], by giving results for the &-Prolog system. 
The main conclusions are that for programs which contain this type of parallelism quite 
significant speedups can be obtained over state-of-the-art sequential systems. 

Together, or-parallelism and and-parallelism appear to be capable of producing 
speedups of more than an order of magnitude over sequential systems in a large class 
of programs [53, 19]. This can put the performance of parallel logic programming sys­
tems beyond the performance of C on a commercial 10-processor machine and makes 
declarative programming an attractive implementation vehicle even when all arguments 
(including raw performance) are taken into account. 

7 Conclusions 
This paper has presented some brief considerations on the role of Computational Logic 
in the construction of Artificial Intelligence systems and in programming in general. It 
has succinctly addressed the interaction between the declarative (deduction) and proce-
dural views of programs, the extent of the impact of the intrinsic limitations of logic, 
the relationship with other apparently competing computational paradigms, and finally 
it has discussed implementation-related issues, such as the efflciency of current imple­
mentations and their capability of efficiently exploiting existing and future sequential and 
parallel hardware. We have presented ways in which possible shortcomings of Computa­
tional Logic which may appear at first sight have been overeóme by older and more recent 
results - from Kowalski's elegant merge of the procedural and declarative views to re-
cent extensions, such as constraint logic programming, non-deterministic concurrent logic 



programming, etc. These extensions greatly enhance declarativeness and the range of 
application domains and incorpórate important features of the object oriented paradigm. 
We have also pointed out how many efficiency issues are already solved to a great extent , 
specially in view of the growing ubiquity of parallel computers. Sequential implementa-
tions approach the speed of lower level languages like C, while parallel implementations 
can surpass it. We have of course also pointed out tha t work does remain to be done in 
many áreas from the improvement of expressive power (for example, a bet ter merging of 
object orientation features) to further improvements in implementation technology. As 
mentioned before, the ul t imate purpose of the discussion has been in no way to present 
Computational Logic as the unique overall vehicle for the development of intelligent sys­
tems (in the firm belief that such a panacea is yet to be found) but rather to stress its 
strengths in providing reasonable solutions to several aspects of the task, to encourage 
intelligent system designers to consider the use of Computat ional Logic systems, and to 
encourage further work in this uniquely promising área. Intelligent systems designers 
certainly need to look for rich high-level abstractions and knowledge-oriented description 
paradigms that allow them to easily model complex systems. At the same t ime logic 
oíFers an ideal formal underpinning for such systems, and a sound and efficient high-level 
implementation vehicle. 

References 
[1] Hassan Ait-Kaci, Roger Nasr, and Pat Lincoln. E An Overview. Technical Report AI-420-

86-P, Microelectronics and Computer Technology Corporation, 9430 Research Boulevard, 
Austin, TX 78759, December 1986. 

[2] K.A.M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Performance. In 
1990 North American Conference on Logic Programming. MIT Press, October 1990. 

[3] J. Backus. Can programming be liberated from the von neumann style? Communications 
of the ACM, 21(8):613-641,1978. 

[4] P. Biswas, S. Su, and D. Yun. A Scalable Abstract Machine Model to Support Limited-
OR/Restricted AND Parallelism in Logic Programs. In Fifth International Conference and 
Symposium on Logic Programming, pages 1160-1179, Seattle,Washington, 1988. 

[5] P. G. Bosco, C. Cecchi, C. Moiso, M. Porta, and G. Sofi. Logic and functional programmin 
on distributed memory architectures. In David H. D. Warren and Peter Szeredi, editors, 
Proceedings ofthe Seventh International Conference on Logic Programming, pages 325-339, 
Jerusalem, 1990. The MIT Press. 

[6] M. Carlsson. Sicstus Prolog User's Manual. Po Box 1263, S-16313 Spanga, Sweden, Febru-
ary 1988. 

[7] A. Church. A set of postulates for the foundation of logic. In Annals of Mathematics 
Studies, volume 2. 1933. 



[8] A. Church. The calculi of lambda conversión. In Annals of Mathematics Studies, volume 6. 
Princeton University Press, 1941. 

[9] A. Colmerauer. Les gramaire de metamorphose. Technical report, Univ. D'aix-Marseille, 
Groupe De la, 1975. 

[10] A. Colmerauer. Opening the Prolog-III Universe. In BYTE Magazine, August 1987. 

