
Interactive Evolutionary Multi-Objective Optimization Algorithms:
Development, Improvements, Benchmarking and Analysis of

Performance

A thesis submitted to the University of Manchester for the degree of

Doctor of Philosophy

in the Faculty of Humanities

2022

Seyed Mahdi Shavarani

Alliance Manchester Business School



Contents

List of figures 6

List of tables 10

Terms and abbreviations 12

Abstract 13

Declaration of originality 14

Copyright statement 16

Dedication 17

Acknowledgements 18

1 Introduction 19
1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Research Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Publications Resulting from the Thesis . . . . . . . . . . . . . . . . . . . . . 26

1.5.1 Refereed Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 On Interactive Evolutionary Multi-Objective Optimization Algorithms 27
2.1 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Interactive Evolutionary Multi-Objective Optimization Algorithms . . . . . . 30

2.2.1 Ad-hoc iEMOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Non-ad-hoc iEMOAs . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Benchmarking Non-ad-hoc iEMOAs . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Machine Decision Makers . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Simulation of Non-idealities . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4 Hidden and Irrelevant Objectives . . . . . . . . . . . . . . . . . . . . 41

2.4 Improving Robustness and Performance of iEMOAs . . . . . . . . . . . . . 45

2



2.4.1 Detection and Handling Hidden and Irrelevant Objectives . . . . . . . 45

2.4.2 An Improved Preference Learning Technique . . . . . . . . . . . . . . 46

3 On Benchmarking Interactive Evolutionary Multi-Objective Optimization
Algorithms 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 State of the Art in iEMOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Background Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Assessment of iEMOAs . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Summary of selected algorithms . . . . . . . . . . . . . . . . . . . . 53

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Machine Decision Maker (MDM) . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Parameter tuning of the UF . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Benchmark problems . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Selected UFs and parameters . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Parameter settings of the Machine Decision-Maker (MDM) . . . . . . 62

3.5.4 BCEMOA and iTDEA parameter settings . . . . . . . . . . . . . . . . 63

3.5.5 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Experiments with no biases . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Simulation of inconsistencies . . . . . . . . . . . . . . . . . . . . . . 70

3.6.3 Simulation of irrelevant objectives . . . . . . . . . . . . . . . . . . . 70

3.6.4 Simulation of additively dependent objectives . . . . . . . . . . . . . 71

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Detecting Hidden and Irrelevant Objectives in Interactive Multi-Objective
Optimization 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Fixed versus Variable Number of Active Objectives . . . . . . . . . . 88

4.4.3 BCEMOA-HD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3



4.5.1 Simulation of Active and Inactive Objectives . . . . . . . . . . . . . . 91

4.5.2 Underlying Benchmark Problems . . . . . . . . . . . . . . . . . . . . 92

4.5.3 Machine Decision Maker (MDM) . . . . . . . . . . . . . . . . . . . . 93

4.5.4 Selecting Relevant Objectives . . . . . . . . . . . . . . . . . . . . . . 94

4.5.5 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.1 DTLZ Problems with Fixed Number of Objectives . . . . . . . . . . . 96

4.6.2 DTLZ Problems with Variable Number of Objectives . . . . . . . . . 97

4.6.3 ρMNK Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 An Interactive Decision Tree-Based Evolutionary Multi-Objective Algorithm 104
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Non-ad-hoc Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2 Ad-hoc Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.4 Decision Tree Classification . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Decision-Tree Based EMOA . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Preference Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Preference Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.3 Determination of the Score . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.4 Using DTs in EMOAs . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Machine Decision Maker (MDM) . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.3 Evaluating Performance and the Competing Algorithms . . . . . . . . 118

5.4.4 Algorithm Parameter Settings . . . . . . . . . . . . . . . . . . . . . . 119

5.4.5 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1 Assessing Ranking Performance . . . . . . . . . . . . . . . . . . . . 120

5.5.2 Comparison of the Performance with Other iEMOAs . . . . . . . . . . 121

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusions & Future Study 129
6.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4



References 135

Appendices 161

A Supplementary Material to Chapter 3:
On Benchmarking Interactive Evolutionary Multi-Objective Algorithms 162

B Supplementary Material to Chapter 4:
Detecting Hidden and Irrelevant Objectives in Interactive Multi-Objective
Optimization 179

C Supplementary Material to Chapter 5:
Decision-Tree Based interactive Evolutionary Multi-Objective Optimization
Algorithm 189

Word Count: 45522

5



List of Figures

2.1 A typical MDM framework used for simulation of decision-making behaviors

on experimenting with non-ad-hoc iEMOA. . . . . . . . . . . . . . . . . . 38

2.2 Shape of Stewart UF with different parameters. . . . . . . . . . . . . . . . 40

3.1 Solution representation (chromosome) used by the EA to find the Stewart

UF parameters that optimize the single objective problem in Eq. (3.5). . . . 61

3.2 Results of the iEMOAs under ideal conditions with Tchebychef UF. . . . . 67

3.3 Results of the iEMOAs under ideal conditions with Stewart UF. . . . . . . . 68

4.1 Comparison of the performance of different modes for DTLZ problems. . . 96

4.2 Comparison of the performance of different modes for DTLZ problems. . . 97

4.3 Comparison of the performance of different modes for ρMNK problems with

fixed number of objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Comparison of the performance of different modes for ρMNK problems with

variable number of objectives. . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Utility of the best-so-far solution within a single run after each interaction

on DTLZ2 problem when using τ -HD (τ = 0.02). . . . . . . . . . . . . . . 99

4.6 Convergence of the τ -HD (τ = 0.02) towards relevant objectives (c = {1, 2})
through interactions on problem ρMNK with 10 objectives. . . . . . . . . . 100

4.7 Performance analysis of τ -HDR with different values of τ for DTLZ problems

with m = 20. The number of interactions in all runs is 6. . . . . . . . . . . 101

4.8 Number of active objectives within a single run after each interaction for

different values of τ in τ -HDR mode. . . . . . . . . . . . . . . . . . . . . . 101

5.1 Construction of the training set from the ranked solutions over a problem

with 2 objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 An instance of a decision tree trained on the information elicited in one

interaction on problem DTLZ1 with m = 2 objectives. . . . . . . . . . . . 116

5.3 Evaluation of the DTEMOA’s performance in comparison with BCEMOA

and iTDEA with simulation of inconsistencies in DM’s decisions and Stewart

UF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6



5.4 The worst performances of DTEMOA in comparison with BCEMOA and

iTDEA under ideal conditions with Stewart UF. . . . . . . . . . . . . . . . 126

5.5 Some of the best and worst performances of the algorithms under ideal

conditions with Stewart UF. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Location of the returned solutions with different algorithms on DTLZ7

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.1 Comparison of the performance of the algorithms with simulation of

inconsistencies and Tchebychef utility function. . . . . . . . . . . . . . . . 163

A.2 Comparison of the performance of the algorithms with simulation of

inconsistencies and transformed Stewart’s utility function. . . . . . . . . . . 164

A.3 Comparison of the performance of the algorithms with correlated objectives

and Tchebychef utility function. . . . . . . . . . . . . . . . . . . . . . . . . 165

A.4 Comparison of the performance of the algorithms with correlated objectives

and the transformed Stewart’s utility function. . . . . . . . . . . . . . . . . 166

A.5 Comparison of the performance of the algorithms with simulation of a

irrelevant objective and the Tchebychef utility function. . . . . . . . . . . . 167

A.6 Comparison of the performance of the algorithms with simulation of a

irrelevant objective and the transformed Stewart’s utility function . . . . . . 168

A.7 Marginal utility functions for test 31. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 169

A.8 Marginal utility functions for test 32. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 169

A.9 Marginal utility functions for test 33. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 171

A.10 Marginal utility functions for test 34. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 171

A.11 Marginal utility functions for test 36. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 172

A.12 Marginal utility functions for test 37. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 172

A.13 Marginal utility functions for test 38. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 173

A.14 Marginal utility functions for test 39. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 173

A.15 Marginal utility functions for test 41. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 174

7



A.16 Marginal utility functions for test 42. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 174

A.17 Marginal utility functions for test 43. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 175

A.18 Marginal utility functions for test 44. The values of the objectives in the

MPS is depicted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 175

A.19 Heatmap vs. Pf : DTLZ1, DM type 1 . . . . . . . . . . . . . . . . . . . . . 175

A.20 Heatmap vs. Pf : DTLZ1, DM type 2 . . . . . . . . . . . . . . . . . . . . . 176

A.21 Heatmap vs. Pf : DTLZ1, DM type 3 . . . . . . . . . . . . . . . . . . . . . 176

A.22 Heatmap vs. Pf : DTLZ1, DM type 4 . . . . . . . . . . . . . . . . . . . . . 176

A.23 Heatmap vs. Pf : DTLZ2, DM type 1 . . . . . . . . . . . . . . . . . . . . . 176

A.24 Heatmap vs. Pf : DTLZ2, DM type 2 . . . . . . . . . . . . . . . . . . . . . 177

A.25 Heatmap vs. Pf : DTLZ2, DM type 3 . . . . . . . . . . . . . . . . . . . . . 177

A.26 Heatmap vs. Pf : DTLZ2, DM type 4 . . . . . . . . . . . . . . . . . . . . . 177

A.27 Heatmap vs. Pf : DTLZ7, DM type 1 . . . . . . . . . . . . . . . . . . . . . 177

A.28 Heatmap vs. Pf : DTLZ7, DM type 2 . . . . . . . . . . . . . . . . . . . . . 178

A.29 Heatmap vs. Pf : DTLZ7, DM type 3 . . . . . . . . . . . . . . . . . . . . . 178

A.30 Heatmap vs. Pf : DTLZ7, DM type 4 . . . . . . . . . . . . . . . . . . . . . 178

B.1 Comparison of the performance of different modes for DTLZ problems with

m = 4. The number of active objectives are fixed. . . . . . . . . . . . . . 180

B.2 Comparison of the performance of different modes for DTLZ problems with

m = 10. The number of active objectives are fixed. . . . . . . . . . . . . . 180

B.3 Comparison of the performance of different modes for DTLZ problems with

m = 20. The number of active objectives are fixed. . . . . . . . . . . . . . 181

B.4 Comparison of the performance of different modes for DTLZ problems with

m = 4 with variable number of objectives. . . . . . . . . . . . . . . . . . . 181

B.5 Comparison of the performance of different modes for DTLZ problems with

m = 10 with variable number of objectives. . . . . . . . . . . . . . . . . . 181

B.6 Comparison of the performance of different modes for DTLZ problems with

m = 20 with variable number of objectives. . . . . . . . . . . . . . . . . . 182

B.7 Comparison of the performance of different modes for ρMNK problems with

m = 4. Number of active objectives is fixed. . . . . . . . . . . . . . . . . 182

B.8 Comparison of the performance of different modes for ρMNK problems with

m = 10. Number of active objectives is fixed. . . . . . . . . . . . . . . . . 183

B.9 Comparison of the performance of different modes for ρMNK problems with

m = 20. Number of active objectives is fixed. . . . . . . . . . . . . . . . . 183

8



B.10 Comparison of the performance of different modes for ρMNK problems with

m = 4 with variable number of objectives. . . . . . . . . . . . . . . . . . . 184

B.11 Comparison of the performance of different modes for ρMNK problems with

m = 4 with variable number of objectives. . . . . . . . . . . . . . . . . . . 184

B.12 Comparison of the performance of different modes for ρMNK problems with

m = 20 with variable number of objectives. . . . . . . . . . . . . . . . . . 185

B.13 Performance analysis of τ -HDR with different values of τ for DTLZ problems

with m = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.14 Number of active objectives after each interaction for different values of τ in

τ -HDR mode on DTLZ test problems. . . . . . . . . . . . . . . . . . . . . 186

B.15 Location of the returned solutions with different modes compared to golden

mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.1 Evaluation of the DTEMOA’s performance in comparison with BCEMOA

and iTDEA under ideal conditions with Stewart UF. . . . . . . . . . . . . . 192

C.2 Evaluation of the DTEMOA’s performance in comparison with BCEMOA

and iTDEA under ideal conditions with Tchebychef UF. . . . . . . . . . . . 195

C.3 Evaluation of the DTEMOA’s performance in comparison with BCEMOA

and iTDEA with simulation of inconsistencies in DM’s decisions and Stewart

UF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.4 Evaluation of the DTEMOA’s performance in comparison with BCEMOA

and iTDEA with simulation of inconsistencies in DM’s decisions and

Tchebychef UF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9



List of Tables

2.1 Description of different types of DM behaviors simulated by combinations

of τi and λi adapted from (Stewart, 1996). . . . . . . . . . . . . . . . . . . 39

3.1 Description of different DM behaviors simulated by combinations of τi and

λi for minimization problems. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 List of UFs used in the tests. . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 The results of experiments with the simulation of inconsistencies in the

decisions of the DM for BCEMOA and iTDEA. . . . . . . . . . . . . . . . 74

3.4 The results of experiments with the simulation of irrelevant objectives for

many-objective problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Results of experiments with the simulation of additively dependent objectives

for BCEMOA and iTDEA. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 A numerical instance of uni-variate feature selection. . . . . . . . . . . . . 87

5.1 Description of different DM behaviors simulated by combinations of τi and

λi for minimization problems. . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Parameter settings of the iEMOAs used in experiments. . . . . . . . . . . . 119

5.3 Mean accuracy (and standard deviation) of preference learning in DTEMOA

and BCEMOA on the DTLZ7 problem for different UFs. . . . . . . . . . . 122

5.4 Comparing the robustness of algorithms over experiments under ideal

conditions and with the simulation of inconsistencies in the DM’s decisions. 123

5.5 Comparing the performance of the algorithms over over different number of

interactions and under ideal conditions. . . . . . . . . . . . . . . . . . . . . 123

5.6 Comparing the performance of algorithms over various number of objective

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Comparing the performance of algorithms over different decision-making

types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.1 Comparing the accuracy of F-regression test and mutual information in

feature selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Weights of active objectives used in the Tchebychef function and shape of

the UF1-UF3 used in experiments. . . . . . . . . . . . . . . . . . . . . . . 187

10



B.3 Comparison of Only learning Mode with detection of irrelevant objectives

approach corresponding to Fig 4.3. . . . . . . . . . . . . . . . . . . . . . . 188

B.4 Comparison of Only learning Mode with detection of irrelevant objectives

approach in experiments depicted in Fig 4.4 . . . . . . . . . . . . . . . . . 188

C.1 A sample training set acquired from an experiment on DTLZ1 with 2

objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.2 Examples used for building the tree constructed using the data in Table C.1 190

C.3 Test specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.4 The results of experiments under ideal conditions for BCEMOA, DTEMOA

and iTDEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C.5 The results of experiments with simulation of inconsistencies in DM’s

decisions for BCEMOA, DTEMOA and iTDEA. . . . . . . . . . . . . . . . 194

11



Terms and abbreviations

DM: Decision Maker

DT: Decision Tree

EMOA: Evolutionary Multi-Objective Algorithm

iEMOA: Interactive Evolutionary Multi-Objective Algorithm

MCDM: Multi-Criteria Decision Making

MDM: Machine Decision Maker

MOA: Multi-Objective Optimization Algorithm

MOP: Multi-objective Optimization Problem

MPS: Most Preferred Solution

PF: Pareto Front

UF: Utility Function

12



Abstract

Interactive multi-objective optimization algorithms exploit the preferences of a human De-

cision Maker (DM), elicited iteratively during the optimization process to direct the search

and increase computational efficiency. Despite their undoubted promise, progress in the field

has been hindered by challenges in experimenting with these methods, the main one being

the fact that the results are affected by the decisions of the DM and the difficulty control-

ling or accounting for natural variation among DMs. One may propose using many DMs to

eliminate biases in the experiments arising from DM variability. However, this would make

the experiments expensive and non-replicable. The other approach is to replace the human

DM with a Machine DM (MDM) in the experiments. Only a few studies have considered the

simulation of decision-making behaviors in the context of interactive methods, most of which

have used arbitrary utility functions to indicate the desirability of the solutions. However, it is

not enough to replace the DM with a utility function assuming an ideal DM whose decisions

are consistent throughout the experiments. This thesis builds on one of the only proposed

MDMs that incorporate biases and proposes improvements by integrating a utility function

based on psychological studies and widely used in the literature to simulate decision-making

behaviors. We also expand on the types of non-idealities that are modeled, namely incon-

sistent decisions and preferentially dependent objectives. Moreover, we formally define and

investigate the notion of irrelevant and hidden objectives and propose an approach to simulate

them in the experiments. Irrelevant objectives are defined as those that are considered by the

optimizer but not by the DM. Irrelevant objectives complement hidden objectives, defined as

those that the DM considers but is not the optimizer. Noting that irrelevant objectives add

to the complexity of the problem without improving the DM’s satisfaction with the results,

we propose a feature selection method that can be integrated into any interactive method to

automatically filter out irrelevant objectives in an online mode and optimize only important

ones. The research is further extended by proposing a new interactive method where the DM’s

preferences are estimated using decision trees, which naturally perform feature selection. The

proposed preference learning technique targets limitations with other methods in the litera-

ture. We use our proposed MDM to compare the performance of this novel iEMOA with two

state-of-the-art interactive methods. The results suggest that the superior performance of the

proposed method is not degraded with the increase of the objective functions and is robust

towards noise and non-idealities.
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Chapter 1

Introduction

1.1 Research Context

Many real-life optimization problems deal with multiple conflicting objective functions,

necessitating the use of Multi-Objective Optimization Algorithms (MOAs). Unlike single-

objective optimization, where a single optimal solution exists, in Multi-Objective Optimiza-

tion Problems (MOPs), no solution corresponds to the optimal value of all objectives. In-

stead, the final goal of solving a MOP is to find a set of so-called Pareto optimal solutions

with desirable trade-offs for which improving the value of one objective is only possible with

a sacrifice in the value of at least one other objective (Deb, 2005b, 2008). Pareto optimal

solutions are not mathematically comparable, and so-called preferences (of an expert or con-

cerned decision maker (DM)) should be considered to select the final solution. Thus, there

are two phases to any MOP that should be considered. An optimization phase to produce

Pareto optimal solutions and a decision-making phase to select the most preferred solution

(MPS) among the set of generated solutions (Branke, Deb, Miettinen, & Słowiński, 2008).

A general classification of MOAs is based on the stage where the decision-making phase

happens, and the preferences of the Decision Maker (DM) are elicited. In this regard, the

MOAs are categorized as a priori, a posteriori and interactive methods. In a priori methods,

the DM is consulted before starting the optimization phase. Not knowing the possibilities

and the bounds of the objective functions, the DM can be too optimistic or pessimistic and

bias the search. In a posteriori methods, a well-distributed set of Pareto optimal solutions

are generated, from which the DM should select the MPS. Evolutionary Multi-Objective Op-

timization Algorithms (EMOAs) are widely used as a posteriori method as they naturally

work with a population of solutions and can generate a set of the Pareto optimal solutions in

one single run (Coello Coello, 2006). Many EMOAs rely on Pareto dominance to preserve

elitism. However, it has been shown that when the number of objective functions increases,

Pareto dominance loses its selection pressure, and the algorithm fails to be effective (Pur-

shouse & Fleming, 2003a; Hughes, 2005; Aguirre & Tanaka, 2007). On the other hand,

even in EMOAs that overcome this problem and generally in other a posteriori methods,
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the decision-making phase is difficult as the number of required solutions to provide a well-

distributed set of Pareto optimal solutions increases exponentially with the number of objec-

tive functions (Deb, Sinha, Korhonen, & Wallenius, 2010a). Interactive EMOAs (iEMOAs)

elicit and exploit DM’s preferences iteratively during the optimization process to limit the

search and generate only Pareto optimal solutions with desirable trade-offs and thus increase

the computational efficiency (Belton et al., 2008; Jaszkiewicz & Branke, 2008; Miettinen,

Ruiz, & Wierzbicki, 2008). The preference information is elicited in a cognitively affordable

way in each interaction and is exploited to direct the search in the next optimization phase.

Thus, there are significant savings in both optimization and decision-making phases regard-

ing computational requirements and DM’s cognitive effort (Afsar, Miettinen, & Ruiz, 2021).

Furthermore, the increased selection pressure makes it possible for iEMOAs to reasonably

estimate the actual Pareto optimal solutions and improve the quality of the final solutions

(Shavarani, López-Ibáñez, & Knowles, 2021). These perceived advantages have led to the

introduction of many alternative iEMOAs in recent years. However, improvements in the

field can be achieved only through extensive benchmarking and quantitative assessment of

the performance of these methods (López-Ibáñez & Knowles, 2015). Although researchers

have provided guidelines and metrics for evaluation of EMOAs (Knowles & Corne, 2002;

Knowles, Thiele, & Zitzler, 2006), experimenting on interactive EMOAs remains problem-

atic due to the influence of the DM’s decisions on final results, making experimental results

subjective and difficult to replicate (Afsar, Ruiz, & Miettinen, 2021).

Having an individual DM throughout the experiments would lead to human-specific bi-

ases such as fatigue (Zujevs & Eiduks, 2008). Alternatively, one may use a large number

of DMs to cancel out the biases which arise due to variations in decision-making behaviors

among different DMs (Wallenius, 1975; Buchanan, 1994). However, some authors argue that

such experiments may require tens of DMs to obtain reliable conclusions (Zujevs & Eiduks,

2008), which makes the experiments expensive. Therefore, most of the experiments with real

DMs reported in the literature are conducted with the participation of students acting as DMs

(Afsar et al., 2021). As students are not experts or responsible for the outcomes, the results

of such experiments may not be reliable. Other than that, having real DMs in the experiments

would make the results subjective and difficult to replicate (Chen, Xin, Chen, & Li, 2017).

One possible approach is to conduct experiments by replacing human DMs with a reliable

simulation of decision-making behaviors, known as Artificial decision-makers (Afsar et al.,

2021) or Machine Decision Makers (MDM) (López-Ibáñez & Knowles, 2015). Only a few

studies have touched the surface of this subject and directed their efforts toward the simulation

of decision-making behaviors. The majority of these studies employ a Utility Function (UF)

to simulate decision makers’ preferences in the experiments, most of which fail to validate
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the accepted assumptions for simulating decision-making behaviors such as additive inde-

pendence (Keeney, 1981), trade-off interpretability and compensatory preferences (Stewart,

1996), the convexity of losses and concavity of gains (Kahneman & Tversky, 1979). Thus, it

is unknown if they can provide a reliable simulation of decision-making behaviors.

It is easy to bias the results if the UF is not selected properly. For instance, an iEMOA

that works well when the DM is simulated by a linear UF may completely break down when

a non-linear UF is used. Such issues highlight the need for investigating the behavior of

iEMOAs where preferences are simulated using more complex and realistic UFs. Besides,

humans are subject to cognitive bottlenecks and prone to mistakes, and as humans, DMs

are susceptible to biases and errors. Thus, it is crucial to measure the robustness of iEMOAs

towards biases and non-idealities that may happen during the interactions; either inside DM’s

mind, modeling phase, or even inside the optimization engine. This task is not possible,

except through extensive measuring and benchmarking of such methods using an MDM that

can provide a realistic simulation of decision-making behaviors and the non-idealities. To

this end, the following research goals should be addressed:

The first goal is to build a reliable and realistic MDM to facilitate conducting reliable ex-

periments. There are two main components to MDMs that should be carefully examined:

UF and simulation of the non-idealities. There are UFs that have their roots in psychological

studies and have been widely accepted in the literature for the simulation of decision-making

behaviors. However, there is no research on experimenting with iEMOAs that utilize such re-

alistic UFs. Furthermore, To measure the robustness of the interactive methods, it is crucial

to identify and simulate non-idealities that exist in real-life conditions, which can downgrade

the performance of iEMOAs (Stewart, 2005). Some studies have addressed this subject and

scrutinized decision-making behaviors, and potential biases that may happen inside the DM’s

mind or during the interactions (Tversky & Kahneman, 1974; Kahneman & Tversky, 1979;

Stewart, 1996; Buchanan & Corner, 1997). However, only a few studies have considered the

effect of such biases on the performance of iEMOAs. One such study is the work by Stewart

(1996), in which the effect of inconsistent decisions and preferentially dependent objectives

on MOAs was investigated. For the first time in the context of iEMOAs, some of the non-

idealities in Stewart (1996) were simulated by López-Ibáñez and Knowles (2015). However,

their study was limited to linear UFs, therefore there is still room to extend the list of simu-

lated non-idealities by including those discussed in the literature.

After developing a reliable MDM, the second goal is to improve iEMOAs and make them ro-

bust toward simulated non-idealities. This can be achieved through extensive measuring and

benchmarking of iEMOAs, systematically proposing targeted improvements to how they in-

teract with the DM, how the solutions are filtered for presentation, how the DM’s preferences
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are modeled, and other elements of the algorithm.

1.2 Research Aim

We contribute to the advancement of iEMOAs by addressing the issues outlined in the

previous section. There is the problem of measurement and evaluation of the performance

of iEMOAs and simulation of decision-making behaviors in the experiments. We introduce

a UF with its root in psychological studies which enables reliable simulation of different

decision-making behaviors. Second, we discuss non-idealities that might happen inside the

DM’s mind, in the system-human interactions, or even in the modeling phase and propose

approaches to simulate them in the experiments on iEMOAs.

It is vital to make iEMOAs robust to any potential non-idealities that might downgrade

the solution process. We aim to extend the list of non-idealities that are discussed in previ-

ous studies by introducing hidden and irrelevant objectives. Hidden objectives are defined as

those objectives that are important to the DM but are not being optimized. Such a scenario

had been previously considered in the literature but no formal definition has been provided.

Irrelevant objectives are defined as those objectives that are being optimized but are not sig-

nificantly important to the DM. Any irrelevant objective that may exist in the model, would

add to the complexity of the problem without improving the quality of the solutions from

DM’s perspective. On the other hand, as Battiti and Campigotto (2010) put it, hidden objec-

tives would make the results of the optimization unsatisfactory. Thus, it would be ideal to

detect and eliminate irrelevant objectives and instead optimize any important objective that

has remained hidden.

Another limitation in the area of iEMOAs is how the preferences of the DM are modeled

in the algorithm. Many iEMOAs assume a linear function for the preferences of the DM

(Zionts & Wallenius, 1976; Jaszkiewicz, 2004; Quan, Greenwood, Liu, & Hu, 2007a). Other

approaches that have waived the linearity assumption of the preference model are limited

whether by the number of different shapes of the UF that can be estimated or by their under-

lying assumptions that are often difficult to validate in real-life problems (Branke, Corrente,

Greco, Słowiński, & Zielniewicz, 2016). Besides, many preference learning techniques that

do not assume the linearity of the preference model, make assumptions that are not easy to

validate in real-life problems. There are also studies that use machine-learning techniques to

learn a complete ordering of the non-dominated solutions (Battiti & Passerini, 2010). Such

learn-to-rank machine learning algorithms, are mainly in the form of an ensemble of many

classifiers and are prone to errors and susceptible to considerable deviations when confronted

with small biases (Cheng, Hühn, & Hüllermeier, 2009). However, it is still possible to use
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machine learning in estimating some quality of the solutions or for classification purposes

without being exposed to such biases. Preference learning techniques are desired to be (i)

able to adapt to the complex decision-making behaviors of the DM without limitations and

restricting assumptions; and (ii) robust toward any outlier and non-ideality that may happen

under real-life conditions.

1.3 Contributions of the Thesis

The main contributions of this thesis to the field of iEMOAs can be summarized as fol-

lows:

We build on one of the only MDM frameworks proposed in López-Ibáñez and Knowles (2015)

that investigated the effect of biases on the performance of iEMOAs. We enrich this MDM

using a Sigmoid UF, which is based on psychological research by Kahneman and Tversky

(1979) who established that preferences of human DMs follow an S-shaped curve that is

concave for gains and convex for losses. The Sigmoid UF also satisfies the quasi-concavity

requirement for UFs in the economics literature (Mas-Colell, Whinston, Green, et al., 1995)

and is widely used in the literature for simulation of decision-making behaviors, although not

in the context of iEMOAs. We use a specific type of the Sigmoid UF introduced by Stewart

(1996) in his experiments on the robustness of additive UFs, hereafter called Stewart UF. A

valuable property of the Stewart UF is its ability to simulate different decision-making be-

haviors. We further propose a systematic method to get the parameters of the Stewart UF in

order to simulate a specific decision-making behavior and avoid trivial UFs.

We extend the non-idealities simulated in the original study of López-Ibáñez and Knowles

(2015) by considering inconsistent decisions, preferentially dependent objective functions,

hidden objectives, and irrelevant objectives. As a novel contribution of this study, we provide

formal definitions of hidden and irrelevant objectives, which complement the concept of re-

dundant objectives that already exists in the literature. An approach is proposed to integrate

the simulation of these non-idealities into any existing benchmark problem. A new method is

proposed based on several feature selection methods which enable a given iEMOA to dynam-

ically detect hidden and irrelevant objectives and adjust the set of objective functions such

that only those objectives that are important to the DM are optimized while the irrelevant

ones are eliminated. The performance of the method is validated using problems of varying

dimensionality and complexity and different UFs to represent different DMs.

Finally, we propose a novel iEMOA with a robust preference learning technique based on de-

cision trees (DTs). The DT classifier predicts the winner solution with desirable trade-offs in

pairwise comparisons. Thus, there are no restrictions on the shape of the DM’s preferences.

DTs can naturally handle outliers and biases and eliminate irrelevant objectives in their learn-
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ing and predictions. The learning algorithms are prone to errors, and DTs are no exception.

To further reduce the effect of such errors on the results, we exploit the capabilities of DTs in

providing the probability of each classification. To this end, we compare each solution with

all other solutions in the population and use the accumulated probability of winnings as a

score to get a comprehensive idea of the quality of that solution relative to the current pop-

ulation. The score is used in deciding on the solutions that should be pruned and those that

survive in each generation of an EMOA. Such measures make the proposed method robust

towards internal and external errors. The algorithm’s performance is then compared with two

other iEMOAs from the literature using the MDM developed in this study.

1.4 Structure of the Thesis

This thesis is in journal format. Each chapter of this thesis, except Chapter 2, is self-

contained and in the format published or submitted for publication. Thus, some content from

earlier chapters might be repeated in the subsequent ones. The rest of this dissertation is or-

ganized as follows:

Chapter 2 introduces the iEMOAs and provides a background on the subject. In this re-

gard, related definitions and assumptions are provided, different aspects of the iEMOAs are

discussed, a non-exhaustive list of important studies on the measurement of iEMOAs and

simulated MDMs are given, and a review of underlying assumptions of Sigmoid UFs is pre-

sented.

Chapter 3 details challenges and problems associated with experimenting with iEMOAs and

investigates previous efforts on the simulation of real DMs in the experiments. The short-

comings and limitations of earlier simulations of decision-making behaviors are scrutinized.

Next, a comprehensive realistic MDM is proposed based on the research by Stewart (1996,

2005) and the MDM framework proposed by López-Ibáñez and Knowles (2015). The MDM

is powered by a specific type of Sigmoid UFs, that was proposed by Stewart (1996), hence

called Stewart UF in this study. This UF was initially designed for maximization problems.

Thus, a transformation of the Stewart UF is proposed to be used with minimization problems

without violating its underlying assumptions. A method is also proposed to set the parameters

of the UF to simulate a specific type of decision-making behavior. The simulation of the DM

is further improved with the introduction of biases and non-idealities that may arise under

real conditions. This chapter is based on the manuscript submitted to IEEE Transactions on

Evolutionary Computation, which is now undergoing a second round of revisions.

In Chapter 4, irrelevant and hidden objectives are discussed in depth, formal definitions

are provided, and an approach is presented for simulating these non-idealities. Thereupon,
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a method is proposed that detects the existence of irrelevant and hidden objectives, removes

irrelevant objectives from the set of objectives being optimized, and replaces them with the

hidden ones during the optimization process to optimize only those objectives that are im-

portant to the DM. The method helps to: (a) reduce the computational cost and improve the

selection pressure and convergence, which have been the main problems in many-objective

problems; and (b) Adapt the optimization model to the DM’s preferences and make the fi-

nal results more appealing. The possible usage of the method in dimension reduction is

showcased, and the cons and pros are compared to other methods that do so by eliminat-

ing redundant objectives. For the first time, here we propose an approach that can exploit

the preference information elicited from the DM in iEMOAs for dimension reduction, iden-

tification of irrelevant objectives, and preserving those objectives that are important to the

DM. A set of experiments is performed to evaluate the performance of the method, and the

results are discussed. This chapter is based on the manuscript accepted for publication in

IEEE Transactions on Evolutionary Computation, which is now undergoing a second round

of revisions.

Based on the results of Chapter 4 which indicate the effectiveness of filtering the set of

objectives on the quality and efficiency of the iEMOAs, Chapter 5 of this study proposes a

ranking-based iEMOA with a preference-learning scheme based on decision trees that deploy

feature selection naturally. Instead of learning a UF or ranking compatible with DM’s pref-

erences, the DT is used to draw rules on the trade-offs of any pair of solutions to predict the

probability that a solution is preferred over the other in pairwise comparisons. The proposed

preference learning method is compared with other methods from the literature, and the re-

sults are analyzed. The performance of the developed iEMOA is also compared with other

iEMOAs using the MDM framework proposed in Chapter 3. The contents of this chapter are

submitted to the European Journal of Operations Research.

Finally, Chapter 6 presents conclusions. Particularly, the research objectives are revisited,

the study’s findings are summarized, the limitations are elaborated, possible extensions of the

experiments are laid out, and research directions are provided. We also briefly discuss the

lessons learned and important considerations that should be noticed when selecting the UF,

the parameters of the UF, different levels of non-idealities, and the test problems.
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Chapter 2

On Interactive Evolutionary

Multi-Objective Optimization

Algorithms

In the previous chapter, we gave a general introduction to the field of multi-objective op-

timization algorithms, in particular interactive Evolutionary Multi-Objective Optimization

Algorithms (iEMOAs). We also provided an overview of the problems associated with mea-

suring, assessing, and improving iEMOAs. This chapter begins with formal definitions re-

lated to multi-objective optimization problems (MOPs) and points out the difficulties in solv-

ing these problems, including the computational complexity and loss of elitism, particularly

when the number of objectives increases. We then discuss iEMOAs in detail and objective re-

duction techniques briefly as two approaches to solving many-objective problems in Sections

2.2 and 2.3.4. We give further details on the different characteristics of iEMOAs, namely

preference modeling and preference elicitation. In Sections 2.2.1 and 2.2.2, the main classes

of preference model approaches are reviewed. In Section 2.3, the problems associated with

benchmarking iEMOAs are laid out, the few studies that have dealt with those problems are

reviewed, and their limitations are pointed out. We continue the chapter by elaborating on

Machine Decision Makers (MDMs), discussing possible improvements that could lead to

more realistic simulations of decision-making behaviors, and setting the scene for the next

chapters of the thesis.

2.1 Multi-Objective Optimization

In Multi-Objective Optimization Problems (MOPs), we have a set of objectives that should

be optimized concurrently (Purshouse, Deb, Mansor, Mostaghim, & Wang, 2014). Let’s

denote the feasible space by X ⊆ Rn and a solution, also known as a decision vector, by
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x ∈ X . Given m objective functions (fi(x) : Rn −→ R; i = 1, . . . ,m) that map each

decision vector to z = f(x) ∈ Rm in objective space, the MOP has the following general form

(Miettinen, 1999):

minimizez∈Z z = f(x) = (f1(x), . . . , fm(x))

subject to x ∈ X
(2.1)

Due to the conflicting nature of the objectives in MOPs, complete ordering of the solutions

based on their objective values is not possible as in single-objective optimization. Instead,

Multi-Objective Optimization Algorithms (MOAs) aim to find a well-distributed set of so-

called Pareto optimal solutions.

Definition 2.1.1 (Domination). A solution x ∈ X dominates solution y ∈ X if the two

following conditions hold (Deb, 2005a):

1. fi(x) ≤ fi(y) ∀i ∈ {1, . . . ,m}

2. fi(x) < fi(y) ∃i ∈ {1, . . . ,m}

Given two solutions, if none of them dominates the other, they are said to be mutually non-

dominated.

Definition 2.1.2 (Pareto Optimality). A feasible solution x is said to be Pareto optimal if there

is no feasible solution y that dominates it. Pareto optimal solutions are also known as non-

dominated or efficient solutions (Deb, 2005a). For Pareto optimal solutions, improvement in

one objective is only possible at the expense of deterioration in other objective values (Branke

et al., 2008).

Definition 2.1.3 (Pareto optimal set). The set of all Pareto optimal solutions, which are mu-

tually non-dominated.

Definition 2.1.4 (Pareto front). The image of all Pareto optimal solutions in the objective

space is called the Pareto Front (PF).

The aim of an MOA is to find a well-distributed subset of Pareto optimal solutions or its

close approximation (Knowles & Corne, 2000b; Knowles, 2006; Coello Coello, Lamont, &

Van Veldhuizen, 2007). Nevertheless, the DM is interested in achieving a small subset of

Pareto Optimal solutions or even the most preferred solution (MPS) thereof rather than being

presented with a large set of such solutions, which is challenging to evaluate (Li, Chen, Savić,

& Yao, 2019). Pareto optimal solutions are not comparable unless additional preference in-

formation is provided to break the ties between solutions on the same front and rank solutions

or to select the MPS among existing options. The preference information usually comes from
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a DM with enough expertise and knowledge of the field. As a result, solving a MOP involves

a decision-making phase where the DM’s preference information is elicited (Roos, 2001; Mi-

ettinen, 2008). MOAs can be categorized into no-preference methods, “a priori” methods,

“a posteriori” methods, and interactive algorithms based on the stage of the decision-making

(Horn, 1997; Van Veldhuizen & Lamont, 2000; Miettinen et al., 2008; Huber, Geiger, &

Sevaux, 2015).

“No-preference” methods aim to find neutral compromise solutions without any need to

preference information from the DM. Instead, some assumptions are made about what a rea-

sonable trade-off would be (Miettinen et al., 2008). Method of Global Criterion (Yu, 1973;

Zeleny, 1973) and Neutral Compromise Solution introduced by Wierzbicki (1999) fall within

this category.

