
Turk J Elec Eng & Comp Sci
(2019) 27: 1970 – 1981
© TÜBİTAK
doi:10.3906/elk-1807-18

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Identifying preferred solutions in multiobjective combinatorial optimization
problems

Banu LOKMAN1∗ , Murat KÖKSALAN2

1Portsmouth Business School, University of Portsmouth, Portsmouth, UK
2Department of Industrial Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey

Received: 03.07.2018 • Accepted/Published Online: 26.03.2019 • Final Version: 15.05.2019

Abstract: We develop an evolutionary algorithm for multiobjective combinatorial optimization problems. The algorithm
aims at converging the preferred solutions of a decision-maker. We test the performance of the algorithm on the
multiobjective knapsack and multiobjective spanning tree problems. We generate the true nondominated solutions using
an exact algorithm and compare the results with those of the evolutionary algorithm. We observe that the evolutionary
algorithm works well in approximating the solutions in the preferred regions.
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1. Introduction
Multiobjective combinatorial optimization (MOCO) problems have applications in a wide variety of areas such
as investment and resource planning, logistics, facility location, scheduling, telecommunication and communi-
cations systems, and energy since they represent real-life situations in large organizations. The decision-makers
usually have conflicting objectives and hence there does not exist a unique optimal solution, and the aim is
to generate nondominated solutions for which an improvement in one of the objectives is not possible without
sacrificing from other objectives.

Due to the rapid growth of nondominated solutions with the problem size, many heuristic approaches
have been developed for MOCO problems [see 1]. Modern heuristic searches in general and evolutionary
algorithms in particular have been widely used [see 2–4]. In [5], Ehrgott and Gandibleux reviewed some classical
metaheuristics for MOCO problems and focused on the hybrid metaheuristics that combine exact and heuristic
approaches. Many approaches try to approximately generate the whole nondominated frontier. As discussed
in [6], incorporating the preferences of the decision-maker (DM) into evolutionary multiobjective optimization
is important since it is not practical to generate all nondominated solutions and present them to the DM. The
work in [7] presents a review of preference incorporation in multiobjective evolutionary algorithms and discusses
preference models and implementation strategies. The authors point out that the application procedure plays
a vital role for the preference models and scalability issue according to the criteria is the main concern.

The authors of [8] developed the first interactive evolutionary method (IEM) for multiobjective problems
that tries to converge the preferred solutions by obtaining preference information from the DM progressively.
The work in [9] also develops an interactive evolutionary algorithm. In the interaction process, the DM selects
his or her best solution among a set of representative solutions and the algorithm guides the solution effort
∗Correspondence: banu.lokman@port.ac.uk
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to the neighborhood of this solution. The algorithm defines a territory around each solution in the archive
population and a solution is only accepted if it does not violate this territory. The diversity of the population
is maintained by this territory defining property. The work in [10] develops an evolutionary metaheuristic to
approximate preference-nondominated points (EMAPS) for MOCO problems. EMAPS differs from guided-
search evolutionary algorithms since the preference information is obtained by using qualitative statements.
EMAPS uses this information in an individualized fitness function and evolves a population of solutions to
focus on the preferred regions of the nondominated frontier.

Recently, there are a number of hybrid approaches that aim to generate a set of points representing
the nondominated frontier. For example, [11] integrates an epsilon-constraint method into an evolutionary
algorithm and generates points from different parts of the nondominated frontier by changing the thresholds on
each objective, while [12] incorporates self-organizing maps into an evolutionary algorithm. The authors define
a neighborhood relation by self-organizing maps and the evolutionary algorithm iteratively generates new points
using two neighbors. Although these approaches are designed to generate representative points, they do not
incorporate the preferences of the DM into the solution process.

