711 research outputs found

    Mongolian place names in Fernão Mendes Pinto's Peregrinação

    Get PDF
    The Mongolic term khaan (‘king’), for which there is full correspondence, semantic and phonological, in sixteenth century Portuguese cão, is used as a starting-point to identify the graphemes that correspond to several Mongolic consonants in place names transcribed in the chapters related to the Tartars in Fernão Mendes Pinto’s Peregrinação (1614). With the deduced rules of pronunciation at hand, it is possible to establish new pairs of lexical correspondences and solve a brief lexicon extracted from the list of Tartar toponyms

    The translation of wordplay in Alice in Wonderland : a descriptive and corpus-oriented study

    Get PDF
    Universidade Federal de Santa Catarina, Centro de Comunicação e Expressão, Programa de Pós-Graduação em Linguística, Florianópolis, 199

    PROBLEMATYKA OGÓLNA I LOKALNA W LINGWISTYCE SĄDOWEJ NA PRZYKŁADZIE JĘZYKA ARABSKIEGO

    Get PDF
    This paper is concerned with four main aspects or parts of forensic linguistics: Forensic linguistics in speech mode and in writing, the special status of Arabic, linguistic problems and possibilities of translation for forensics, and Language Analysis for Determination of Origin (LADO). After presenting these issues in the introduction, we describe the language situation of Arabic, mainly in Israel, in the context of these four issues. The discussion is based on the literature concerning problems of translation and LADO in courts of justice in various countries, including Israel. We consider LADO as a developing field of forensic linguistics, and demonstrate by examples some problems that may rise from speech recordings of Arabic speaking asylum seekers. Based on this survey, we point out in the conclusion some research needs of general forensic linguistics and Arabic related forensic linguistics.Artykuł koncentruje się na czterech aspektach lingwistyki sądowej: lingwistyka sądowa jako sposób formułowania treści mówionych i pisanych, szczególny status języka arabskiego, problemy lingwistyczne i możliwości tłumaczenia w sądach, zastosowanie analizy językowej do ustalenia pochodzenia. Po przedstawieniu tych kwestii opisana zostanie w ich kontekście sytuacja języka arabskiego, głównie w Izraelu