As the name suggests, in “a priori” methods, the preference information is elicited from

the DM before starting the optimization process. This information may be in the form of

aspiration levels, goals, or weights for objective functions. Thus, weighted additive meth-

ods, lexicographic ordering, goal programming, and all scalarization methods fall into this

category. Linear scalarization is a method that combines multiple objective functions into a

single one by assigning weights to each objective. These weights are meant to represent their

relative importance, but the approach has limitations. While it enables the use of traditional

single-objective techniques, it may fail to identify unsupported solutions and the impact of

the weights may not always align with their intended priority. Consequently, using weight

specification to guide the search is not a straightforward process, as has been demonstrated in

prior research (Steuer, 1986; Roy & Mousseau, 1996; Miettinen, 2008). Scalarization func-

tions may also be categorized as no-preferences methods if the parameters of the scalarization

function are determined without input from the DM. “A priori” methods make the queries to

the DM while modeling the problem, which would bring the decision-making before the op-

timization phase. Not knowing the possibilities, limitations, and the form of the objective

space, the DM may get too optimistic or pessimistic in defining the preference information

(Branke et al., 2008; Miettinen et al., 2008). However, if the solution is satisfactory, the DM

has not invested much time. Otherwise, the process is repeated with different parameters until

a satisfactory solution is achieved.

In “a posteriori” methods, a subset of the Pareto optimal solutions is generated from which

the DM should select a satisfying solution. Evolutionary MOAs (EMOAs) fall in this cat-

egory. The problem with “a posteriori” methods is that the number of solutions required

for a proper representation of the PF increases exponentially with the number of objectives,

making the decision-making non-trivial (Mattson, Mullur, & Messac, 2002; Purshouse &

Fleming, 2003b; Singh, Isaacs, & Ray, 2011). Besides, the DM’s cognitive bottleneck will

29



act as a barrier when evaluating high-dimensional solutions (Li et al., 2019). Furthermore,

representing the whole PF would be computationally expensive, leading to a degraded per-

formance (Li et al., 2019), and the EMOA might even fail to get close to the actual Pareto

front or cover it adequately (Miettinen et al., 2008; Brockhoff & Zitzler, 2009).

Interactive algorithms are designed to address problems with “a priori” and “a posteriori”

methods, particularly the lack of efficient search and selection pressure that is highlighted in

many-objective problems (Fleming, Purshouse, & Lygoe, 2005). Interactive methods elicit

and exploit DM’s preference information iteratively during the optimization process to iden-

tify and limit the search to interesting parts of the PF, overcoming the lack of selection pres-

sure and the need to generate the whole PF (Deb et al., 2010a). Because of the frequency of

the stages where the preference information is elicited in interactive methods, they are more

tuned to the DM’s preferences than other categories, and the DM feels more in charge and

involved in the optimization and the decision-making process. Due to their popularity, many

interactive methods use EMOAs as their underlying optimizer. As the core of this thesis, we

will scrutinize different aspects of interactive EMOAs (iEMOAs) in Section 2.2.

2.2 Interactive Evolutionary Multi-Objective Optimization Algorithms

Unlike methods such as compromise-programming (Zeleny, 1973) and Achievement Scalar-

ization Function Approach (Wierzbicki, 1982, 1986) which provide one PF solution in each

run, EMOAs have the benefit of producing an approximation of the whole PF in one single

run (Knowles & Corne, 2000a). EMOAs do not need any derivative information and are

flexible, applicable, and easy to implement (Branke et al., 2008). A simulation performed

by Deb, Tewari, Dixit, and Dutta (2007) illustrated that an EMOA could start from a random

population and converge towards points that satisfy Karush-Kuhn-Tucker conditions. There-

fore, evolutionary algorithms are ”convenient” in many contexts as a choice that works well

without much overheard to tailor them to MOPs (Deb, 2008) and widely accepted in the liter-

ature (Corne, Jerram, Knowles, & Oates, 2001; Coello Coello, 2002, 2006; Deb, Kalyanmoy,

2007; Ishibuchi, Tsukamoto, & Nojima, 2008). However, EMOAs are not exempted from

the problems associated with ”a posteriori” methods and many of them, particularly those

relying on the non-dominated sorting strategy proposed by Goldberg (1989), fail to provide

proper performance when the number of objectives exceeds three or four and are almost use-

less when it exceeds ten (Khare, Yao, & Deb, 2003; Deb, Thiele, Laumanns, & Zitzler, 2005;

Brockhoff & Zitzler, 2006; Li, Deb, & Yao, 2018).

Interactive EMOAs iteratively elicit and exploit the discrimination and preferences of the DM

to increase selection pressure and break ties between solutions on the same front (Branke et
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al., 2008; Purshouse, Jalbă, & Fleming, 2011; Tomczyk & Kadziński, 2020a). To do so,

iEMOAs alternate between the decision-making and optimization phases to support the DM

in reaching a desirable result without investing too much cognitive effort (Miettinen et al.,

2008). In the decision-making phase, the preference information is elicited from the DM to

guide the search in the subsequent optimization phase towards preferred areas of the feasible

space or, in the last step, to select the MPS. During the process, the DM can learn more about

his preferences and become more knowledgeable about the limits and bounds of the prob-

lem (Miettinen et al., 2008). In other words, iEMOAs help the DM justify their expectations

and achieve a satisfying solution, a process referred to as psychological convergence (Miet-

tinen, 2008). Ideally, interactive EMOAs exploit the elicited preference information to limit

the search to regions of interest (Wang, Li, Zhang, Hu, & Shen, 2019), thus incurring lower

computational costs (Geiger & Wenger, 2007) and reducing the cognitive effort required from

the DM. Such characteristics have motivated the development of many iEMOAs in the past

decades (Wang et al., 2019).

Two main characteristics of any interactive EMOA that can be used to differentiate them

are the preference model and interaction/elicitation style (Xin et al., 2018; Tomczyk & Kadz-

iński, 2020a). The preference model refers to how the DM’s preferences are modeled and

exploited inside the engine to direct the search. Interaction style defines the type of prefer-

ence information required from the DM and the way the preference information is elicited.

In what follows, we briefly consider these two aspects as they play a prominent role in char-

acterizing any iEMOA.

Different classifications for different preference models are used in the literature. Mietti-

nen et al. (2008) summarize all such methods in three broad categories:

1. Trade-offs: Trade-offs can be defined as the gain in the value of one objective function

in compensation for the loss in the value of other objective function(s). In this regard,

the subjective trade-off is defined as the willingness of the DM to accept deterioration

in the value of some objective function(s) to achieve improvements in the values of

another. In iEMOAs, the subjective trade-offs can be directly elicited from the DM or

can be selected by the DM from a set of adequately represented trade-offs. The algorithm

directs the search toward the preferred area of the PF by making the determined trade-

offs. As a result, the optimization process leads to solutions with better quality (often

characterized by the solution’s utility value). UFs are a popular tool for modeling such

subjective trade-offs. Examples of such methods can be found in BCEMOA (Battiti &

Passerini, 2010), the Zionts-Wallenius (Z-W) method (Zionts & Wallenius, 1976), and

the SPOT method (Sakawa, 1982).

2. Reference Points: In reference-point-based methods, the DM’s desired solution is mod-
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eled in terms of a reference point (in the form of aspiration or reservation levels), (Wierzbicki,

1980), and solutions closer to such an assumed reference point are prioritized (Figueira,

Liefooghe, Talbi, & Wierzbicki, 2010). Such preference information can be used to

approximate the partial ordering of a population and to find solutions around the speci-

fied points. Such methods are applied in the Tchebycheff method (Steuer, 1986), Pareto

Race (Korhonen & Laakso, 1986), GUESS (Buchanan & Corner, 1997) and REF-LEX

method (Miettinen & Kirilov, 2005). In these methods, the initial solutions should have

a good diversity to represent the PF properly (Huber et al., 2015). It should be noted that

some initial solutions presented to the DM may lead to the anchoring effect (Tversky &

Kahneman, 1974).

3. Classification: Here, the objective functions are classified into objectives that need

improvement, those that can be deteriorated, and objectives whose values are already

satisfactory. The optimization process then adapts to such preferences to improve the

solution. According to Larichev (1992), such preference elicitation is easy for the DM.

NIMBUS introduced in (Miettinen & Mäkelä, 2006; Miettinen, Mustajoki, & Stewart,

2014) and STEM (Benayoun, De Montgolfier, Tergny, & Laritchev, 1971) fall into this

category.

Preference elicitation and interaction style can generally take two forms (Tomczyk &

Kadziński, 2020b). Direct preference elicitation requires the DM to identify some param-

eters of the preference model directly, which can be in the form of the reference point (aspi-

ration level/goal) (see, e.g., PBEA (Thiele, Miettinen, Korhonen, & Molina, 2009), WASF-

GA (Ruiz, Luque, Miettinen, & Saborido, 2015b)), reservation levels (González-Gallardo,

Saborido, Ruiz, & Luque, 2021), and weights (see, e.g., R-NSGAII (Deb & Sundar, 2006)),

among others. On the other hand, in indirect approaches, DM is required to provide some

holistic judgments, which tend to be less demanding, mainly in the form of exemplary deci-

sions. When indirect approaches are used, the DM is not required to have prior knowledge

of solution space and the optimization algorithm (Jacquet-Lagreze & Siskos, 2001). Indi-

rect queries can be in the form of pairwise comparisons (Battiti & Passerini, 2010; Branke

et al., 2016; Tomczyk & Kadziński, 2019b, 2019d; Benabbou, Leroy, & Lust, 2020), select-

ing the best among a small subset of solutions (Fowler et al., 2010a; Köksalan & Karahan,

2010; Tomczyk & Kadziński, 2021b), accepting or rejecting a presented trade-off (Zionts &

Wallenius, 1983), or ordering a subset of solutions (Sinha, Malo, & Kallio, 2018; Shavarani,

López-Ibáñez, Allmendinger, & Knowles, 2023). Generally, iEMOAs that require the DM

to rank a subset of solutions are known as ranking-based iEMOAs. Providing indirect infor-

mation imposes less cognitive effort on the DM (DeShazo & Fermo, 2002; Branke, Greco,

Słowiński, & Zielniewicz, 2010). Based on the type of information required from the DM,
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iEMOAs can be divided into ad-hoc and non-ad-hoc methods. Non-ad-hoc methods are those

methods where the DM can be simulated by a UF (Stewart, 1996). Accordingly, ad-hoc meth-

ods can be defined as those where the responses to the queries from the algorithm cannot be

simulated by the use of a UF (Miettinen, 2001; Afsar et al., 2021). The focus of our study piv-

ots around ranking-based non-ad-hoc iEMOAs. The next two sections provide a brief review

of well-known iEMOAs classified into ad-hoc and non-ad-hoc.

2.2.1 Ad-hoc iEMOAs

Ad-hoc methods are those methods in which the queries to the DM cannot be simulated using

a UF (Steuer, 1986). Due to their simplicity, many ad-hoc methods use reference points to

model DM’s preferences (Deb & Sundar, 2006; Ruiz et al., 2015b). It is naturally conve-

nient for DMs to express their desires in form of reference points or aspiration levels (Luque,

2015). Usually, the reference points are used to favor solutions that are closer to them using a

scalarization function (Thiele et al., 2009). The scalarization functions can take many forms.

For instance, Ben Said, Bechikh, and Ghedira (2010) use Euclidean distance as a scalariza-

tion function to favor solutions closer to the expressed aspiration levels. It is also possible to

formulate and optimize several scalarization functions simultaneously and leave the decision

to the DM to select among a set of final solutions (Miettinen & Mäkelä, 2000, 2006).

Other ad-hoc methods ask the DM for reference-points (López-Jaimes & Coello Coello,

2014; Ruiz, Cabello, Platero, & Blázquez, 2015a), bounds on the objectives (Ruiz, Ruiz,

Miettinen, Delgado-Antequera, & Ojalehto, 2019), preferred range (Sindhya, Ruiz, & Mietti-

nen, 2011), weights (Wang, Purshouse, & Fleming, 2013; Narukawa et al., 2016a), direction

of improvements (Miettinen, Podkopaev, Ruiz, & Luque, 2015), and relative importance of

objectives (Shen, Guo, Chen, & Hu, 2010). A review of ad-hoc methods can be found in

(Xin et al., 2018). The mechanism and the required tools for measuring ad-hoc methods are

different from non-ad-hoc methods, where a UF can be used to simulate a DM. This thesis

focuses on non-ad-hoc methods; thus, a detailed discussion of ad-hoc methods is out of the

scope of this study.

2.2.2 Non-ad-hoc iEMOAs

Application of Multi-Attribute Utility Theory (MAUT) (Keeney & Raiffa, 1993) has been

predominant in preference modeling, and utility functions (UFs) have been a popular way

to represent DM’s interest in a particular solution (Rachmawati & Srinivasan, 2006; Afsar

et al., 2021). Non-ad-hoc methods assume the existence of an underlying UF that drives the

decisions of the DM (Steuer & Gardiner, 1991). Thus, these methods attempt to estimate
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such a UF in line with DM’s decisions (Jaszkiewicz, 2004; Quan et al., 2007a; Battiti &

Passerini, 2010). The estimated UF may be used as a scalarization function to transform the

problem into a single objective problem, as a criterion to break ties between solutions on

the same front, or to automate ranking or pairwise comparisons. One of the first studies in

this category was done by Zionts and Wallenius (1976), who tried to use the weight space

reduction technique to estimate a linear UF compatible with DM’s preferences. This tech-

nique was later extended to handle pseudo-concave UFs (Zionts & Wallenius, 1983). Phelps

and Köksalan (2003) use DM’s preferences to estimate and optimize a linear UF compatible

with DM’s preferences. Similarly, in the study by Jaszkiewicz (2004), DM’s pairwise com-

parisons are used to draw a weight vector that will constitute a linear scalarization function.

After each interaction, an EA is used to find and update the weight vector. Besides estimating

the DM’s preferences with a linear UF, a drawback of these studies is the singularity of the

estimated UF, which limits the EMOA’s capability to find several solutions with interesting

trade-offs (Branke et al., 2010).

Branke et al. (2010) proposed the Necessary-preference-enhanced Evolutionary Multi-

objective Optimizer (NEMO-I), in which a set of linear UFs compatible with DM’s pairwise

comparisons is derived using GRIP. Then the learned UFs are used to rank the solutions such

that solution x is necessarily at least as good as solution y if all the generated UFs imply this.

On the other hand, if not all UFs confirm such a relation, it is considered that x may be as

good as y. A modified version of NSGAII (Deb, Pratap, Agarwal, & Meyarivan, 2002) is

then used to find all PF solutions compatible with the learned UFs.

While most non-ad-hoc methods use the learned UF to rank solutions, Quan et al. (2007a)

proposed an iEMOA that learns a linear UF for determining the dominance relationships

among any two solutions in pairwise comparisons by converting preferences of the DM to

the constraints. Battiti and Campigotto (2010) discussed the application of online learning

techniques for learning a weighted aggregation of objectives compatible with DM’s pairwise

comparisons. The weight vector is constructed by drawing linear constraints on the weight

space.

Modeling DM’s preferences linearly are only suitable for convex problem (Wang, Zhang,

& Zhang, 2016). When the DM’s preferences are nonlinear, a linear estimation of the UF

may be misleading and not result in satisfactory solutions (Deb et al., 2010a). In the past

years, preference learning techniques have been improved from learning a basic linear UF to

estimating complex functions which are more compatible with DM’s preferences.

Branke et al. (2016) proposed NEMO-II, a revised version of NEMO-I that can change the

preference model from linear to Choquet integral if the linear model is not sufficiently com-

patible with DM’s decisions. The new version also addresses necessary preference relations
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calculation cost in NEMO1.

Similarly, the Decomposition-Based Interactive Evolutionary Algorithm for Multiple Ob-

jective Optimization (IEMO/D) (Tomczyk & Kadziński, 2019a) uses DM’s pairwise compar-

isons to detect upper and lower limits for weight vectors and construct compatible L-norm

value functions. IEMO/D extends a basic variant of MOEA/D (Zhang & Li, 2007). Greco,

Matarazzo, and Słowiński (2010) apply the Dominance-based Rough Set Approach (DRSA)

to the DM’s preference information to draw some ”if-then” rules on the values of the objective

functions. The rules are later used to estimate the quality of the solutions.

Köksalan and Karahan (2010) introduced iTDEA based on their earlier multi-objective

evolutionary optimization algorithm: TDEA (Karahan & Köksalan, 2010). Their algorithm

relies on the territory parameter, which controls the number of solutions in different regions

of the PF. The territory is defined as a region occupied by each individual in the objective

space and controls the density of the Pareto front around a given solution. New offspring are

accepted into the population if only they do not violate the territory of their closest individual

in the population. In iTDEA, the DM selects the most preferred solution among some filtered

solutions at each interaction. Filtering is based on the favorable weights (Köksalan & Phelps,

2007). DM’s preferences are considered by defining a smaller territory for the solutions in

the proximity of the selected solution.

Brain-Computer Evolutionary Multi-Objective Algorithm (BCEMOA) (Battiti & Passerini,

2010) does not make any particular assumptions on the shape of the UF and uses the Sup-

port Vector Machine (SVM) to estimate the preference model of the DM. However, the shape

and the degree of the UF are limited to those specified beforehand. In each interaction, DM

ranks a small subset of non-dominated solutions which are considered the training set and are

labeled by the given ranks. The training set and its labels are used to train the SVM.

Similar to BCEMOA, Pedro and Takahashi (2014) proposed an Interactive Non-dominated

Sorting algorithm with the Preference Model (INSPM), which is based on NSGAII and uses

the neural network instead of SVM to construct the UF.

Brockhoff, Hamadi, and Kaci (2014) introduced an interactive W-HypE algorithm with

a weighted hyper-volume indicator approach. Its main idea is to define a weight function

on the objective space and use the contribution to the weighted hyper-volume indicator as

the fitness of each solution within the EMO algorithm (For earlier studies on non-interactive

hyper-volume based EMOAs see (Knowles, 2002; Knowles & Corne, 2003; Knowles, Corne,

& Fleischer, 2003)). They compare the algorithm’s performance with iTDEA, which requires

the DM to select the best solution from a given set. In their experiments, DM was simulated

by a Tchebychef function.
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Although these algorithms eliminated the linearity assumption of the UFs, there are still

limited by their underlying assumptions and the limited types of UFs they can estimate. Be-

sides, many of them require objective values to be normalized and scaled, which is not an

easy task, specifically if the scaling parameters should be determined a priori (Branke et

al., 2010). On the other hand, experimental studies on non-ad-hoc iEMOAs (López-Ibáñez

& Knowles, 2015; Shavarani et al., 2021) have revealed that the proposed methods fail to

perform well when tested under real-life conditions, or their performance deteriorates with

biases and non-idealities that might happen during interactions. Thus, it is vital to scruti-

nize different elements of iEMOAs when confronted with realistic conditions and identify

the weaknesses and strengths of each algorithm. Such extensive experiments would allow

researchers to systematically address the problems with iEMOAs and move toward realizing

the potential of the iEMOAs

2.3 Benchmarking Non-ad-hoc iEMOAs

There have been many studies on the development of iEMOAs in recent years. However,

the problem of measuring and benchmarking their performance remains troublesome. Thus,

there is no concrete information on their strengths, weaknesses, and how well the proposed

algorithms perform under realistic conditions, (Miettinen, 1999; Ojalehto, Podkopaev, &

Miettinen, 2016; Shavarani et al., 2021). Further improvements in this field require a well-

defined design of experiments wherein all external sources of noise and variation can be

controlled.

Experimenting with iEMOAs is not straightforward as they are steered by the decisions of

the DM and the results are subjective and affected by the preferences of that DM. Thus, it is not

easy to determine if any significant observation should be attributed to the performance of the

algorithm or the DM’s decisions. Due to such problems, only 45 studies have been performed

on the performance of iEMOAs (Afsar et al., 2021). A review of such experiments can be

found in Xin et al. (2018) and Afsar et al. (2021). One approach to cancel out these biases is to

run experiments with a sufficiently large number of different DMs. One study has estimated

that on average 65 decision makers are required to cancel such biases (Zujevs & Eiduks,

2011). Thus, experimenting with human DMs is expensive and not affordable. As a result,

the majority of the few experiments with human DMs are conducted by the participation of

students or the authors of the algorithms themselves (Afsar et al., 2021). The involvement

of students in the experiments would bias the results as long as they are not responsible for

the outcomes. Also, having a single DM in the experiments (either the author or else) would

raise human-specific issues such as learning or fatigue (Zujevs & Eiduks, 2008). Besides,
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the involvement of humans in the experiments makes the results non-replicable (Chen et al.,

2017). An alternative approach is to replace human DMs with realistic machine DMs. In

this regard, the main concern is to identify a reliable approach to simulate decision-making

behaviors in the experiments (Luque, Caballero, Molina, & Ruiz, 2007; Belton et al., 2008;

Huber et al., 2015).

2.3.1 Machine Decision Makers

To enable experimenting with iEMOAs and to avoid expensive setups with human DMs, it

is possible to replace human DMs with a reliable simulation of decision-making behaviors.

Such a simulation is frequently called artificial or machine decision-makers (Afsar et al.,

2021). There have been several studies introducing Machine Decision-Makers in the recent

literature (López-Ibáñez & Knowles, 2015; Barba-González et al., 2018). As different ap-

proaches use different preference models, an MDM should be consistent with the type of

information required from the DM in the interactive algorithm under study (Purshouse et al.,

2014). In this regard, iEMOAs can be categorized into non-ad-hoc and ad-hoc methods based

on whether the DM’s responses to the queries projected in the interactions can be simulated

by a UF or not, respectively (Miettinen, 1999). Experiments on ad-hoc methods require a

different setup as the utilization of UF is not possible. For instance, Huber et al. (2015) sim-

ulates the preferences of the DM using a predefined MPS and simulates DM’s learning by

progressively narrowing down the cone which is formed based on the MPS. Other examples

of MDMs for ad-hoc methods can be found in (Zujevs & Eiduks, 2011) , (Afsar et al., 2021),

and (Ojalehto et al., 2016). The main focus of this research is dedicated to the ranking-based

non-ad-hoc approaches. Thus, the details of such experiments are not discussed here.

In experiments on non-ad-hoc methods, it is possible to simulate the DM’s responses to the

algorithm’s queries using a UF (Steuer, 1986). The choice of the UF itself is important as any

arbitrarily selected function may not adequately reflect realistic decision-making behaviors

and can make the experimental results biased and unreliable (Shavarani et al., 2021). Fur-

thermore, it is not realistic to assume ideal conditions where the DM has complete knowledge

of the problem at hand, makes no mistakes or contradictory decisions, and no biases or non-

idealities happen inside the DM’s mind or during the machine-DM interactions (Afsar et al.,

2021). Thus, as illustrated in Figure 2.1, an MDM is generally comprised of two equally

important units: a UF and the simulation of non-idealities, human factors and biases. During

the interactions, the iEMOA can send its queries to the MDM. The quality of the solution is

evaluated using the UF. To make the simulation more realistic, the utility value given by the

UF and the objective values themselves can be disturbed to simulate different types of human

factors and biases such as inconsistencies in the decisions. The intensity of such biases can
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be controlled within this unit.

Figure 2.1. A typical MDM framework used for simulation of decision-making behaviors on experimenting
with non-ad-hoc iEMOA.

One of the first MDM frameworks was suggested by López-Ibáñez and Knowles (2015).

They simulated omitted (hidden) objectives, Mixed (preferentially dependent) objectives and

inconsistencies in the decisions. However, their experiments were limited to linear utility

functions. Later, the framework was improved using a sigmoid utility function (Shavarani

et al., 2021). In what follows we will further discuss the MDM framework and its two main

units.

2.3.2 Utility Function

Due to their simplicity and completeness, UFs have been frequently used in the literature to

represent DM’s preference model (Debreu, 1987; Huber et al., 2015). In this regard, linear

functions (Reeves & Gonzalez, 1989; Fowler et al., 2010b; Köksalan & Karahan, 2010), non-

linear functions (typically quadratic or polynomial functions) (Mote, Olson, & Venkatara-

manan, 1988; Reeves & Gonzalez, 1989; Battiti & Passerini, 2010; Köksalan & Karahan,

2010), exponential (Luque, Miettinen, Eskelinen, & Ruiz, 2009), Gaussian function (Pedro

& Takahashi, 2014; Narukawa et al., 2016a) and Tchebycheff UFs (Köksalan & Karahan,

2010) have been frequently used. However, most of these UFs do not satisfy the characteris-

tics of the utility function that are required for the simulation of decision-making behaviors

(Kahneman & Tversky, 1979; Stewart, 1996), and there is no evidence that they can ade-

quately simulate the complex behaviors of a decision-maker in the experiments (Shavarani

et al., 2021). Additive Independence (Keeney, 1981), risk aversion behavior, trade-off inter-

pretability and compensatory preferences (Stewart, 1996), the convexity of losses and con-

cavity of gains (Kahneman & Tversky, 1979) are some of the assumptions that should be

observed when simulating a DM in the experiments. For instance, linear UFs simulate con-

stant trade-offs across all the objective values, which is not realistic (Huber et al., 2015).

The research by Kahneman and Tversky (1979) revealed that Sigmoid UFs can adequately

represent decision-making behaviors. The Sigmoid UFs satisfy the accepted assumption in
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the economic literature, which states that decisions of a human DM follow an S-curve shape

which is convex for losses and concave for gains (Mas-Colell et al., 1995). A specific Sigmoid

UF was proposed by Stewart (1996) in his experiments on the robustness of additive value

functions. The formula of this UF, hereafter called Stewart UF, is illustrated in Equation 2.2.

In this equation, wi ∈ [0, 1] is the relative weight of the ith objective function (
∑m

i=1wi = 1)

and ui(zi) is its marginal Stewart UF. Reference level (τi), is the value of the ith objective

where the function changes from concave to convex. In other words, τi is the threshold that

separates the objective values that are perceived as “gains” or “losses” (satisfactory or un-

satisfactory) from the DM’s perspective. λi is the value of the marginal UF at the reference

level, i.e. λi = ui(τi). Parameters αi and βi control the non-linearity of the function for the

ith objective. In accordance with prospect theory which claims improving an unsatisfactory

criterion is more appealing than improving a satisfactory one, the curvature and slope of the

curve are greater for gains than losses. This rule is observed in the Stewart UF by setting

α > β > 0.

U(z) =
m∑
i=1

wiui(zi), ui(zi) =


λi·(eαizi−1)

eαiτi−1
if 0 ≤ zi ≤ τi

λi +
(1−λi)(1−e−βi(zi−τi))

1−e−βi(1−τi)
if τi < zi ≤ 1

(2.2)

Stewart UF is able to simulate four decision-making behaviors by different combinations of

τi and λi values as described in Table 2.1. Figure 2.2 illustrates the marginal Stewart UF for

different values of its parameters.

Table 2.1. Description of different types of DM behaviors simulated by combinations of τi and λi adapted
from (Stewart, 1996).

Type τi λi Description

1 [0.1, 0.4] [0.1, 0.4] Limited range of compensation; plus
sharp preference threshold

2 [0.1, 0.4] [0.6, 0.9] Limited range of compensation.
3 [0.6, 0.9] [0.1, 0.4] Mainly compensatory preferences, but

with sharp preference threshold.
4 [0.6, 0.9] [0.6, 0.9] Mainly compensatory preferences.

In this research, we propose using the Stewart function in experimenting with iEMOAs.

Stewart UF is designed for maximization problems. When experimenting on iEMOAs, many

of the existing benchmark problems are formulated as minimization problems. Thus, the UF

cannot be used for minimization problems without violating its underlying assumptions.

As a result, one should be cautious about using the Stewart UF for the minimization prob-

lems and make sure the assumption of the UF are observed. In Chapter 3, we propose a

proper transformation of Stewart’s UF that can be used with minimization problems while

respecting all of its assumptions.
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Figure 2.2. Shape of Stewart UF with different parameters. In “Default” τ = 0.5, λ = 0.5, α = 16, β = 7.
The effect of changing each parameter from the default value on the shape of the function is also illustrated in
other curves.

2.3.3 Simulation of Non-idealities

Humans are prone to mistakes. Thus, any simulation of their behaviors should also reflect

such biases. A sound decision support system is supposed to account for inconsistencies in

the decisions of the DM (French, 1984). Thus, it is vital to simulate such inconsistencies and

non-idealities when benchmarking interactive methods and measure their robustness towards

these non-idealities. It should be noted that biases may happen anywhere during human-

machine interactions, within DM’s mind, or even in the modeling phase.

Stewart (2005) indicates that decisions of the DM may be affected by external and internal

uncertainty. External uncertainty can be defined as the lack of proper insight into the conse-

quences of the decision. Internal uncertainty is the lack of accuracy in the preferences, which

leads to inconsistencies in the decisions. The research on iEMOAs has mainly considered the

latter.

Some studies add Gaussian noise to the value returned by the UF (Campigotto & Passerini,

2010; Köksalan & Karahan, 2010) to simulate inconsistencies in the DM’s decisions. Phelps

and Köksalan (2003) evaluate the performance of their proposed Interactive Evolutionary

Meta-heuristic (IEM) using linear and Tchebychef UF without simulating any biases. They

compare the algorithm’s performance with a Perfect Information Case where the UF is op-

timized directly by the optimizer as a single objective problem. Later, Jaszkiewicz (2004)

compare their IPMA method with IEM using Tchebychef, linear and quadratic UFs. They

also evaluate the performance of the two algorithms with a perfect information case, aver-

aged over 10 runs as a baseline. They simulate indifference threshold and inconsistencies in

DM’s decisions with uniformly distributed noise. To simulate indifference, they assume the

DM may not compare two solutions if the difference in their utility value falls below a given
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threshold. (Kornbluth, 1985) assumes there exists a range of utility values for which the DM

can not make a good evaluation.

Another bias in this context is the change in preferences, termed as preference drift (Pu &

Chen, 2008). Such a change mainly results from the learning (Campigotto & Passerini, 2010)

and change in the DM’s attitude, which happens during the optimization process. Learning

itself (Weber, 1987) can be described as increased knowledge of the problem during the pro-

cess, which may lead to the change in the preferences (Belton & Elder, 1994). The prefer-

ence change is troublesome as it causes contradictions in the preference information elicited

in different interactions. Other non-idealities that have been studied in the literature include

fatigue (Zujevs & Eiduks, 2008), indifference (Zionts, 1981), hesitation (Huber et al., 2015),

incomplete information (Lerch & Harter, 2001), cognitive bottleneck (Tversky & Kahneman,

1974; Stewart, 2005) and anchoring (Buchanan & Corner, 1997).

Only a few studies have proposed MDMs that include simulations of the biases and non-

idealities within their framework (Ojalehto et al., 2016; Shavarani et al., 2021) the first of

which was the study by López-Ibáñez and Knowles (2015). Based on the non-idealities in-

troduced by Stewart (Stewart, 1996), López-Ibáñez and Knowles (2015) proposed a Machine-

Decision-Maker (MDM) framework to serve as a laboratory for analyzing the performance of

interactive algorithms, analyzing BCEMOA (Battiti & Passerini, 2010) as a proof of concept.

The simulated biases include inconsistencies in the decisions, mixed and omitted objective

(López-Ibáñez & Knowles, 2015). However, the study used only linear UFs to represent DM’s

decisions.

In this study, we will simulate inconsistencies, preferentially dependent objectives, irrel-

evant objectives and hidden objectives. As a contribution of this thesis, we provide formal

definitions and a simulation approach for the last two non-idealities. We also propose ap-

proaches to identify and deal with such non-idealities in Chapter 4, making the performance

of the iEMOAs robust and improved.

2.3.4 Hidden and Irrelevant Objectives

Generally, in the modeling phase, there may be the tendency to model as many objectives as

possible without noticing that they might be non-conflicting or highly correlated and hence

redundant (Sinha, Saxena, Deb, & Tiwari, 2013). Each objective function adds exponen-

tially to the complexity of the problem, both in the optimization phase and decision-making

phase (Jensen, 2003; Allmendinger, Jaszkiewicz, Liefooghe, & Tammer, 2022). Thus, many

researchers have discussed possible approaches to decrease the number of objectives without

losing the interesting parts of the Pareto front (Brockhoff & Zitzler, 2006). Particularly, in

41



the context of interactive methods, it is vital to ensure the right set of objective functions

is considered to avoid the curse of dimensionality and increase the accuracy of preference

learning.

In this regard, objectives that can potentially be eliminated are divided into two categories:

• Redundant: There exists a minimal set of objectives that are enough for generating a

close representation of the Pareto front. We follow the tradition in literature and call ob-

jectives redundant when they can be eliminated with regard to the structure of the prob-

lem and preserving the non-domination relations (Gal & Leberling, 1977; Agrell, 1997).

Saxena, Ray, Deb, and Tiwari (2009) indicate that the redundancy of the objectives oc-

curs when objectives are not conflicting or their elimination does not significantly affect

the PF structure.

• irrelevant: In this study, objectives that are considered by the optimizer but are not rele-

vant to the DM are termed irrelevant regardless of the PF and non-dominance relations.

The formal definitions are provided in Chapter 4.

While the studies in the first category consider removing objectives that are highly corre-

lated or those that do not contribute significantly to non-dominance relations and the shape

of the PF (Guillén-Gosálbez, 2011a; Pozo, Ruíz-Femenia, Caballero, Guillén-Gosálbez, &

Jiménez, 2012), the second category aims to do so by eliminating the objectives that are not

considered by the DM when evaluating the solutions and making decisions. On the other

hand, there might exist objectives that are considered by the DM but are hidden to the opti-

mizer (Shavarani, López-Ibáñez, & Allmendinger, 2022). An example of hidden objectives

is given in (Kryston et al., 2022), where a stakeholder is unwilling to reveal his preferences

due to strategic reasons; thus, the relevant set of objectives remains hidden. Such discrepancy

between the model and the DM’s preferences will make the results unsatisfactory (Battiti &

Campigotto, 2010). Thus, it is desired to design intelligent algorithms that detect irrelevant

and hidden objectives, eliminating the former while replacing them with the latter. To the

best of our knowledge, there is no prior study that has done so, and in Chapter 4 we propose

such an approach which exploits the preference information elicited during optimization in

ranking-based iEMOA to detect irrelevant and hidden objectives and updates the set of objec-

tives that are optimized. We also consider applying the proposed method as a DM-oriented

objective reduction method. As there are no prior studies on eliminating irrelevant objec-

tives, the next section investigates some of the most important studies on objective reduction

techniques that have considered eliminating redundant objectives.
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Previous Research on Objective Reduction

The studies in the literature are limited to the reduction of redundant objectives without con-

sidering DM’s preferences. A brief description of the main studies in redundant objective

reduction is given here categorized based on their employed techniques. The reduction of

irrelevant objectives is a novel contribution of this study and will be discussed in detail in

Chapter 4. The redundant objective reduction techniques have been applied either “a priori”

to facilitate the optimization process or “a posteriori” to assist the DM in decision-making.

The proposed techniques in the literature either consider correlations among objectives or

their importance in preserving the dominance relations among solutions. We acknowledge

there are reduction methods that attend to the dimensions of the decision space, such as those

discussed in (Allmendinger & Knowles, 2010; Chu, Zhang, Fu, Li, & Zhou, 2015; Zhao et

al., 2020), as well as those that focus on constraint reduction (Saxena & Deb, 2007b, 2008).

However, they fall out of the scope of this research as our focus is on the objective space.

Many of these studies use the term dimension reduction for the same concept. However, to

avoid confusion with methods that reduce the number of decision variables (Allmendinger &

Knowles, 2010), we use the term “objective reduction”.

Subset selection & preserving Pareto front solutions: Gal and Leberling (1977) proposed

one of the earliest a priori objective reduction approaches for linear programming models

while preserving the set of Pareto optimal solutions. Although the method was later extended

by Agrell (1997) to include a non-linear model considering the correlation among objectives

with a probabilistic test of redundancy, they both make exhaustive assumptions about the

problem structure that is impossible to validate for real-life problems. Brockhoff and Zitzler

(2007a) introduce two minimum objective subset selection (MOSS) methods: δMOSS finds

a minimal set of objectives with a maximum error of δ and k-EMOSS finds a subset with

fixed size k having the minimum error. The error here is a measure of change in the set of PF

solutions. In (Brockhoff & Zitzler, 2007b), the authors use their minimal set approach online

in the simple indicator-based evolutionary algorithm (SIBEA) (Zitzler, Brockhoff, & Thiele,

2007). As MOSS problems are computationally expensive, Guillén-Gosálbez (2011b) pro-

posed a linear programming model for k-EMOSS problem, which was demonstrated to have

acceptable performance. López Jaimes, Coello Coello, and Chakraborty (2008) use an un-

supervised feature selection technique (Mitra, Murthy, & Pal, 2002) for preserving the most

conflicting objectives. Later, this technique was incorporated into NSGA-II (Deb et al., 2002)

to construct an online reduction method (López Jaimes, Coello Coello, & Urías Barrientos,

2009). Singh et al. (2011) also focus on the Pareto corner points to identify which objectives

are sufficient to reproduce the PF. Some drawbacks of their approach include not capturing

the whole PF, losing objectives that are contributing somewhere on the PF away from corner
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points, and possibly overestimating dimensions.

Recombining non-conflicting objectives: Some studies try to identify non-conflicting ob-

jectives that can be aggregated into a single objective. Freitas, Fleming, and Guimarães

(2013) used the harmonic level, introduced in (Purshouse & Fleming, 2003a, 2007), to iden-

tify objectives that can be merged into a new compound scalarized objective with minimal

effect on the PF. As opposed to conflict, there is “harmony” among objectives when improve-

ment of either of them does not lead to deterioration of the other (Giagkiozis, Purshouse, &

Fleming, 2013). Like other objective reduction methods, the DM preferences are not consid-

ered in the reduction process in (Freitas et al., 2013). However, the DM can decide on the

final number of objectives “a priori”. Similarly, de Freitas, Fleming, and Guimarães (2015)

use aggregation trees to identify harmonious objectives.

PCA & Correlation among objectives: One of the first objective reduction methods

based on linear PCA was proposed by Deb and Saxena (2006) that was implemented within

the NSGA-II framework. Linear PCA relies on the correlation among objectives to detect

conflicting objectives, thus it does not guarantee that the dominance relation is preserved

(Brockhoff & Zitzler, 2009). Furthermore, linear PCA does not provide good performance

for non-linear data, and it might fail to identify all non-conflicting objectives (Lygoe, Cary,

& Fleming, 2010). To address these issues, two more methods were introduced in (Saxena

& Deb, 2007a), which used correntropy PCA (Xu, Pokharel, Paiva, & Príncipe, 2006) and

maximum variance unfolding as was previously used in (Weinberger, Sha, & Saul, 2004;

Weinberger & Saul, 2006). PCA was also used in (Goel et al., 2007), where the method

was validated on a problem with 4 objectives only. PCA-based methods are applied to non-

dominated solutions and thus their performance relies heavily on the proper approximation

of the PF (Singh et al., 2011).