Multiobjective knapsack and multiobjective spanning problems are combinatorial optimization problems
that have many practical applications. Examples for multicriteria knapsack problems can be found in capital
budgeting, investment planning, and resource planning applications. The authors of [13] develop a genetic
local search algorithm for MOCO problems and test the performance of the algorithm on MOKPs. The
algorithm aims to generate a set of approximately efficient solutions from all regions of the efficient frontier in a
reasonable time. The work in [14] develops a favorable weight-based evolutionary algorithm (FWEA) to obtain
well-distributed solutions close to the nondominated frontier, while [15] adapts the FWEA to approximate
the nondominated frontier of the multidimensional multiobjective knapsack problem (MMOKP). The work in
[16] also proposes a multiobjective Chebyshev-based genetic algorithm, MOTGA, for MMOKP. The MOTGA
focuses on different parts of the nondominated frontier at each stage to obtain a good approximation of a set of
nondominated solutions. Multiobjective spanning tree (MOST) problems also have many real-life applications
including communication networks, electric power systems, and network designs. The work in [17] proposes a
greedy randomized adaptive search procedure (GRASP) algorithm for the MOST problem while [18] develops
a nongenerational genetic algorithm (GA) for MOST problems. In [19], Zhou and Gen developed a genetic
algorithm for MOST. The algorithm aims at generating all nondominated solutions close to the ideal point or
well-distributed solutions along the nondominated frontier according to the preferences of the DM. Reference
[20] reviews some approaches that incorporate the preferences of the DM and argues that there is a need for
more work to be done, especially for preference-based MOCO problems with more than two criteria.

In this paper, we develop an evolutionary algorithm that aims to converge the region that is of interest
to the DM. We test the performance of the algorithm on the MMOKP and MOST problems. We compare
the obtained solutions with true nondominated solutions generated with an exact algorithm that we developed.
We give some definitions in Section 2 and develop the evolutionary algorithm in Section 3. We present our
computational experiments in Section 4 and then draw conclusions in Section 5.

2. Definitions
A general multiobjective problem can be formulated as:
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(P ) :
“Max” z(x) = (z1(x), z2(x), . . . , zq(x))

subject to

x ∈ X,

where x denotes a decision vector in the solution space, X , and q is the number of the objectives. Since
the maximization of a vector is not a well-defined mathematical operation, the quotation marks are used. Let
Z be the feasible set in the criterion space and z = (z1, . . . , zq) denote a point in the criterion space with a
criterion value of zi for the ith criterion. Point z2 ∈ Z is said to dominate z1 ∈ Z if z2 ≥ z1 and z2 ̸= z1 .
If there does not exist such a z2 , then point z1 is said to be nondominated and the corresponding decision
vector, x1 , is said to be efficient. The set of all nondominated solutions defines the nondominated (efficient)
frontier. zIP = (zIP1 , . . . , zIPq ) and zNP = (zNP

1 , . . . , zNP
q ) denote the ideal and nadir point, respectively. The

ideal point corresponds to zIPi = Maxx∈X zi(x) for a maximization problem. If E denotes the set of efficient
solutions, then zNP

i = Maxx∈E zi(x) for a maximization problem.

3. The evolutionary algorithm

We design a preference-based evolutionary algorithm, PBEA, to generate approximately nondominated solutions
in a region defined by an upper (lower) bound for each criterion where criteria are minimization (maximization)
type. Assuming q criteria, we define the vector of these bounds b = (b1, . . . , bq) as the reference point. We
maintain a regular population, Pt , and an elite population, Et , in each generation t . The latter contains only
the solutions in the desired region defined by the bounds.

3.1. Fitness assignment

The work in [21] defines a hypersurface to approximate the locations of the nondominated solutions. It first
generates several nondominated (or approximately nondominated) solutions and then fits a hypersurface that
passes through these solutions. It scales the objective function values, zk , k = 1, . . . , q , and denotes the scaled

objective values as z′k , k = 1, . . . , q , by using z′k =
zk − zIPk
zNP
k − zIPk

such that points (0, . . . , 0) and (1, . . . , 1)

correspond to the ideal and nadir points, respectively. After scaling the objective function values between 0 and
1, the hypersurface is defined as

∑q
k=1(1 − z′k)

p = 1 for some p > 0 . The authors demonstrate on a variety
of MOCO problems that this hypersurface represents the efficient solutions well. We utilize the same idea for
the purpose of assigning fitness values to solutions. We treat 1 −

∑q
k=1(1 − z′k)

p as the contour on which the
solution lies, where smaller values are desirable as they correspond to contours close to the contour of the ideal
point.