    Speech-to-speech translation to support medical interviews

    Get PDF
    Projeto de mestrado em Engenharia Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2013Este relatório apresenta a criação de um sistema de tradução fala-para-fala. O sistema consiste na captação de voz na forma de sinal áudio que de seguida é interpretado, traduzido e sintetizado para voz. Tendo como entrada um enunciado numa linguagem de origem e como saída um enunciado numa linguagem destino. O sistema implementado tem como âmbito do seu funcionamento o domínio médico, tendo em vista apoiar o diálogo entre médico e utente em linguagens diferentes durante consultas médicas. No caso do presente trabalho, foram escolhidos o português e inglês, sendo possível a tradução fala-para-fala nos dois sentidos. A escolha destas duas línguas resulta sobretudo da disponibilidade de recursos para o desenvolvimento do sistema. Ao longo dos anos tem existido um esforço de pesquisa e desenvolvimento em tecnologia que permite quebrar as barreiras do multilinguismo. Uma dessas tecnologias, com resultados de qualidade crescentemente aceitável, são os sistemas de tradução fala-para-fala. Em geral, estes sistemas são compostos por três componentes: reconhecimento de fala, tradução automática e sintetização de voz. Neste projecto foram implementadas as três componentes. No entanto, uma vez que face às tecnologias disponíveis, a componente de tradução tem um maior impacto no desempenho final do sistema, a esta foi conferida uma maior atenção. Embora nós, como humanos, compreendamos facilmente a linguagem falada, isto é algo extremamente difícil e complexo de um ponto de vista computacional. O objectivo do reconhecimento de fala é abordar esta tarefa computacionalmente através da construção de sistemas que mapeiam um sinal acústico para uma sequência de caracteres. Os modelos actuais para reconhecimento de fala fazem uso de modelos estatísticos. Nestes, a fala é reconhecida através do uso de modelos de linguagem que possibilitam a estimativa das probabilidades para as palavras, independentemente do sinal de entrada, e de um modelo acústico onde as propriedades acústicas da fala estão contempladas. Os modelos actuais de tradução automática, assim como os de reconhecimento de fala, são na sua larga maioria estatísticos. Actualmente os modelos de tradução baseados em unidades frásicas de input são os que obtém os resultados com melhor qualidade. Esta abordagem consiste na tradução de pequenos segmentos de palavras, onde existe uma tradução lexical e um modelo de alinhamento. Os modelos estatísticos fazem uso de textos de duas línguas alinhados, tendo como princípio o facto de que através da frequência de cada segmento de palavras, em relação à outra linguagem, seja obtida uma distribuição probabilística. Deste modo torna-se possível calcular qual a palavra ou conjunto de palavras mais prováveis de ocorrer como tradução para determinado texto que se pretenda traduzir. A sintetização de voz consiste na geração de fala na forma de onda acústica tendo como ponto de partida uma palavra ou uma sequência de palavras. Envolve o processamento de linguagens naturais e processamento de sinal. O primeiro converte o texto numa representação fonética e o último converte essa representação em sinal acústico. Neste documento é apresentado o estado da arte das três áreas envolvidas. São também apresentados os sistemas de tradução fala-para-fala, fazendo ou não uso do domínio médico, e também os processos existentes para a avaliação de cada uma das componentes. Tendo em vista a implementação de um sistema com as diversas componentes, foi necessário efectuar um levantamento da tecnologia existente. O levantamento teve por objectivo a implementação de duas soluções aplicacionais. Uma aplicação disponível pela internet como página web e outra através de uma aplicação móvel, ambas permitindo o reconhecimento de fala, tradução automática e sintetização de voz em ambas as linguagens e direcções. Dois sistemas de reconhecimento de fala foram escolhidos, o Microsoft Speech Platform para a aplicação móvel e o reconhecimento de fala disponível pelo Google nos browsers Google Chrome. O primeiro a ser usado na aplicação móvel e o segundo na aplicação web. O sistema de tradução automática escolhido foi o Moses. Sendo um sistema de tradução estatístico que permite a criação de modelos de tradução diversos, como os modelos baseados em frase e os modelos baseados em fatores. O sistema de sintetização de voz escolhido foi o Microsoft Speech Platform. A aplicação móvel foi desenvolvida para a plataforma iOS da Apple tendo em vista o uso de um telemóvel iPhone. A integração dos componentes pelas diversas arquitecturas foi assegurada pela implementação de web services. O reconhecimento de fala na aplicação web foi desenvolvido recorrendo ao uso da W3C Speech Input API Specifications, onde a programação através de HTML permite a captação de áudio no Google Chrome. Para a implementação do sistema tradução fala-para-fala foi necessário a obtenção de corpora paralelos de forma a se poder treinar os modelos estatísticos, sendo este um dos factores cruciais para o bom desempenho dos componentes. Uma vez que o sistema tem como domínio de aplicação o diálogo médico, corpora neste domínio seria o mais vantajoso. No entanto, a inexistência de tais corpora para o par Inglês-Português levou à aquisição de corpora alternativos. Através de uma experiência exploratória foi abordado o tipo de implementação mais adequado da componente de reconhecimento de fala, tendo como foco o modelo de linguagem. Três experiências foram então conduzidas de forma a decidir entre a aplicação de um modelo de linguagem baseado em regras ou um modelo estatístico. Para implementar um modelo de linguagem baseado em regras foi necessário a criação de um corpus médico que reflectisse um diálogo entre médico e paciente. Para tal, com a ajuda de um médico, criei um diálogo de um caso hipotético de lesão num braço devido a um acidente de carro. Este diálogo teve como base para a sua estruturação a aplicação do processo de anamnesis. A anamnesis consiste numa metodologia médica que através de um conjunto de perguntas chave permite adquirir a informação necessária para a formulação de um diagnóstico médico e decisão sobre o tratamento necessário. O corpus médico foi também transformado num corpus de fala de forma a este ser avaliado ao longo das experiências. Numa primeira experiência foi criada uma gramática básica cuja implementação foi obtida recorrendo à Speech Recognition Grammar Specification de forma a ser usada como modelo de linguagem pela componente de reconhecimento de fala. A segunda experiência tinha como objectivo a criação de uma gramática mais complexa que a primeira. Para tal foi criada uma gramática livre de contexto. Após a criação da gramática livre de contexto esta foi convertida manualmente para uma gramática SRGS. Na terceira experiência foram criados dois modelo de linguagem estatísticos, o primeiro fazendo uso do mesmo corpus que o usado nas experiências anteriores e o segundo composto por 30.000 frases independentes. Obteve-se melhores resultados com o modelo de linguagem estatístico e este ficou como a escolha para a implementação do componente de reconhecimento de fala. No treino da componente de tradução automática foram usados dois modelos estatísticos, baseados em frases e em factores. Pretendeu-se comparar os resultados entre os dois modelos de forma a escolher o modelo mais vantajoso. Para fazer uso do modelo baseado em factores foi necessária a preparação de corpora. Com os corpora já adquiridos foi concretizada a sua anotação para ambas as linguagens. Recorrendo ao LX-Suite e ao CoreNLP, foram criados corpora anotados com lemmas e informação morfossintáctica, com a primeira ferramenta para o português e a última para o inglês. Uma vez que a componente de sintetização de voz permitia uma implementação célere, esta foi implementada recorrendo aos modelos já existentes para ambas as linguagens e disponibilizados pela ferramenta. Por fim, são apresentados os resultados obtidos e a sua avaliação. Tanto a avaliação do sistema de reconhecimento de fala como o de tradução automática demonstraram um desempenho muito competitivo, do nível do estado da arte. A componente de reconhecimento de fala, assim como a componente de tradução automática, obtiveram melhores resultados fazendo-se uso de modelos de linguagem estatístico.This report presents the development of a speech-to-speech translation system. The system consists in the capture of voice as an audio signal that is then interpreted, translated and synthesized to voice for a target language. The three main components of the system, speech recognition, machine translation and speech synthesis, make use of statistical models, such as hidden Markov models. Given the technology available, the machine translation component has a greater impact on the performance of the system, a greater attention has thus been given to it. The system assumes the support to medical interviews between doctor and patient in different languages as its applicational domain. Two application solutions were developed: an online service on a website and a mobile application. This report begins by presenting the general concepts of the relevant areas involved. It proceeds with an overview of the state of the art relating to each area as well as to the methods used for the evaluation of the different components. It provides also an overview of existing technology and the criteria for choosing the tools to be used in the development of the system. It explains the acquisition and creation of the corpora used, and the process of development and integration of the components: speech recognition, machine translation and text-to-speech. Finally, the evaluation results are presented, as well as the final conclusions