Visualization Some studies suggest the identification of redundant objectives through vi-

sualization (Mattson & Messac, 2003; Obayashi & Sasaki, 2003; Koppen & Yoshida, 2007;

Fieldsend & Everson, 2013). However, most of these studies aim to facilitate decision-making

and intuitive visualization of the solutions rather than the optimization process itself and are

limited in the number of objectives they can handle. Thus, they use objective reduction meth-

ods such as PCA to enable the visualization and hence bring new insights to the DM.

Drawbacks of Existing Methods

The problems with existing objective reduction algorithms as outlined above can be summa-

rized as follows:
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• Dependency on non-dominated solutions: Many existing dimension reduction tech-

niques rely on a properly represented PF which itself is troublesome in the first place

when the number of objectives is high.

• Computationally expensive: As discussed, most of the introduced methods, including

PCA-based and subset selection methods, are computationally expensive and/or can’t

be applied to many-objective problems.

• In their study, Costa and Oliveira (2010) have demonstrated that objectives that are

deemed redundant by PCA may be “informative”, i.e., contain trade-off information

that would be lost if omitted.

• Offline reduction: Most of the existing techniques consider dimension reduction in an

offline mode, whether a priori to facilitate the optimization process or a posteriori as a

decision-making aid.

• Not exploiting preference information: None of the existing methods consider the pref-

erences of the DM in their dimension reduction techniques. There are methods that ask

the DM about some parameters, for instance cardinality of the reduced set, but none use

the preferences for reduction purposes.

2.4 Improving Robustness and Performance of iEMOAs

2.4.1 Detection and Handling Hidden and Irrelevant Objectives

In interactive methods, it is possible to exploit and analyze the preferences of the DM that

are elicited during the interactions to detect the objectives that the DM does not consider

in evaluating the presented solutions. For the first time in the literature, In Chapter 4 we

introduce an efficient approach based on uni-variate feature selection and recursive feature

elimination to identify irrelevant and hidden objectives. The proposed method is computa-

tionally efficient, has reasonable accuracy, and effectively reduces the number of objectives

and objective evaluations. The main goal of feature selection is The importance of feature se-

lection and dimensionality reduction in overcoming the curse of dimensionality is frequently

highlighted in the machine learning literature (Jain & Zongker, 1997; Wang, Tang, & Liu,

2017). Simply put, the curse of dimensionality states that the learning accuracy is signifi-

cantly decreased with a higher number of features. The main goal of feature selection is to

identify the minimal set of features that results in a model that has the same (or at least close)

accuracy to that trained on the full set of features, assuming that there are objectives that can

be eliminated without having much of an impact on the learned model. This task is even

45



more vital in iEMOAs where the size of the training data used for preference learning and

modeling is also limited by the queries to the DM and his cognitive bottleneck. The objective

reduction also helps visualization and model interpretability which are desired characteristics

of any iEMOA.

2.4.2 An Improved Preference Learning Technique

As outlined in Section 2.2.2, most non-ad-hoc methods assume a linear UF when modeling

the DM’s preferences (Zionts & Wallenius, 1976; Phelps & Köksalan, 2003). Linear models

are only suitable for convex problems. Otherwise, the algorithm is biased towards areas of the

PF that might not include the MPS, or a satisfactory solution (Deb et al., 2010a; Wang et al.,

2016). Others that overcome this limitation are either limited by the number of UF types that

can be estimated or by extensive assumptions that are not easily verified in real-life problems,

if possible at all (Zionts & Wallenius, 1983; Deb et al., 2002). The other problem is that

they transform the EMOA into a single objective problem where the benefit of the EMOA

in producing well-distributed solutions with interesting trade-offs is diminished (Branke et

al., 2010). The machine learning techniques used in the literature for estimated ranking of a

finite number of solutions in the population are mostly in the form of an ensemble of many

estimators, each trained to predict an individual rank, and such an approach is known to be

highly sensitive to small biases (Cheng et al., 2009). Another issue with many iEMOAs

in the literature is the requirement to normalize and scale objective functions, a task that is

not easy to implement in real-world problems. To overcome these problems, we propose a

novel iEMOA in Chapter 5 with a preference learning technique that uses a Decision Tree

(DT) classifier to predict the winner solutions in pairwise comparisons; i.e the solution is

classified as preferred or otherwise. Furthermore, DTs naturally employ feature selection

when learning to classify and simplify the learned model (Xia, Zhang, Li, & Yang, 2008;

Yu, Wan, & Lee, 2011). Furthermore, DTs are explainable, easily comprehensible, and can

be understood by the DM (Cheng et al., 2009). The latter is an important characteristic as

it helps the DM to understand the process and trust in final results (Allen, Moussa, & Liu,

2019). Thus, there has been an emphasis on the explainability of the learning methods in

interactive methods and particularly the development of explainable learning methods such

as DTs for preference learning is encouraged (Misitano, Afsar, Larraga, & Miettinen, 2022).
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Chapter 3

On Benchmarking Interactive

Evolutionary Multi-Objective

Optimization Algorithms

Shavarani, S. M., López-Ibáñez, M., & Knowles, J.

A summary of this chapter is published in Proceedings of the Genetic and Evolutionary Computation Confer-

ence

Submitted to IEEE Transactions on Evolutionary Computation (under the second round of peer review)

We carry out a detailed performance assessment of two modern interactive evolu-

tionary multi-objective algorithms (EMOAs) using a machine decision maker that

enables us to repeat experiments and isolate and study some specific behaviours

modeled after human decision makers (DMs). Using the same set of benchmark

test problems as in the original papers on these interactive EMOAs (in up to 10

objectives), we bring to light interesting effects when we use a machine DM based

on sigmoidal utility functions that have support from the psychology literature (re-

placing the simpler utility functions used in the original papers). Our machine DM

enables us to go further and simulate human biases and inconsistencies as well.

Our results from this study, the most comprehensive assessment of (two) interac-

tive methods so far conducted, suggest that current well-known algorithms have

shortcomings that need addressing. This further demonstrates the value of work

on improved benchmarking of interactive EMOAs.

3.1 Introduction

Evolutionary multi-objective optimization algorithms (EMOAs) have proved to be a lead-

ing choice for solving (theoretical and applied) multi-objective problems for several decades
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now. However, as with other methods, their performance may decline when the number of

objectives increases (Ishibuchi et al., 2008), suggesting a need for further developments. In

one approach to address the scaling issue, the preferences of the Decision-Maker (DM) can

be incorporated into the EMOA as an extra criteria to preserve elitism, focus the search, and

limit it only to the interesting parts of the Pareto front (PF). Such algorithms that use the

preferences of the DM are termed preference-based EMOAs (Branke & Deb, 2005), and they

are of perhaps the highest degree of interest to the field today. Depending on the stage of the

preference elicitation, preference-based algorithms can be divided into “a priori”, “a posteri-

ori” and interactive methods (Miettinen et al., 2008). To overcome problems with “a priori”

and “a posteriori” methods, which elicit preference information respectively before and after

the optimization process, interactive methods interact with the DM during the optimization

process which leads to attractive features of these methods over “a priori” and “a posteriori”

methods that can be briefly summarized as reduced computational costs by limiting the search

to interesting parts of the PF, low cognitive effort required from the DM and psychological

convergence (Belton et al., 2008).

Despite their merits and potential, improvements in the field have been hindered by diffi-

culties in experimenting on them due to the pivotal role of the DM in determining the final

results. Experiments cannot be performed with just one single DM because of human-to-

human variation in aspects such as fatigue and learning. Having many DMs would also make

the experiments unaffordable. Most studies in the literature that involve human DMs have

students acting as DMs, despite they may not be knowledgeable about the problem or not

take the experiment seriously (Afsar et al., 2021). On the other hand, studies that simulate

DMs do so by utilizing arbitrary utility functions (UFs) and oversimplified and idealized as-

sumptions about DMs’ preference model and interactions that make the experiments far from

realistic. Under such circumstances, it is hard to say how well the algorithms perform in real-

life problems and even it is unclear whether they are better than “a priori” or “a posteriori”

methods.

This study makes use of and improves the Machine Decision Maker (MDM) framework

proposed by López-Ibáñez and Knowles (2015) to simulate a human DM in experiments

with interactive EMOAs (iEMOAs). Although other UFs can be used in the MDM frame-

work (López-Ibáñez & Knowles, 2015), in this study the true preferences of the MDM are

simulated by a Sigmoid UF proposed by Stewart (1996) that is inspired by psychological stud-

ies (Kahneman & Tversky, 1979) and was first used for benchmarking iEMOAs by Shavarani

et al. (2021). This work supersedes previous studies (López-Ibáñez & Knowles, 2015; Shavarani

et al., 2021) and implements several important biases and non-idealities in the literature to

make the MDM more realistic. A transformation of the Stewart UF is proposed that can be

48



used for minimization problems preserving all its realistic assumptions. Furthermore, exper-

iments are expanded to include many-objective problems. The proposed MDM thus enables

conducting more realistic experiments, which we argue is a requirement for systematic im-

provement of iEMOAs.

The rest of the chapter is organized as follows: A brief review of the most relevant stud-

ies is provided in Section 3.2. Contributions of the chapter are summarized in Section 3.3.

Methods and the machine decision maker characteristics are described in Section 3.4. Exper-

imental design is laid out in Section 3.5. The results are discussed in Section 3.6. Section 3.7

provides further insights concerning the experiments performed here, and finally conclusions

are drawn in Section 3.8.

3.2 State of the Art in iEMOAs

3.2.1 Background Concepts

In multi-objective optimization problems (MOPs) there exists a set ofm conflicting objectives

f1, . . . , fm that have to be optimized simultaneously, having a general form as follows:

Minimize z = f(x) = (f1(x), . . . , fm(x)
)

subject to x ∈ X

where f maps a decision vector x in solution space X ⊆ Rn to an objective vector z in

objective space Z ⊆ Rm. MOPs are often termed many-objective problems when m > 3.

Definition 3.2.1 (Domination). A solution x ∈ X dominates solution y ∈ X if f(x) is not

worse than f(y) in any objective and f(x) is strictly better than f(y) in at least one objective.

Definition 3.2.2 (Non-domination). A feasible solution x ∈ X is said to be non-dominated

if there is no solution y ∈ X that dominates it. Non-dominated solutions are also known as

Pareto optimal solutions.

Definition 3.2.3 (Pareto front). The projection of the Pareto solutions on the objective space

is known as the Pareto front.

Due to the conflicting nature of objectives, any improvement in one objective is only pos-

sible at the cost of deterioration of at least one other objective. Thus, complete ordering of

the solutions based on their objective values is not possible in MOPs. As a result, the aim of

solving a MOP is finding a satisfying non-dominated solution from the Pareto front (PF). In

this regard, solving a MOP consists of two phases (Miettinen et al., 2008): (1) Optimization
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phase: finding a close approximation of the PF and (2) Decision making phase: finding the

DM’s most-preferred solution (MPS).

The number of solutions required for covering the PF increases exponentially with the

number of objectives. This brings difficulties to both phases. In the first phase, challenges

associated with many-objective problems (Korn, Pagel, & Faloutsos, 2001; Purshouse &

Fleming, 2007; Li, Li, Tang, & Yao, 2015), make the optimization process computationally

expensive. In the second phase, evaluating a large number of alternatives is not cognitively

affordable for the DM and there is a high chance of missing the MPS.

To address this issue, Multi-Criteria Decision Making (MCDM) techniques are employed

to support the DM in the process of decision making. In interactive methods, the two phases

are interlaced until reaching a satisfying solution. The decision making phase happens in

interactions with the DM scheduled in different stages of the optimization process. In each

interaction the preference information is elicited from the DM. This information is used to

estimate the preference model of the DM, which is exploited in the next optimization phase to

guide the search towards the interesting part of the PF. Xin et al. (2018) identify four discrete

parts of any interactive method that discriminate different iEMOAs: interaction pattern, the

preference information, the preference model and the search engine.

With regard to preference models, iEMOAs are divided into two broad categories of ad-

hoc and non-ad-hoc methods (Steuer, 1986). In non-ad-hoc methods, it is assumed that the

decisions of the DM are driven by an underlying utility function (Steuer & Gardiner, 1991) 1.

Thus, it is possible to use an appropriate UF to model decision making behaviors of the DM

in the experiments (Miettinen, 1999; Afsar et al., 2021). However, adoption of an arbitrary

UF that does not provide for a good simulation of decision making behaviors can highly bias

the results of the experiments. Algorithms whose performance was proved to be satisfying in

the experiments with arbitrary UFs may be far away from expectations and ineffective under

real-life conditions (Shavarani et al., 2021).

3.2.2 Assessment of iEMOAs

In order to compare different algorithms, it is vital to have proper test problems, perfor-

mance indicators and a well-defined controlled framework. There are performance indicators

available for EMOAs such as hypervolume and number of non-dominated solutions (Zitzler,

Thiele, Laumanns, Fonseca, & Grunert da Fonseca, 2003; Zitzler, Knowles, & Thiele, 2008;

Bezerra, López-Ibáñez, & Stützle, 2018). However, in the case of iEMOAs, it is important to
1Ad-hoc methods do not assume that an underlying utility function exists, however, in practice, it may be impossible to determine

whether a DM is driven by a UF unknown to them (as assumed by the MDM framework) or not.
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discriminate if any significant difference is due to the decisions of the DMs, interaction style

or the underlying EMOA.

The design of experiments on iEMOAs is difficult due to the fact that results are highly af-

fected by the decisions of the DM and that all DMs are different (Wallenius, 1975; Buchanan,

1994). To cancel out the noise arising from differences in different DMs, a sufficient num-

ber of DMs should be involved in the experiments (Afsar et al., 2021). Zujevs and Eiduks

(2011) determined that an average of 65 participants were used by several behavioral studies

in decision-making, which indicates the typical complexity and financial cost of such studies.

Another important drawback of experiments with human DMs is that the results are subjective

and difficult to replicate (Chen et al., 2017). To address this problem, a convenient approach

in the literature when experimenting on non-ad-hoc methods is to simulate the desirability

of solutions to the DM using a UF, thus removing the need of a human DM who interacts

with the method. However, the reliability of the results will be under question when the se-

lected UF is not a realistic simulation of a human DM. Existing studies on the measurement

of iEMOAs use arbitrary UFs such as linear functions (Reeves & Gonzalez, 1989; Battiti &

Passerini, 2010), non-linear functions (typically quadratic or polynomial functions) (Reeves

& Gonzalez, 1989; Battiti & Passerini, 2010; Köksalan & Karahan, 2010), Gaussian func-

tion (Pedro & Takahashi, 2013; Narukawa et al., 2016a) and Tchebychef UFs (Köksalan &

Karahan, 2010), and there is no evidence that they model the actual behavior of human DMs.

In contrast there do exist UFs that are supported by psychological studies and are capable

of simulating different decision-making behaviors, such as Sigmoid UFs. Sigmoid UFs are

based on the prospect theory by Kahneman and Tversky (1979) which states that preferences

of human DMs follow such S-shaped curves, being concave for gains and convex for losses.

Following the results of prospect theory, various Sigmoid UFs have been proposed and used

in the literature (Stewart, 2005; Gong, Zhang, & Chiclana, 2018). Sigmoid UFs also satisfy

the accepted requirement of UFs being quasi-concave in the economics literature (Mas-Colell

et al., 1995).

In this study we make use of a specific Sigmoid UF, hereafter called Stewart UF, which was

proposed by Stewart (1996) in his studies on robustness of additive utility functions. Later,

Shavarani et al. (2021) used the Stewart UF in experiments on iEMOAs and showed that the

performance of iEMOAs diminishes when the Stewart UF is used, which in turn emphasizes

the necessity of structured experiments to systematic progress in the field.

Although a Sigmoid UF may mimic some of the decision making behaviors of a human

DM, it is still not realistic to assume an ideal DM who is consistent and error free in his

decisions (Tversky & Kahneman, 1974). Consequently, in order to have a reliable analy-

sis of interactive methods, their performance and robustness should be evaluated when con-
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fronted with such non-idealities (Stewart, 2005). There are very few works in the litera-

ture that have stepped towards evaluation of interactive EMOAs under realistic simulation of

DMs and even these studies are mostly limited to the simulation of mistakes using a random

noise (Campigotto & Passerini, 2010; Köksalan & Karahan, 2010). Some studies have sug-

gested a framework to account for a simulated DM and associated non-idealities. Zujevs and

Eiduks (2011) proposed a DM simulation for experimenting on interactive multi-objective

optimization methods based on the minimization of solutions to an ideal point, but no real-

istic biases or behaviors were simulated. López-Ibáñez and Knowles (2015) devised a ma-

chine DM (MDM) framework for experimenting on ranking-based iEMOAs. They adapted

some of the non-idealities proposed in (Stewart, 1996, 1999, 2005), which are among the

most extensive simulations of psychological biases and non-idealities that might happen in

interactions and decisions of the DM. These include additive dependence, anchoring, loss

aversion, unmodelled criteria and inconsistencies in the decisions. The original MDM study

(López-Ibáñez & Knowles, 2015) used a linear UF with random weights to simulate the DM’s

underlying preferences.

Ojalehto et al. (2016) replace the human DM with an optimizer that guides the search

according to ad-hoc preferences, while simulating two behaviors seen in human DMs; sudden

preference changes and ending the process prematurely. Chen et al. (2017) proposed a virtual

decision maker library, which can adapt to the required preference model to express different

types of preference information such as weights, reference points and tradeoffs. The virtual

DM is able to simulate several decision making personalities as well as dynamically changing

preferences. The authors use additive quadratic functions in their experiments.

As Afsar et al. (2021) indicate, most research on interactive methods does not account

for required elements such as non-idealities and realistic UFs in their studies. The main goal

of this study is to demonstrate simulations of human behaviors and cognitive biases to carry

out more realistic evaluations of interactive EMOAs, when it is not affordable to run such

extensive experiments with human DMs, in order to highlight weaknesses and undesirable

behaviors of such algorithms that are not identified by the typical ad-hoc evaluations under

idealized simulations of DMs and UFs.

3.3 Contributions of this chapter

We build on previous studies and expand the MDM framework proposed by (López-Ibáñez

& Knowles, 2015) with Stewart’s UF and non-idealities proposed in (Stewart, 1996). The

non-idealities selected from (Stewart, 1996) are additively dependent objectives and incon-

sistencies in DM decisions. We also propose simulation of irrelevant objectives as detailed
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in Section 3.4.1.

In its original form, Stewart’s UF is proposed for maximization problems and using it in

minimization problems would result in violations of its underlying assumptions. Here, we

develop a Stewart UF for minimization problems while making sure that all the assumptions

of the Stewart UF, including those with their roots in prospect theory, are observed.

The parameters of the proposed Stewart UF can be tuned to simulate various decision-

making behaviors, such as high or low compensatory preferences. For some parameter com-

binations of Stewart’s UF, the utility value of the whole PF solutions may be squeezed in a

narrow interval, which would make any significant observation troublesome. Also, it may be

desired to have the MPS away from the corner points or on a specific part of the PF. Here,

we have developed a mathematical model and a solution method, which can be used to find

the parameters of the proposed UF not only to have the mentioned desired characteristics but

also to target a particular decision-making behavior or a degree of non-linearity.

To illustrate the differences between traditional UFs and the Stewart UF, the experiments

are repeated as well with a Tchebychef function and the results are compared. As declared

in (Afsar et al., 2021), most of the studies on the performance of interactive methods evaluate

a single interactive method. Here, two interactive algorithms, namely BCEMOA (Battiti &

Passerini, 2010) and iTDEA (Köksalan & Karahan, 2010), are selected and their performance

is analysed and compared. The two algorithms differ in internal mechanisms, including the

preference elicitation, modelling and incorporation, which makes their comparison of inter-

est. The performance of the algorithms is also evaluated in many-objective problems.

3.3.1 Summary of selected algorithms

We have chosen two ranking-based interactive EMOAs that are well-established and highly

cited.

Brain Computer Evolutionary Multiobjective Optimization Algorithm (BCEMOA) (Battiti

& Passerini, 2010) is an iEMOA based on NSGA-II (Deb et al., 2002). In each interaction,

the DM is expected to rank a small subset of non-dominated solutions according to his pref-

erences. The set of solutions along with their ranks are added to the training set. Training

set is then used to train a support-vector machine (SVM) model (Bishop, 2006b) in order to

predict the relative rank of future objective vectors. The predicted value for each solution

replaces its crowding distance in subsequent generations. Further interactions are expected

to increase the size of the training set and the accuracy of the learned model, making it more

consistent with DM’s decisions. After evolving the population, and sorting the population
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based on non-domination and the value of the learned utility function, the algorithm returns

the best solution.

Interactive Territory Defining Evolutionary Algorithm (iTDEA) (Köksalan & Karahan,

2010), which is built upon an earlier study of TDEA (Karahan & Köksalan, 2010), main-

tains two populations; a fixed-size regular population that contains both dominated and non-

dominated individuals, and an archive population with a variable size that only includes non-

dominated solutions. In each generation, a single offspring is generated. If it is dominated

by the members of the regular population, it is discarded, otherwise it replaces a dominated

individual or a random one if the new solution does not dominate any other solution. The

offspring enters the archive under two conditions. First, it should be non-dominated with

respect to the archive population and second it should not violate the territory of existing

individuals in the archive. Territory is defined as a region occupied by each individual in the

objective space and it controls the density of the Pareto front in each region. For the territory

violation check, the offspring is compared to its closest individual in the archive. At each

interaction of iTDEA, the DM is asked to select the most preferred solution among several

filtered solutions. The solutions in the proximity of the best are given smaller territory lead-

ing to larger number of solutions in these regions (Karahan & Köksalan, 2010). At the end,

the algorithm returns a small subset of non-dominated solutions from which the DM selects

the most preferred one. The size of this subset is identical to those presented in interactions.

3.4 Methods

3.4.1 Machine Decision Maker (MDM)

This study makes use of the MDM framework introduced in (López-Ibáñez & Knowles,

2015). An MDM is composed of: (1) a UF that simulates the true preferences of the MDM,

i.e., the preferences of the MDM without being altered by any biases and non-idealities, and

(2) transformations that alter its input objective vector or its output utility values, thus biasing

the MDM’s true preferences to simulate cognitive biases and other non-ideal decision-making

behaviors.

Utility Function

The true preference model underlying the MDM’s decisions is simulated by a UF:

U(z) : Rm → [0, 1] (3.1)
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The Stewart UF: Here, we make use of a specific Sigmoid UF that was proposed in the

field of MCDM by Stewart (1996). The Stewart UF is a weighted sum of marginal functions

ui(zi) : [0, 1]→ [0, 1], each of them has four parameters per objective i that control the shape

of the function:

τi: Reference level, i.e. the point where losses are separated from gains with a steep inflation

rate (loss can be interpreted as those values of the objective that are not satisfying to the

MDM).

λi: The value of the function at the reference level.

αi: The non-linearity of the function over losses.

βi: The non-linearity of the function over the gains.

It has been shown that the Stewart UF is significantly harder than linear UFs and produce

different behaviors than quadratic functions, even without simulating any other biases (Shavarani

et al., 2021).

As outlined in (Stewart, 1996), there are some assumptions underlying the Stewart UF:

• Input objective values are maximized and within the interval [0, 1].

• The UF is defined to be maximized; i.e. the higher the utility the more desirable the

solution.

• The slope and curvature for gains (τi < zi ≤ 1) are smaller than the slope for losses

(0 ≤ zi ≤ τi) in order to observe an assumption of prospect theory which proposes

improving a satisfying solution is less appealing than improving an unsatisfying one. In

the formulation this is applied by considering αi > βi > 0 where αi pertains to losses

and βi pertains to gains.

• The function is concave for gains and convex for losses.

In contrast to the above assumptions, objective values should be minimized in many multi-

objective optimization benchmark problems. In addition, many works in interactive EMOAs

assume that the UF values should be minimized (Battiti & Passerini, 2010; Köksalan & Kara-

han, 2010). To be consistent with the iEMOA literature, we consider here a transformation

of the Stewart UF for minimization.

The Stewart UF for minimization: The Stewart UF is designed to be maximized for max-

imization problems. The function is monotonically increasing, which means higher values
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Table 3.1. Description of different DM behaviors simulated by combinations of τi and λi for minimization
problems. The table is based on its original counterpart proposed in (Stewart, 1996).

Type τi λi Description

1 [0.6, 0.9] [0.1, 0.4] Mainly compensatory preferences.
2 [0.6, 0.9] [0.6, 0.9] Mainly compensatory preferences,

but with sharp preference threshold.
3 [0.1, 0.4] [0.1, 0.4] Limited range of compensation, all

higher values nearly equally undesirable.
4 [0.1, 0.4] [0.6, 0.9] Limited range of compensation,

plus sharp preference threshold.

of the objective functions will yield higher values of the UF. Each marginal ui(zi) is a piece-

wise linear function with different behaviors below and above τi. In order to give higher

utility to solutions with smaller objective values zi, we need to map the values to the [0, 1]

interval such that the minimum zi will correspond to 1 and the maximum to 0. In order to

maintain the assumptions about the concavity for gains and convexity for losses, as well as

the meaning of αi and βi, we also need to transform the reference levels (τi) as well as the

two extremes of the piece-wise intervals (0 will become 1 and 1 will become 0). The effect

of these transformations will be to swap the two sides of the piece-wise function and reflect

the shape of the UF along the x-axis. The resulting UF becomes:

U ′(z) =
m∑
i=1

wiui(zi) (3.2)

ui(zi) =


λi +

(1− λi)(1− e−βi(τi−zi))

1− e−βiτi
if 0 ≤ zi ≤ τi

λi · (eαi(1−zi) − 1)

eαi(1−τi) − 1
if τi < zi ≤ 1

where the objective values zi must be minimized and the parameters of the UF ( τi, λi, αi

and βi) have exactly the same meaning as described above, i.e., no transformation is needed.

Following the iEMOA literature, we also consider here that lower utility values are preferred

by transforming the utility values as U(z) = 1 − U ′(z). In the rest of this chapter, we will

refer to this U(z) simply as the “Stewart UF” for conciseness.

Different decision making behaviors can be simulated by different parameter combinations

of the Stewart UF as laid out in Table 3.1, which only differs from the original (Stewart,

1996) in that low values of τi are now associated to gains and high values to losses. Figures

visualizing the effect of different parameters on the shape of the marginal UFs are provided

in Appendix A, together with heatmap plots showing the PF on top of the Stewart UF for

problems with 2 objectives.

A difficulty of using the Stewart UF is how to set its parameters in a way that is useful for

benchmarking iEMOAs. In Section 3.4.2, we propose an algorithm for setting its parameters
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given a benchmark problem.

Tchebychef UF: Aside from the realistic Stewart UF, here the Tchebychef UF is also used

in the experiments to have a baseline, providing for an “easier” UF, that allows us to assess

whether any observed effects are due to the Stewart UF. The Tchebychef UF is formulated as:

U(z = f(x)) = max
i=1...m

wi|zi − zideal
i | (3.3)

where wi is the weight of each objective function and zideal is the ideal or Utopian point.

Inconsistencies in the DM’s decisions

DMs are prone to mistakes and assuming an ideal DM who would provide error-free prefer-

ence information is unrealistic. In reality, errors may arise due to DM’s confusion, fatigue,

and lack of comprehensive information. This case may happen specifically when the pre-

sented solutions have approximately the same desirability to the DM. The DM may get con-

fused and make the wrong decision. For example, when comparing solutions x, y and z, the

DM may make non-transitive decisions; i.e. preferring solution x over solution y and solution

y over solution z, yet expressing a preference for z over x. To simulate these types of incon-

sistencies, a normally distributed random noise is generated with mean zero and variance σ

and added to the utility (Stewart, 1996; Battiti & Passerini, 2010; López-Ibáñez & Knowles,

2015; Shavarani et al., 2021).

Irrelevant objectives

A specific DM interacting with the iEMOA may not be present in the problem modelling

phase or her desires may not be reflected under specific circumstances. Thus, there might be

non-concurrence between the modelled objectives and those that are really important to the

DM. Potential objectives that are not being optimized but are relevant to the DM are said to

be “hidden” to the mathematical optimization model (Battiti & Campigotto, 2010). Objec-

tives that are considered by the optimizer, yet are irrelevant to the DM are called “irrelevant”.

Changing the values of such objectives would not have any effect on the utility of those solu-

tions to the DM. To illustrate these different cases, let us consider an iEMOA that optimizes

a custom-manufactured car design according to the DM’s preferences, with three possible

optimization objectives: cost, aesthetic appeal and mileage. If the iEMOA does optimize

and show to the DM all three objectives, yet the DM does not care about aesthetic appeal

when interacting, then the latter is an irrelevant objective. Irrelevant objectives are simu-

lated by choosing q ≤ m objectives as irrelevant from the total m being optimized. In each
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experiment, the objectives deemed relevant are selected randomly based on the weights wi

associated to each objective. When calculating the utility of a solution, the zi values of the q

irrelevant objectives are set to their reference level τi, which means there is no perceived gain

or loss when the irrelevant objective value changes, hence they are irrelevant to the MDM.

For Tchebychef UF, irrelevant objectives are set to 0. When q = 0, there are no irrelevant

objectives present.

Additively-dependent objectives

Additive UFs typically assume that the marginal UFs satisfy additive independence, which

means that the change in value of U(z) for a constant change in value of ui(zi), assuming

all other zj , j ∈ {1, . . . ,m} ∧ j 6= i are unchanged, does not depend on the fixed values

of uj(zj) (Stewart, 1996). In other words, given two objective vectors z, z′ ∈ Z that only

differ in one objective value, i.e., zj = z′j ∀j ∈ {1, . . . ,m} ∧ j 6= i, and ∃i, zi 6= z′i, then

U(z)− U(z′) = ui(zi)− ui(z
′
i).

Stewart (1996) points out that checking additively independence is quite difficult in prac-

tice. If the objectives used as inputs to the marginal UFs are actually functions of two or more

“true” objectives, then the resulting UF may not be strictly additively independent (Keeney,

1981) because a value change in one true objective may imply changes in the value of several

marginal UFs.

Stewart (1996) proposes a “mixing” of objectives that ensures that objectives become

additively dependent even if the true objectives are not. Let C = {c1, c2, . . . , cm−q} be the

index set of relevant objectives in random order, then each pair of the relevant objectives

(zck , zck+1
), k = 1, 3, 5, . . . , k < |C|, are modified as follows:

z̃ck = (1− γ)zck + γzck+1
z̃ck+1

= (1− γ)zck+1
+ γzck (3.4)

where γ ∈ [0, 1] is a parameter of the MDM that controls the intensity of the dependency.

The mixing of objectives happens only for relevant objectives. Thus, irrelevant objectives,

if any, are ignored. It should be noted that the additive dependence happens in the “mind”

of the MDM, whereas the true set of objectives without any mixing are optimized by the

algorithm, i.e. mixing happens only in the interactions and has no effect on the optimiza-

tion process. More formally, the optimization algorithm optimizes the true set of objective

values z, whereas the utility value is calculated based on the modified objective vector z̃ to

reflect the dependence among objectives inside the MDM’s “mind”, which is not known to

the optimization algorithm.

58



The degree of each non-ideality is controlled by their corresponding parameter in the

MDM. By setting the different values of the parameters, that is σ, γ and q, various situa-

tions and non-idealities can be modelled with different intensities and the performance of the

algorithms can be evaluated when different non-idealities exist.

The iEMOAs considered here interact with the above MDM by asking it to rank (or choose

the best among) a set of objective vectors. For each pair compared, the MDM calculates

the value of Ũ(z̃), which is obtained by applying the above non-idealities to U(z̃) (Eqs. 3.2

and 3.3), and uses it to rank the pair. The iEMOA never has direct access to the value of Ũ(z̃)
nor U(z̃).

3.4.2 Parameter tuning of the UF

One downside of the Stewart UF compared to other less realistic UFs is the large number

of parameters that need to be set before using it to benchmark an iEMOA. In particular, an

experimenter needs to set αi, βi, τi, λi and wi, for each i = 1, . . . ,m, where m is the number

of objectives. When setting those parameters, an experimenter may wish to enforce certain

properties of the resulting UF, e.g., a minimum difference between the best and worst possible

values of the UF for any solution in the PF, as well as avoid that the PF solution with the best

UF value (zmps) is close to the extremes or the middle of the PF, since iEMOAs that have

an implicit bias towards such regions would have an advantage if the zmps is located there.

Finally, the experimenter may wish to more precisely control the approximate location for

the zmps. Manually setting the parameters of the Stewart UF to satisfy those wishes would be

cumbersome. Therefore, we propose here a procedure that the experimenter can follow based

on optimizing the following single-objective mathematical model.

min
m∑
i=1

|z̆i − zmps
i |

s.t.: zmps = arg min
z∈PF

U(z;α, β, τ, λ,w)

zlps = arg max
z∈PF

U(z;α, β, τ, λ,w)

U(zlps)− U(zmps) ≥ ∆

αi > βi ∀i = 1, . . . ,m∑m
i=1 wi = 1

αi, βi ∈ Z+; τi, λi, wi ∈ [0, 1] ∀i = 1, . . . ,m

(3.5)

In the model above, the experimenter specifies a desired location in objective space (z̆) for

the most-preferred solution. The decision variables are the parameters of the Stewart UF (αi,
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βi, τi, λi, wi). Given these parameter values, the model calculates zmps, i.e., the solution in

the PF with the best utility value (the most-preferred solution) and zlps, i.e., the solution in

the PF with the worst utility value (the least-preferred). The objective function minimizes the

distance between z̆ and zmps, so that zmps will be as close as possible to the solution specified

by the experimenter, while respecting the constraints of the Stewart UF. Here we have chosen

the Manhattan distance to reduce the computational effort of solving the model, but other

distance metrics could be considered by the experimenter. We added an additional constraint

that ensures the difference between U(zlps) and U(zmps) is larger than a threshold ∆ to avoid

uninformative UFs where all solutions in the PF have roughly the same utility value.

The step-by-step process of solving the model in (3.5) can be described as follows:

1. Generation of PF , which should be a reasonably good approximation of the Pareto front

in order to have a chance that the resulting UF adequately captures the range of possibly

UF values. In the case of benchmarking problems, this approximation can be found

either analytically or by running an EMOA for sufficiently large time.

2. Selecting z̆ from the PF. In this study, we chose the z̆ points by selecting points far way

from the center of the Pareto frontier and satisfying z̆ > 1
4m

, such that we also avoid the

extremes of the PF.

3. Choosing a MDM type from Table 3.1, which will further constraint the valid ranges of

the Stewart UF parameters.

4. Solving the model in (3.5) to identify valid parameters of the Stewart UF.

There are several ways to solve the above mathematical model. For simplicity and ease

of implementation, we use a single-objective evolutionary algorithm (EA) that starts from a

random population of 200 solutions, each solution in the population is a chromosome that

holds the parameter values of the Stewart UF. Since there are 5 parameters for each marginal

Stewart UF, when finding the parameters of an UF for a problem with m objectives, the

length of the chromosome is 5m (Fig. 3.1). In our experiments, we have used ∆ = 0.1

and, if this constraint is violated, we penalize the objective function in (3.5) with a value of

1/(U(zlps)−U(zmps)). We stop the EA after 200 generations, which we found empirically to

be enough due to the smoothness of the Stewart UF, and the best solution found by the EA

are the parameter values used for the Stewart UF.
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α1 … αm ϐ1 … ϐm τ1 … τm λ1 … λm ω1 … ωm

Length=5m

alpha values beta values tau values lambda values weights

Integer variables continuous variables

Figure 3.1. Solution representation (chromosome) used by the EA to find the Stewart UF parameters that opti-
mize the single objective problem in Eq. (3.5).

3.5 Experimental design

3.5.1 Benchmark problems

Following the original works (Battiti & Passerini, 2010; Köksalan & Karahan, 2010), we

use benchmark problems DTLZ1, DTLZ2 and DTLZ7 (Deb et al., 2005) with 2, 4 and 10

objectives. The problems with two objectives make it possible to investigate the PF, the

position of the zmps, zlps and the contours of the UF while the high-dimensional cases would

help us to scrutinize the performance of the algorithms in many-objective problems. The

number of decision variables (n) is set to m + 4 for DTLZ1, m + 9 for DTLZ2 and m + 19

for DTLZ7 as suggested in the original study (Deb et al., 2005), m being the number of

objectives.

Each problem scrutinizes different aspects of algorithm performance:

• DTLZ1: Convergence to the Pareto Front. The objective space contains 11k−1 Pareto

optimal fronts where k = n − m + 1, and each of them can attract the evolutionary

algorithm.

• DTLZ2: Convergence to the true PF and the capabilities of the algorithm in adapting to

many-objective problems.

• DTLZ7: Diversity of the solutions. The problem has 2m−1 disconnected Pareto optimal

regions in the objective space.

To make the problems more challenging, for DTLZ1 we follow (Battiti & Passerini, 2010)

and bound xi within [0.25, 0.75]. For DTLZ2 we map xi to xi/2 + 0.25, i = 1, . . . , n, as

suggested in (Brockhoff & Zitzler, 2007b).
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3.5.2 Selected UFs and parameters

Each problem is used along Stewart and Tchebychef UFs to further scrutinize the effects of

the selected UF on the results. The parameters of the Stewart UF for all MDM types de-

scribed in Table 3.1 are calculated using the proposed method described in Section 3.4.2.

The method requires a reasonably good approximation of the PF of each problem, which we

obtained by doing 20 runs of NSGA-II with a population of size 1000 and 50 000 generations

and accumulating the results into a single non-dominated approximation front for each prob-

lem. We found that this approach obtained a PF approximation with a better distribution than

sampling uniformly from the analytical form of the known PF (Deb et al., 2005), specially for

many-objective problems, which is an observation already reported elsewhere (Bezerra et al.,

2018) for the DTLZ benchmark set. The file containing the complete design of experiments

along with the parameters of the UFs can be found in the supplementary material.