[11] J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs. 
PhD thesís, The University of California At Irvine, 1983. Technical Report 204. 

[12] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static 
Analysis of Programs by Construction or Approximation of Fixpoints. In Conf. Rec. J^th 
Acm Symp. on Prin. of Programming Languages, pages 238-252, 1977. 

[13] S. Debray, editor. Journal of Logic Programming, Special Issue: Abstract Interpretation, 
volume 13(1-2). North-Holland, July 1992. 

[14] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation 
Computer Systems, pages 471-478. Tokyo, November 1984. 

[15] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall series in automatic computa-
tion. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1976. 

[16] K. Goedel. Uber Formal Unentschiedbare Sátze de Principia Mathematica und Vervandter 
System i. Mat. Phys., 38:173-198, 1931. 

[17] C. Green. Theorem proving by resolution as a basis for question-answering systems. Ma­
chine Intelligence, 4, 1969. 

[18] S. Gregory. Parallel Logic Programming in PARLOG: the Language and its Implementation. 
Addison-Wesley Ltd., Wokingham, England, 1987. 

[19] G. Gupta and M. Hermenegildo. Recomputation based Implementation of And-Or Paral­
lel Prolog. In Proc. of the 1992 International Conference on Fifth Generation Computer 
Systems. Institute for New Generation Computer Technology (ICOT), June 1992. 

[20] G. Gupta and B. Jayaraman. Compiled And-Or Parallelism on Shared Memory Multipro-
cessors. In 1989 North American Conference on Logic Programming, pages 332-349. MIT 
Press, October 1989. 

[21] G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: A Model Integrating 
Dependent-, Independent-, and Or-parallelism. In 1991 International Logic Programming 
Symposium. MIT Press, October 1991. 

[22] M. Hermenegildo and K. Greene. &>Prolog and its Performance: Exploiting Independent 
And-Parallelism. In 1990 International Conference on Logic Programming, pages 253-268. 
MIT Press, June 1990. 

[23] M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of Independent And-
Parallelism in Logic Programs. In 1989 North American Conference on Logic Programming, 
pages 369-390. MIT Press, October 1989. 

[24] M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In 1990 Interna­
tional Conference on Logic Programming, pages 237-252. MIT Press, June 1990. 



[25] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architec-
ture Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, Dept. 
of Electrical and Computer Engineering (Dept. of Computer Science TR-86-20), University 
of Texas at Austin, Austin, Texas 78712, August 1986. 

[26] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the 
CM, 12(10), 1969. 

[27] ICOT. ESP Guide. Technical Memorándum TM-388, ICOT, 1-4-28 Mita, Minato-ku Tokyo 
108, JAPAN, 1987. 

[28] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. Technical report, Dept. of 
Computer Science Monash University, June 1986. 

[29] J. JaíFar and J.-L. Lassez. Constraint Logic Programming. In Fourteenth Ann. ACMSymp. 
Principies of Programming Languages, pages 111-119. ACM Press, 1987. 

[30] J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. In Fourth 
International Conference on Logic Programming, pages 196-219. University of Melbourne, 
MIT Press, 1987. 

[31] A.H. Karp and R.C. Babb. A Comparison of 12 Parallel Fortran Dialects. IEEE Software, 
September 1988. 

[32] R. A. Kowalski. Predicate Logic as a Programming Language. In Proceedings IFIPS, pages 
569-574, 1974. 

[33] Robert A. Kowalski. Logic for Problem Solving. Elsevier North-Holland Inc., 1979. 

[34] P. Lescanne and W. Wechler, editors. Journal of Logic Programming, Special Issue: Alge-
braic and Logic Programming, volume 12(3). North-Holland, February 1992. 

[35] Y.-J. Lin. A Parallel Implementation of Logic Programs. PhD thesis, Dept. of Computer 
Science, University of Texas at Austin, Austin, Texas 78712, August 1988. 

[36] P. Lindstroem. On extensions of elementary logic. Theoria, 35:1-11, 1969. 

[37] H. Simonis M. Dincbas and P. Van Hentenryck. Solving Large Combinatorial Problems in 
Logic Programming. Journal of Logic Programming, 8(1 & 2):72-93, 1990. 

[38] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin. LISP 1.5 
Programmer's Manual. MIT Press, Cambridge, MA, 1965. 