    Chapter 6 Metalanguages for source document analysis

    Get PDF
    "This edited volume covers the development and application of metalanguages for concretely describing and communicating translation processes in practice. In a modern setting of project-based translation, it is crucial to bridge the gaps between various actors involved in the translation process, especially among clients, translation service providers (TSPs), translators, and technology developers. However, we have been confronted with the lack of common understanding among them about the notion and detailed mechanisms of translation. Against this backdrop, we are developing systematic, fine-grained metalanguages that are designed to describe and analyse translation processes in concrete terms. Underpinned by the rich accumulation of theoretical findings in translation studies and established standards of practical translation services, such as ISO 17100, our metalanguages extensively cover the core processes in translation projects, namely project management, source document analysis, translation, and revision. Gathering authors with diverse backgrounds and expertise, this book proffers the fruits of the contributors’ collaborative endeavour; it not only provides practicable metalanguages, but also reports on wide-ranging case studies on the application of metalanguages in practical and pedagogical scenarios. This book supplies concrete guidance for those who are involved in the translation practices and translation training/education. In addition to being of practical use, the metalanguages reflect explicitation of the translation process. As such, this book provides essential insights for researchers and students in the field of translation studies.

    PROBLEMATYKA OGÓLNA I LOKALNA W LINGWISTYCE SĄDOWEJ NA PRZYKŁADZIE JĘZYKA ARABSKIEGO

    Full text link

    Findings of the 2019 Conference on Machine Translation (WMT19)

    Get PDF
    This paper presents the results of the premier shared task organized alongside the Conference on Machine Translation (WMT) 2019. Participants were asked to build machine translation systems for any of 18 language pairs, to be evaluated on a test set of news stories. The main metric for this task is human judgment of translation quality. The task was also opened up to additional test suites to probe specific aspects of translation
    corecore