In order to use the Stewart UF, it is important to scale the objective values to the interval

[0, 1] as suggested in the original study (Stewart, 1996). It is also desired to have PF points

covering a greater part of this interval rather than squeezing them in a narrow range. To do

so, we treat objectives below the estimated nadir point differently than those above it. For

objective values that are below the estimated nadir point the scaling is done with respect to

the following formulation:

0.95 · zi − zideal
i

znadir
i − zideal

i

(3.6)

For values above the estimated nadir point, a simple linear scaling is done as follows:

0.95 + 0.05 · zi
zworst
i

(3.7)

where zworst
i is the worst possible value of the ith objective. Doing so, the utility values of solu-

tions beyond the nadir point are squeezed in a narrow interval of (0.95, 1] while the objectives

within the bounds of ideal and nadir cover the interval [0, 0.95]. The nadir and ideal points

were estimated for each problem from the data collected when running NSGA-II to obtain

a good approximation of the PF of each problem, as described above. The worst objective

values can be found analytically for the benchmark problems considered in our study (Deb

et al., 2005). The scaling is not needed or applied for the Tchebychef utility function because

it does not require objective values in the range [0, 1].

3.5.3 Parameter settings of the Machine Decision-Maker (MDM)

Measuring the effect of cognitive biases of the DM is an important aspect that should be

considered in experimenting on iEMOAs (Afsar et al., 2021). In this regard, the two selected
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algorithms are compared and analyzed under several conditions:

1. Under ideal conditions where no non-idealities are applied.

2. With simulation of inconsistencies in MDM’s decisions (σ > 0 ∧ γ, q = 0).

3. With simulation of additively dependent objectives (γ > 0 ∧ σ, q = 0).

4. With simulation of irrelevant objectives (q > 0, σ, γ = 0).

We have selected different values forσ ∈ {0.005, 0.01, 0.1, 0.2} and γ ∈ {0.01, 0.05, 0.1, 0.5}
to impose different levels of noise and additive dependence, respectively. For q, we have sim-

ulated one irrelevant objective by setting q = 1 for many-objective problems.

Specifications of all tests along with most- and least-preferred solutions, zmps and zlps re-

spectively, are reported in Table 3.2 along with their (true) utility values. The utility value

of these solutions are used as a criteria to evaluate the performance of the algorithms. It is

important to be reminded that we identify zmps with regard to the approximated PF, generated

as described in Section 3.4.2. However, the iEMOAs may succeed in finding solutions with

even better utility that did not appear in our approximated PF. This is expected as iEMOAs

focus on only specific parts of the PF and have better chance of getting closer to the PF in

those focused regions.

3.5.4 BCEMOA and iTDEA parameter settings

All parameters of BCEMOA and iTDEA are set as suggested in the original papers (Battiti

& Passerini, 2010; Köksalan & Karahan, 2010). For problems with two objectives the initial

and final territory for iTDEA are set to 0.1 and 0.00001, respectively, which was one of the

alternatives suggested by its original authors. For problems with 4 and 10 objectives these

values change to 0.5 and 0.25. Any smaller values for these parameters would make the size

of archive population large and the computational costs unaffordable. For the number of

solutions presented to the DM in each interaction, the authors of iTDEA suggest 2m, while

the authors of BCEMOA performed tests with 3 to 50 solutions. Considering the cognitive

burden on the DM, we set this number to 5. The population size in all experiments is set to

400.

To give a similar computational budget to both iEMOAs, the number of solution evalua-

tions is set to 80 000. Since iTDEA evaluates only one solution per generation while BCE-

MOA creates a completely new population, 80 000 evaluations correspond to 80 000 gen-

erations in iTDEA and 200 generations in BCEMOA. The different iEMOAs distribute in

63



Table 3.2. List of UFs used in the tests. P indicates the benchmark problem; n: dimension of the problem;
m: number of objectives; Type corresponds to the MDM type in Table 3.1; U(zmps): utility of zmps (most-
preferred solution); U(zlps): utility of zlps (least-preferred solution); UF: UF type, where “ste” stands for the
Stewart UF and “tch” for the Tchebychef UF.

P n m Type U(zmps) U(zlps) UF

1 6 2 2 0.0101 0.9038 ste
1 6 2 1 0.1023 0.8976 ste
1 6 2 3 0.3128 0.9970 ste
1 6 2 4 0.1426 0.9378 ste
1 6 2 - 0.1159 0.3476 tch
2 11 2 1 0.3660 0.6364 ste
2 11 2 2 0.1062 0.8933 ste
2 11 2 3 0.4627 0.9996 ste
2 11 2 4 0.1261 0.9977 ste
2 11 2 - 0.3170 0.7653 tch
7 21 2 1 0.1259 0.9692 ste
7 21 2 2 0.1097 0.8894 ste
7 21 2 3 0.4061 1.0000 ste
7 21 2 4 0.3525 0.9999 ste
7 21 2 - 0.0402 0.8506 tch

1 8 4 1 0.3560 0.8928 ste
1 8 4 2 0.0047 0.3643 ste
1 8 4 3 0.3019 0.8759 ste
1 8 4 4 0.0047 0.3781 ste
1 8 4 - 0.0405 0.1589 tch
2 13 4 1 0.3267 0.9936 ste
2 13 4 2 0.0253 0.5428 ste
2 13 4 3 0.4150 0.9989 ste
2 13 4 4 0.0214 0.5193 ste
2 13 4 - 0.0567 0.3222 tch
7 23 4 1 0.1481 0.9993 ste
7 23 4 2 0.0111 0.6991 ste
7 23 4 3 0.3269 0.9992 ste
7 23 4 4 0.0228 0.7759 ste
7 23 4 - 0.0699 0.4371 tch

1 14 10 1 0.0002 0.2164 ste
1 14 10 2 0.0001 0.1609 ste
1 14 10 3 0.0215 0.8690 ste
1 14 10 4 0.0108 0.7716 ste
1 14 10 - 0.0397 0.2404 tch
2 19 10 1 0.0003 0.2953 ste
2 19 10 2 0.0001 0.2448 ste
2 19 10 3 0.1117 0.9695 ste
2 19 10 4 0.0217 0.8263 ste
2 19 10 - 0.0675 0.2446 tch
7 29 10 1 0.0016 0.8045 ste
7 29 10 2 0.0007 0.7638 ste
7 29 10 3 0.1238 0.9927 ste
7 29 10 4 0.0460 0.9842 ste
7 29 10 - 0.0580 0.2113 tch

different ways the number of generations before the first interaction, between subsequent in-

teractions and after the last one. Thus, there is a trade-off between the number of interactions

and the intensity of the search before each interaction. Here, we perform experiments with 2,

3 and 4 interactions, as higher number of interactions do not seem to substantially increase

the utility of solutions and, in fact, may decrease it due to the mentioned trade-off. Fewer
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than two interactions would not exercise the learning mechanisms of the iEMOAs and can

hardly be called “interactive” optimization. We would like to mention that the cognitive ef-

fort required from the DM may not be the same in the two algorithms as they are different

in preference elicitation style. BCEMOA asks the DM to rank a subset of solutions, while

iTDEA asks to select the best among a subset of solutions. Furthermore, BCEMOA returns

a single solution that has the best utility value based on its estimated UF while iTDEA re-

turns a subset of solutions from which the DM should select the final one. When comparing

the two algorithms, one needs to account for the number of solution evaluations, CPU time,

cognitive effort, number of evaluated solutions, quality of the final solution, and so on. How-

ever, it is not possible to make similar settings for both algorithms in every aspect. Take for

instance, the number of solution evaluations. It is impossible to have the same number of so-

lution evaluations while fixing the run time for both algorithms. Thus, the researcher should

make decisions on the most important factors. When deciding on cognitive effort, raking a

subset of solutions may be more tedious than just selecting the best. However, we have de-

cided on having the same number of solutions evaluated by the DM and the same number

of interactions for both algorithms rather than opting for having the same cognitive effort as

measuring the cognitive effort and proposing a fair number of interactions deserves its own

research. The decision was mainly driven by the fact that the required feedback from the DM

is insignificant in both algorithm as the number of solutions and number of interactions is not

large and thus we compromised for having a bit of a difference in cognitive effort rather than

having a different number of evaluated solutions or interactions which we think have a more

significant effect on the performance of the algorithms.

Each experiment is repeated 20 times with different random seeds.

3.5.5 Implementations

The algorithms and the Machine DM are implemented in Python 3.7.6, using the NSGA-

II and benchmark implementations provided by the Pygmo library 2.16.0 (Biscani, Izzo, &

Yam, 2010a) and the SVM ranking capabilities in Preference Learning Toolbox (Farrugia,

Martínez, & Yannakakis, 2015) powered by scikit-learn 0.23.1 (http://scikit-learn.org/). For

our implementation of iTDEA in Python, we studied the C++ implementation provided by its

original authors at https://bitbucket.org/ibrahimkarahan/iTDEA.
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3.6 Results

Interactive methods are supposed to come up with a single solution (or at least small subset

of non-dominated solutions) that are of high interest to the DM. Thus, it makes sense to com-

pare the performance of the algorithms based on the utility value of the final solution returned

by each of them. The results of experiments for tests in Table 3.2 are discussed in this section

for two Stewart and Tchebychef utility functions. The box plots and the associated strip plots

presented in this section report the recorded utility values of the final solution returned by

each algorithm in each test. Tables in this section provide the utility values averaged over 20

runs for each test along with the corresponding standard deviation. The performance of the

two algorithms on each test is compared in the tables and the one with superior performance is

indicated in bold font where the p-value of the Wilcoxon test is less than 0.05. To save space,

we focus here on the most relevant results. All other figures are available as supplementary

material.

3.6.1 Experiments with no biases

In this section the performance of the algorithms are compared when no biases are applied.

It should be noted that we have 4 different behaviors for UF. Considering 3 test problems

and 3 different objective space dimensions, the number of tests for this UF sums up to 36.

Tchebychef, however, cannot simulate different DM behaviors and as a result the number of

tests for this UF is reduced to 9.

Tchebychef UF

The results of experiments for Tchebychef UF are illustrated in Figure 3.2. BCEMOA man-

ages to find the MPS in problems with 2 objectives. For DTLZ1, aside from the cases when

it converges to the MPS, it seems the BCEMOA gets trapped in a point other than the MPS.

For instance, in DTLZ1 with m = 2, there is another point with a utility value of around 0.23

that attracts the algorithm. This can be expected as DTLZ1 has many local fronts, each of

which attracts the algorithm (Deb et al., 2005). With the increase in the dimensions of the

objective space, the performance of BCEMOA also deteriorates and the returned points get

distant from the MPS. Generally, no significant improvement is observed in the results with

the increase in the number of interactions. The only exception is DTLZ7 with 4 and 10 objec-

tives where the values and the variability are slightly decreased for BCEMOA. These results

do not contradict the results of the original study (Battiti & Passerini, 2010), which reports

in detail the performance of BCEMOA for increasing number of interactions only with linear
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Figure 3.2. Results of the iEMOAs under ideal conditions with Tchebychef UF. Each row indicates a problem
with a different objective function. Each column belongs to a different number of objective functions (m).
The blue dashed line represents the utility value of the MPS and the red one illustrates the worst utility value
among PF solutions. The number of interactions varies from 2 to 4. The box plots report the recorded utility
values of the final solution returned by each algorithm averaged over 20 runs. Lower values are preferred.

UF, whereas for quadratic UFs, it briefly mentions that more interactions may not necessarily

improve the results. The original study of iTDEA (Köksalan & Karahan, 2010) also indicates

that, for complicated UFs, more interactions may lead to deteriorated results. Thus, it is not

surprising to see the results getting worse or stay unchanged with more interactions.

BCEMOA finds better solutions than iTDEA in all of these tests, except those on DTLZ7

with 10 objectives, where iTDEA succeeds in finding solutions with better utility than the

zmps estimated from our approximation to the PF (Section 3.4.2). Those solutions are located

below the blue dashed line (Fig. 3.2), which represents the utility value of zmps. In other words,

a single run of iTDEA using 80 000 solution evaluations was able to find a solution with better

UF value than any solution in the approximation of the PF obtained by 20 runs of NSGA-II

with 50 million evaluations (see Section 3.5.2). A higher number of interactions significantly

improves results on DTLZ7 with 2 and 10 objectives. In other cases, whether there is a

benefit of increasing the number of interactions depends on the iEMOA, e.g., on DTLZ7 with

m = 4, BCEMOA benefits while iTDEA does not. In some cases, such as problems DTLZ1

and DTLZ2 with m = 2 and DTLZ7 with m = 4, a higher number of interactions results

in iTDEA returning worse utility values, which may be explained by the fact that the total

number of evaluations is fixed, thus a higher number of interactions means fewer generations

before and after interactions, which may prevent the iTDEA from converging close enough
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Figure 3.3. Results of the iEMOAs under ideal conditions with Stewart UF. Each column illustrates results re-
lated to a specific MDM type and each row belongs to a problem. The blue dashed line represents the utility
value of the MPS and the red one illustrates the worst utility value among PF solutions. The number of in-
teractions varies from 2 to 4. The box plots report the recorded utility values of the final solution returned by
each algorithm averaged over 20 runs. Lower values are preferred.

to the PF before the MDM interacts.

The Stewart UF

The results pertaining to this section are summarized in Figure 3.3.

The performance of BCEMOA is much worse in experiments with Stewart’s UF, specifi-
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cally when MDM types 3 and 4 are simulated, e.g., see results on DTLZ1 with m ∈ {2, 10}
and DTLZ2 with m = 10 for both types, and on DTLZ7 with m = 10 for type 4 specifically.

BCEMOA obtains better results in all tests with m = 4 and on a few other tests with m = 2,

e.g., DTLZ7 and MDM types 1, 3 and 4. Generally, the results of BCEMOA rarely show sig-

nificant improvements when increasing the number of interactions beyond three and, in some

cases, results with four interactions are worse than with three and show signs of stagnation,

e.g., as in the case of DTLZ7 with m = 10 and MDM types 1 and 4 (bottom row). This

behavior can be explained by the fact that, with more interactions, fewer solution evaluations

are performed before the first interaction, thus the MDM is presented solutions far from the

Pareto front and may misdirect the iEMOA towards the wrong region of the front (DTLZ7

has a discontinuous front).

iTDEA manages to find the MPS in most tests with 2 objectives. In DTLZ7, iTDEA finds

solutions below the blue line, which means solutions with better utility than any solution in

the approximated PF used to generate the UFs (Section 3.4.2). Moreover, for problems with

10 objectives, iTDEA performs quite well on DTLZ1 with MDM types 1 and 2, DTLZ2 with

type 1 and DTLZ7 with types 1, 2 and 4. Looking at all the results with Stewart’s UF, it

appears that DM types 1 and 2 are relatively easier, as both algorithms find the MPS with at

least a particular number of interactions. This is more obvious in problems DTLZ1 with 2

objectives and DTLZ2 with 10 objectives (first and sixth rows in Figure 3.3).

Generally, DM types 3 and 4 seem to be more troublesome and the results of both algo-

rithms deteriorate. These DM types have a limited range of compensation (c.f. Table 3.1),

which means any deviation from the narrow interval of satisfactory values of any objectives

leads to large losses in the marginal utility value of that objective function.

The number of interactions here also has the same effect as with Tchebychef UF. In most

cases, increasing the number of interactions beyond two does not improve the results for

iTDEA. In some cases, e.g., all problems with m = 2 and MDM type 3, the results of iTDEA

become noticeably worse when the number of interactions increases beyond two. In contrast,

BCEMOA sometimes benefits from more than two interactions, e.g., DTLZ7, m = 10 and

MDM type 3, however, a fourth interaction often undoes any benefits, as on DTLZ7, m = 10,

and MDM type 1 and 4. Considering these results, we decided to focus on the results with

3 interactions in the remainder of the chapter, which is a compromise value for which both

iEMOAs have both good and bad results and increasing the number of interactions further

almost never improves the results.
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3.6.2 Simulation of inconsistencies

This set of tests evaluates the results when there are inconsistencies in the decisions of the

DM, which is simulated by adding random normal noise to the utility values. The results are

depicted for four levels of noise (σ) for the Stewart and Tchebychef UFs in Table 3.3. The

utility values returned by the two iEMOAs are statistically compared using Wilcoxon test and

significantly lower (better) values (p-value < 0.05) are indicated in bold font. Additional

figures can be found in the supplementary material. The number of interactions in all cases

is three.

In general, larger values of σ, which simulate higher rates of inconsistencies in the DM’s

decisions, negatively affect the results of both iEMOAs, which is evidenced by an increase in

mean utility value (higher is worse) and its standard deviation across runs (in parentheses).

For problems with m = 2, any statistical differences between the BCEMOA and iTDEA dis-

appears with higher values σ. With m = 4, BCEMOA is able to find better solutions than

iTDEA even with values of σ = 0.1, but its advantage disappears for σ = 2. In the case of

m = 10, iTDEA is able to find better solutions than BCEMOA even in the presence of large

noise (σ = 0.2) and the difference between the results of iTDEA and BCEMOA grows larger

as noise increases, which means that the noise has a stronger effect on BCEMOA than on

iTDEA. A similar tendency can be observed even with the Tchebychef UF, where BCEMOA

performs better with low noise whereas iTDEA gains back the advantage as noise increases.

In this regard, it should be noted that both original studies (Battiti & Passerini, 2010; Köksalan

& Karahan, 2010) indicated that their algorithms are robust towards noise, but the original

analysis of iTDEA also mentioned that noise sometimes may lead to better results (Köksalan

& Karahan, 2010). Thus our findings are consistent with the original studies.

3.6.3 Simulation of irrelevant objectives

These experiments test the performance of the algorithms when confronted with irrelevant

objectives. Here, the number of irrelevant objectives is limited to q = 1 and the simulation

is done only for problems with 4 and 10 objectives. The results are detailed in Table 3.4

showing utility values averaged over 20 runs along with standard deviation.

Generally speaking, having one irrelevant objective seems to have not much effect on the

results in most tests and the effect is not consistently good or bad. For example, iTDEA

performs slightly better with q = 1 than with q = 0 on DTLZ1 with m = 10 and MDM type

3 or 4, but performs worse on DTLZ7 with m = 4 and MDM type 2. BCEMOA seems to be

more affected by the presence of an irrelevant objective, e.g., BCEMOA loses its advantage
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over iTDEA on DTLZ7, m = 4, MDM type 4, and its results become noticeably worse on

DTLZ7, m = 10 and MDM types 3 and 4. However, in all other cases, the effect of q = 1 is

minor. These results suggest that both iEMOAs are able to ignore the irrelevant objective.

3.6.4 Simulation of additively dependent objectives

The effect of changing γ parameter, which simulates dependence among objectives, is illus-

trated in Table 3.5. In most cases, the imposed dependencies have almost no effect on the

results unless it is exerted with its maximum intensity (γ = 0.5).

In the case of m = 2, both BCEMOA and iTDEA can keep the quality of their results up

to γ = 0.5, when results deteriorate considerably, e.g., for DTLZ1 and DTLZ7 with MDM

types 1, 2 and 4, utility values become at least two times worse from γ = 0.1 to γ = 0.5.

For m = 10, iTDEA sees almost no effect from increasing γ, whereas BCEMOA results

deteriorate only for DTLZ7 and MDM types 2, 3 and 4. For the Tchebychef UF, there is a

clear pattern that shows the highest values of γ having a negative impact of utility values for

m = 2 while having almost no effect for m = 10. In conclusion, both iEMOAs appear to

be quite robust to the effects of additive dependency, except for m = 2 and large degrees of

dependency, and iTDEA appears to be slightly more robust than BCEMOA, in general.

3.7 Discussion

We have found that even under ideal conditions, where no DM biases are simulated, the

interactive algorithms considered here fail to perform well in at least some experimental con-

ditions. This result emphasises the importance of studies focused on providing extensive

results, providing a sufficient diversity of experimental settings in order to give some con-

fidence in the robustness and consistency of performance, which we have uncovered is not

there yet. We suggest that only by making use of MDMs is this possible, short of expensive

and time-consuming experiments with large numbers of human DMs.

Further to this general observation, we have also found that different decision-making

behaviors do have different effects on final results, underlining that it is important not only to

vary test problems and interaction parameters but also the DMs simulated themselves.

Although direct comparison of iEMOAs should always be attempted only with extreme

caution, and is not the primary goal of our research, we have removed sources of variation

between the two algorithms in this study where possible. We note here that this has meant

that, due to different mechanisms in each algorithm, the CPU time is different for them. For
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instance, while mean CPU-time is 23 seconds for BCEMOA, it is increased to 484 for iTDEA.

We believe that our approach, equalising solution evaluations and interactions, is justifiable,

but we also note that the alternative would be to make comparisons on the basis of equally

allocated (maximum) CPU time.

3.8 Conclusions

Based on Stewart’s UF, and non-idealities introduced in the literature, we here extended

our MDM framework and used it to conduct a more realistic and more extensive benchmark-

ing study on interactive multiobjective methods than previously available.

In comparison to benchmarking work undertaken elsewhere using other utility functions,

we find the use of Stewart’s more psychologically plausible UF poses significant difficulties

to the algorithms. To make the use of this UF general and applicable within the MDM frame-

work, we proposed a model that can be used to identify parameters of the UF in order to

achieve desired characteristics. Moreover, we also reformulated the Stewart UF to facilitate

its use in minimization problems. Even though algorithms manage to find ‘most preferred

solutions’ in some experiments, they fail to succeed in many others. The results indicate

that even under ideal conditions (i.e. no decision-maker biases simulated) the performance of

algorithms is far from desired or expected.

Future research is directed towards making the simulations more comprehensive with the

simulation of realistic behaviors that were not discussed in this study such as learning, shift

in preferences and fatigue. Our research here was mainly focused on reliable simulation of

decision-making behaviors and their effects on performance on existing benchmark test prob-

lems. However, further research should investigate how to design more realistic test problems

for evaluating interactive EMOAs. Finally, another important aspect is the cognitive effort

of the DM. Our proposed MDM enables measuring cognitive effort as the number of queries

to its internal UF, but we leave to future work such analysis. Our contribution here towards

more realistic simulations of decision-making behaviors is not in conflict, nor replaces the

need for studies with human DMs. On the contrary, we suggest that future research in inter-

active EMOAs should contrast the results obtained in this chapter, which are still artificial

simulations of complex behaviors, with behavioral studies of human DMs, and use those be-

havioral studies to further inform the next generation of machine DMs. To motivate further

research, we make our code publicly available at https://shorturl.at/puvS2.
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Table 3.3. The results of experiments with the simulation of inconsistencies in the decisions of the DM for
BCEMOA and iTDEA. The mean (and standard deviation in parenthesis) over 20 independent runs is shown
for each test. The values are rounded to 2 decimal points. Comparing the performance of 2 algorithms, the
better (lower) values are indicated in bold font to highlight the winner where p-value≤ 0.05 for the Wilcoxon
test. P: ID of the DTLZ benchmark problem. m: the dimension of the objective space. Type: DM Type.

BCEMOA iTDEA
σ .0 .005 .01 .1 .2 .0 .005 .01 .1 .2

P m Type Stewart Utility Function

1 2 1 .19(.2) .25(.32) .25(.32) .26(.32) .28(.32) .1(.0) .1(.0) .1(.0) .12(.02) .15(.07)
1 2 2 .16(.33) .13(.28) .13(.28) .14(.29) .22(.35) .01(.0) .01(.0) .01(.0) .03(.04) .04(.05)
1 2 3 .57(.27) .54(.28) .57(.27) .62(.26) .66(.26) .5(.19) .49(.19) .49(.19) .49(.2) .51(.21)
1 2 4 .34(.34) .35(.36) .35(.36) .36(.36) .37(.36) .14(.0) .14(.0) .15(.0) .16(.02) .16(.03)
2 2 1 .37(.01) .37(.0) .37(.02) .42(.08) .44(.1) .37(.0) .37(.0) .37(.0) .4(.04) .45(.09)
2 2 2 .11(.0) .11(.02) .12(.03) .16(.14) .14(.03) .11(.0) .11(.0) .11(.0) .13(.03) .14(.03)
2 2 3 .47(.03) .49(.05) .49(.05) .55(.16) .56(.16) .5(.04) .5(.04) .5(.04) .53(.08) .63(.21)
2 2 4 .2(.23) .25(.27) .29(.31) .27(.3) .27(.28) .13(.0) .13(.0) .13(.0) .17(.17) .26(.3)
7 2 1 .2(.23) .2(.23) .2(.23) .21(.23) .21(.23) .39(.37) .32(.33) .32(.33) .32(.33) .28(.31)
7 2 2 .11(.0) .11(.0) .15(.17) .19(.23) .19(.23) .11(.01) .12(.01) .15(.16) .23(.28) .23(.28)
7 2 3 .43(.07) .44(.07) .44(.07) .48(.1) .5(.18) .48(.09) .48(.09) .48(.1) .49(.1) .54(.14)
7 2 4 .38(.09) .39(.09) .39(.09) .44(.15) .42(.15) .46(.14) .46(.14) .46(.14) .44(.13) .48(.19)
1 4 1 .48(.13) .49(.13) .49(.13) .52(.13) .58(.15) .59(.09) .59(.09) .59(.09) .59(.09) .59(.09)
1 4 2 .05(.09) .06(.1) .06(.09) .09(.13) .13(.14) .12(.12) .12(.11) .12(.11) .12(.11) .12(.11)
1 4 3 .46(.12) .46(.13) .44(.11) .5(.13) .52(.16) .56(.11) .56(.11) .56(.11) .56(.11) .56(.11)
1 4 4 .04(.09) .04(.08) .04(.08) .06(.14) .08(.11) .1(.13) .1(.13) .1(.13) .1(.13) .1(.13)
2 4 1 .49(.17) .52(.17) .5(.17) .58(.17) .6(.18) .85(.14) .85(.14) .85(.14) .85(.14) .85(.14)
2 4 2 .05(.03) .05(.04) .06(.06) .09(.08) .15(.15) .13(.09) .13(.09) .13(.09) .13(.09) .13(.09)
2 4 3 .54(.12) .55(.13) .56(.12) .61(.15) .67(.16) .88(.12) .88(.12) .88(.12) .88(.12) .88(.12)
2 4 4 .03(.01) .04(.02) .04(.03) .1(.11) .09(.08) .11(.09) .11(.09) .11(.09) .11(.09) .11(.09)
7 4 1 .26(.14) .26(.15) .3(.18) .32(.19) .4(.23) .37(.22) .38(.21) .38(.21) .38(.21) .39(.22)
7 4 2 .03(.02) .04(.02) .04(.02) .04(.03) .06(.07) .06(.07) .09(.13) .09(.13) .09(.12) .11(.14)
7 4 3 .44(.14) .43(.13) .44(.14) .5(.14) .58(.15) .5(.15) .52(.16) .52(.16) .54(.16) .54(.17)
7 4 4 .11(.05) .11(.05) .12(.07) .13(.06) .17(.11) .15(.08) .18(.1) .18(.1) .19(.11) .22(.13)
1 10 1 .07(.07) .09(.08) .07(.07) .1(.1) .12(.1) .01(.01) .01(.01) .01(.01) .01(.01) .01(.01)
1 10 2 .05(.06) .05(.06) .04(.06) .08(.07) .1(.09) .0(.01) .0(.01) .0(.01) .0(.01) .0(.01)
1 10 3 .15(.14) .14(.09) .14(.09) .2(.15) .27(.18) .17(.09) .17(.09) .17(.09) .17(.09) .17(.09)
1 10 4 .14(.08) .14(.09) .15(.09) .18(.12) .21(.13) .15(.1) .15(.1) .15(.1) .15(.1) .15(.1)
2 10 1 .02(.01) .02(.01) .03(.03) .05(.04) .05(.05) .0(.0) .0(.0) .0(.0) .0(.0) .0(.0)
2 10 2 .0(.0) .01(.0) .01(.01) .02(.04) .02(.03) .0(.0) .0(.0) .0(.0) .0(.0) .0(.0)
2 10 3 .25(.1) .27(.09) .26(.07) .32(.16) .35(.17) .39(.12) .39(.12) .39(.12) .39(.12) .39(.12)
2 10 4 .14(.07) .14(.07) .13(.06) .15(.07) .18(.11) .15(.08) .15(.08) .15(.08) .15(.08) .15(.08)
7 10 1 .1(.11) .11(.1) .09(.09) .18(.14) .2(.15) .01(.01) .08(.12) .08(.12) .09(.13) .09(.13)
7 10 2 .12(.1) .09(.11) .1(.11) .16(.14) .24(.15) .03(.06) .06(.09) .06(.09) .05(.07) .06(.09)
7 10 3 .15(.08) .36(.16) .36(.17) .42(.21) .43(.21) .17(.13) .2(.17) .2(.17) .18(.16) .19(.16)
7 10 4 .13(.08) .22(.15) .23(.15) .28(.19) .33(.18) .1(.1) .14(.16) .14(.16) .14(.16) .17(.18)

P m Type Tchebychef Utility Function

1 2 – .14(.05) .14(.05) .15(.05) .2(.11) .24(.1) .12(.01) .12(.01) .12(.01) .17(.05) .19(.06)
2 2 – .32(.0) .32(.01) .34(.04) .43(.11) .46(.15) .33(.01) .33(.01) .33(.01) .36(.09) .47(.15)
7 2 – .05(.05) .04(.01) .04(.02) .1(.15) .16(.19) .04(.0) .04(.0) .04(.0) .06(.06) .14(.19)
1 4 – .06(.02) .06(.02) .06(.02) .08(.04) .08(.03) .07(.03) .07(.03) .07(.03) .07(.03) .07(.03)
2 4 – .08(.03) .09(.04) .09(.04) .13(.06) .16(.07) .17(.06) .17(.06) .17(.06) .17(.06) .17(.06)
7 4 – .1(.04) .12(.05) .12(.05) .17(.09) .21(.1) .13(.08) .16(.1) .16(.1) .19(.11) .19(.11)
1 10 – .06(.03) .07(.03) .07(.03) .07(.04) .08(.05) .06(.03) .06(.03) .06(.03) .06(.03) .06(.03)
2 10 – .08(.01) .08(.01) .08(.01) .11(.04) .11(.04) .11(.03) .11(.03) .11(.03) .11(.03) .11(.03)
7 10 – .12(.02) .12(.02) .13(.01) .14(.02) .15(.03) .06(.02) .07(.03) .07(.03) .08(.04) .08(.04)
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Table 3.4. The results of experiments with the simulation of irrelevant objectives for many-objective prob-
lems. The mean (and standard deviation in parenthesis) over 20 independent runs is shown for each test. The
values are rounded to 2 decimal points. Comparing the performance of 2 algorithms, the better (lower) val-
ues are indicated in bold font to highlight the winner where p-value≤ 0.05 for the Wilcoxon test. P: ID of the
DTLZ benchmark problem. m: the dimension of the objective space. Type: type of Stewart UF (Table 3.1).
U(zmps): utility of zmps. q: number of simulated irrelevant objectives.

BCEMOA iTDEA
q = 0 q = 1 q = 0 q = 1

P m Type U(zmps) Stewart Utility Function

1 4 1 0.356 0.48(0.13) 0.47(0.11) 0.59(0.09) 0.61(0.1)
1 4 2 0.005 0.05(0.09) 0.07(0.09) 0.12(0.12) 0.12(0.12)
1 4 3 0.302 0.46(0.12) 0.45(0.11) 0.56(0.11) 0.57(0.11)
1 4 4 0.005 0.04(0.09) 0.04(0.06) 0.1(0.13) 0.11(0.12)
2 4 1 0.327 0.49(0.17) 0.47(0.15) 0.85(0.14) 0.81(0.14)
2 4 2 0.025 0.05(0.03) 0.06(0.04) 0.13(0.09) 0.13(0.08)
2 4 3 0.415 0.54(0.12) 0.5(0.11) 0.88(0.12) 0.85(0.13)
2 4 4 0.021 0.03(0.01) 0.03(0.01) 0.11(0.09) 0.1(0.09)
7 4 1 0.148 0.26(0.14) 0.21(0.11) 0.37(0.22) 0.41(0.26)
7 4 2 0.011 0.03(0.02) 0.03(0.02) 0.06(0.07) 0.11(0.14)
7 4 3 0.327 0.44(0.14) 0.44(0.14) 0.5(0.15) 0.54(0.16)
7 4 4 0.023 0.11(0.05) 0.17(0.03) 0.15(0.08) 0.17(0.09)
1 10 1 0.000 0.07(0.07) 0.06(0.07) 0.01(0.01) 0.0(0.0)
1 10 2 0.000 0.05(0.06) 0.05(0.06) 0.0(0.01) 0.0(0.0)
1 10 3 0.021 0.15(0.14) 0.15(0.14) 0.17(0.09) 0.12(0.07)
1 10 4 0.011 0.14(0.08) 0.13(0.1) 0.15(0.1) 0.09(0.08)
2 10 1 0.000 0.02(0.01) 0.02(0.03) 0.0(0.0) 0.0(0.0)
2 10 2 0.000 0.0(0.0) 0.01(0.01) 0.0(0.0) 0.0(0.0)
2 10 3 0.112 0.25(0.1) 0.26(0.11) 0.39(0.12) 0.34(0.1)
2 10 4 0.022 0.14(0.07) 0.14(0.07) 0.15(0.08) 0.14(0.06)
7 10 1 0.002 0.1(0.11) 0.12(0.09) 0.01(0.01) 0.07(0.06)
7 10 2 0.001 0.12(0.1) 0.08(0.09) 0.03(0.06) 0.05(0.06)
7 10 3 0.124 0.15(0.08) 0.35(0.17) 0.17(0.13) 0.18(0.12)
7 10 4 0.046 0.13(0.08) 0.22(0.15) 0.1(0.1) 0.13(0.13)

P m Type U(zmps) Tchebychef Utility Function

1 4 – 0.040 0.06(0.02) 0.06(0.02) 0.07(0.03) 0.08(0.03)
2 4 – 0.057 0.08(0.03) 0.08(0.03) 0.17(0.06) 0.15(0.05)
7 4 – 0.070 0.1(0.04) 0.1(0.04) 0.13(0.08) 0.19(0.1)
1 10 – 0.040 0.06(0.03) 0.06(0.03) 0.06(0.03) 0.07(0.03)
2 10 – 0.067 0.08(0.01) 0.08(0.01) 0.11(0.03) 0.13(0.03)
7 10 – 0.058 0.12(0.02) 0.14(0.03) 0.06(0.02) 0.07(0.03)
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Table 3.5. Results of experiments with the simulation of additively dependent objectives for BCEMOA and
iTDEA. Mean utility (and standard deviation) over 20 independent runs. Values are rounded to 2 decimal
points. Comparing the performance of the two iEMOAs, significantly better (lower) values are indicated in
boldface (Wilcoxon test with p-value≤ 0.05). P: DTLZ problem; m: number of objectives; Type: type of
Stewart UF (Table 3.1);

BCEMOA iTDEA
γ .0 .01 .05 .1 .5 .0 .01 .05 .1 .5

P m Type Stewart Utility Function

1 2 1 .19(.2) .19(.2) .19(.2) .19(.2) .49(.38) .1(.0) .1(.0) .1(.0) .1(.0) .38(.35)
1 2 2 .16(.33) .16(.33) .2(.31) .2(.3) .42(.41) .01(.0) .01(.01) .05(.03) .05(.03) .32(.37)
1 2 3 .57(.27) .62(.26) .62(.26) .73(.16) .71(.29) .5(.19) .54(.19) .56(.18) .67(.08) .72(.27)
1 2 4 .34(.34) .34(.34) .34(.34) .34(.34) .6(.38) .14(.0) .14(.0) .14(.0) .14(.0) .51(.34)
2 2 1 .37(.01) .37(.01) .37(.01) .37(.0) .49(.14) .37(.0) .37(.0) .37(.0) .37(.0) .55(.13)
2 2 2 .11(.0) .11(.0) .11(.0) .11(.0) .46(.4) .11(.0) .11(.0) .11(.0) .11(.0) .66(.37)
2 2 3 .47(.03) .47(.03) .48(.03) .48(.03) .5(.04) .5(.04) .51(.04) .5(.04) .5(.04) .51(.04)
2 2 4 .2(.23) .24(.27) .2(.23) .2(.23) .46(.38) .13(.0) .13(.0) .13(.0) .31(.33) .65(.35)
7 2 1 .2(.23) .2(.23) .2(.23) .2(.23) .5(.38) .39(.37) .35(.35) .35(.35) .35(.35) .43(.37)
7 2 2 .11(.0) .11(.0) .18(.23) .15(.17) .5(.4) .11(.01) .12(.01) .12(.01) .23(.28) .42(.39)
7 2 3 .43(.07) .44(.08) .44(.08) .44(.08) .54(.07) .48(.09) .46(.09) .47(.09) .47(.09) .54(.05)
7 2 4 .38(.09) .38(.09) .38(.09) .38(.09) .52(.13) .46(.14) .44(.14) .44(.14) .44(.14) .5(.12)
1 4 1 .48(.13) .49(.13) .49(.13) .48(.12) .53(.15) .59(.09) .62(.09) .62(.09) .62(.09) .62(.09)
1 4 2 .05(.09) .05(.09) .05(.09) .05(.1) .18(.16) .12(.12) .13(.12) .13(.12) .13(.12) .13(.12)
1 4 3 .46(.12) .45(.11) .44(.11) .45(.11) .49(.11) .56(.11) .59(.11) .59(.11) .59(.11) .59(.11)
1 4 4 .04(.09) .04(.09) .05(.1) .04(.09) .11(.16) .1(.13) .11(.12) .11(.12) .11(.12) .11(.12)
2 4 1 .49(.17) .5(.17) .48(.17) .49(.17) .62(.14) .85(.14) .81(.15) .81(.15) .81(.15) .81(.15)
2 4 2 .05(.03) .05(.03) .06(.03) .06(.03) .06(.05) .13(.09) .13(.1) .13(.1) .13(.1) .13(.1)
2 4 3 .54(.12) .54(.12) .54(.11) .53(.1) .61(.12) .88(.12) .85(.14) .85(.14) .85(.14) .85(.14)
2 4 4 .03(.01) .03(.02) .03(.01) .04(.02) .1(.12) .11(.09) .1(.07) .1(.07) .1(.07) .1(.07)
7 4 1 .26(.14) .25(.14) .25(.14) .26(.14) .25(.17) .37(.22) .39(.22) .39(.22) .39(.22) .42(.25)
7 4 2 .03(.02) .03(.02) .03(.03) .04(.03) .06(.02) .06(.07) .04(.03) .04(.03) .05(.04) .06(.07)
7 4 3 .44(.14) .43(.14) .42(.14) .44(.15) .4(.12) .5(.15) .55(.16) .54(.16) .54(.16) .56(.19)
7 4 4 .11(.05) .1(.05) .11(.06) .12(.05) .17(.03) .15(.08) .14(.07) .14(.07) .14(.07) .17(.09)
1 10 1 .07(.07) .07(.07) .06(.07) .08(.09) .09(.09) .01(.01) .0(.0) .0(.0) .0(.0) .0(.0)
1 10 2 .05(.06) .05(.06) .05(.06) .07(.07) .06(.06) .0(.01) .0(.0) .0(.0) .0(.0) .0(.0)
1 10 3 .15(.14) .15(.14) .14(.12) .14(.12) .18(.18) .17(.09) .14(.06) .14(.06) .14(.06) .14(.06)
1 10 4 .14(.08) .14(.09) .14(.08) .15(.09) .13(.08) .15(.1) .13(.08) .13(.08) .13(.08) .13(.08)
2 10 1 .02(.01) .02(.03) .02(.03) .02(.03) .04(.05) .0(.0) .0(.0) .0(.0) .0(.0) .0(.0)
2 10 2 .0(.0) .01(.01) .01(.01) .01(.01) .01(.03) .0(.0) .0(.0) .0(.0) .0(.0) .0(.0)
2 10 3 .25(.1) .26(.1) .26(.1) .27(.12) .25(.1) .39(.12) .39(.11) .39(.11) .39(.11) .39(.11)
2 10 4 .14(.07) .14(.07) .13(.08) .15(.07) .16(.05) .15(.08) .14(.06) .14(.06) .14(.06) .14(.06)
7 10 1 .1(.11) .09(.08) .09(.09) .09(.08) .14(.12) .01(.01) .06(.09) .06(.09) .06(.09) .06(.09)
7 10 2 .12(.1) .11(.1) .11(.11) .11(.1) .12(.12) .03(.06) .03(.05) .03(.05) .03(.05) .03(.05)
7 10 3 .15(.08) .36(.16) .38(.16) .36(.15) .36(.16) .17(.13) .12(.12) .12(.12) .12(.12) .12(.12)
7 10 4 .13(.08) .24(.16) .24(.15) .26(.17) .4(.23) .1(.1) .11(.13) .11(.13) .11(.13) .1(.13)

P m Type Tchebychef Utility Function

1 2 – .14(.05) .14(.05) .14(.05) .14(.05) .25(.16) .12(.01) .12(.01) .12(.01) .12(.01) .2(.07)
2 2 – .32(.0) .32(.0) .32(.0) .32(.0) .52(.23) .33(.01) .33(.01) .33(.01) .33(.01) .63(.21)
7 2 – .05(.05) .04(.0) .07(.14) .12(.23) .81(.14) .04(.0) .04(.0) .04(.0) .27(.35) .85(.0)
1 4 – .06(.02) .06(.02) .06(.02) .06(.02) .07(.03) .07(.03) .08(.03) .08(.03) .08(.03) .08(.03)
2 4 – .08(.03) .08(.03) .08(.03) .08(.04) .14(.07) .17(.06) .17(.05) .17(.05) .17(.05) .17(.05)
7 4 – .1(.04) .1(.04) .11(.05) .17(.06) .38(.04) .13(.08) .13(.07) .13(.07) .15(.07) .21(.1)
1 10 – .06(.03) .06(.03) .07(.03) .06(.03) .06(.03) .06(.03) .06(.03) .06(.03) .06(.03) .06(.03)
2 10 – .08(.01) .08(.01) .08(.01) .08(.01) .09(.03) .11(.03) .11(.03) .11(.03) .11(.03) .11(.03)
7 10 – .12(.02) .14(.01) .15(.01) .15(.01) .15(.01) .06(.02) .08(.03) .08(.03) .08(.03) .08(.03)
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Chapter 4

Detecting Hidden and Irrelevant

Objectives in Interactive Multi-Objective

Optimization

Shavarani, S. M., López-Ibáñez, M., & Allmendinger, R.

