283 research outputs found

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed

    Integration of Preferences in Decomposition Multiobjective Optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.© 2018 IEEE. Rather than a whole Pareto-optimal front, which demands too many points (especially in a high-dimensional space), the decision maker (DM) may only be interested in a partial region, called the region of interest (ROI). In this case, solutions outside this region can be noisy to the decision-making procedure. Even worse, there is no guarantee that we can find the preferred solutions when tackling problems with complicated properties or many objectives. In this paper, we develop a systematic way to incorporate the DM's preference information into the decomposition-based evolutionary multiobjective optimization methods. Generally speaking, our basic idea is a nonuniform mapping scheme by which the originally evenly distributed reference points on a canonical simplex can be mapped to new positions close to the aspiration-level vector supplied by the DM. By this means, we are able to steer the search process toward the ROI either directly or interactively and also handle many objectives. Meanwhile, solutions lying on the boundary can be approximated as well given the DM's requirements. Furthermore, the extent of the ROI is intuitively understandable and controllable in a closed form. Extensive experiments on a variety of benchmark problems with 2 to 10 objectives, fully demonstrate the effectiveness of our proposed method for approximating the preferred solutions in the ROI.Royal Society (Government)Ministry of Science and Technology of ChinaScience and Technology Innovation Committee Foundation of ShenzhenShenzhen Peacock PlanEngineering and Physical Sciences Research Council (EPSRC)Engineering and Physical Sciences Research Council (EPSRC

    Identifying preferred solutions in multiobjective combinatorial optimization problems

    Get PDF
    We develop an evolutionary algorithm for multiobjective combinatorial optimization problems. The algorithm aims at converging the preferred solutions of a decision-maker. We test the performance of the algorithm on the multiobjective knapsack and multiobjective spanning tree problems. We generate the true nondominated solutions using an exact algorithm and compare the results with those of the evolutionary algorithm. We observe that the evolutionary algorithm works well in approximating the solutions in the preferred regions

    Diversity comparison of Pareto front approximations in many-objective optimization

    Get PDF
    Diversity assessment of Pareto front approximations is an important issue in the stochastic multiobjective optimization community. Most of the diversity indicators in the literature were designed to work for any number of objectives of Pareto front approximations in principle, but in practice many of these indicators are infeasible or not workable when the number of objectives is large. In this paper, we propose a diversity comparison indicator (DCI) to assess the diversity of Pareto front approximations in many-objective optimization. DCI evaluates relative quality of different Pareto front approximations rather than provides an absolute measure of distribution for a single approximation. In DCI, all the concerned approximations are put into a grid environment so that there are some hyperboxes containing one or more solutions. The proposed indicator only considers the contribution of different approximations to nonempty hyperboxes. Therefore, the computational cost does not increase exponentially with the number of objectives. In fact, the implementation of DCI is of quadratic time complexity, which is fully independent of the number of divisions used in grid. Systematic experiments are conducted using three groups of artificial Pareto front approximations and seven groups of real Pareto front approximations with different numbers of objectives to verify the effectiveness of DCI. Moreover, a comparison with two diversity indicators used widely in many-objective optimization is made analytically and empirically. Finally, a parametric investigation reveals interesting insights of the division number in grid and also offers some suggested settings to the users with different preferences

    ETEA: A euclidean minimum spanning tree-Based evolutionary algorithm for multiobjective optimization

    Get PDF
    © the Massachusetts Institute of TechnologyAbstract The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in the space, where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based Evolutionary Algorithm (ETEA) to solve multiobjective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically in ETEA, four strategies are introduced: 1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; 2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; 3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; 4) Three diversity indicators-the minimum edge, degree, and ETCD-with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/K001310/1, and the National Natural Science Foundation of China under Grant 61070088

    Preference-based evolutionary algorithm for airport surface operations

    Get PDF
    In addition to time efficiency, minimisation of fuel consumption and related emissions has started to be considered by research on optimisation of airport surface operations as more airports face severe congestion and tightening environmental regulations. Objectives are related to economic cost which can be used as preferences to search for a region of cost efficient and Pareto optimal solutions. A multi-objective evolutionary optimisation framework with preferences is proposed in this paper to solve a complex optimisation problem integrating runway scheduling and airport ground movement problem. The evolutionary search algorithm uses modified crowding distance in the replacement procedure to take into account cost of delay and fuel price. Furthermore, uncertainty inherent in prices is reflected by expressing preferences as an interval. Preference information is used to control the extent of region of interest, which has a beneficial effect on algorithm performance. As a result, the search algorithm can achieve faster convergence and potentially better solutions. A filtering procedure is further proposed to select an evenly distributed subset of Pareto optimal solutions in order to reduce its size and help the decision maker. The computational results with data from major international hub airports show the efficiency of the proposed approach
    corecore