[39] J. Meseguer. Multiparadigm logic programming. In H. Kirchner and G. Levi (eds.), editors, 
Proceedings of the 3rd. InVl. Conf. on Algebraic and Logic Programming. Springer LNCS, 
1992. 

[40] M. Minsky. Logical vs. analógica! or symbolic vs. scruffy. AI Magazine, Summer Issue, 
1991. 

[41] Juan José Moreno-Navarro and Mario Rodríguez-Artalejo. Babel: a Functional and Logic 
Programming Language Based on Constructor Discipline and Narrowing. In Grabowski et 
al., editor, Lecture Notes in Computer Science. #343. Algebraic and Logic Programming. 
Springer-Verlag, 1988 

[42] K. Muthukumar and M. Hermenegildo. Efficient Methods for Supporting Side Effects in 
Independent And-parallelism and Their Backtracking Semantics. In 1989 International 
Conference on Logic Programming. MIT Press, June 1989. 



[43] K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for Automatic 
Compile-time Parallelization of Logic Programs for Independent And-parallelism. In 1990 
International Conference on Logic Programming, pages 221-237. MIT Press, June 1990. 

[44] C. Hoare O. Dahl, E. Dijkstra. Structured Programming. APIC Studies in Data Processing. 
Academic Press, 1976. 

[45] W. Older and A. Vellino. Extending Prolog with Constraint Arithmetic in Real Intervals. 
In Canaáian Conference on Eléctrica] and Computer Engineering, September 1990. 

[46] B. Ramkumar and L. V. Kale. Compiled Execution of the Reduce-OR Process Model 
on Multiprocessors. In 1989 North American Conference on Logic Programming, pages 
313-331. MIT Press, October 1989. 

[47] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principie. Journal of 
the ACM, 12(23):23-41, January 1965. 

[48] P. Roussel. Prolog: Manuel de reference et d'utilisation. Technical report, Univ. d'Aix-
Marseille, Groupe de IA, 1975. 

[49] D. Rumelhart and J. McLelland. Parallel Distributed Processing. MIT Press, 1986. 

[50] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Engine: A Parallel Im-
plementation of the Basic Andorra Model. In 1991 International Conference on Logic 
Programming, pages 825-839. MIT Press, June 1991. 

[51] Sequent Computer Systems, Inc. Balance 8000/21000 Technical Summary, 1986. 

[52] E. Y. Shapiro. A Subset of Concurrent Prolog and Its Interpreter. Technical Report TR-003, 
ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, January 1983. 

[53] K. Shen and M. Hermenegildo. A Simulation Study of Or- and Independent And-
parallelism. In 1991 International Logic Programming Symposium. MIT Press, October 
1991. 

[54] P. Szeredi. Performance Analysis of the Aurora Or-Parallel Prolog System. In 1989 North 
American Conference on Logic Programming. MIT Press, October 1989. 

[55] A. Turing. On computable numbers with an application to the entschiedungs problem. 
Proc. London Mathematical Society, 2(42):230-265, 1936. 

[56] K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog: Collected 
Papers, pages 140-156. MIT Press, Cambridge MA, 1987. 

[57] J. D. Ullman. Datábase and Knowledge-Base Systems, Vol. 2. Computer Science Press, 
Maryland, 1990. 

[58] P. Van Roy and A. M. Despain. The Benefits of Global Dataflow Analysis for an Optimizing 
Prolog Compiler. In Proceedings of the North American Conference on Logic Programming, 
pages 501-515. MIT Press, October 1990. 

[59] D. H. D. Warren. Applied Logic—Its Use and Implementation as Programming Tool. PhD 
thesis, University of Edinburgh, 1977. Also available as SRI Technical Note 290. 

[60] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI Interna­
tional, 1983. 

[61] D. H. D. Warren. OR-Parallel Execution Models of Prolog. In Proceedings of TAPSOFT 
'87, Lecture Notes in Computer Science. Springer-Verlag, March 1987. 



[62] D. H. D. Warren. The SRI Model for OR-Parallel Execution of Prolog—Abstract Design 
and Implementation. In International Symposium on Logic Programming, pages 92-102. 
San Francisco, IEEE Computer Society, August 1987. 

[63] H. Westphal and P. Robert. The PEPSys Model: Combining Backtracking, AND- and OR-
Parallelism. In Symp. of Logic Prog., pages 436-448, August 1987. 