IEEE Transactions on Evolutionary Computation

Evolutionary multi-objective optimization algorithms (EMOAs) typically assume

that all objectives that are relevant to the decision-maker (DM) are optimized by

the EMOA. In some scenarios, however, there are irrelevant objectives that are op-

timized by the EMOA but ignored by the DM, as well as hidden objectives that the

DM considers when judging the utility of solutions but are not optimized. This dis-

crepancy between the EMOA and the DM’s preferences may impede the search for

the most-preferred solution and waste resources evaluating irrelevant objectives.

Research on objective reduction has focused so far on the structure of the prob-

lem and correlations between objectives and neglected the role of the DM. We

formally define the concepts of irrelevant and hidden objectives here and propose

methods for detecting them, based on uni-variate feature selection and recursive

feature elimination, that use the preferences already elicited when a DM interacts

with a ranking-based interactive EMOA (iEMOA). We incorporate the detection

methods into an iEMOA capable of dynamically switching the objectives being

optimized. Our experiments show that this approach can efficiently identify which

objectives are relevant to the DM and reduce the number of objectives being opti-

mized while keeping and often improving the utility, according to the DM, of the

best solution found.
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4.1 Introduction

In many real-world optimization problems, there are tens of numerical features of a can-

didate solution that could, in principle, be optimized by means of an Evolutionary Multi-

Objective Algorithm (EMOA) and it is often tempting to model as many objectives as pos-

sible (Sinha et al., 2013). However, the runtime of various steps within an EMOA increases

with the number of objectives (Jensen, 2003; Allmendinger et al., 2022) and, in the case of

hypervolume-based methods, this increase is exponential (Beume, Fonseca, López-Ibáñez,

Paquete, & Vahrenhold, 2009). Moreover, the fraction of solutions that are Pareto-optimal

increases exponentially with the number of objectives (Purshouse & Fleming, 2003b; Singh

et al., 2011), which complicates the a posteriori decision-making phase (Brockhoff & Zitzler,

2009).

Previous research on objective reduction considered removing objectives that are highly

correlated to other objectives (Brockhoff & Zitzler, 2009; Sinha et al., 2013) or do not sig-

nificantly alter the dominance relations among solutions (Brockhoff & Zitzler, 2006, 2007a).

However, regardless of the structure of the problem, some of the objectives may not be rele-

vant to the DM and they can be removed from the optimization model. Interactive EMOAs

(iEMOAs) (Jaszkiewicz & Branke, 2008) iteratively elicit and exploit preference information

of a decision maker (DM) to guide the optimizer towards preferred solutions. It is possible to

exploit the elicited information to identify and remove objectives that are not relevant to the

DM.

Such a scenario can happen if this particular DM was not consulted during the modeling

phase or her preferences changed during the optimization due to learning (Campigotto &

Passerini, 2010) and “preference drift” (Pu & Chen, 2008). Thus, there may be objectives

that are optimized by the iEMOA but are irrelevant to the DM. In other cases, the DM’s

preferences may depend on both the value of the objectives being optimized and the value of

other numerical features that are measured by the system and observed by the DM but are not

optimized. Such features are said to be hidden from the optimizer and would lead to results

that are not satisfactory to the DM if not considered by the optimizer (Battiti & Campigotto,

2010; Kryston et al., 2022). Stewart (1996) discusses the concept of “unmodelled” criteria,

which appear in the DM’s internal utility function but are missing from the preference model.

This discrepancy may make the elicited preferences seem non-rational, e.g. when a solu-

tion that is dominated with respect to the modelled objectives is preferred by the DM over a

non-dominated one because the former is better than the latter with respect to features that are

not optimized as objectives. Let us consider a simplified example inspired by the real-world

problem discussed by Ramos-Pérez, Miranda, Segredo, León, and Rodríguez-León (2021) of
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planning school lunches in terms of not only cost, but also a number of metrics of nutritional

value and food variety. Imagine two candidate menu plans with three features z1 = (7, 4, 2)

and z2 = (7, 3, 6), where each feature is total cost, the total amount of calcium, and the va-

riety of vegetables, respectively. Further assume that the iEMOA was designed to optimize

only the first two features as objectives, thus, z1 dominates z2, i.e., z1 is not worse in cost and

is better in amount of Calcium than z2. However, a DM (e.g., the nutritionist of a particular

school who is aware that children in this school already have a diet rich in Calcium outside

school but struggle to eat their vegetables) may not look at the second objective (Calcium)

and instead wishes to maximize the third feature (vegetables variety), thus prefer z2 over z1.

One may argue that the system should allow the DM to specify which features must be op-

timized. But in practice a DM may only realize the relevance of a feature during the optimiza-

tion process (Pu & Chen, 2008). Moreover, the DM may not be conscious of the particular

features that are guiding her decisions, e.g., the nutritionist may directly compare the com-

position of the menus instead of looking at any summary metrics provided by the iEMOA. In

some problems a DM may be able to judge solutions according to qualitative aspects (e.g.,

the quality of the behavior of a robot performing a task) without being aware that there exist

numerical features (e.g., the number of turns or minimum distance to walls) that could act as

“proxy” objectives (Trianni & López-Ibáñez, 2015) to that aspect.

In the above scenarios, it would be desirable if an iEMOA could (1) detect the discrep-

ancy between the objectives being optimized and the features that influence the preferences

provided by the DM at each interaction; and (2) dynamically select the features that are op-

timized after each interaction. In the case of irrelevant objectives, removing them from the

optimization phase increases the efficiency of any EMOA (as fewer objectives are optimized)

and may also help to find better solutions (Brockhoff & Zitzler, 2006).

To the best of our knowledge, for the first time in the literature we consider the prefer-

ence information collected by an iEMOA when interacting with the DM as an opportunity

to detect irrelevant objectives and remove them during the optimization. In addition, our

proposal is also able to detect numerical features that are measured but not optimized by the

iEMOA before the interaction, but are correlated with the DM’s preferences. We propose

that, after each interaction, the iEMOA dynamically activates the optimization of such hid-

den objectives, thus adapting the search to the preferences of the DM. By removing irrelevant

objectives and optimizing hidden ones, an iEMOA is able to adapt to a diverse range of DMs

and preference changes during optimization without requiring the simultaneous optimization

of every potential objective.

Our main contributions can be summarized as follows:
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• The formal definition of irrelevant and hidden objectives in interactive multi-objective

optimization.

• A method to detect irrelevant and hidden objectives from the ranking information pro-

vided by a DM and to dynamically update the set of objectives after each interaction.

The approach draws on feature selection methods and can be applied to any ranking-

based iEMOA.

• A benchmarking approach that simulates irrelevant and hidden objectives using classical

multi-objective problems. This approach is demonstrated for DTLZ problems (Deb et

al., 2005) and multi-objective NK-landscapes ρMNKs (Verel, Liefooghe, Jourdan, &

Dhaenens, 2013).

• The empirical validation of the proposed detection method using:

i. Problems of varying dimensionality, complexity, and Pareto front structure.

ii. Different utility functions that simulate different DMs.

iii. Different feature selection methods to detect relevant objectives.

• A sensitivity analysis to understand the performance impact of key parameters of the

proposed approach.

Experimental results show that the proposed method can almost always replace irrelevant

objectives with relevant ones quickly and significantly improve the utility of the solutions

found.

The rest of the chapter is organized as follows. Several fundamental concepts on which

this work is based are defined in Section 4.2. A summarized background on previous efforts

towards objective reduction is given in Section 4.3. In Section 4.4, the proposed method and

several variants of it are elaborated in detail. The experimental setup is laid out in Section 4.5.

The results of the experiments are discussed in Section 4.6. Finally Section 4.7 provides

conclusions and future research directions.

4.2 Definitions

Let us consider an optimization problem with n decision variables, where, given a solution

vector x = (x1, . . . , xn) from the feasible decision space X , we can compute a set F =

{f1, . . . , fm} of m numerical features, fi : X → R. In principle, all these features could be

optimized as objectives. In the following, we assume minimization without loss of generality.
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Definition 4.2.1 (Potential objectives). All m features in F are called potential objectives.

Let us assume as well that, either due to decisions made during the modeling phase or

efficiency reasons, only a subset F̂ ⊆ F (m̂ = |F̂ |) of the potential objectives must be

minimized as optimization objectives, resulting in the following multi-objective optimization

problem:

Minimize
(
f1(x), . . . , fm̂(x)

)
subject to x ∈ X

(4.1)

where fi ∈ F̂ are the objectives minimized by the optimization method, while F \ F̂ are not.

Definition 4.2.2 (Active objective). An objective is active if it must be optimized by the

optimization method. The set of active objectives is denoted by F̂ . Inactive objectives (F \F̂ )

are either evaluated but ignored by the optimization method or not evaluated at all.

In the EMOA literature, computational cost is often measured in terms of solution evalu-

ations, where each solution evaluation usually means the evaluation of all its (active) objec-

tives. Here we will consider objective evaluations instead because different solutions may be

evaluated for different subsets of of objectives, and these subsets may also vary in cardinality.

Definition 4.2.3 (Objective evaluation). The evaluation of any of the objectives fi corre-

sponding to a solution x is counted as one objective evaluation. Thus, the cost of a solution

evaluation is m̂ objective evaluations.

Although most EMOAs assume that the set of active objectives is decided in the modeling

phase and remains constant, it is possible to change the set of active objectives during the

optimization by choosing any subset of potential objectives, as we will show later. When

solving the above problem in terms of Pareto optimality, an EMOA only considers active

objectives.

Definition 4.2.4 (Dominance (Zitzler et al., 2008)). Given two solutions x, y ∈ X , we say

that x dominates y if the former is not worse than the latter in any objective and it is strictly

better in at least one, i.e., ∀fi ∈ F̂ , fi(x) ≤ fi(y) and ∃fj ∈ F̂ , fj(x) < fj(y).

Definition 4.2.5 (Pareto optimal (Zitzler et al., 2008)). A feasible solution x ∈ X is called

Pareto optimal or non-dominated if there is no y ∈ X that dominates it. The set of (mutually

non-dominated) Pareto optimal solutions is the Pareto set.

Definition 4.2.6 (Pareto front (Zitzler et al., 2008)). The image of the Pareto set on the ob-

jective space defined by F̂ is known as the Pareto front (PF).
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Definition 4.2.7 (Redundant objectives (Gal & Leberling, 1977)). An objective is called re-

dundant if it can be removed from the set of active objectives without changing the set of

Pareto optimal solutions. Saxena et al. (2009) extend this definition to include objectives that

are not conflicting with a non-redundant objective.

The above definitions are independent of the preferences of a human DM interacting with

an EMOA. In the case of interactive EMOAs (iEMOAs), the DM provides preference infor-

mation, e.g., by ranking a subset of solutions, to guide the algorithm towards the DM’s most

preferred solution. Let us assume the DM can observe the value of all potential objectives

when comparing solutions. For reasons explained in the introduction, there may exist a dis-

crepancy between the active objectives being optimized by the iEMOA and the objectives

considered by the DM when comparing solutions.

We can formally define this discrepancy in the case of non-ad-hoc interactive methods,

which assume there exists a utility function (UF) guiding the DM’s decisions but unknown

to the iEMOA (Steuer & Gardiner, 1991; Fowler et al., 2010b; Köksalan & Karahan, 2010;

Pedro & Takahashi, 2013; Afsar et al., 2021). Ad-hoc methods assume that no such UF

exists (Steuer & Gardiner, 1991). Due to the popularity of UFs in modeling preferences, the

vast majority of iEMOAs are non-ad-hoc methods, thus we focus on them in the remainder

of the chapter. Without loss of generality, we assume an UF of the form U : Rm → R, whose

input is the vector-valued function f(x) = (f1(x), . . . , fm(x)) with components being the set

F of potential objectives. Although U receives as input the value of all potential objective

functions, it may not use all those values to calculate its output.

Definition 4.2.8 (Irrelevant objectives). An objective fi ∈ F is called irrelevant if its value

does not affect the value of the DM’s UF. That is, any two solutions x, y ∈ X with the

same value in all potential objectives except fi should also have the same utility value, i.e.,

fj(x) = fj(y), ∀fj ∈ F \ {fi} ⇒ U(f(x)) = U(f(y)).

Hereafter, Fdm ⊆ F denotes the set of objective functions relevant to the DM, thus the set

of irrelevant objectives is given by F \ Fdm.

Definition 4.2.9 (Hidden objectives). An objective fi ∈ F is hidden if it is relevant but not

(currently) active, i.e., fi ∈ Fdm ∧ fi /∈ F̂ .

Hidden objectives may confuse the iEMOA, since the interaction with the DM may be

consistent with the dominance criterion for the objectives in Fdm but not for the objectives in

F̂ . If Fdm ⊂ F̂ , then no hidden objectives exist, but the iEMOA is optimizing some irrelevant

objectives, which makes the problem more challenging for the iEMOA and is wasteful if the

evaluation of those objectives is expensive. Similarly, if Fdm = F̂ , then neither hidden nor
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irrelevant objectives exist, and the iEMOA is optimizing precisely the objectives that the DM

cares about.

In the rest of the chapter, when considering benchmark problems and known UFs, we will

assume for simplicity that irrelevant objectives are not a (trivial) function of relevant ones nor

vice versa, so that the set of relevant objectives Fdm, and, hence, irrelevant and hidden ones,

can be inferred from the definition of the UF. In practice, the DM’s UF is unknown and, in the

case of black-box optimization, we may not know whether an objective is a function of other

objectives, thus an objective is considered irrelevant if its value does not seem to influence

the DM’s decisions.

From the above definitions, it can be concluded that while redundant objectives are de-

termined based on the structure of the problem, irrelevant and hidden objectives are defined

from the DM’s perspective. An irrelevant objective may be redundant or not, however, a re-

dundant objective cannot be relevant unless the DM’s preferences are somehow inconsistent

with Pareto optimality. On the other hand, a redundant objective may appear to be relevant if

it is correlated with a relevant objective. While there are studies on the detection and elimi-

nation of redundant objectives, which we review in the next section, there is no prior research

on the identification of irrelevant and hidden objectives to the best of our knowledge. Our

focus here is to fill this gap and we propose a method to tackle it in Section 4.4.

4.3 Background and Literature Review

We have carried out a thorough literature review of methods for reducing the number of

objectives, which we briefly summarize here. Many of these studies use the term dimension

reduction to refer to the same concept. However, to avoid confusion with methods that re-

duce the number of decision variables (Allmendinger & Knowles, 2010), we use the term

“objective reduction”.

Most of the studies on objective reduction focus on selecting a priori a subset of objec-

tives to facilitate the optimization process while preserving Pareto optimal solutions as much

as possible. Early proposals (Gal & Leberling, 1977; Agrell, 1997) make strict assumptions

about the problem structure that are impossible to meet for real-life problems. Recent ap-

proaches (Brockhoff & Zitzler, 2007a; Singh et al., 2011) sacrifice to exactly identify the

correct subset of objectives and capture the entire PF in order to increase applicability.

Other approaches identify similar objectives and recombine them into a single one. For

example, harmonic levels (Freitas et al., 2013) and aggregation trees (de Freitas et al., 2015)

are used to identify harmonious objectives (improvement of one objective does not lead to
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deterioration of the others). In particular, aggregation trees are used a posteriori for facili-

tating the decision-making phase. Similarly, principal component analysis (PCA) has been

used to identify correlated objectives that may be combined into a single objective a poste-

riori to facilitate decision-making (Lygoe et al., 2010) or during the optimization process to

increase computational efficiency (Saxena, Duro, Tiwari, Deb, & Zhang, 2013). However,

Costa and Oliveira (2010) have shown that objectives that are deemed redundant by PCA may

be “informative”, i.e., contain trade-off information that would be lost if omitted.

Finally, projection methods map all objectives into two or three dimensions for visualiza-

tion (Fieldsend & Everson, 2013). These methods aim to help decision-making a posteriori

(after optimization), however, they do not help the optimization process itself and do not

consider the DM’s preferences.

Interactive methods iteratively elicit the DM’s preferences to direct the search toward pre-

ferred regions of the PF (Branke et al., 2008; Xin et al., 2018). However, it is possible to use

the provided information to identify objectives that are relevant to the DM, a task that has

not been achieved in existing iEMOAs. Generally, preference elicitation and interaction style

can take two forms (Tomczyk & Kadziński, 2020b).Direct preference elicitation requires the

DM to identify some parameters of the preference model directly, which can be in the form

of the reference point (aspiration level/goal) (see, e.g., PBEA (Thiele et al., 2009), WASF-

GA (Ruiz et al., 2015b)), reservation levels (González-Gallardo et al., 2021), and weights

(see, e.g., R-NSGAII (Deb & Sundar, 2006)), among others. On the other hand, in indirect

approaches, the DM is required to provide some holistic judgments, which tend to be less

demanding, mainly in the form of exemplary decisions. When indirect approaches are used,

the DM is not required to have prior knowledge of solution space and the optimization al-

gorithm (Jacquet-Lagreze & Siskos, 2001). Indirect queries can be in the form of pairwise

comparisons (Battiti & Passerini, 2010; Branke et al., 2010; Branke et al., 2016; Tomczyk &

Kadziński, 2019b, 2019c; Benabbou et al., 2020), selecting the best among a small subset of

solutions (Fowler et al., 2010a; Köksalan & Karahan, 2010; Tomczyk & Kadziński, 2021a),

accepting or rejecting a presented trade-off (Zionts & Wallenius, 1983), or ordering a subset

of solutions (Sinha et al., 2018). Generally, iEMOAs that require the DM to rank a subset

of solutions are known as ranking-based iEMOAs. In this research, we propose an approach

that can use the solutions that are ranked by the DM in ranking-based iEMOAs to identify

relevant objectives and update the set of active objectives accordingly.
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4.4 Methods

As described above, existing approaches for objective reduction are mainly concerned with

removing redundant or correlated objectives without interacting with a DM. In this section,

we propose a method that is able to use the DM’s preferences, elicited when interacting with

an iEMOA, and equip the iEMOA with the ability to identify irrelevant objectives as well as

hidden ones, and switch them dynamically during the optimization process. In practice, we

have found that it is relatively easy and efficient to extend iEMOAs with this capability, as

switching objectives can only happen after an interaction and the number of interactions is

always much smaller than the number of generations of the iEMOA.

In a nutshell, our proposal works as follows. At some point during its execution, the

iEMOA interacts with the DM by showing the value of all potential objectives of a selected

subset of solutions and asking the DM to rank the solutions according to her preferences.

Feature selection, applied to the rankings and the objective values, is used to identify which

objectives have the most significant effect on the ranking. The method uses this information

to possibly activate currently inactive objectives and/or deactivate currently active ones. The

iEMOA then continues its execution using not only the ranking information provided but

possibly a new set of active objectives. In what follows, we describe our proposal in detail.

4.4.1 Feature Selection

We explore two feature selection methods in this study to understand the relevance of this al-

gorithmic component: Uni-variate feature selection and recursive feature elimination (RFE).

Hereafter, feature and objective are used interchangeably in this context.

Uni-variate Feature Selection

We propose the application of F-test1 uni-variate feature selection for identifying the most

relevant features. The F-test assumes that the data is normally distributed and p-values may

be unreliable for large deviations from normality. If the normality assumption is not valid,

then the alternative approach is to use the non-parametric mutual information (Kraskov, Stög-

bauer, & Grassberger, 2011, 1; Ross, 2014), which measures the dependency between two

random variables. Our explanation focuses on the F-test but it is easily extended to the mu-

tual information-based test. Preliminary experiments have shown that the normality assump-

tion is valid for the problems considered in our study, as verified by the D’Agostino-Pearson

test (D’Agostino & Pearson, 1973), and the F-test provides slightly better accuracy. These
1The name of the test is unrelated to the set F of potential objectives.
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experiments also indicate that the accuracy of the method is acceptable even with small sam-

ple size and improves significantly when the training set increases to 10 and 15. The details

of these experiments are provided in Appendix B.

In uni-variate methods, each feature is considered independently and any correlation be-

tween features is ignored (Destrero, Mosci, Mol, Verri, & Odone, 2009). Let T be the set

of solutions presented to the DM at an interaction, where zj ∈ T is the vector of objective

values of the j th solution presented to the DM, and zji denotes the value of its ith objective

out of the m potential objectives (fi ∈ F ). The DM ranks the solutions according to her own

preferences (smaller rank values are more preferred). The vector of rankings is given by r,

where rj is the rank corresponding to zj ∈ T . There is no restriction on the rankings and two

solutions may have the same rank.

The procedure for F-test uni-variate feature selection can be described as follows (for a

more detailed introduction to F-test feature selection please refer to (Heiman, 2000)):

Step 1: The correlation ρi between each objective (feature) i and r is computed as

ρi =

|T |∑
j=1

(zji − z̄·i) · (rj − r̄)
Sz·iSr

, (4.2)

where z̄·i and Sz·i are the mean and standard deviation of the ith objective value over all

solutions in T , respectively, and r̄ and Sr are the same for the vector of rankings.

Step 2: The F-statistic for each objective is computed as

Fi =
ρi

1− ρi
· (|T | − 2) . (4.3)

Here, the F-statistic is a notion of how well an objective can explain the rankings pro-

vided by the DM.

Step 3: The p-values corresponding to each F-statistic can be calculated by any statistical

software.

Step 4: Features with lower p-value are selected. Number of selected features can be either

fixed to a given value k (2 ≤ k < |F |) or variable. In the latter case, objectives with

p-values less than a predetermined threshold τ ∈ (0, 1] are selected (or at least two

objectives). These two variants are explained in Section 4.4.2.

The lower the p-value, the better is the corresponding objective function in explaining the

DM’s rankings. The pseudo-code of uni-variate feature selection is illustrated in Algorithm 1.
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Table 4.1. A numerical instance of uni-variate feature selection. Nexa = 5 solutions are ranked (r) by the
DM on a problem with m = 4 objectives. The p-value of each objective is calculated as explained in the
Algorithm 1. k = 2 objectives with minimum p-values are activated (f1 and f4 in bold-face) and the EMOA
continues the optimization with the new set of active objectives.

Nexa = 5 f1 f2 f3 f4 r

1 0.71 0.63 0.37 0.45 4
2 0.65 0.08 0.89 0.40 3
3 0.51 0.64 0.75 0.12 1
4 0.65 0.84 0.79 0.31 2
5 0.95 0.32 0.86 0.82 5

p-values 0.03 0.45 0.82 0.01

Algorithm 1: Uni-Variate Feature Selection
Input:
F : Set of all potential objectives (features)

T : Set of objective vectors ranked by the DM

r : Vector of ranks

and either

• k ∈ [2, |F |) ⊂ N (for fixed number of objectives) or

• τ ∈ (0, 1] ⊂ R (for variable number of objectives)

1 for i← 1 to |F | do
2 Step 1: Calculate ρi using Eq. (4.2)
3 Step 2: Calculate Fi using Eq. (4.3)
4 Step 3: Calculate pi (p-value) from Fi

5 if Fixed number of objectives then
6 F̂ ← k objectives from F with lowest p-value
7 else
8 F̂ ← {fi ∈ F | pi < τ}
9 if |F̂ | < 2 then

10 F̂ ← 2 objectives from F with lowest p-value

11 return F̂ (selected objectives)

To illustrate the procedure after a given interaction, we outline an example in Table 4.1.

We assume a fixed number of objectives (k = 2) is considered here. Nexa = 5 solutions

are evaluated by the DM as indicated by r. The p-value of each objective is obtained as

explained by uni-variate feature selection. Regardless of the state of the algorithm and set of

active objectives before this interaction, the two objectives f1 and f4 are activated after this

interaction, and other objectives (f2 and f3) are deactivated.

Recursive Feature Elimination

RFE is different from uni-variate feature selection in that it first uses logistic regression to

build a model based on all the features to predict the rankings, and then excludes from the

selected subset the feature with the minimum contribution to the regression model (Guyon,
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Algorithm 2: Recursive Feature Elimination
Input:
F : Set of all potential objectives (features)

T : Set of ranked solutions

r : Vector of ranks

and either

• k ∈ [2, |F |) ⊂ N (for fixed number of objectives) or

• τ ∈ (0, 1] ⊂ R (for variable number of objectives)

1 F̂ ← F

2 while |F̂ | > 2 do
3 Step 1: M ← Build_Model(T , r, F̂ )
4 Step 2: fj ← arg maxfi∈F̂ φ(fi)

5 if Fixed number of objectives then
6 if |F̂ | = k then
7 break

8 else if φ(fj) < τ then
9 break

10 Step 3: F̂ ← F̂ \ fj
11 return F̂ (selected objectives)

Weston, Barnhill, & Vapnik, 2002). There are several ways to measure the contribution of the

ith objective to the regressed model, and here to be consistent with uni-variate variant, we use

the statistical significance level (p-value),φ(fi) ∈ [0, 1], for the objective’s coefficient in the

regressed model, which can be calculated with any statistical software. In the next iteration,

the model is built again using the pruned set of objectives. The process is repeated until the

size of the pruned set is equal to k in the case of fixed number of objectives. For the variable

number of objectives, the pruning stops when the remaining objectives are all significant.

The detection method using RFE is depicted in Algorithm 2.

4.4.2 Fixed versus Variable Number of Active Objectives

The number of features (active objectives) selected can be defined in different ways. Here we

explore the following two alternatives:

Fixed Number of Objectives (k)

The optimization starts with k active objectives and this number is kept constant throughout

the optimization process such that activating an inactive objective implies deactivating an

active one. The benefit of this approach is that the iEMOA only needs to handle a specific

number of objectives, which is simpler than handling a variable number of objectives. The
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downside is that some relevant objectives may remain hidden if the number of relevant ob-

jectives |Fdm| is larger than k. Thus, the goal is to identify the k most relevant objectives for

the DM out of all potential objectives.

Variable Number of Objectives

We select the subset of objectives that meets a predetermined threshold τ . The lower the

value of τ , the lower would be the number of objectives with acceptable p-values. If there is

only one objective with a p-value lower than τ , then the two objectives with lowest p-values

are selected instead. For RFE, the process stops if the size of the pruned set of objectives is

reached 2.

Having two feature selection methods and two approaches with fixed and variable number

of objectives as explained above, we have four total variations defined as follows:

1. k-HD: Uni-variate feature selection with fixed number of objectives

2. τ -HD: Uni-variate feature selection with variable number of objectives

3. k-HDR: RFE with fixed number of objectives

4. τ -HDR: RFE with variable number of objectives

The convention used for naming the variants can be described as follows; the prefix k indicates

the variants with fixed number of objectives and the prefix τ specifies the variable number

of objectives. HD indicates that Hidden/irrelevant objective Detection is on. The suffix R is

added when the recursive feature elimination is used. The proposed methods can be applied

to any ranking-based iEMOA for objective reduction and/or detection of hidden objectives

in order to find the objectives that are relevant to the DM. Here, we will focus on extending

BCEMOA (Battiti & Passerini, 2010) with our proposed method. We chose BCEMOA due

to its popularity and availability of the source code. The proposed method however, can be

integrated with any ranking-based algorithm. In what follows, the modified BCEMOA, here

called BCEMOA-HD, is explained in detail.

4.4.3 BCEMOA-HD

BCEMOA (Battiti & Passerini, 2010) is an iEMOA based on NSGA-II. It starts with a pop-

ulation of randomly generated solutions (pop), and the population is evolved with NSGA-II

for gen1 generations. Next, at each interaction step, the best Nexa solutions are selected from

the evolved population, all potential objectives are evaluated and presented to the DM for
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ranking. The objective vectors and their ranks are then used to train a support vector machine

(SVM) model to learn a utility function (Usvm). The learned Usvm replaces the crowding dis-

tance in the next generations. Further interactions with the DM provide additional samples

to re-train the SVM model and improve the predictions of the learned utility function.

Similar to the original BCEOMA, the BCEMOA-HD algorithm, proposed here, starts

with a set of active objectives F̂ . All inactive objectives (F \ F̂ ) do not need to be evaluated

during the optimization and do not participate in dominance ranking and evolution of the

population. At each interaction with the DM, all objectives inF are evaluated for the solutions

that are presented to the DM. Immediately after each interaction, the feature selection method

described in Section 4.4.1 is applied to the objective vectors and their rankings to identify

relevant objectives and update F̂ . Consequently, the population may need to be updated by

evaluating any objective fi ∈ F̂ that has become active. SVM is also used to learn Usvm based

on active objectives in the updated F̂ and their rankings. An overview of BCEMOA-HD is

shown in Algorithm 3.

As described above, compared to the original BCEMOA, we have modified the algorithm

in Lines 10 and 11, where feature selection is deployed and the set of active objectives is

updated, respectively. A further modification applied to the original BCEMOA is in the se-

lection of the best solutions presented to the DM. When there is no variance in the values of

some objective, for example, because its values are near-optimal, then their correlation with

the rankings provided by the DM is undefined, and their p-value will be set to 1. As a result,

the feature selection will deactivate the objective and replace it with an irrelevant objective

that might have a higher correlation by chance. To preserve the elitism and avoid losing the

DM’s desired solution, the solution that was ranked best by the DM in the last interaction is

always included in the next set of solutions presented to the DM by BCEMOA-HD. This way,

we make sure we will not lose the DM’s most desired solution so far and the utility of the

selected solution does not decrease.

4.5 Experimental Setup

To evaluate the effectiveness of the proposed method, we design a set of experiments that

cover different aspects of the problem of identifying hidden and irrelevant objectives. In

the experiments with variable number of objectives, we seek to investigate how the methods

perform for objective reduction purposes, thus all objectives are active from the start of the

run (F̂ = F ). In the case of fixed number of objectives, only specific objectives are active

(F̂ ⊂ F ) at the start.

Although this research is motivated by real-world scenarios, it would be very difficult to
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Algorithm 3: BCEMOA-HD
Input:
Nint : Total number of interactions
Nexa : Number of training examples per interaction
pop : Population of solutions
gen1 : Generations before first interaction
geni : Generations between two interactions
F : Set of potential objectives
F̂ : Set of active objectives
and either

• k < |F | (for fixed number of objectives) or

• τ (for variable number of objectives)

1 T ← ∅, r ← ∅
2 pop← run NSGA-II for gen1 generations
3 optimizing only F̂
4 for 1 to Nint do
5 Ti ← select Nexa solutions
6 Evaluate solutions in Ti for all objectives in F
7 ri ← DM_ranks(Ti)
8 T ← T ∪ Ti

9 r← r ∪ ri

10 F̂ ← feature_selection(F , T , r, k or τ)
11 Evaluate pop for fi ∈ F̂

12 Usvm ← train_SVM({zji | zj ∈ T ∧ fi ∈ F̂}, r)
13 Crowding_Distance← Usvm
14 pop← run NSGA-II for geni generations
15 optimizing only F̂

16 return Best x ∈ pop ranked first by non-dominated sorting and then Usvm considering only F̂

analyze the methods using complex real-world problems and human DMs. Instead we use

well-known benchmarking problems from the literature, which we extend to simulate hidden

and irrelevant objectives, and we simulate a human DM using various utility functions.

In what follows, a detailed description of the design of the experiments is laid out.

4.5.1 Simulation of Active and Inactive Objectives

We create synthetic problems that feature irrelevant and hidden objectives by extending exist-

ing benchmark problems as follows: Given a problem with m = |F | potential objectives, we

extend it with d ⊆ [1,m], an ordered index set of active objectives such that i < j → di < dj ,

specifying which objectives are active (optimized), i.e., i ∈ d iff fi ∈ F̂ ⊆ F , where fi is

the ith potential objective function. That is, given a solution x, whose objective vector is

f(x) = (f1(x), . . . , fm(x)), the optimizer only considers f̂(x) = (fd1(x), . . . , fdm̂(x)) and is

able to change the set of active objectives by changing the indices in d.

On the other hand, feature selection methods and the DM have access to f(x). In partic-

ular, when asked to rank a solution x, the simulated DM evaluates U(f(x)), where U is the
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utility function that measures the DM’s preferences, and U simulates irrelevant objectives by

disregarding those components of f, as we explain below.

The above technique can be applied to any multi-objective optimization problem. We

describe next the underlying benchmark problems used in our experiments.

4.5.2 Underlying Benchmark Problems

We applied the above technique to two well-known numerical and binary benchmark prob-

lems, namely, multi-objective NK landscape problems with correlation between objectives

(ρMNK) (Verel et al., 2013) and DTLZ problems (Deb et al., 2005) with m ∈ {4, 10, 20}
objectives. Problems with m = 4 help us to better understand and investigate the dynamics of

the proposed methods, while larger number of objectives allows us to evaluate the efficiency

of the feature selection with variable number of objectives in many-objective problems.

ρMNK problems allow us to analyse the effects of correlation among objectives and smooth-

ness of the landscape on the performance of the proposed method. We consider ρMNK in-

stances with different values of correlation among objectives ρ ∈ {−0.25, 0, 0.25, 0.5, 0.75, 0.9},
taking into account the restriction that ρ ≥ −1/(m−1) (Verel et al., 2013) and different values

of parameterK, which controls the smoothness of the landscape, namely, K ∈ {1, 4, 6, 8} for

problems with 4 objectives and K ∈ {1, 5, 10, 15} for many objective problems, considering

the constraint K < n. The greater the value of K, the more rugged is the fitness landscape.

The value of n is kept fixed at 10 for problems with m = 4, 20 for problems with m = 10,

and 30 for problems with m = 20 for ρMNK problems.

From the DTLZ test suite, we focus on DTLZ1, DTLZ2 and DTLZ7, which were also

used in the experiments of the original BCEMOA (Battiti & Passerini, 2010) and also in

(Brockhoff & Zitzler, 2007b) for objective reduction. DTLZ1 contains 11k − 1 local Pareto-

optimal fronts. Thus, it can be used to test the ability of the algorithm to deal with multiple

local attractors. DTLZ2 has a concave Pareto front. Finally, DTLZ7 has 2m−1 disconnected

Pareto-optimal regions in the objective space and is used to check the diversity of the solutions

and the performance of the algorithm in disconnected feasible space.

As suggested in (Deb et al., 2005), the decision space dimension (n) is m+4 for DTLZ1,

m + 9 for DTLZ2 and m + 19 for DTLZ7. With DTLZ problems, optimizing a subset of

objectives will optimize the rest of the objectives as well. To make the problem more chal-

lenging and also to avoid collapsing the PF to one point when projected to k < m objectives,

we follow (Brockhoff & Zitzler, 2007b) and map xi to xi/2 + 0.25, i = 1, . . . , n, for DTLZ2

and bound xi within [0.25, 0.75] for DTLZ1, which is also suggested in (Battiti & Passerini,
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2010). Please note that this modification is not needed for DTLZ7 as it does not collapse to

a single point.

4.5.3 Machine Decision Maker (MDM)

We adhere to the MDM framework introduced in (López-Ibáñez & Knowles, 2015) and sim-

ulate the DM’s preferences with an utility function (UF) that explicitly expresses which ob-

jectives are relevant, so that we can assess the effectiveness of the methods proposed here for

identifying relevant objectives.

We define c as the ordered index set of relevant objectives such that i < j → ci < cj ,

and consider the following quadratic UFs that were proposed in experiments on the original

BCEMOA (Battiti & Passerini, 2010):

UF1(f) = 0.28f 2
c1
+ 0.38f 2

c2
+ 0.29fc1fc2 + 0.05fc1 (4.4)

UF2(f) = 0.6f 2
c1
+ 0.05fc1fc2 + 0.23fc1 + 0.38fc2 (4.5)

UF3(f) = 0.44f 2
c1
+ 0.14f 2

c2
+ 0.09fc1fc2 + 0.33fc1 (4.6)

In addition, we consider the following Tchebychef UF

Utch(f) = max
i∈c

wi|fi − f ∗
i | (4.7)

with 0 as ideal point f ∗. The weights wi of irrelevant objectives (i /∈ c) are set to zero while

the weights of relevant objectives were manually selected for each problem such that the most

preferred solution is away from the corner points as far as possible.2

In the UFs above, the DM only considers Fdm = {fi|i ∈ c}, while other objectives are

irrelevant. Our simulation strategy assumes that relevant objectives are not strongly correlated

with irrelevant ones. Otherwise, an objective that does not explicitly appear in the definition

of a particular UF may still be identified as relevant by the proposed methods. We explain

how we selected relevant objectives for each problem in the next section.

Although the UFs in Eqs. 4.4-4.7 are designed for minimization, we reverse and scale all

utility values in the experiments to the range [0, 1], such that 1 corresponds to the best utility

value and 0 to the worst one, for consistency with multi-attribute utility theory (Keeney &

Raiffa, 1993).
2The weights used for each problem are given in the Appendix B.
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4.5.4 Selecting Relevant Objectives

Projection of the PF on lower dimensions might make it collapse to a single point, for some

problems. This is true for DTLZ problems even when the problem is bounded (Brockhoff &

Zitzler, 2007b). Thus, careful consideration should be given when using these problems to

simulate active and inactive objectives. For instance, the PF of DTLZ7 collapses to a point if

the first two objectives are active and the rest are inactive. After a careful examination, here

the first and fourth objectives are selected as relevant for DTLZ problems (c = {1, 4}). In

the case of ρMNK problems the first two objectives are selected (c = {1, 2}). For ρMNK

problem with four objectives, having Fdm = {f1, f2} and given an initial d = {2, 4}, we

can see that f1 is a hidden objective (relevant but not optimized), f2 is both relevant and

optimized, f3 is irrelevant and not optimized, and f4 is irrelevant and optimized.

4.5.5 Evaluation of the Results

The experiments are performed in three different modes to enable the assessment of the pro-

posed algorithms:

1. Golden mode: No interaction is done in this mode and the algorithm directly accesses

the true UF of the DM instead of learning a UF. Moreover, only relevant objectives are

optimised from the start to end. This is the ideal scenario.

2. Only learning mode: This mode corresponds to the original BCEMOA without any de-

tection of hidden objectives. The algorithm does not have access to the DM’s UF and

instead a UF is learned from the rankings provided by the MDM, i.e. at each interac-

tion the MDM uses its true UF to rank solutions. Predictions from the learned UF are

used to rank non-dominated solutions, replacing the crowding distance in NSGA-II. The

algorithm still uses non-dominated sorting as the first criteria to rank solutions. Both

non-dominated sorting and the learned UF only consider the set of active objectives

f̂(x). The set of active objectives never changes, that is, d remains constant throughout

the run.

3. Learning + detection mode: This is our proposed BCEMOA-HD that performs detec-

tion of hidden objectives and is able to modify the set of active objectives. Within this

mode, we test 4 variants of the HD method (see Section 4.4.2): k-HD, τ -HD, k-HDR,

τ -HDR. Similar to the Only learning mode, the optimization algorithm relies on non-

dominated sorting and an UF that is learned based on f̂(x), and not on the MDM’s true

UF. However, in this mode, d and subsequently f̂ may change after each interaction with

94



the ultimate goal of converging to the objectives that are actually relevant for the DM

(Fdm).

Having these three modes makes it possible to evaluate the performance of the proposed

method compared to the original BCEMOA and to the best solution that is achieved under

an ideal scenario in Golden mode. The criteria for evaluation of the performance is the true

utility value of the final solution returned by the algorithm. For Learning + detection, we

also record the active objectives after each interaction to investigate how good the proposed

method performs in detecting the relevant objectives during an optimization run. This allows

us to measure the number of objective evaluations (see Definition 4.2.3). Understanding

the relationship between utility and the computational/resource effort invested is of particu-

lar relevance to problems where objective evaluations are expensive, time-consuming and/or

resource-intense (Allmendinger, 2012). In such problems, identifying high-utility solutions

with as few as possible objective evaluations is preferred (or even needed in order to avoid

premature termination of the optimization process due to a lack of resources). As a side ef-

fect, fewer objective evaluations means a reduced level of complexity, e.g. in case objectives

are heterogeneous (Allmendinger & Knowles, 2021), and a reduced cognitive load on the DM

as ranking is done considering fewer objectives comparisons in total.

Parameter Settings

All variants of BCEMOA use the parameter settings proposed in the original paper (Battiti &

Passerini, 2010), including the parameters of the SVM learning model. In particular, the total

number of generations is 500 and Nexa = 5 solutions are shown to the DM at each interaction.

Within BCEMOA, NSGA-II uses a population size is 100 and creates 100 new solutions at

each generation. NSGA-II runs for gen1 = 200 generations before the first interaction and

there are geni = 30 generations between subsequent interactions. The total number of gener-

ations after the last interaction is calculated as 500− gen1− geni(Nint− 1). Thus, changing

the number of interactions (Nint) would not alter total number of generations. We run ex-

periments with 1, 3 and 6 interactions for DTLZ problems. For ρMNK problems, we only

consider 6 interactions and, instead, we investigate the effect of different levels of correlation

(ρ) and ruggedness (K). Each algorithmic run was repeated 40 times with different random

seeds.

Implementations

The algorithms, machine DM and ρMNK problems are implemented in Python 3.7.6. The

implementations of NSGA-II within BCEMOA and DTLZ benchmarks are provided by the
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Figure 4.1. Comparison of the performance of different modes for DTLZ problems. The number of active ob-
jectives is fixed at k = 2. The vertical axis is the utility value (larger is better). The horizontal axis indicates
the number of interactions.

Pygmo library 2.16.0 (Biscani, Izzo, & Yam, 2010b), the uni-variate feature-selection and

RFE implementations are based on Scikit-learn 0.23.1 (http://scikit-learn.org/). To motivate

further research, we make our code publicly available at https://github.com/ShavaraniMahdi/

Detecting-Hidden-and-Irrelevant-Objectives-in-Interactive-Multi-Objective-Optimization .

4.6 Experimental Results

The interactive methods are designed to help the DM reach a satisfying solution and,

thus, the utility value of the final solution returned by the algorithm is used to evaluate the

performance of the interactive methods (Afsar et al., 2021). The utility values are normalized

to the [0, 1] interval in all the results. In this section, we focus on the most important findings

and some figures are omitted to save space. The complete set of results and figures can be

found in Appendix B.

4.6.1 DTLZ Problems with Fixed Number of Objectives

The results of experiments on DTLZ problems with a fixed number of active objectives are

illustrated in Figure 4.1. When using BCEMOA-HD with DTLZ1 problem with m = 4
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Figure 4.2. Comparison of the performance of different modes for DTLZ problems. The number of active
objectives is not fixed (τ = 0.02) and detection mode is used as an objective reduction technique. The vertical
axis is the utility value (larger is better). The horizontal axis indicates the number of interactions.

or m = 20 and fixed number of active objectives, almost no improvement is observed in

utility value compared to Only learning when comparing means, although the BCEMOA-HD

manages to find better solutions in some instances. However, when m = 10, the performance

of k-HD and k-HDR are significantly better than Only learning and almost as good as Golden

mode except for UF2, which still shows no improvement.

For DTLZ2, improvements in the performance can be seen when BCEMOA-HD is used in

the case of m = 10 and m = 20 together with UF1 and UF2. Another important observation

is the better performance of k-HDR with more interactions, although it fails to get as good as

k-HD.

For DTLZ7, there are slight improvements when detection methods (k-HD, k-HDR) are

used. Complete list of figures can be found in the Appendix B.

In general, we observe that the proposed methods can significantly improve the utility

value of the final solutions with respect to Only learning for the UFs tested. In some cases

where it fails to do so, the utility value is not deteriorated by the method.

4.6.2 DTLZ Problems with Variable Number of Objectives

In this set of experiments, the effectiveness of the BCEMOA-HD is investigated with regard

to objective reduction capabilities and thus the number of active objectives is not fixed. Thus,

the execution of the algorithms start with all the objectives being active. The key results of

these experiments are illustrated in Figure 4.2. For DTLZ1 withm = 4, the τ -HD and τ -HDR

97



0.0 0.25 0.5 0.75 0.9
0.0

0.2

0.4

0.6

0.8

1.0
Tchebychef

K 
= 

8,
 m

 =
 4

0.0 0.25 0.5 0.75 0.9
0.0

0.2

0.4

0.6

0.8

1.0
UF3

K 
= 

1,
 m

 =
 2

0

Level of correlation, ρ
U

til
ity

 v
al

ue

Golden Only learning k-HD k-HDR

Figure 4.3. Comparison of the performance of different modes for ρMNK problems. The number of active
objectives is fixed to k = 2. The vertical axis is the utility value (larger is better). The horizontal axis indi-
cates the ρ values.

perform better than the Only learning mode on Tchebychef UF, while for other UFs they have

almost the same performance in terms of the utility value. With m = 10 and m = 20, τ -HD

and τ -HDR perform as well as the Golden mode while τ -HDR is slightly outperformed by

τ -HD. Results for DTLZ2 are identical to those of DTLZ1, i.e., τ -HD and τ -HDR perform

as well as Golden mode and outperform Only learning mode with m = 10 and m = 20. For

m = 4 τ -HD and τ -HDR outperform Only learning when UF3 is used, but cannot perform

as well as Golden mode. In general, the superiority of τ -HD and τ -HDR compared to Only

learning becomes more prevalent with a higher number of objectives. Although in some

cases the algorithms return solutions with similar utility, we will show in Section 4.6.4 that

the detection method results in significant computational savings.

4.6.3 ρMNK Problems

The results of experiments on ρMNK problems with a fixed and variable number of objectives

are depicted in Figures 4.3 and 4.4, respectively. In most of these experiments, the proposed

methods outperform the Only learning mode. In the case of the fixed number of objectives,

in 30% of the cases this better performance of the proposed method is significant (based

on the Wilcoxon signed-rank test with Holm’s adjustment for multiple comparisons, p-value

< 0.05). For the variable number of objectives, the significant observations increase to 50%.

The detailed comparison of different modes related to Figs 4.3 and 4.4 can be found in the

Appendix B. In the next section, we will further analyze the results and show that the relevant

objectives are indeed detected, which means that a similar solution utility is reached in fewer

objective evaluations and the proposed method can improve the computational efficiency of

the interactive methods.
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95% confidence interval around the mean. The results for other test problems are similar.

4.6.4 Further Analysis

Anytime Behavior within Each Run

Figure 4.5 illustrates the change in the utility value of the best solution gained after each inter-

action in a single run of the algorithm averaged over 40 runs. We observe that all interactions

lead to some improvement in the utility of the best solution found, but the improvements

become smaller with subsequent interactions.

Power of Detection of Relevant Set of Objectives

In terms of the power of the detection, a heatmap plot is provided in Figure 4.6. The plot

illustrates the number of times the relevant and irrelevant objectives are activated by τ -HD

across all experiments on ρMNK problems with 10 objectives. The x-axis shows interactions
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within a single run. Interaction 0 refers to the state of the algorithm before the first interaction,

when all objectives are active. The y-axis shows the index of all potential objectives. Each

cell in the heatmap indicates the number of times the potential objective shown in the y-axis

was active after the interaction shown in the x-axis. It can be observed that after the first

interaction most of the objectives are deactivated while the first and second objectives, which

are the relevant ones, are kept active. It can be easily verified that the τ -HD converges fast

towards the relevant objectives. Another observation is that after the 6th interaction, almost

all objectives become active, although to a lesser degree compared to the relevant ones. This

observation is explained as follows: When the relevant objectives are optimized to their near-

optimal value with respect to the DM’s UF, the values of these objectives will be nearly

constant in the solutions presented to the DM. During feature selection, the correlation for

such objectives would be undefined (Eq. 4.2), the F-statistic will be set to 0.0 and the p-value

to 1.0, thus the objectives would be identified as irrelevant and replaced with inactive ones

that, by chance, show some correlation with the rankings of the DM.

Analysis of the Threshold Parameter (τ ) and Computational Efficiency

As an important parameter of τ -HD and τ -HDR, τ indirectly controls the number of active

objectives; thus, careful examination should be given in determining its value. To inspect the

effect of parameter τ , the DTLZ problems with m = 20 objectives are solved with different

values of τ . The results for other problems are similar and hence not discussed here. Setting

m = 20 provides a better illustration of the efficiency of the proposed method in reducing

the computational requirements and objective evaluations. When τ = 1, all objectives have

p-value less than the threshold and, thus, all of them are active; this means no objective

reduction is performed and the mode is identical to Only learning. The results in Figure 4.7

show that the performance of the τ -HD improves with lower values of τ on DTLZ problems.
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number of interactions in all runs is 6.
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On the other hand, reducing the τ value would reduce the number of active objectives (up

to a minimum of 2 active objectives). A lower number of active objectives increases the effi-

ciency of an EMOA and, by avoiding the evaluation of inactive objectives, possibly translates

to savings in computational and economical costs. To illustrate these potential savings, Fig-

ure 4.8 shows the changes in the number of active objectives after each interaction, averaged

over 40 runs. The shaded areas show the 95% confidence interval around the mean. It can

be clearly verified that after the first interaction, the number of active objectives experiences

a steep decrease. As expected, when τ = 1, no objective reduction is performed.

Another important criterion is the ratio of evaluations of relevant objectives to those of

irrelevant ones. Since inactive objectives are not evaluated during optimization, we measure

the total number of objective evaluations (Def. 4.2.3) only for active objectives and we observe

that τ -HD effectively reduces this total number. For instance, when τ = 1 (equivalent to Only

learning mode), an experiment on DTLZ1 with UF3, uses 600, 000 objective evaluations and

only 10% of these evaluations pertain to relevant objectives. However, when τ -HD is used,

only 45, 000 objective evaluations are done of which 30, 000 (67%) are dedicated to relevant

objectives. In general, objective evaluations are reduced by up to 80% compared to Only

learning when τ -HD or τ -HDR is used. These savings could be used to run the optimizer for
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longer, leading to improved solutions (although we do not explore this possibility here).

4.7 Conclusion and Future Work

This study has considered multi-objective problems that are solved by means of iEMOAs

and where only an unknown subset of all the potential objectives are of relevance to the DM.

In this context, we provided formal definitions of irrelevant, hidden and active objectives that

complement the definition of redundant objectives already studied in the literature. We pro-

pose here a detection method that may be incorporated into any ranking-based iEMOA to

identify irrelevant and hidden objectives. Furthermore, we show that an iEMOA able to dy-

namically change the active objectives can use this method to find solutions with higher utility

for the DM in fewer objective evaluations. In addition, for the purpose of benchmarking, we

propose a methodology for the simulation of irrelevant, hidden, and active objectives.

Two variants of the method with a fixed and variable number of active objectives were

studied. The results show that the variant with the variable number of objectives is useful

for dimension reduction purposes, reducing the number of active objectives even after the

first interaction. This eliminates unnecessary evaluations of irrelevant objectives, thus saving

computational effort, and improves the utility of the final solution returned by the iEMOA.

The variant with a fixed number of active objectives has shown to be able to both remove

irrelevant objectives and activate hidden ones. We also explored the application of recursive

feature selection. However, the results indicate that there is no gain in using this method over

the uni-variate feature selection. Comparing the results achieved for different test problems,

we observed that the improvements in the final utility value are more significant for DTLZ

problems. However, savings with regard to objective evaluations are achieved for both test

problems. These savings may be most beneficial in problems where objective evaluations

are expensive in terms of computational time, economical cost, or physical resources. We

showed experimentally that the value of τ affects the number of active objectives and can

be used as a tool to control this aspect. We considered four different UFs to simulate DMs

with different preferences. Future studies should consider other UFs, such as the Sigmoid UF

(Shavarani et al., 2021).

The methods proposed here are the first attempt to tackle the detection of irrelevant and

hidden objectives, and there is scope to obtain further improvements. We observed that, in

some experiments, once the relevant objectives have reached near-optimal values with respect

to the DM’s UF, the proposed methods may replace active relevant objectives with irrelevant

ones. Thus, it would be desirable to introduce a mechanism that avoids such a behavior.

Future studies should also consider DM simulations of learning and preference drift and how
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our proposed detection method can cooperate with an iEMOA to detect and adapt to such

changes. Our proposal relies on uni-variate feature selection based on the correlation between

objectives and DM’s rankings. Considering nonlinear regression in feature selection would

be a subject worth studying. In the case of BCEMOA, the learned SVM model could be

used to identify relevant objectives. However, our proposal here is more general and does not

require that the iEMOA uses a specific learning model.
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Chapter 5

An Interactive Decision Tree-Based

Evolutionary Multi-Objective Algorithm

Shavarani, S. M., López-Ibáñez, M., Allmendinger, R. , & Knowles, J.

A summary of this chapter is presented at Evolutionary Multi-Criterion Optimization (EMO2023)

The chapter is Submitted to the European Journal of Operations Research

Recent research on interactive evolutionary multi-objective optimization algorithms

has illustrated that an algorithm with good performance under ideal conditions may

not perform well under real-life conditions where non-idealities such as cognitive

biases are imposed. The main feature of any interactive method is how preferences

are modeled and used to direct the search. Many studies model preferences as

a linear utility function, which are too simple to reflect realistic decision-making

behaviors. Some studies use extended binary classification techniques, such as

one-vs-one, to learn to rank. Such an aggregated representation is not always de-

sired and is vulnerable to significant errors with small biases in the preference data.

Here, we propose decision trees to learn the preferences of the DM from interac-

tions and automate fast pairwise comparisons based on the trade-offs of two solu-

tions. To cancel out possible biases and errors in estimations, we use the trained

tree in holistic comparisons to determine solutions that survive each generation.

The experimental results confirm the superiority of our method in learning the

DM’s preferences and robustness towards biases and non-idealities. Notably, the

algorithm has a significantly better performance in many-objective problems.

5.1 Introduction

Many real-life optimization problems have several conflicting objectives to be optimized

simultaneously (Purshouse et al., 2014). Given m objective functions (fi(x) : Rn −→ R)

104



and assuming minimization of all objectives without loss of generality, a Multi-Objective

Optimization Problem (MOP) (Miettinen, 1999) has the following general form:

min z = f(x) = (f1(x), . . . , fm(x)
)

subject to x ∈ X

where x ⊆ Rn is defined as a decision vector from the non-empty set of feasible solution

space X ⊆ Rn, and f(x : Rn −→ Rm) maps a decision vector to z ⊆ Rm in the objective

space. When m > 3, MOPs are considered as many-objective problems.

Definition 5.1.1 (Domination). A solution x ∈ X dominates solution y ∈ X if the two

following conditions hold (Deb, 2001):

• f(xi) ≤ f(yi) ∀i ∈ {1, . . . ,m}

• f(xi) < f(yi) ∃i ∈ {1, . . . ,m}

Definition 5.1.2 (Non-domination). A feasible solution x ∈ X is said to be non-dominated

if there is no solution y ∈ X that dominates it. Non-dominated solutions are also known as

Pareto optimal solutions.

Definition 5.1.3 (Pareto optimal set). The set of all Pareto optimal solutions.

Definition 5.1.4 (Pareto front). The set of all objective functions corresponding to the solu-

tions in the Pareto optimal set is called the Pareto front (PF). In other words, PF is the image

of Pareto optimal solutions on the objective space.

Due to the conflicting nature of objective functions in MOPs, it is generally impossible to

have a single solution where all the objectives attain their optimal values. Instead, the general

goal of solving MOPs is to reach a small subset of Pareto optimal solutions with interesting

trade-offs or the most preferred one thereof. Evolutionary Multi-Objective Optimization Al-

gorithms (EMOAs) naturally work with a population of solutions and can generate a repre-

sentation of PF solutions in a single run. Hence they are well aligned with the requirements

of MOPs. However, with an increase in the number of objectives, EMOAs lose their selection

pressure, and their performance declines exponentially (Khare et al., 2003; Deb et al., 2005;

Brockhoff & Zitzler, 2006; Ishibuchi et al., 2008). Interactive algorithms compensate for this

issue by exploiting the DM’s discrimination and preference information to build the DM’s

preference model, which is then used to direct the search and generate only those parts of the

PF that are interesting to the DM. Thus, iEMOAs reduce computational costs and support the

DM in reaching a desirable solution while incurring minimal cognitive effort (Branke et al.,

2008; Greco et al., 2010).
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However, recent studies (López-Ibáñez & Knowles, 2015; Shavarani et al., 2021) have

indicated that interactive methods may not perform as expected under realistic conditions.

Specifically, their performance declines with a higher number of objectives or when the

elicited preference information is affected by human-specific biases such as inconsistent deci-

sions (Shavarani et al., 2021) and fatigue (Zujevs & Eiduks, 2008). Thus, even the algorithms

that perform well under ideal conditions seem to lack robustness to complications and biases

that exist in real-life situations. The primary sources of the problem should be sought in the

core features of an interactive method, which include interaction style, preference model, and

the way the preferences are exploited inside the method to direct the search towards the Most

Preferred Solution (MPS) (Xin et al., 2018).

To this end, we suggest adopting Decision Trees (DTs) in learning the preferences of the

DM and developing a novel Decision Tree-based iEMOA: DTEMOA . DTs have been widely

used in learning user preferences (Xia et al., 2008; Cheng et al., 2009; Yu et al., 2011; Dalip,

Gonçalves, Cristo, & Calado, 2013), but not in interactive methods. As non-parametric super-

vised learning methods, DTs can be seen as a piece-wise constant approximation (Breiman,

Friedman, Stone, & Olshen, 1984) that delivers classification by recursive partitioning of

the input features (Rokach & Maimon, 2007). Utilizing DTs does not require any particu-

lar assumptions about the DM’s preference model. DTs are competitive with other learning

methods in terms of accuracy and speed, superior in terms of interpretability and compre-

hensiveness (Cheng et al., 2009) and thus, are very popular among classification techniques

(Mitchell, 1997; Zhao & Ram, 2004). Unlike other learning algorithms that act as black-box

models, DTs are easy to understand, interpret and visualize. This characteristic is beneficial

in helping human DMs understand and trust the process and final results (Allen et al., 2019).

They do not require any pre-processing or scaling of the data, which is not an easy task in

MOPs with unknown PF, and they can work with different types of data from categorical

to continuous (Allen et al., 2019). DTs naturally detect relevant features and simplify the

learned model (Xia et al., 2008; Yu et al., 2011). Combining feature selection and learning

is particularly beneficial in many-objective problems to improve the accuracy of the learned

model.

We use binary classification DTs to learn the desirable trade-offs in pairwise compar-

isons and to predict the preferred solution from the DM’s perspective, overcoming problems

with learning-to-rank algorithms, which mainly are in the form of an ensemble of estimators

making them susceptible to significant errors when confronted with small biases and non-

idealities such as inconsistent decisions (Cheng et al., 2009). Besides, using DTs, we do not

make any assumption on the DM’s preferences and the learned model is in terms of simple

rules. The experimental results presented in this chapter indicate that the performance of the
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proposed algorithm is competitive with other iEMOAs in terms of the desirability of the final

solution returned by the algorithm and robust to biased and inconsistent preferences.

In what follows, a summarized review of previous efforts on interactive methods is pro-

vided. DTs are introduced in Section 5.2.3. The full details of the algorithm and the way

DTs are utilized in DTEMOA are explained in Section 5.3. Experimental design is laid out in

Section 5.4, and the results are discussed in Section 5.5. Further insight into the preference

learning and critical differences of DTEMOA with other interactive methods compared in

this study are set out in Section 5.5.1. Finally, conclusions and future research directions are

provided in Section 5.6.

5.2 Literature Review

Depending on the stage that the preference information is elicited from the DM, Multi-

Objective Optimization algorithms can be categorized into “no-preference”, “a priori”, “a

posteriori”, and interactive methods (Horn, 1997; Van Veldhuizen & Lamont, 2000).

“No-preference” methods aim to find neutral compromise solutions without any need to

preference information from the DM. Instead, some assumptions are made about what a rea-

sonable compromise/trade-off would be (Miettinen et al., 2008). Methods of Global Criterion

(Yu, 1973; Zeleny, 1973) and Neutral Compromise Solution introduced by Wierzbicki (1999)

fall within this category. In “a priori” methods, DM provides preference information before

starting the optimization process. This information may be in the form of aspiration levels,

goals, or weights of objective functions, mainly used to determine the lexicographic order

or a linear/non-linear aggregation of objectives. Examples of these methods can be found in

(Fonseca & Fleming, 1993; Deb & Sundar, 2006; Jaimes, Montaño, & Coello, 2011).

“A priori” methods bring the decision-making phase before the optimization phase. Not

being aware of the possibilities, limitations, the form of the objective space, and consequences

of the decisions, the DM may be too optimistic or pessimistic in defining the preference infor-

mation and bias the search direction (Branke et al., 2008; Miettinen et al., 2008). Scalability is

another concern, and the difficulty in determining the preferences increases with the number

of objectives (Rachmawati & Srinivasan, 2006).

In “a posteriori” methods, a set of well-distributed PF solutions is generated, from which

the DM selects the MPS. The number of solutions required for covering the whole PF in-

creases exponentially with the number of objectives (Singh et al., 2011), which, in turn,

increases both the required cognitive effort during the decision-making phase and compu-

tational costs during the optimization phase, preventing the algorithm from getting close to
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the actual PF (Miettinen et al., 2008).

Interactive methods overcome problems with “a posteriori” and “a priori” methods by

interlacing optimization and preference elicitation (decision making) to support the DM in

reaching a desirable result (Miettinen et al., 2008). The decision-making phase elicits pref-

erence information to guide the search in the following optimization phase towards areas of

the PF that are interesting to the DM (Miettinen, 2008; Greco et al., 2010) or in the last step

to select the MPS among the Pareto optimal ones. The DM can learn more about his pref-

erences and become more informed about the problem during the process (Miettinen et al.,

2008). Thus, interactive methods help the DM justify his expectations and achieve a satisfy-

ing solution, a process referred to as psychological convergence (Miettinen, 2008).

The preference information can be elicited directly or indirectly (Branke et al., 2010). In

the direct approach, the DM is required to specify some parameters of the solution process,

such as reference points (López-Jaimes & Coello Coello, 2014), weights (Narukawa et al.,

2016b), and bounds (Ruiz et al., 2019). In contrast, in indirect preference elicitation the DM

is required to make some holistic judgements, also known as exemplary decisions, that may

be in the form of pairwise comparisons (Greenwood, Hu, & D’Ambrosio, 1996; Phelps &

Köksalan, 2003; Battiti & Passerini, 2010; Branke et al., 2010; Branke, Greco, Słowiński, &

Zielniewicz, 2015; Branke et al., 2016), selecting the best among a small subset of solutions

(Fowler et al., 2010a; Köksalan & Karahan, 2010), ranking a subset of solutions (Deb, Sinha,

Korhonen, & Wallenius, 2010b; Sinha et al., 2018), and selecting best or worst among a subset

of solutions (Köksalan & Karahan, 2010; Chugh, Sindhya, Hakanen, & Miettinen, 2015;

Hakanen, Chugh, Sindhya, Jin, & Miettinen, 2016). Providing direct information imposes

higher cognitive effort on the DM (Battiti & Passerini, 2010). Interactive methods are also

different in the optimizer they use. In this regard, NSGAII (Deb et al., 2002) has been widely

used as the search engine to drive interactive methods (Battiti & Passerini, 2010; Pedro &

Takahashi, 2014). However, the core part of interactive methods is how they model DM’s

preferences. In this regard, iEMOAs can be categorized into two broad categories of non-ad-

hoc and ad-hoc methods (Miettinen, 1999).

5.2.1 Non-ad-hoc Methods

Application of Multi-Attribute Utility Theory (MAUT) (Keeney & Raiffa, 1993) has been

predominant in preference modeling, and utility functions (UFs) have been a popular way

to represent DM’s interest in a particular solution (Rachmawati & Srinivasan, 2006; Afsar

et al., 2021). Non-ad-hoc methods assume the existence of an underlying utility function that

derives the decisions of the DM (Steuer & Gardiner, 1991). Thus, these methods attempt to
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estimate such a UF in line with DM’s decisions (Jaszkiewicz, 2004; Quan et al., 2007a; Battiti

& Passerini, 2010). The estimated UF may be used as a scalarization function to transform

the problem into a single objective problem, as a criterion to break ties between solutions on

the same front, or to automate pairwise comparisons.

Zionts and Wallenius (1976) used weight space reduction to learn a linear UF’s weights.

The method is built on assumptions such as the concavity of objective functions and the

convexity of constraints and was later extended to handle pseudo-concave value functions

(Zionts & Wallenius, 1983). A similar approach was used in Quan et al. (2007a) and (Battiti

& Campigotto, 2010). Despite most methods that use the UF for ranking the solutions, the

former uses the estimated UF to determine the dominance relations among any two solutions

that the DM does not evaluate.

Thiele et al. (2009) use expressed aspiration levels in building a scalarization function

for ranking the population. In (Miettinen & Mäkelä, 2006), the DM classifies objectives

as needing improvement or otherwise. Then, several scalarizing functions are formulated

synchronously using the same preference information. Generally, this study is the extended

version of previous research discussed in (Miettinen & Mäkelä, 2000).

In Necessary-preference-enhanced Evolutionary Multi-objective Optimizer (NEMO1) (Branke

et al., 2010) the DM’s preferences are used to derive a set of compatible linear value func-

tions, and the most representative value function replaces the crowding distance. NEMO1

was limited to linear UFs, which are not capable of reflecting a realistic image of decision-

making behaviors. Later, they proposed a revised version of NEMO that lifts this constraint

on the shape of the UF to some extent (Branke et al., 2016).

In IEMO/D (Tomczyk & Kadziński, 2019a), DM’s pair-wise comparisons are used to

detect upper and lower limits for weight vectors of compatible L-norm utility functions, which

are used to rank individuals in the population. IEMO/D extends a basic variant of MOEA/D

(Zhang & Li, 2007).

Brockhoff et al. (2014) uses DM’s input to estimate the weights of a hyper-volume-based

indicator. The contribution to the weighted hyper-volume indicator is used as the fitness of

each solution within the EMO algorithm. Battiti and Passerini (2010) ignores the assumption

of any particular shape for the UF and leaves it to the Support Vector Machine (SVM) to fit

the best UF to DM’s provided ranks. Nevertheless, the UF shape is limited by the parameters

of the SVM and the kernel settings. Otherwise, the computational costs would increase.
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5.2.2 Ad-hoc Methods

Ad-hoc methods use different schemes to model and incorporate preferences. Aspiration

levels and reference points have been deemed a convenient method of preference modeling

(Ojalehto et al., 2016), and many studies try to bias the search and converge the population to-

wards elicited aspiration levels or goals. (Fonseca & Fleming, 1993) is one of the first studies

that used the declared goals to handle the optimization directions. Later, they gave the option

to the DM to specify the order of priority of objectives used in comparing two solutions, and

objectives with higher priority are compared first (Fonseca & Fleming, 1998). Ben Said et

al. (2010) prioritize solutions closer to the aspiration level after dominance ranking. Similar

iEMOAs that ask for reference points were proposed in (Deb & Sundar, 2006; Ruiz et al.,

2015b). Such modeling of preferences using goals or aspiration levels ignores the critical

notion of trade-offs between the objectives (Rachmawati & Srinivasan, 2006).

(Branke, Kaussler, & Schmeck, 2001) is one of the earliest studies that utilize the trade-off

information where the DM’s desired trade-offs are used to modify the dominance relation to

narrow the search space.

Specifying trade-offs, weights, and any form of providing parameters to each objective

function is troublesome when the number of objectives increase (Rachmawati & Srinivasan,

2006). Fuzzy logic was also proposed for preference modeling (Rachmawati & Srinivasan,

2005). However, determining membership functions is computationally expensive, particu-

larly in many-objective problems (Rachmawati & Srinivasan, 2006).

Köksalan and Karahan (2010) modeled DM’s preferences as conditions that should be

observed for approval of new solutions into the population to account for DM’s preferences.

In this regard, new solutions are accepted into the population if the distance to the closest

individual in the population is greater than a predetermined threshold. DM’s preferences are

considered by defining a smaller threshold around the DM’s selected solution, leading to a

greater number of solutions in that region. The method’s performance is highly dependent

on the quality of the scaling. Otherwise, the direction of the search would be biased. Thus,

applying the method to problems with unknown ideal and nadir points is not straightforward.

Greco et al. (2010) apply Dominance-based Rough Set Approach (DRSA) to model DM’s

preference model in terms of some ”if…then…” which is used to cut off non-interesting

solutions from the population.

As summarized here, there have been many improvements is learning the preferences, and

researchers have proposed complicated formulations to provide more realistic models. How-

ever, almost no study has examined the ability of those models to capture the preferences

of the DM (Rachmawati & Srinivasan, 2006) and few studies that have scrutinized the per-
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formance of interactive methods indicate they lack the expected performance and robustness

under realistic conditions (Shavarani et al., 2021).

5.2.3 Decision Trees

One of the first DTs was ID3 (Quinlan, 1986), which was generally designed for nominal/in-

teger features. Later, Quinlan (1993) created C4.5 to overcome the limitation of ID3 by

transforming continuous values into discrete partitions. Classification and Regression Trees

(CART) (Breiman et al., 1984) is a superior version of C4.5 that supports regression on nu-

merical targets without a need to rule sets. Among all tree-building methods, CART is the

most popular one (Cheng et al., 2009).

DTs have been widely used for ranking and preference learning. Allen et al. (2019) use

trees to learn about and demonstrate the decision-making behaviors in ranking a given set

of options. DTs have been used in web search ranking, learning user preferences in web

browsing and patterns in navigating between web pages in (Mor & Minguillon, 2003; Zhu,

Greiner, & Häubl, 2003; Fox, Karnawat, Mydland, Dumais, & White, 2005; Liu & Kešelj,

2007; Chrysostomou, Chen, & Liu, 2011; Svore & Burges, 2011).

Binary classification methods such as regression and SVM can not be used for multi-class

classification. However, some extensions (such as one-vs-rest and one-vs-one) make this

task possible by learning an individual model for each pair of labels and then aggregating the

predictions into a unique ranking (Hüllermeier, Fürnkranz, Cheng, & Brinker, 2008; Murphy,

2012). Some other methods try to learn a utility function for each individual rank (Har-

Peled, Roth, & Zimak, 2002; Dekel, Singer, & Manning, 2003; Bishop, 2006a). In one-vs-

rest, each class label is contrasted with all other class labels, and the one with the highest

probability is predicted. In one-vs-one, also known as all pairs, pairwise learning , round

robin learning, a model is constructed for all possible pairs of classes and in predictions,

the label with highest vote is predicted (Fürnkranz & Hüllermeier, 2003). However, such a

transformation of ranking values to real values and aggregation of different models are mostly

susceptible to lots of bias (Cheng et al., 2009). Cheng et al. (2009) propose DTs to address

the aforementioned problems. DTs can also be used for ranking a given set of options. There

are two approaches for using DTs for ranking (Yu et al., 2011). One approach is to consider

each rank as a class and then predict the label/rank of a given data. However, aside from the

fact that this approach does not provide much knowledge on preferences and decision-making

behavior, the predicted data should have the same number of items as the training data. The

second approach is to consider all possible rankings as the target labels, the number of which

adds up to m!, even without considering tie ranks. Thus, other studies modify the splitting
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criteria or entropy to use DTs for ranking (Cheng et al., 2009). We propose using DTs, to our

knowledge for the first time, in the context of an interactive EMOA for preference learning.

5.2.4 Decision Tree Classification

DTs consist of nodes that partition data according to a rule. “Root” is defined as a node at the

top with no edge directed towards it. Other nodes with edges emanating from them are called

internal nodes, while those with no edge going out of them are called “leaves”. Training

a DT involves determining the criteria (feature) and its corresponding partitioning thresh-

old that should be assigned to the root and its subsequent nodes to increase the information

gain and accuracy of the tree. We provide a summary of the CART method (Breiman et al.,

1984), which is used in this research. Interested readers are referred to the original book and

references therein for further details.

Assume there exists a set of training examples T = {e ∈ Rm}, where m is the number

of features/attributes. Further on, assume a vector y ∈ R|T |, which holds a label, also called

class variable or target attribute, for each training example in T . Each training example e and

its corresponding label y is denoted as (e, y). DTs partition the values of each feature such that

similar target values are classified together. Let Qo be the data at node o having No samples.

Given a potential partition θ = (k, to) corresponding to the kth feature (1 ≤ k ≤ m) and a

threshold to, the goal is to split the data into right and left branches, which are respectively

denoted as Qright
o (θ) and Qleft

o (θ), such that:

Qleft
o (θ) = {(e, y) | ek ≤ to}

Qright
o (θ) = Qo \Qleft

o (θ)
(5.1)

The best split is selected based on the value of a score G(Qo, θ) and a given criterion H(Qo),

which is calculated as follows:

G(Qo, θ) =
N left

o

No

H(Qleft
o (θ)) +

N right
o

No

H(Qright
o (θ)) (5.2)

where N left
o is the number of samples on the left branch after applying the partition θ =

(k, to). Definition of N left
o follows accordingly. A candidate split θ∗ = arg minθ G(Qo, θ) is

then selected for that node.

The criterion, H(Qo), differs from one DT to another. In CART and for categorical clas-

sification, the criterion is called Gini Impurity, which calculates information loss or impurity

and has the best performance in most problems (Breiman et al., 1984; Waheed, Bonnell,

Prasher, & Paulet, 2006; Xia et al., 2008). Assuming the target values l ∈ {1, 2, . . . , L} for
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node o, the proportion of samples of class l to the samples of other classes in node o is:

Pol =
1

No

∑
y∈Qo

I(y = l)
(5.3)

where I is the indicator function. Consequently, Gini impurity is calculated as:

H(Qo) =
L∑
l=1

Pol(1− Pol) (5.4)

5.3 Decision-Tree Based EMOA

We focus on indirect preference elicitation in our method, where the DM is asked to pro-

vide a ranking of a subset of non-dominated solutions at each interaction. We do not attempt

to learn a complete ordering of a set of solutions. Instead, similar to (Quan, Greenwood, Liu,

& Hu, 2007b), we try to learn how the DM performs pairwise comparisons. As in (Greco

et al., 2010), the preferences of the DM are modeled by simple rules. We use DTs to generate

such rules to predict the preferred (winner) solution in pairwise comparisons.

5.3.1 Preference Elicitation

In each interaction, a small sample of solutions is randomly selected from the population

(S ⊆ pop, |S| = Nexa) and their objective vectors Z = {z =f(x)| x ∈ S} are presented to the

DM. The DM ranks the options based on their utility. There is no requirement for a complete

ordering of the solutions; the algorithm can handle a partial ordering. However, we assume

the DM provides a complete ordering for simplicity. Let a � b denote that a is preferred over

b. We represent the total order provided by the DM with the vector r such that the rank of zi
is ri (lower rank values are better) and zi � zj ⇐⇒ ri < rj . Thus, given r, it is possible

to infer pairwise comparisons. For instance, the objective vector that is ranked 1 is preferred

over another one ranked 2.

5.3.2 Preference Learning

We aim to learn a DM’s preferences from the ranking provided as well as predict (simulate)

her preference when evaluating the trade-offs of two objective vectors. DTEMOA infers pair-

wise orderings from the elicited preference information that can be in the form of a complete

or partial ranking of a subset of solutions. To construct the training set T , we use the well-

known pairwise transformation (Herbrich, Graepel, & Obermayer, 1999), i.e., for each pair
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Figure 5.1. Construction of the training set from the ranked solutions over a problem with 2 objectives. The
number of solutions ranked by the DM is |Z| = 3. For each pair of ranked solutions (zi, zj ∈ Z) an example,
labeled by φ(zi − zj), is added to the training set. The size of the training set is

(|Z|
2

)
.

of objective vectors zi, zj ∈ Z, we create a training example zi − zj labeled with:

φ(zi − zj) = sign(rj − ri) =

+1 if zi � zj

−1 otherwise;
(5.5)

i.e., an example is labeled +1 if the first solution is preferred over the second one and −1,

otherwise. An instance of such a process is given in Figure 5.1, where Z ⊂ R2, |Z| = 3, and

each possible pairwise comparison of the ranked set generates an example of the training set

T .

In the next step, T is used to train the DT to predict the preferred solution in pairwise

comparisons of unseen data as well as the probability of such a decision. Subsequent interac-

tions add more training examples to T , increasing the accuracy of the model. To predict the

preferred solution when comparing two objective vectors z and z′, the trade-off vector z− z′

is given as the input to the trained DT, which predicts its class (label) φ(z− z′) ∈ {+1,−1}
indicating whether z is preferred over z′. The probability of the sample being in class c ∈
{+1,−1} at leaf node o is calculated by Nc

o

No
, where N c

o is the number of samples of class c in

node o, and No is the total number of samples in o.

5.3.3 Determination of the Score

Each solution in the population is given a score used to sort solutions. To calculate the score

of a solution x, it is compared with all other solutions in the population and the probability

that it is preferred over the compared one is calculated using the trained DT. The sum of all

such probabilities is the score of the solution x:

score(x) =
∑

x′∈pop
x 6=x′

Pr {f(x) � f(x′)} =
∑

x′∈pop
x6=x′

Pr {φ(f(x)− f(x′)) = 1} (5.6)
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Algorithm 4: DTEMOA
Input: Nint : Total number of interactions

Nexa : Number of solutions evaluated by the DM per interaction
pop : Population of solutions
gen1 : Generations before first interaction
geni : Generations between two interactions

Output: The most preferred solution
1 T ← ∅
2 pop← run NSGA-II for gen1 generations
3 for 1 to Nint do
4 Z ← select Nexa solutions
5 r← ask the DM to rank the solutions in Z
6 T ← T ∪ {(zi − zj , φ(zi − zj)) | ∀zi, zj ∈ Z, φ(zi − zj) = sign(rj − ri)}
7 Train DT using T
8 pop← run NSGA-II for geni generations
9 replacing crowding distance with score (Eq. 5.6)

10 return best x ∈ pop ranked first by non-dominated sorting and then score

5.3.4 Using DTs in EMOAs

Given the above steps, let us explain how the preferences of the DM are considered in an

EMOA to guide the search toward the most preferred parts of the PF. We use NSGA-II (Deb et

al., 2002) as the underlying optimizer. After some generations of the NSGA-II, the algorithm

stops to make the first interaction, elicits a ranking from a subset of solutions and consequently

builds the training set T as explained above. A DT is trained using T to predict the preferred

solution in pairwise comparisons. In the following generations, the DT is used to calculate the

scores of the solutions (Eq. 5.6) to sort solutions with the same non-dominated sorting rank,

i.e., the solution scores replace the crowding distance of NSGA-II to differentiate between

non-dominated solutions. The solutions with a higher score have a better chance of survival

and participation in mating and the generation of new offspring. The pseudo-code of the

algorithm is illustrated in Algorithm 4.

When dealing with DMs, it is crucial to gain the DM’s trust and confidence in the process

and the results. When using DTs, learned trees can be conveniently visualized, summarizing

all the rules elicited from the data set. Such a visualization is illustrated in Fig. 5.2, showing

a DT that was built based on preference information elicited from the DM in an experiment

on the DTLZ1 problem. The elicited information and the resulting training examples used

for building the tree are moved to Appendix C to save space.
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Figure 5.2. A decision tree example built on the information elicited in one interaction on problem DTLZ1
with m = 2 objectives. Here objective l indicates the trade-off value for lth objective, i.e., zil − zjl when com-
paring solution i with solution j. The samples field indicates the number of samples that fall on that node.
The cth element of value in each node o indicates N c

o , the number of samples that belong to the cth class. Gini
impurity is a measure (from 0 to 0.5) of the quality of the split.

5.4 Experimental Design

5.4.1 Machine Decision Maker (MDM)

To simulate a human DM in the experiments, we have used the MDM introduced in (López-

Ibáñez & Knowles, 2015) and improved in (Shavarani et al., 2021) (Chapter 3). The MDM is

composed of a utility function (UF) that simulates the actual preferences of the DM and sim-

ulations of cognitive biases and other non-ideal decision-making behaviors that can happen

in interactions with the DM. Here we consider the sigmoid UF introduced by Stewart (1996)

for experimenting on iEMOAs. Particularly, we use a modified version which was introduced

in Chapter 3 for minimization problems without violating any of its underlying assumptions
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Table 5.1. Description of different DM behaviors simulated by combinations of τi and λi for minimization
problems. The table is based on its original counterpart (Stewart, 1996) proposed in (Shavarani, López-
Ibáñez, & Knowles, 2021) for minimization problems.

Case τi λi Description

1 [0.6, 0.9] [0.1, 0.4] Mainly compensatory preferences.
2 [0.6, 0.9] [0.6, 0.9] Mainly compensatory preferences,

but with sharp preference threshold.
3 [0.1, 0.4] [0.1, 0.4] Limited range of compensation, all higher

values nearly equally undesirable.
4 [0.1, 0.4] [0.6, 0.9] Limited range of compensation,

plus sharp preference threshold.

(hereafter called Stewart UF) and is formulated as follows:

U ′(z) =
m∑
i=1

wiui(zi) (5.7)

ui(zi) =


λi +

(1− λi)(1− e−βi(τi−zi))

1− e−βiτi
if 0 ≤ zi ≤ τi

λi · (eαi(1−zi) − 1)

eαi(1−τi) − 1
if τi < zi ≤ 1

There are 4 parameters in Equation 5.7 that control the shape of this UF:

τi : Reference level, i.e., the point where losses are separated from gains with a steep inflation

rate (loss can be interpreted as those values of the objective that are not satisfying to the

DM).

λi : The utility value at the reference level.

αi : The non-linearity of the function over losses.

βi : The non-linearity of the function over the gains. Having αi > βi > 0 satisfies various

assumptions about the behavior of human DMs (Stewart, 1996; Shavarani et al., 2021).

One of the benefits of Stewart UF is the ability to simulate different decision-making be-

haviors, as depicted in Table 5.1. It has been shown that Stewart UF imposes more difficulties

on the algorithms (Shavarani et al., 2021).

We also make use of the Tchebychef UF, which is formulated as follows:

U(z = f(x)) = max
i=1...m

wi|zi − z∗i | (5.8)

where wi is the weight of each objective function, and z∗ is the ideal or Utopian point.

Since the selected benchmark problems are to be minimized and preserve consistency, it is

assumed that the DM prefers solutions with lower utility values.
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Aside from the tests under ideal conditions, we use the MDM capability of simulation of

inconsistencies in the decisions of the DM. The MDM adds a normally distributed random

noise with mean 0 and variance σ. The variance σ controls the amount of noise. To investigate

the robustness of the algorithms, we test with σ ∈ {0.005, 0.01, 0.1, 0.2}.

5.4.2 Benchmark Problems

We follow (Battiti & Passerini, 2010; Köksalan & Karahan, 2010) and perform our exper-

iments on well-known DTLZ benchmark problems (Deb et al., 2005). DTLZ1, DTLZ2,

DTLZ7 are selected from the DTLZ test suite. Each of these problems exposes different

difficulties to the algorithm and allows one to investigate its performance from various as-

pects. DTLZ1 contains 11k − 1 local PFs, and each of them can attract an EMOA before

reaching the global PF. DTLZ2 investigates the performance of an EMOA in getting close to

true PF. Finally, DTLZ7 has 2m−1 disconnected Pareto-optimal regions in the objective space.

It is used to check the diversity of the solutions. The problem dimension n and the dimension

of the objective space m are selected in a way that n is m+ 4 for DTLZ1, m+ 9 for DTLZ2

and m+19 for DTLZ7, as suggested in (Deb et al., 2005); we consider m ∈ {2, 4, 10}. Also

to make the problems more challenging, for DTLZ1 we follow (Battiti & Passerini, 2010) and

limit xi to [0.25, 0.75], and for DTLZ2 we map xi to xi/2+0.25 as suggested by (Brockhoff &

Zitzler, 2007b). We consider all possible combinations of different problem sets, number of

objective functions, different value functions and different decision-making behaviors. Full

details about the set of 45 test configurations can be found in Appendix C.

5.4.3 Evaluating Performance and the Competing Algorithms

Interactive methods are supposed to develop the best solution or a small subset of non-

dominated solutions that maximize the DM’s satisfaction. Thus, it makes sense to evaluate

the performance of the interactive methods based on the utility value of the returned solution

(Afsar et al., 2021). We compare the performance of DTEMOA against two state-of-the-art

algorithms: BCEMOA (Battiti & Passerini, 2010) and iTDEA (Köksalan & Karahan, 2010).

Preference learning in BCEMOA is similar to the way it is done by DTEMOA in that both

learn to rank solutions, however, BCEMOA uses support vector machines (SVM) for pref-

erence learning. iTDEA uses a completely different preference learning scheme, where the

preferences of the DM are reflected in the search process by prioritizing solutions in the prox-

imity of the DM’s selected solution. Both BCEMOA and DTEMOA use NSGA-II as their

underlying optimizer. iTDEA still uses the same non-domination and mating methods, but in

each generation only one solution is created and whether or not it is accepted to the population
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Table 5.2. Parameter settings of the iEMOAs. In addition, total solution evaluations is 80 000, the population
size |pop| = 200, the number of iterations is Nint ∈ {2, 3, 4}, and the DM ranks Nexa = 5 solutions per
interaction. After Nint interactions, the algorithms continue running without further interaction until reaching
N gen generations.

Parameter iTDEA BCEMOA DTEMOA

Total generations (N gen) 80 000 400 400
Generations before 1st interaction (gen1) N gen/3 200 200
Generations between further interactions (geni) N gen

2(Nint−1) 20 20

depends on the position of that solution in the objective space and its distance to its closest

solution in the population. The iTDEA is sensitive to the threshold parameter that controls

the acceptable distance for the new solution. A large threshold would prevent solutions to

enter the population, while a small one would make the population grow uncontrolled and

increase computational costs, specially in many-objective problems. These similarities and

differences were the main motivation behind selecting these two algorithms.

5.4.4 Algorithm Parameter Settings

The parameters of the selected algorithms are illustrated in Table 5.2. iTDEA generates and

evaluates only one solution per generation. Thus, the number of generations is set to N gen =

80 000 to have an equal number of objective evaluations in all compared algorithms. As

suggested in (Köksalan & Karahan, 2010), the first interaction of iTDEA happens after Ngen

3

generations, and the number of generations between each subsequent interaction is given by

geni = Ngen

2(Nint−1)
. Thus, with a larger number of interactions, gen1 becomes smaller. The

experimental study will investigate the impact of different numbers of interactions, Nint. The

initial and final territory parameters of iTDEA are respectively set to 0.1 and 0.00001 in

problems with two objectives, which was one of the alternatives suggested in (Köksalan &

Karahan, 2010). For problems with m = 4 and 10 objectives, these values change to 0.5 and

0.25, respectively. Any smaller values for these parameters would make the size of the archive

population large and the computational costs unaffordable. Other parameters for BCEMOA

and iTDEA are set as suggested in (Battiti & Passerini, 2010; Köksalan & Karahan, 2010).

The hyper-parameters of the DT in DTEMOA and SVM in BCEMOA are tuned by grid search

cross-validation at each interaction (Shavarani, López-Ibáñez, Allmendinger, & Knowles,

2022).

We run experiments with a different number of interactions Nint∈ {2, 3, 4} to test the

effect of interactions on the results. Our initial experiments indicate that a higher number

of interactions does not seem to increase the quality of the solutions substantially. Each

experiment is repeated 40 times with different random seeds.
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5.4.5 Implementations

BCEMOA, DTEMOA, iTDEA, MDM and utility functions are implemented in Python ver-

sion 3.7.6. The NSGA-II and DTLZ benchmark implementations were acquired from the

Pygmo library 2.16.0 (Biscani et al., 2010b), the SVM ranking model from the Preference

Learning Toolbox (Farrugia et al., 2015) powered by scikit-learn 0.23.1 (Pedregosa et al.,

2011). Scikit-learn is also used to implement the DT models

5.5 Results & Discussion

This section is divided into two parts. In the first part, we focus on our proposed preference

learning technique and provide some insight into its performance. In the second part, the

performance of the proposed algorithm is compared with iTDEA and BCEMOA.

5.5.1 Assessing Ranking Performance

One of the main differentiating characteristics of iEMOAs is the way they adapt to the DM’s

preferences and the way they learn and model the preferences (Xin et al., 2018). The meth-

ods compared in our study differ significantly in how they interact and adapt to the DM. Both

BCEMOA and DTEMOA try to learn a model to rank solutions but use different learning tech-

niques. We can directly compare their accuracy independently of other algorithmic aspects.

We evaluate the accuracy of the preference learning models of BCEMOA and DTEMOA on

a randomly-generated population of 400 solutions for DTLZ7 problem with different num-

ber of objectives m ∈ {2, 4, 10}. It is also interesting to see how each algorithm exploits

accumulated information elicited in different interactions. Thus, we simulate 5 interactions.

Before each interaction, NSGA-II is used to evolve the population for 20 generations, and 5

solutions are selected randomly from the non-dominated front and ranked by a UF. The pref-

erence learning of both algorithms is applied to the elicited data. Then the accuracy of each

model in ranking the non-dominated solutions in the population is measured by counting the

proportion of correct pairwise rankings to all possible pairwise rankings:

Acc = 100 ·
∑|pop|−1

i=1

∑|pop|
j=i+1 I{ri < rj ∧ r̂i < r̂j}∑|pop|−1

i=1

∑|pop|
j=i+1 I{ri < rj}

, (5.9)

where I is the indicator function which is equal to 1 if the given condition is true, otherwise

0; ri = U(f(xi)) is the true rank of the solution xi ∈ pop according to the UF, and r̂i is the

rank predicted by the learning models for the same solution. The experiments are repeated

40 times for each problem.
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Table 5.3 summarizes the results. In particular, the accuracy of both methods is similar

with 2 objectives. However, the preference learning technique in DTEMOA performs better

when the number of objectives increases.

“nSol” indicates the number of non-dominated solutions that are sorted by the learned

preference model (SVM for BCEMOA and DT-based for DTEMOA). It is easy to see that

by increasing the number of objectives from 2 to 4, all the solutions become non-dominated

with respect to the current population which is an expected behavior and problem of non-

domination sorting. For problems with 2 objectives, both methods perform well in ranking

the population with an accuracy of almost 100. With an increase in the number of objective

functions, the accuracy of the methods decreases. The drop in performance is much more

significant in SVM. With the accumulation of data over different interactions, the accuracy

of the DT-based method increases significantly and almost recovers to 100. However, the

SVM fails to achieve significant gains with larger preference data.

5.5.2 Comparison of the Performance with Other iEMOAs

The overall performance of the algorithms, measured by the utility value of the returned solu-

tion (lower is better), over all of the 45 tests with all combinations of the number of objectives,

UFs, problems, and decision-making behaviours, is illustrated in Table 5.4 grouped in tests

with the simulation of inconsistent decisions (σ > 0) and ideal conditions (σ = 0). DTE-

MOA outperforms BCEMOA and iTDEA and the Wilcoxon test indicates the significance

of the differences (p-value 10−5). The second important observation is the robustness of the

DTEMOA towards noise and inconsistencies in the DM’s decisions. The performance of

DTEMOA has declined by 1.6% when inconsistent decisions are simulated; this change is

insignificant compared to the deterioration in the performance of BCEMOA(17%) and iT-

DEA(3.5%).

Figure 5.3 further details the performance of the algorithms with different levels of noise

and inconsistencies in the decisions of the DM where the effects of 4 different levels of σ

is evaluated. This figure only includes the most significant experiments where some of the

worst and best performances of the algorithms are observed. In general, DTEMOA seems

robust when noise is introduced into DM’s decisions, like the other two algorithms. How-

ever, its performance deteriorates with high levels of σ in some cases which are included in

the Figure Figure 5.3. However, its performance still is better than iTDEA and BCEMOA

when confronted with such high levels of noise in most cases, except few instances which are

depicted in the figure.

In section 5.5.1, it has been shown that DTEMOA’s preference-learning improves with
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Table 5.3. Mean accuracy (and standard deviation) of preference learning in DTEMOA and BCEMOA on
the DTLZ7 problem for different UFs. The different number of interactions indicate how the algorithms ex-
ploit the accumulated preference data over interactions. The number of solutions presented to the DM at each
interaction is Nexa= 5. nSol is the number of solutions in the non-dominated front that are ranked by the al-
gorithms. nSol is equal to 400 in all interactions when m = 10 or 20. Thus, this information is omitted for
brevity. The best accuracy for each UF, m and Nint is highlighted in bold face.
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Nint Linear

2 89.4(11.3) 95.5(1.9) 122.45 71.9(11.3) 86.2(8.9) 400 67.2(6) 91.5(12.8) 57.9(3.4) 90.4(12)
3 87.2(11.7) 95.9(2) 353.07 70.4(8.1) 88.1(7.9) 400 67.1(5.9) 94.6(8.5) 59.4(3.9) 92(10.1)
4 89.2(8.1) 94.5(6.7) 400 72.2(4.8) 87(10.7) 400 67.4(5.9) 95.4(8.1) 60.2(4.5) 95.7(3.8)
5 91(5.6) 94.8(4.7) 400 73.5(4.1) 88.7(8) 400 67.1(6) 96.8(3.1) 60.8(3.6) 96.2(3.7)

Polynomial

1 97(5.1) 96.8(4.9) 30.92 78.4(10.8) 95.3(9.1) 368.48 64.8(5.4) 87.2(18.3) 55.5(4.3) 78.7(24.1)
2 94.2(9) 97.6(1.4) 122.45 75.7(10.4) 95.2(9.9) 400 68(5.8) 94.7(10.1) 58.2(3.6) 95.6(11.2)
3 92.6(10.2) 97.4(1.9) 353.07 74.8(8.4) 97.5(7.7) 400 67.5(6.5) 98.8(3.4) 59.8(4.1) 96.9(8.4)
4 94.1(8.2) 96.4(7.4) 400 75.8(5.5) 97.2(8.5) 400 68(5.4) 97.4(8.7) 60.8(4.7) 99.3(2.8)
5 94(6.4) 97.4(1.1) 400 76.5(5) 98.6(8.6) 400 68.1(6.1) 100(0) 61.5(4) 100(0)

Stewart

1 82.4(8.6) 79.4(11.4) 30.92 85.9(8.8) 80.9(6.3) 368.48 63.5(7.1) 59.1(6.8) 62.5(5.1) 55.2(8)
2 79.4(11.3) 84.8(12.1) 122.45 84.2(7.1) 83(7.2) 400 68.1(7.2) 62.2(6.5) 65.2(4.8) 59.5(7.8)
3 82.9(9) 84.9(11.4) 353.07 82.2(7) 82.9(5.7) 400 69.5(5.8) 67(6) 68.7(5) 62.1(9.3)
4 85.7(7.7) 86.5(5.5) 400 81.6(7.1) 83.5(2.9) 400 71.1(6.1) 69.3(6.3) 70.9(4.5) 64.5(6.6)
5 87.5(8.1) 84(11.3) 400 81(6.7) 81.8(6.5) 400 70.3(4.5) 71.3(7.1) 71.6(5.2) 71.8(7.9)

Tchebychef

1 100(0) 97.9(5.8) 30.79 77(11.4) 95.6(8.3) 370.30 64.1(5.7) 84.9(19.8) 55.3(4.2) 75.4(24.3)
2 100(0) 99.9(0.2) 122.83 75.5(11.4) 95(10.1) 400 67.3(5.8) 96.4(8.5) 58.5(3.7) 94.9(12.3)
3 100(0) 99.7(1.1) 354.17 74(7.8) 96.8(8.8) 400 67.1(6.5) 98.8(3.4) 60.1(3.6) 95.9(9.5)
4 100(0) 100(0) 400 75.6(5.8) 97(9.6) 400 67.7(5.8) 97.2(9.9) 61.1(5) 99(3.3)
5 100(0) 100(0) 400 76.7(5.1) 98.2(9.9) 400 68.3(6) 100(0) 61.6(4.1) 100(0)

more interactions. To test this hypothesis, we scrutinize the performance data with respect to

the number of interactions in Table 5.5. The mean utility value of the final solution returned

by DTEMOA improves from 0.184 to 0.177when the number of interactions increases from 2

to 4. The same decrease is observed for BCEMOA, where the mean utility value is decreased

from 0.206 to 0.203. The performance of iTDEA is surprisingly worsened by the increase

of interactions. This finding is compatible with those in the original study of iTDEA (Kök-

salan & Karahan, 2010), where the authors have indicated that more interactions may lead to

worsened results, particularly when more complicated utility functions are used.

It was also illustrated that the learning mechanism in DTEMOA surpasses BCEMOA’s

when the number of objectives increases. Table 5.6 outlines the performance of the algo-

rithms for the different number of objective functions (m). The table shows the averaged

utility value over all tests with 3 interactions, which seemed to be a reasonable number of
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Table 5.4. Comparing the robustness of algorithms over experiments under ideal conditions and with the sim-
ulation of inconsistencies in the DM’s decisions. The utility values (to be minimized) are averaged over all
tests. The values are rounded to 3 decimal points. The Wilcoxon test rejects the equality of the performance
between algorithms (p-value < 10−5), except for BCEMOA and iTDEA where the inconsistencies are simu-
lated. The p-values are adjusted using Holm’s method for multiple comparisons.
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σ = 0 0.206 0.179 0.259 0.000 0.000 0.000
σ > 0 0.239 0.183 0.271 0.000 0.000 0.000

Table 5.5. Comparing the performance of the algorithms over over different number of interactions and under
ideal conditions. The utility values (to be minimized) are averaged over all tests. The values are rounded to
3 decimal points. The Wilcoxon test is used to illustrate the significance level and the p-values are adjusted
using Holm’s method for multiple comparisons.
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Nint mean utility value p-value

2 0.206 0.184 0.214 0.000 0.032 0.192
3 0.206 0.179 0.259 0.000 0.000 0.000
4 0.203 0.177 0.278 0.000 0.000 0.000

interactions based on our observations from Table 5.5. It can be seen that BCEMOA and

DTEMOA have the same performance on tests with 2 objectives. However, the mean utility

values of final solutions achieved by BCEMOA are worse than DTEMOA’s by 11% in tests

with 4 objectives. This difference is increased to 58% when the objective dimensions are in-

creased to 10. This result can be attributed to the fact that decision trees have more attributes

to draw rules with the increase in the objective function.

The performance of iTDEA is competitive to DTEMOA for tests with 2 and 10 objectives.

Nevertheless, it has a bad performance in problems with 4 objectives. The performance of

iTDEA is highly sensitive to its internal parameters, such as the territory and scaling param-

eters. There is no clear guideline on how to tune such parameters. Thus, we suspect that

tuning such parameters might help increase the method’s accuracy. A task that does not seem

trivial.

The same pattern is observed in experiments with the simulation of inconsistencies. The

only difference is that the inconsistencies affect the performance of BCEMOA and iTDEA

and even for tests with 2 objective, the differences in the performance are significant. Ta-

ble 5.7 compares the algorithms when confronted with different DM types. The performance

of DTEMOA is significantly superior to BCEMOA and iTDEA in all cases, except for tests

with DM Type 4, when its performance is slightly worse than BCEMOA. However, the differ-
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Figure 5.3. Evaluation of the DTEMOA’s performance in comparison with BCEMOA and iTDEA with simu-
lation of inconsistencies in DM’s decisions and Stewart UF.

ence is not significant (p-value = 0.739). With the simulation of inconsistencies, the perfor-

mance of BCEMOA and iTDEA is highly affected, while only minor changes are observed

for DTEMOA. Thus, DTEMOA outperforms other algorithms in all cases (p-value < 10−5).

To save space, we have not presented results for each test but reported on the aggregated

results and limited our comments to the main aspects of the performance. The full details of

experiments on each test are provided in Appendix C through box plots and tables containing

statistical data, including standard deviation and p-values of Wilcoxon’s tests of significance.

However, here we will discuss the most important ones.

As shown earlier in experiments under ideal conditions, DTEMOA outperforms BCE-
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Table 5.6. Comparing the performance of algorithms over various number of objective functions (m). The
utility values are averaged over all tests and are rounded to 3 decimal points. Algorithms are compared pair-
wise and the p-value for Wilcoxon test is reported. The p-values are adjusted using Holm’s method for multi-
ple comparisons.
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m mean utility value p-value

Under ideal conditions

2 0.270 0.270 0.256 1.000 1.000 1.000
4 0.215 0.193 0.319 0.002 0.000 0.000
10 0.122 0.077 0.097 0.000 0.652 0.000

With simulation of inconsistencies in DM’s decisions

2 0.292 0.266 0.268 0.000 0.012 0.055
4 0.244 0.200 0.328 0.000 0.000 0.000
10 0.116 0.081 0.103 0.000 0.158 0.000

Table 5.7. Comparing the performance of algorithms over different decision-making types. The utility values
are averaged over all tests. The values are rounded to 3 decimal points. Algorithms are compared pairwise
and the p-value for Wilcoxon test are adjusted using Holm’s method for multiple comparisons and illustrated
in the table.
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DM Type mean utility value p-value

Under ideal conditions

Tchebychef 0.103 0.102 0.126 0.007 0.000 0.000
1 0.284 0.214 0.371 0.000 0.000 0.001
2 0.065 0.053 0.073 0.000 0.000 0.115
3 0.424 0.377 0.501 0.000 0.000 0.000
4 0.150 0.154 0.168 0.739 0.000 0.000

With simulation of inconsistencies in DM’s decisions

Tchebychef 0.129 0.107 0.141 0.000 0.000 0.000
1 0.330 0.215 0.404 0.000 0.000 0.000
2 0.082 0.054 0.089 0.000 0.000 0.148
3 0.459 0.380 0.542 0.000 0.000 0.000
4 0.161 0.156 0.168 0.021 0.000 0.000

MOA and iTDEA in all tests except three instances which included DTLZ2 with m = 2,

and DTLZ7 with m = 2 where BCEMOA performs slightly better than DTEMOA. All of

these exceptions, as illustrated in Figure 5.4 are simulations of DM type 3 which indicates

DTEMOA’s performance declines when dealing with this DM type.

DM types 1 and 3 seem to be the most difficult for DTEMOA. The same is true to a

lesser degree for BCEMOA and iTDEA. The MPS is found by all algorithms over problems

DTLZ1 and DTLZ2 withm = 2 and DTLZ2 withm = 10with DM type 1 and over problems

DTLZ1(m = 2) and DTLZ2 (m = 2 and m = 1) and DTLZ7 (m = 2 and m = 4) all with
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Figure 5.4. The worst performances of DTEMOA in comparison with BCEMOA and iTDEA under ideal con-
ditions with Stewart UF.

DM type 2. DTEMOA also finds MPS in tests DTLZ1(m = 2, DM type 4), DTLZ2(m = 10,

DM type 1), and DTLZ7(m = 4, DM type 1).

The worst performance of both algorithms is over problem DTLZ1 (m = 2) and DM type=

3. Some of the best and worst performances of the algorithms are illustrated in Figure 5.5.

Finally, the location of the returned points for DTLZ7 with 2 objectives where DM Type

2 is used to simulate DM preferences is provided in Figure 5.6. Each algorithm is run 20

times with different random seeds and for each run, the final solution is depicted in the figure.

The points returned by the DTEMOA are consistently closer to MPS. In contrast, the solutions

returned by other algorithms are scattered away. It can be noted that all algorithms find points

almost located on the PF but with less desirable utility.

5.6 Conclusions

There have been many improvements in the field of interactive methods, and yet it seems

there is room for more. Recent research on benchmarking of these methods has revealed that

they may not perform as expected when confronted with non-ideal conditions that were not

anticipated in their development (Afsar et al., 2021; Shavarani et al., 2021). At present, the

field has little idea of how to explain or predict which components of iEMOA methods are

most vulnerable to non-idealities or what conditions affect their performance the most. How-

ever, we believe the core of any interactive method is the preference model and the accuracy

of these models in reflecting the DM’s preferences is crucial in the optimization process.

With these observations, this study proposed an innovative preference model and learning

approach using decision trees to predict the result of pairwise comparisons from the DM’s

perspective to manage the convergence direction of the population. The method’s perfor-

mance is found to be stable in many-objective problems because more objectives translate to

more attributes that can participate in classification. Further, when the number of objectives
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Figure 5.5. Some of the best and worst performances of the algorithms under ideal conditions with Stewart
UF.

increases, DTs can naturally identify the most important ones. Our method is also found to

be more robust to biases as we make holistic comparisons to cancel out any estimation errors

in single predictions. In contrast, other learning methods such as SVM rely on kernel perfor-

mance, and complications such as higher dimensions, non-linearity, and biases make kernel

selection an intensive task and generally less accurate. The performance of DTEMOA is also

more efficient as it reaches better results in terms of the utility value of the final solution in

less interactions.

Another critical advantage of DTs in this context is their intuitive interpretation and ease

of visualization, both being essential elements in gaining the DM’s trust in the process and

the results. We used the suggested experimental design of (Shavarani et al., 2021) to evaluate
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objectives and DM Type 2. The horizontal axis indicates the first objective (f1) and the vertical axis indicates
the second objective (f2). The results returned by DTEMOA (indicated in red) are close to MPS(depicted in
green “X”).

the performance of the algorithm and examine the efficiency of the method. Further research

may extend this study by investigating the application of weighted decision trees to emphasize

the most recently elicited information. Another interesting research direction is to explore the

use of decision tree regressors instead of classifiers in the preference model.

Reproducibility. We make source code and data for reproducing our results publicly avail-

able as supplementary materials (Shavarani et al., 2022) to motivate further research in this

direction.
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Chapter 6

Conclusions & Future Study

The objective of this thesis was to develop tools and measures for benchmarking and im-

proving iEMOAs (Interactive Evolutionary Multi-Objective Optimization Algorithms). Pre-

vious researchers in the field have emphasized the need for proper measures and tools to

benchmark iEMOAs, as the lack thereof hinders our understanding of how these algorithms

perform under real-life conditions and delays progress in the field (López-Ibáñez & Knowles,

2015; Afsar et al., 2021). In response, this thesis proposed improvements to the design of

experiments for iEMOAs. Specifically, it built upon an existing MDM and incorporated a

realistic utility function (UF) while also extending the list of biases and non-idealities that

the MDM simulates.

Such a realistic simulation allowed us to evaluate the performance of well-known iEMOAs

and illustrate how their performance can be biased under realistic conditions. The results

uncovered some weaknesses in the iEMOAs we studied, which inspired us to propose im-

provements to the iEMOAs. We have organized our conclusions into two sections. The first

section briefly revisits the research’s main findings, limitations, and implications. The sec-

ond section proposes the directions for future research, which mainly targets the limitations

of our research and is inspired by the lessons we have learned from such extensive analysis

of iEMOAs.

6.1 Findings

In the first step of this research, we investigated key problems associated with measuring

and improving iEMOAs, identified the gaps in the literature, and addressed some issues in

this field.

Building on a research by (López-Ibáñez & Knowles, 2015), we proposed a machine DM

utilising the realistic Stewart UF that can mimic different decision-making behaviors. The

results of the experiments presented in Chapter 3 indicate how different simulated behaviors

129



can affect the performance of the iEMOA. We also noticed that for some parameter combi-

nations of the Stewart UF, the utility value of the non-dominated solutions fall into a narrow

interval. As a result, any point on the PF returned by the algorithm will have almost the same

utility, making it challenging to discriminate any significant observations. A mathematical

model was proposed in Chapter 3 that can be used to simulate a specific behavior and impose

desired characteristics, such as the place of the MPS on the PF, and preserving the diversity

of the utility values of the non-dominated solutions.

We extended the list of non-idealities and biases discussed in the original study to take

another step toward a more realistic and reliable MDM. The results indicated that the per-

formance of the algorithms studied is not robust towards non-idealities, and there are con-

siderable deviations from the MPS when such non-idealities exist. These results confirm the

need for such extensive experiments in the field, performing statistical analyses and bench-

marking of interactive methods under realistic conditions, scrutinizing different elements of

interactive methods (particularly preference learning and modeling), and exploring ideas for

improvement of iEMOAs. We used the MDM to experiment with two iEMOAs in Chap-

ter 3. The results indicated how experimenting under realistic conditions would affect the

performance of iEMOAs and possibly reveal their weaknesses, which will open the way for

more improvements in the field. We also observed how the performance of iEMOAs can be

affected not only by the non-idealities but also by the number of objectives which can sig-

nificantly deteriorate the effectiveness of these methods. One of the main goals of iEMOAs

is to address problems with many-objective problems; thus, such a decline in performance is

not expected with the increased number of objectives. In some cases, even the design of the

algorithm will not allow its application to many-objective problems.

For instance, as reviewed in Chapter 2.2.2 some studies estimate the UF by solving a linear

programming model or running an EMOA which becomes time-consuming and complex with

the increase in the number of objectives. During our experiment, we noticed a similar prob-

lem with iTDEA when it came to selecting algorithm parameters, specifically the parameter

responsible for controlling the density of solutions in objective space (called territory size

in iTDEA). A small value for this parameter would overpopulate the population and make

the algorithm computationally expensive. On the other hand, large values will result in poor

diversity and exploration. Another problem with similar methods is the need for normal-

ization and scaling objectives, a process which is not straightforward and susceptible to the

parameters used for normalization. Such scaling is predominantly done by using ideal and

nadir points, the estimation of which is not a trivial task in real-life problems (Szczepański

& Wierzbicki, 2003; Afsar et al., 2021).

We then elaborated and provided formal definitions for two non-idealities; irrelevant and
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hidden objectives. Although these objectives were discussed in practical experiments in the

literature, no formal definitions were available. We proposed an approach to simulate and in-

tegrate hidden and irrelevant objectives into any existing multi-objective benchmark problem

in Chapter 4. To make iEMOAs robust toward such non-idealities, we designed an efficient

method based on uni-variate feature selection and recursive feature elimination to automat-

ically identify hidden and irrelevant objectives. The method can change the set of active

objective functions during the optimization process to optimize the set of objective functions

that align with DM’s preferences. We also discussed applying the proposed feature selection

methods as an objective reduction technique to reduce those objectives that are not (or less)

important to the DM and increase computational efficiency. The results of our experiments

indicated that objective evaluations could be dropped by 80%. This reduction in objective

evaluations is significant in agile real-world problems where an evaluation of complex objec-

tives is time-consuming. Detecting relevant objectives would also benefit preference learning

as the estimated model is not biased or complicated by irrelevant objectives. The study illus-

trated that the valuable DM’s preferences elicited in iEMOAs for directing the search could

also be exploited in other ways to address the problems associated with many-objective prob-

lems.

Considering how the discrepancy between the set of objective functions and DM’s pref-

erences degrades the learned model, a novel iEMOA was proposed in Chapter 5, which is

based on decision trees that naturally deploy feature selection. The learning scheme in the

proposed iEMOA is differentiated by several important characteristics. The DT is trained on

the trade-offs of some small set of ranked solutions and is later used to predict the preferred

solution in pairwise comparisons based on their trade-offs. The proposed preference learning

scheme was an effort to avoid problems with other preference learning methods; (i) we do

not assume any specific shape for the DM’s preference model. (ii) we do not aim for learning

and estimating a complete (or partial) ranking of the solutions through an ensemble of esti-

mators, which is prone to biases, or by estimating a UF that can not adequately capture the

complicated preferences of the DM. (iii) Owing to their mechanism and use of information

gain, DTs can detect irrelevant objectives and make predictions based on the important ones.

(iv) DTs can be easily depicted and understood by the DM, and the DM can revisit his deci-

sions if required. The algorithm is thus explainable, which is proved to be an essential feature

in facilitating decision-making and gaining the DM’s trust in the final results. (vi) Like any

other learning algorithm, the accuracy of DTs is never 100%, and they are prone to errors.

To minimize the effect of such errors, we make comprehensive comparisons and compare

each solution with all of the population to get a better estimate of the solution’s quality com-

pared to the current population. To evaluate our DT-based preference learning, we compared

our proposed preference learning scheme with one based on support vector machines used in
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(Battiti & Passerini, 2010), and the results indicated the superiority of our scheme in terms

of accuracy and robustness to non-idealities. This experiment showcases the experimental

settings that the researchers can employ to investigate an isolated part of their method rather

than evaluating the algorithms’ performance based on the final results, which is not so much

informative and does not explain why a particular result is observed.

The contributions and findings of this research can be summarized as follows. We have im-

proved the MDM framework proposed in (López-Ibáñez & Knowles, 2015) with the Stewart

UF, which is used for the first time in this field. We have introduced and provided formal defi-

nitions for hidden objectives, irrelevant objectives and simulated several other non-idealities.

The usage of the MDM is showcased through the research on experimenting on two existing

algorithms and benchmarking the performance of a novel algorithm by comparing it with

other well-known algorithms.

We discussed how the algorithms can be improved with the detection and handling of

hidden and irrelevant objectives, which improves the performance in terms of the utility value

of the final results as well as the computational efficiency. We also introduced a new objective

reduction approach that considers the DM’s preferences rather than the problem’s structure.

The results indicated that the number of objective evaluations is reduced up to 80% while

improving the quality of the returned solutions.

Finally, a preference learning technique was proposed based on decision trees that can

handle irrelevant objectives and inconsistencies in the DM’s decisions and can adapt to com-

plex preference models of the DM. This learning technique was used in the development of

a novel iEMOA (DTEMOA) introduced in Chapter 5. Using the MDM framework imple-

mented in Chapter 3, we conducted experiments to compare the performance of DTEMOA

with that of other algorithms. The results demonstrate the algorithm’s superiority over two

other iEMOAs, as well as its robustness in the face of noise and non-idealities.

6.2 Future Study

The advancements to the MDM discussed here are just another step towards improving

such frameworks. Many other non-idealities in the literature can be integrated into the MDM

to make the simulation of decision-making behaviors more realistic and the results more re-

liable. Such non-idealities include but are not limited to fatigue (Zujevs & Eiduks, 2008),

hesitation (Huber et al., 2015), lack of complete information (Lerch & Harter, 2001), cog-

nitive bottleneck (Tversky & Kahneman, 1974; Stewart, 2005) and anchoring (Buchanan &

Corner, 1997). We share our implementation of the MDM and welcome the contributions of

other scientists in the field.
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It is also desirable to study the improvements of an existing iEMOA by varying different

elements and observing the effects on the results. These elements might include selecting so-

lutions for DM’s evaluations, preference modeling, preference elicitation styles, and stopping

criteria.

Our experiments were limited to several well-known benchmark problems from the litera-

ture. These problems provide the opportunity to test the algorithms under specific difficulties.

However, they also impose some undesired characteristics. For instance, the objectives are

highly correlated in some cases, and optimizing any of the correlated objectives will result in

optimized values of other objectives. Another issue we encountered was that the projection

of some of the problems into lower dimensions would impose undesired characteristics (Ly-

goe et al., 2010), such as the scenario with DTLZ problems where the PF collapses to one

point or a few points. Another problem that was specifically troublesome when experiment-

ing with objective reduction methods in Chapter 4, was that the problems seemed too easy

for the algorithms. It is desirable to use representative of real-life applications with different

computational challenges in experimenting on iEMOAs.

The feature selection used for updating the set of active objectives in Chapter 4 was based

on uni-variate feature selection and recursive feature elimination. These methods do not con-

sider the correlation among objectives. On the other hand, other algorithms that do so incur

higher computational time, which is not desirable during interaction with the DM. Future

research can build on our proposed method to find a solution with a proper trade-off between

computational cost and accuracy in detecting any correlations among objectives. We will

also pursue applying feature extraction methods instead of feature selection techniques in

our future study. It was also observed that the detection method successfully identifies the

relevant objectives. However, it might happen that after optimizing the relevant ones, the al-

gorithm starts exploring the feasible space by deactivating the optimized relevant objectives

and optimizing other irrelevant objectives. Proper mechanisms can be incorporated to stop

optimization when the relevant objectives are optimized to increase computational efficiency.

We have introduced objective reduction techniques that target irrelevant objectives. It

might be beneficial to investigate the combination of reduction techniques that target irrele-

vant and redundant objectives, particularly for many-objective problems.

In our study, we limited our experiments to two algorithms that had publicly shared their

source code. On the other hand, implementing other algorithms that do not provide the source

code will be complicated and time-consuming, even if the full details were provided in the

original studies, which is not the case in most of them. Thus, we encourage the research

community to share their source code to facilitate experimenting on iEMOAs.
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We have used DTs in Chapter 5 to model the DM’s preferences. The robustness of the

DTs in learning preferences motivates research toward using random forests or boosted DTs,

which tend to be more accurate and may result in better performance. Also, one may explore

the effect of using a temporally weighted DT, where recent preference information is weighted

more to enable the algorithm to cope with learning and the change in DM’s preferences. It

is also possible to use the value acquired from DT regressors to rank the solutions in the

population directly. This possibility should be explored in future research. The information

gain that is used for deciding on the root node and its subsequent nodes, can also be used

as a feature selection technique to decide on the objectives that are relevant and should be

optimized by the iEMOA.

To motivate further contributions and facilitate improvements in the field, We make all the

codes used in this study publicly available at https://github.com/ShavaraniMahdi/MachineDM.
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Appendix A

Supplementary Material to Chapter 3:

On Benchmarking Interactive

Evolutionary Multi-Objective Algorithms

This supplementary material provides all the figures required for the analysis of Chapter 3

that had been omitted for brevity.
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A.1 Results
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Figure A.1. Comparison of the performance of the algorithms with simulation of inconsistencies and Tcheby-
chef utility function. The blue dashed line represents the utility value of the MPS and the red one illustrates
worst utility value among PF solutions. Number of interactions is fixed to 3.
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Figure A.2. Comparison of the performance of the algorithms with simulation of inconsistencies and trans-
formed Stewart’s utility function. The blue dashed line represents the utility value of the MPS and the red one
illustrates worst utility value among PF solutions. Number of interactions is fixed to 3.

164



0.1

0.2

0.3

0.4

0.5

0.6

0.7
D

TL
Z1

 m
= 

2

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
TL

Z1
 m

= 
4

0.05

0.10

0.15

0.20

0.25

D
TL

Z1
 m

= 
10

0.3

0.4

0.5

0.6

0.7

D
TL

Z2
 m

= 
2

0.05

0.10

0.15

0.20

0.25

0.30

D
TL

Z2
 m

= 
4

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

D
TL

Z2
 m

= 
10

level 0 level 1 level 2 level 3 level 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
TL

Z7
 m

= 
2

level 0 level 1 level 2 level 3 level 4
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

D
TL

Z7
 m

= 
4

level 0 level 1 level 2 level 3 level 4
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

D
TL

Z7
 m

= 
10

γ

Tc
he

by
ch

ef
 u

til
ity

 v
al

ue

BCEMOA iTDEA

Figure A.3. Comparison of the performance of the algorithms with correlated objectives and Tchebychef util-
ity function. The blue dashed line represents the utility value of the MPS and the red one illustrates worst util-
ity value among PF solutions. Number of interactions is fixed to 3.
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Figure A.4. Comparison of the performance of the algorithms with correlated objectives and the transformed
Stewart’s utility function. The blue dashed line represents the utility value of the MPS and the red one illus-
trates worst utility value among PF solutions. Number of interactions is fixed to 3.
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Figure A.5. Comparison of the performance of the algorithms with simulation of a irrelevant objective and
the Tchebychef utility function. The blue dashed line represents the utility value of the MPS and the red one
illustrates worst utility value among PF solutions. Number of interactions is fixed to 3.
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Figure A.6. Comparison of the performance of the algorithms with simulation of a irrelevant objective and
the transformed Stewart’s utility function. The blue dashed line represents the utility value of the MPS and the
red one illustrates worst utility value among PF solutions. Number of interactions is fixed to 3.
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Marginal utility functions

The marginal utility functions for tests with 4 objectives are provided in this Section. Ob-

jectives are discriminated by 4 different colors. The corresponding parameters of the UFs are

depicted in the legend of each figure.
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Figure A.7. Marginal utility functions for test 31. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.8. Marginal utility functions for test 32. The values of the objectives in the MPS is depicted by an
asterisk.
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A.2 Heat map of utility values vs. the PF for problems with 2 objective

In this section we provide heatmaps of the utility functions for problems with 2 objectives.

The effects of simulating different decision-making behaviors can be observed in these plots.
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Figure A.9. Marginal utility functions for test 33. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.10. Marginal utility functions for test 34. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.11. Marginal utility functions for test 36. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.12. Marginal utility functions for test 37. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.13. Marginal utility functions for test 38. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.14. Marginal utility functions for test 39. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.15. Marginal utility functions for test 41. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.16. Marginal utility functions for test 42. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.17. Marginal utility functions for test 43. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.18. Marginal utility functions for test 44. The values of the objectives in the MPS is depicted by an
asterisk.
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Figure A.19. Heatmap vs. Pf : DTLZ1, DM type 1
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Figure A.20. Heatmap vs. Pf : DTLZ1, DM type 2
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Figure A.21. Heatmap vs. Pf : DTLZ1, DM type 3
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Figure A.22. Heatmap vs. Pf : DTLZ1, DM type 4
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Figure A.23. Heatmap vs. Pf : DTLZ2, DM type 1
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Figure A.24. Heatmap vs. Pf : DTLZ2, DM type 2
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Figure A.25. Heatmap vs. Pf : DTLZ2, DM type 3
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Figure A.26. Heatmap vs. Pf : DTLZ2, DM type 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
f1

2.5

3.0

3.5

4.0

f 2

0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05

U
til

ity
 v

al
ue

Figure A.27. Heatmap vs. Pf : DTLZ7, DM type 1
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Figure A.28. Heatmap vs. Pf : DTLZ7, DM type 2
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Figure A.29. Heatmap vs. Pf : DTLZ7, DM type 3
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Figure A.30. Heatmap vs. Pf : DTLZ7, DM type 4
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Appendix B

Supplementary Material to Chapter 4:

Detecting Hidden and Irrelevant

Objectives in Interactive Multi-Objective

Optimization

This supplementary material provides Figures and Tables that were not included in the

main text of Chapter 4 for brevity.
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B.1 Additional results
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Figure B.1. Comparison of the performance of different modes for DTLZ problems with m = 4. The number
of active objectives are fixed.
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Figure B.2. Comparison of the performance of different modes for DTLZ problems with m = 10. The num-
ber of active objectives are fixed.
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Figure B.3. Comparison of the performance of different modes for DTLZ problems with m = 20. The num-
ber of active objectives are fixed.
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Figure B.4. Comparison of the performance of different modes for DTLZ problems with m = 4. The number
of active objectives is not fixed and detection mode is used as a mean of objective reduction technique.
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Figure B.5. Comparison of the performance of different modes for DTLZ problems with m = 10. The num-
ber of active objectives is not fixed and detection mode is used as a mean of objective reduction technique.
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Figure B.6. Comparison of the performance of different modes for DTLZ problems with m = 20. The num-
ber of active objectives is not fixed and detection mode is used as a mean of objective reduction technique.
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Figure B.7. Comparison of the performance of different modes for ρMNK problems with m = 4. Number of
active objectives is fixed.
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Figure B.8. Comparison of the performance of different modes for ρMNK problems with m = 10. Number of
active objectives is fixed.
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Figure B.9. Comparison of the performance of different modes for ρMNK problems with m = 20. Number of
active objectives is fixed.
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Figure B.10. Comparison of the performance of different modes for ρMNK problems with m = 4. The num-
ber of active objectives is not fixed and detection mode is used as a mean of objective reduction technique.
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Figure B.11. Comparison of the performance of different modes for ρMNK problems with m = 4. The num-
ber of active objectives is not fixed and detection mode is used as a mean of objective reduction technique.
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Figure B.12. Comparison of the performance of different modes for ρMNK problems with m = 20. The
number of active objectives is not fixed and detection mode is used as a mean of objective reduction tech-
nique.
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Figure B.13. Performance analysis of τ -HDR with different values of τ for DTLZ problems with m = 20.
Number of interaction in all runs is fixed to 6.
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Figure B.14. Number of active objectives after each interaction for different values of τ in τ -HDR mode on
DTLZ test problems.
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zontal axis indicates the first relevant objective (f1) and the vertical axis indicates the fourth relevant objec-
tive (f2). The results returned by the τ -HD are close to those returned by Golden mode as can be seen on the
bottom right side of the Figure. The solutions by the only learning mode are scattered away from the Golden
mode.
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B.2 F-test vs. mutual information

In case the normality of the data is not known, the alternative to f-test criteria is the non-

parametric mutual information metric that can be used for uni-variate feature selection. In our

benchmark problems the normality assumptions are verified. However, we ran experiments to

compare the accuracy of both methods. In this regard, we have analyzed 5000 data samples

to ensure the F-regression test is a better option in our case and the results are laid out in

Table B.1 below. The table also indicates that the method can detect the set of important

objectives even with a small sample of solutions, and the accuracy increases significantly

when the sample size is increased to 10 and 15 solutions.

Table B.1. Comparing the accuracy of F-regression test and mutual information in feature selection.

Method Size of the training set Mean Accuracy Standard Deviation

F-regression 5 71.89 28.48
Mutual information 5 61.99 27.46
F-regression 10 87.8 22.16
Mutual information 10 79.92 26.51
F-regression 15 93.95 16.64
Mutual information 15 88.81 21.52

B.3 Weights of Utility Function in the Experiments

Table B.2 indicates the weights of the active objectives for each set of test problems for

different utility functions.

Table B.2. Weights of active objectives used in the Tchebychef function and shape of the UF1-UF3 used in
experiments.

Problem UF Weight Vector

DTLZ1 Tchebychef [0.97, 0.03]
DTLZ2 Tchebychef [0.79835788, 0.20164212]
DTLZ7 Tchebychef [0.80588792, 0.19411208]
ρMNK Tchebychef [0.5, 0.5]
All DTLZ UF1 0.28x2

1 + 0.29x1x4 + 0.38x2
4 + 0.05x1

All DTLZ UF2 0.05x1x4 + 0.6x2
1 + 0.38x4 + 0.23x1

All DTLZ UF3 0.44x2
1 + 0.33x1 + 0.09x1x4 + 0.14x2

4

All ρMNK UF1 0.28x2
1 + 0.29x1x2 + 0.38x2

2 + 0.05x1

All ρMNK UF2 0.05x1x2 + 0.6x2
1 + 0.38x2 + 0.23x1

All ρMNK UF3 0.44x2
1 + 0.33x1 + 0.09x1x2 + 0.14x2

2

B.4 Comparison of different modes for Figures 3 and 4 in the paper
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Table B.3. Comparison of Only learning Mode with detection of irrelevant objectives approach in experi-
ments depicted in Fig 4.3. The winner indicates the algorithm with better performance, and p-value is high-
lighted in the boldface when such a difference is significant (p-value<0.05). Mode 1 and Mode 2: the modes
that are being compared. ρ: The correlation among objectives in ρMNK problem. m: Number of objective
functions. winner: the mode with superior performance. p-value: the significance level of the differences.

Mode 1 Mode 2 ρ m UF winner p-value

Only learning k-HD 0.25 4 TchebyChef k-HD 0.080573412
Only learning k-HD 0.25 4 TchebyChef k-HD 0.166219599
Only learning k-HDR 0.25 4 TchebyChef k-HDR 0.085344126
Only learning k-HD 0.5 4 TchebyChef k-HD 0.258868738
Only learning k-HD 0.75 4 TchebyChef k-HD 0.080573412
Only learning k-HDR 0.75 4 TchebyChef k-HDR 0.112722732
Only learning k-HD 0.9 4 TchebyChef k-HD 0.065554509
Only learning k-HDR 0.9 4 TchebyChef k-HDR 0.170371114
Only learning k-HD 0 20 UF3 k-HD 0.667107251
Only learning k-HD 0.25 20 UF3 k-HD 0.003536861
Only learning k-HDR 0.25 20 UF3 k-HDR 0.025664219
Only learning k-HD 0.5 20 UF3 k-HD 0.36781863
Only learning k-HD 0.75 20 UF3 k-HD 0.001444604
Only learning k-HD 0.9 20 UF3 k-HD 0.01443244

Table B.4. Comparison of Only learning Mode with detection of irrelevant objectives approach in experi-
ments depicted in Fig 4.4. The winner indicates the algorithm with better performance, and p-value is high-
lighted in the boldface when such a difference is significant (p-value<0.05). Mode 1 and Mode 2: the modes
that are being compared. ρ: The correlation among objectives in ρMNK problem. m: Number of objective
functions. winner: the mode with superior performance. p-value: the significance level of the differences.

Mode 1 Mode 2 ρ m UF winner p-value

Only learning τ -HD 0 20 UF1 τ -HD 0.00109
Only learning τ -HDR 0 20 UF1 τ -HDR 0.045204
Only learning τ -HD 0.25 20 UF1 τ -HD 0.036008
Only learning τ -HD 0.5 20 UF1 τ -HD 0.178906
Only learning τ -HD 0.75 20 UF1 τ -HD 0.004197
Only learning τ -HD 0.9 20 UF1 τ -HD 0.039733
Only learning τ -HD 0 4 UF2 τ -HD 0.082931
Only learning τ -HDR 0 4 UF2 τ -HDR 0.109706
Only learning τ -HD 0.25 4 UF2 τ -HD 0.04378
Only learning τ -HDR 0.5 4 UF2 Only learning 0.276266
Only learning τ -HD 0.75 4 UF2 τ -HD 0.404641
Only learning τ -HDR 0.75 4 UF2 τ -HDR 0.098274
Only learning τ -HD 0.9 4 UF2 Only learning 0.294445
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Appendix C

Supplementary Material to Chapter 5:

Decision-Tree Based interactive

Evolutionary Multi-Objective

Optimization Algorithm

This supplementary material provides all the figures required for the analysis of the Chap-

ter 5 that had been omitted for brevity.
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C.1 Samples & Experimental Data

Table C.1. A sample training set acquired from an experiment on DTLZ1 with 2 objectives

Objective 1 Objective 2 Rank

1 0.224231 0.276240 1
2 0.342230 0.158252 3
3 0.140248 0.360225 4
4 0.270838 0.229634 0
5 0.164741 0.335731 2

Table C.2. Examples used for building the tree constructed using the data in Table C.1

1 2 Label

1 -0.12 0.12 1
2 0.08 -0.08 1
3 -0.05 0.05 -1
4 0.06 -0.06 1
5 0.20 -0.20 1
6 0.07 -0.07 -1
7 0.18 -0.18 -1
8 -0.13 0.13 -1
9 -0.02 0.02 -1
10 0.11 -0.11 1
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Table C.3. Specifications of the tests. P indicates the benchmark problem. Type corresponds to the DM types
in Table 3.1. n: dimension of the problem. m: dimension of the objective space. U(zmps) : utility of zmps.
U(zw): utility of the worst PF solution. UF column specifies the utility function used in the test where “tst”
stands for the Stewart UF and “tch” for the Tchebychef.

Test P n m Type U(zmps) U(zw) UF

1 1 6 2 1 0.1023 0.8976 tst
2 1 6 2 2 0.0101 0.9038 tst
3 1 6 2 3 0.3128 0.9970 tst
4 1 6 2 4 0.1426 0.9378 tst
5 1 6 2 - 0.1159 0.3476 tch
6 1 14 10 1 0.0002 0.2164 tst
7 1 14 10 2 0.0001 0.1609 tst
8 1 14 10 3 0.0215 0.8690 tst
9 1 14 10 4 0.0108 0.7716 tst
10 1 14 10 - 0.0397 0.2404 tch
11 2 11 2 1 0.3660 0.6364 tst
12 2 11 2 2 0.1062 0.8933 tst
13 2 11 2 3 0.4627 0.9996 tst
14 2 11 2 4 0.1261 0.9977 tst
15 2 11 2 - 0.3170 0.7653 tch
16 2 19 10 1 0.0003 0.2953 tst
17 2 19 10 2 0.0001 0.2448 tst
18 2 19 10 3 0.1117 0.9695 tst
19 2 19 10 4 0.0217 0.8263 tst
20 2 19 10 - 0.0675 0.2446 tch
21 7 21 2 1 0.1259 0.9692 tst
22 7 21 2 2 0.1097 0.8894 tst
23 7 21 2 3 0.4061 1.0000 tst
24 7 21 2 4 0.3525 0.9999 tst
25 7 21 2 - 0.0402 0.8506 tch
26 7 29 10 1 0.0016 0.8045 tst
27 7 29 10 2 0.0007 0.7638 tst
28 7 29 10 3 0.1238 0.9927 tst
29 7 29 10 4 0.0460 0.9842 tst
30 7 29 10 - 0.0580 0.2113 tch
31 1 8 4 1 0.3560 0.8928 tst
32 1 8 4 2 0.0047 0.3643 tst
33 1 8 4 3 0.3019 0.8759 tst
34 1 8 4 4 0.0047 0.3781 tst
35 1 8 4 - 0.0405 0.1589 tch
36 2 13 4 1 0.3267 0.9936 tst
37 2 13 4 2 0.0253 0.5428 tst
38 2 13 4 3 0.4150 0.9989 tst
39 2 13 4 4 0.0214 0.5193 tst
40 2 13 4 - 0.0567 0.3222 tch
41 7 23 4 1 0.1481 0.9993 tst
42 7 23 4 2 0.0111 0.6991 tst
43 7 23 4 3 0.3269 0.9992 tst
44 7 23 4 4 0.0228 0.7759 tst
45 7 23 4 - 0.0699 0.4371 tch
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Figure C.1. Evaluation of the DTEMOA’s performance in comparison with BCEMOA and iTDEA under ideal
conditions with Stewart UF.

C.2 Results
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Table C.4. The results of experiments under ideal conditions for BCEMOA, DTEMOA and iTDEA. The
mean (and standard deviation in parenthesis) over 20 independent runs is shown for each test. The values are
rounded to 2 decimal points. The performance of DTEMOA is compared with iTDEA and BCEMOA and
the better values are indicated with letter ’i’ or ’b’ (indicating iTDEA or BCEMOA) to highlight the winner
where p-value≤ .05 for Wilcoxon test.

Test BCEMOA DTEMOA iTDEA

Nint 2 3 4 2 3 4 2 3 4

Sigmoid

1 .19(.2) .19(.2) .19(.2) .18(.22)b .18(.22)b .18(.22)b .1(.0)i .1(.0)i .12(.02)i
2 .16(.32) .16(.33) .15(.33) .12(.27) .12(.27) .12(.27)b .01(.0) .01(.0)i .02(.01)i
3 .61(.27) .57(.27) .57(.27) .6(.23) .59(.24) .59(.24) .37(.06)i .5(.19) .5(.19)
4 .34(.34) .34(.34) .34(.34) .28(.3) .28(.3) .28(.3)i .14(.0)i .14(.0)i .32(.32)
6 .07(.07) .07(.07) .06(.07) .03(.05)b .02(.05)b .02(.05)b .01(.01) .01(.01) .01(.01)
7 .05(.06) .05(.06) .05(.06) .01(.04)b .01(.03)b .01(.03)b .0(.01) .0(.01) .0(.01)
8 .16(.13) .15(.14) .15(.14) .14(.11) .13(.12) .12(.11)i .17(.09) .17(.09) .17(.09)
9 .15(.09) .14(.08) .14(.08) .13(.11) .11(.12)b .1(.11)b .15(.1) .15(.1) .15(.1)

11 .37(.01) .37(.01) .37(.01) .37(.0)i .37(.02) .37(.01)i .37(.0) .37(.0)i .37(.0)
12 .11(.0) .11(.0) .11(.0) .11(.0)i .11(.0)i .11(.0)i .11(.0) .11(.0) .11(.0)
13 .47(.03)b .47(.03)b .47(.03)b .49(.03) .49(.03)i .49(.03)i .47(.01) .5(.04) .5(.04)
14 .21(.23) .2(.23) .2(.23)b .22(.24) .22(.24) .22(.24)i .13(.0) .13(.0) .46(.38)
16 .02(.02) .02(.01) .02(.01) .01(.01)b .0(.01)b .0(.01)b .0(.0) .0(.0) .0(.0)
17 .01(.01) .0(.0) .0(.0) .0(.0)b .0(.0)b .0(.0)b .0(.0) .0(.0) .0(.0)
18 .25(.1) .25(.1) .23(.09) .18(.05)bi .18(.06)bi .17(.05)bi .39(.12) .39(.12) .39(.12)
19 .14(.07) .14(.07) .13(.06) .12(.06) .1(.06)bi .1(.06)bi .15(.08) .15(.08) .15(.08)
21 .2(.23) .2(.23) .2(.23) .24(.27) .24(.27) .24(.27) .13(.01) .39(.37) .39(.37)
22 .11(.0) .11(.0) .11(.0) .11(.0)bi .11(.0)bi .11(.0)bi .11(.01) .11(.01) .14(.15)
23 .43(.07)b .43(.07)b .43(.07)b .45(.08) .45(.08) .45(.08) .44(.07) .48(.09) .48(.09)
24 .38(.09)b .38(.09)b .38(.09)b .41(.11) .4(.11) .4(.11) .38(.05) .46(.14) .46(.14)
26 .09(.09) .1(.11) .22(.0) .04(.04)bi .04(.04) .04(.04) .05(.07) .01(.01) .0(.0)
27 .08(.09) .12(.1) .01(.0) .02(.02)bi .02(.02)b .02(.02) .02(.05) .03(.06) .0(.0)
28 .36(.16) .15(.08) .12(.0) .23(.12)b .19(.12) .17(.11) .17(.15)i .17(.13) .26(.0)
29 .23(.15) .13(.08) .17(.0) .14(.15)b .1(.13) .09(.13) .12(.16)i .1(.1) .2(.0)
31 .49(.12) .48(.13) .47(.13) .48(.12)i .47(.12)i .47(.12)i .59(.09) .59(.09) .59(.09)
32 .05(.09) .05(.09) .05(.11) .05(.1)i .05(.1)i .05(.1)i .12(.12) .12(.12) .12(.12)
33 .45(.11) .46(.12) .43(.11) .43(.11)bi .43(.11)i .43(.1)i .56(.11) .56(.11) .56(.11)
34 .05(.09) .04(.09) .04(.09) .03(.06)i .03(.06)i .03(.06)i .1(.13) .1(.13) .1(.13)
36 .52(.15) .49(.17) .47(.16) .43(.14)bi .43(.14)i .42(.14)i .85(.14) .85(.14) .85(.14)
37 .05(.03) .05(.03) .05(.03) .04(.03)bi .04(.01)bi .04(.01)bi .13(.09) .13(.09) .13(.09)
38 .55(.12) .54(.12) .53(.11) .52(.11)i .5(.1)i .51(.1)i .88(.12) .88(.12) .88(.12)
39 .03(.01) .03(.01) .03(.02) .03(.02)bi .03(.02)i .03(.02)bi .11(.09) .11(.09) .11(.09)
41 .28(.16) .26(.14) .25(.13) .18(.08)bi .17(.08)bi .17(.07)i .29(.19) .37(.22) .43(.26)
42 .03(.02) .03(.02) .03(.02) .02(.01)bi .02(.01)i .02(.0)i .05(.05) .06(.07) .06(.08)
43 .45(.15) .44(.14) .44(.15) .42(.13) .42(.13)i .42(.12)i .44(.13) .5(.15) .54(.17)
44 .12(.06) .11(.05) .1(.05) .11(.05)i .08(.05)bi .07(.04)bi .16(.06) .15(.08) .17(.07)

Tchebychef

5 .14(.05) .14(.05) .14(.05) .13(.04) .13(.04) .13(.04)i .12(.01)i .12(.01)i .14(.03)
10 .06(.03) .06(.03) .06(.03) .05(.02)i .05(.02)i .05(.02)bi .06(.03) .06(.03) .06(.03)
15 .32(.0) .32(.0) .32(.0) .32(.0)i .32(.0)i .32(.0)i .33(.01) .33(.01) .37(.05)
20 .08(.01) .08(.01) .08(.01) .07(.01)bi .07(.01)bi .07(.01)bi .11(.03) .11(.03) .11(.03)
25 .04(.0) .05(.05) .04(.01) .04(.0)i .04(.0)i .04(.0)i .1(.1) .04(.0) .04(.0)
30 .12(.01) .12(.02) .12(.0) .1(.01)b .1(.01)b .1(.01)b .06(.03)i .06(.02)i .05(.02)i
35 .06(.02) .06(.02) .05(.02) .05(.02)bi .05(.02)i .05(.02)i .07(.03) .07(.03) .07(.03)
40 .08(.04) .08(.03) .08(.03) .07(.02)i .07(.02)i .07(.02)i .17(.06) .17(.06) .17(.06)
45 .1(.04) .1(.04) .1(.04) .09(.02)i .08(.02)i .08(.01)i .11(.06) .13(.08) .15(.08)
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Table C.5. The results of experiments with simulation of inconsistencies in DM’s decisions for BCEMOA,
DTEMOA and iTDEA. The mean (and standard deviation in parenthesis) over 20 independent runs is shown
for each test. The values are rounded to 2 decimal points. The performance of DTEMOA is compared with
iTDEA and BCEMOA and the better values are indicated with letter ’i’ or ’b’ (indicating iTDEA or BCE-
MOA) to highlight the winner where p-value≤ .05 for Wilcoxon test.

Test BCEMOA DTEMOA iTDEA
σ = 0.005 σ = 0.01 σ = 0.2 σ = 0.005 σ = 0.01 σ = 0.2 σ = 0.005 σ = 0.01 σ = 0.2

Sigmoid

1 .25(.32) .25(.32) .28(.32) .2(.25)b .19(.23)b .16(.16)b .1(.0)i .1(.0)i .15(.07)i
2 .13(.28) .13(.28) .22(.35) .1(.24) .1(.24) .07(.17)b .01(.0)i .01(.0)i .04(.05)
3 .54(.28) .57(.27) .66(.26) .62(.22) .62(.22) .58(.24) .49(.19) .49(.19) .51(.21)
4 .35(.36) .35(.36) .37(.36) .28(.3)b .28(.3)b .28(.3)b .14(.0)i .15(.0)i .16(.03)i
6 .09(.08) .07(.07) .12(.1) .03(.06)b .02(.05)b .03(.06)b .01(.01) .01(.01) .01(.01)
7 .05(.06) .04(.06) .1(.09) .01(.04)b .01(.04)b .01(.03)b .0(.01) .0(.01) .0(.01)
8 .14(.09) .14(.09) .27(.18) .14(.12) .14(.12) .13(.09)bi .17(.09) .17(.09) .17(.09)
9 .14(.09) .15(.09) .21(.13) .12(.1) .11(.1) .11(.11)b .15(.1) .15(.1) .15(.1)
11 .37(.0) .37(.02) .44(.1) .37(.0)bi .37(.0)b .37(.01)bi .37(.0) .37(.0)i .45(.09)
12 .11(.02) .12(.03) .14(.03) .11(.0)bi .11(.0)bi .11(.01)bi .11(.0) .11(.0) .14(.03)
13 .49(.05) .49(.05) .56(.16) .48(.03)i .48(.03)i .49(.04)bi .5(.04) .5(.04) .63(.21)
14 .25(.27) .29(.31) .27(.28) .21(.23) .21(.23)b .16(.15)bi .13(.0)i .13(.0)i .26(.3)
16 .02(.01) .03(.03) .05(.05) .01(.01)b .01(.01)b .01(.01)b .0(.0) .0(.0) .0(.0)
17 .01(.0) .01(.01) .02(.03) .0(.0)b .0(.0)b .0(.0)b .0(.0) .0(.0) .0(.0)
18 .27(.09) .26(.07) .35(.17) .17(.03)bi .17(.05)bi .21(.11)bi .39(.12) .39(.12) .39(.12)
19 .14(.07) .13(.06) .18(.11) .09(.06)bi .1(.06)bi .13(.09)b .15(.08) .15(.08) .15(.08)
21 .2(.23) .2(.23) .21(.23) .22(.25) .2(.23)b .16(.16)bi .32(.33) .32(.33) .28(.31)
22 .11(.0) .15(.17) .19(.23) .11(.0)bi .13(.12)bi .13(.12)bi .12(.01) .15(.16) .23(.28)
23 .44(.07) .44(.07) .5(.18) .44(.07) .44(.07) .45(.07)b .48(.09) .48(.1) .54(.14)
24 .39(.09) .39(.09) .42(.15) .4(.11) .4(.11) .41(.13) .46(.14) .46(.14) .48(.19)
26 .11(.1) .09(.09) .2(.15) .04(.04)b .04(.04)b .05(.05)b .08(.12) .08(.12) .09(.13)
27 .09(.11) .1(.11) .24(.15) .02(.02)b .02(.02)b .04(.04)b .06(.09) .06(.09) .06(.09)
28 .36(.16) .36(.17) .43(.21) .18(.12)b .19(.13)b .24(.16)b .2(.17) .2(.17) .19(.16)
29 .22(.15) .23(.15) .33(.18) .13(.14)b .12(.14)b .17(.18)b .14(.16) .14(.16) .17(.18)
31 .49(.13) .49(.13) .58(.15) .46(.11)i .46(.12)i .49(.11)bi .59(.09) .59(.09) .59(.09)
32 .06(.1) .06(.09) .13(.14) .05(.08)i .05(.08)i .07(.1)i .12(.11) .12(.11) .12(.11)
33 .46(.13) .44(.11) .52(.16) .42(.1)bi .42(.09)bi .45(.09)bi .56(.11) .56(.11) .56(.11)
34 .04(.08) .04(.08) .08(.11) .03(.07)i .03(.07)i .04(.07)bi .1(.13) .1(.13) .1(.13)
36 .52(.17) .5(.17) .6(.18) .43(.14)bi .42(.13)bi .47(.15)bi .85(.14) .85(.14) .85(.14)
37 .05(.04) .06(.06) .15(.15) .04(.03)bi .04(.03)i .07(.06)bi .13(.09) .13(.09) .13(.09)
38 .55(.13) .56(.12) .67(.16) .5(.09)i .5(.09)bi .54(.12)bi .88(.12) .88(.12) .88(.12)
39 .04(.02) .04(.03) .09(.08) .03(.01)bi .03(.01)bi .04(.03)bi .11(.09) .11(.09) .11(.09)
41 .26(.15) .3(.18) .4(.23) .19(.11)bi .18(.09)bi .25(.17)bi .38(.21) .38(.21) .39(.22)
42 .04(.02) .04(.02) .06(.07) .02(.01)bi .02(.01)bi .03(.02)bi .09(.13) .09(.13) .11(.14)
43 .43(.13) .44(.14) .58(.15) .42(.13)i .41(.13)i .44(.13)bi .52(.16) .52(.16) .54(.17)
44 .11(.05) .12(.07) .17(.11) .1(.05)i .09(.05)bi .11(.05)bi .18(.1) .18(.1) .22(.13)

Tchebychef

5 .14(.05) .15(.05) .24(.1) .13(.04) .13(.04)b .15(.07)bi .12(.01)i .12(.01)i .19(.06)
10 .07(.03) .07(.03) .08(.05) .05(.02)bi .05(.02)i .07(.03) .06(.03) .06(.03) .06(.03)
15 .32(.01) .34(.04) .46(.15) .32(.0)i .32(.0)bi .34(.05)bi .33(.01) .33(.01) .47(.15)
20 .08(.01) .08(.01) .11(.04) .07(.01)bi .07(.01)bi .09(.02)i .11(.03) .11(.03) .11(.03)
25 .04(.01) .04(.02) .16(.19) .04(.0)bi .04(.0)bi .04(.01)bi .04(.0) .04(.0) .14(.19)
30 .12(.02) .13(.01) .15(.03) .1(.01)b .1(.01)b .11(.01)b .07(.03)i .07(.03)i .08(.04)i
35 .06(.02) .06(.02) .08(.03) .05(.02)bi .05(.02)bi .06(.02)bi .07(.03) .07(.03) .07(.03)
40 .09(.04) .09(.04) .16(.07) .07(.02)bi .07(.02)bi .09(.06)bi .17(.06) .17(.06) .17(.06)
45 .12(.05) .12(.05) .21(.1) .08(.02)bi .09(.03)bi .11(.05)bi .16(.1) .16(.1) .19(.11)
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Figure C.2. Evaluation of the DTEMOA’s performance in comparison with BCEMOA and iTDEA under ideal
conditions with Tchebychef UF.
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Figure C.3. Evaluation of the DTEMOA’s performance in comparison with BCEMOA and iTDEA with simu-
lation of inconsistencies in DM’s decisions and Stewart UF.

196



0.2

0.3

0.4

Te
st

 5
, D

TL
Z1

m
= 

2

0.050

0.075

0.100

0.125

0.150

0.175

Te
st

 3
5,

 D
TL

Z1
m

= 
4

0.05

0.10

0.15

0.20

Te
st

 1
0,

 D
TL

Z1
m

= 
10

0.4

0.5

0.6

0.7

Te
st

 1
5,

 D
TL

Z2
m

= 
2

0.10

0.15

0.20

0.25

0.30

Te
st

 4
0,

 D
TL

Z2
m

= 
4

0.10

0.15

0.20

Te
st

 2
0,

 D
TL

Z2
m

= 
10

level 0 level 1 level 2 level 3 level 4

0.2

0.4

0.6

0.8

Te
st

 2
5,

 D
TL

Z7
m

= 
2

level 0 level 1 level 2 level 3 level 4

0.1

0.2

0.3

0.4

Te
st

 4
5,

 D
TL

Z7
m

= 
4

level 0 level 1 level 2 level 3 level 4

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Te
st

 3
0,

 D
TL

Z7
m

= 
10

σ

Tc
he

by
ch

ef
 u

til
ity

 v
al

ue

BCEMOA DTEMOA iTDEA

Figure C.4. Evaluation of the DTEMOA’s performance in comparison with BCEMOA and iTDEA with simu-
lation of inconsistencies in DM’s decisions and Tchebychef UF.
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