3.2. Initialization
Initially, we generate (q + 1) ‘seed’ solutions that are ‘close’ to the nondominated frontier. This can be done
using problem-specific techniques or heuristic procedures. Then we generate random solutions until the preset
maximum population size is achieved. We insert each solution into E0 or P0 by checking whether it is in the
preferred region or not.
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3.3. Evolution
The algorithm creates the offspring from two parents where the first and second parents are probabilistically
selected from Et and Pt ∪Et , respectively. If an offspring is not dominated and is in the preferred region, it is
inserted in Et+1 . Then the members that are dominated by the new member are removed from Et+1 . If the
maximum elite population size is achieved, the solution with the lowest fitness score in Et+1 is removed from
the elite population. The offspring that is not in the preferred region is inserted in Pt+1 . Pt+1 is maintained
by eliminating the solution having the minimum fitness value if all its members are nondominated relative to
each other. If there are dominated members, then the elimination is done among them, again based on fitness.
Evolution continues for a predetermined number of generations.

3.4. Parent selection
After assigning the fitness score to each member of Et , we rank the solutions according to their fitness scores.
Then the first parent is selected probabilistically with respect to its rank as suggested by [22]. Similarly, the
second parent is selected from solutions in Pt ∪ Et probabilistically based on their fitness scores. If |Et| = 0 ,
we calculate the total deviation of each solution z = (z1, . . . , zq) that is nondominated relative to the current
population from the reference point b = (b1, . . . , bq) considering only the criteria in which the former is worse.
That is, denoting by Bk the index set of criteria for which zk > bk (zk < bk) for minimization (maximization)

type criteria, we calculate the deviation as d(z,b) =
∑

k∈Bk

zk − bk
zNP
k − zIPk

. Then we rank these solutions in the

ascending order of d(z,b) and assign a selection probability based on their ranks.

3.5. The algorithm

We next present the steps of the PBEA.

4. Computational experiments

We apply the algorithm to the MMOKP and the MOST problem for two, three, and four objectives. We
initialize the parameters as follows:

• NE (Maximum elite population size) = 50

• NP (Maximum population size) = 100

• G (Total number of generations to be completed ) = 20,000 for MOKP and 40,000 for MOST problem
(corresponds to 40,000 offspring in each case)

• pc (Crossover probability) = 1 and pm (mutation probability) = 0.9

4.1. Multidimensional multiobjective knapsack problem

We consider a multidimensional multiobjective knapsack problem having q knapsacks, m items, and q objec-
tives:
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Algorithm 1 PBEA
Step0: Initialization
Initialize the parameters NE , NP , G , pc , pm , t where:
NE : Maximum elite population size
NP : Population size
G : Total number of generations to be completed
pc : Crossover probability
pm : Mutation probability
t : Generation counter

Step1: Generation of the initial population
Initialize t = 0 . Generate the initial populations, E0 and P0 .

Step2: Selecting the first parent
Step2.1: If |Et| > 0 , then assign a selection probability to each member of Et based on its fitness rank and select
the first parent from Et . Go to Step 3. Otherwise, go to Step 2.2.
Step2.2: Assign a selection probability to each currently nondominated solution z = (z1, . . . , zq) in Pt based on its
rank measured by its distance from the reference point, d(z,b) =

∑
k∈Bk

zk − bk
zNP
k − zIPk

, and select the first parent.

Step3: Selecting the second parent
Assign a selection probability to each member of Pt ∪ Et based on its fitness rank and select the second parent from
Pt ∪ Et .

Step4: Crossover operation
Employ crossover operator to the parents to generate offspring.

Step5: Mutation
Mutate each offspring with probability pm and use the repair operator (if needed) to obtain feasible offspring. Assign
fitness scores to the offspring and let Pt+1 = Pt and Et+1 = Et .

Step6: Insertion
For each offspring, repeat the following steps and then go to Step 7. If the offspring is in the preferred region, go to
Step 6.1. Otherwise, go to Step 6.2.
Step6.1: Insert the offspring in Et+1 and remove all solutions in Et+1 dominated by the offspring. If there does not
exist any dominated solution and |Et+1| > NE , then remove the solution with the worst fitness score.
Step6.2: Insert the offspring in Pt+1 and remove a solution based on fitness. If there are dominated solutions, consider
only those solutions for elimination.

Step7: Termination
Set t = t+ 1 . If t = G , stop. Otherwise, go to Step 2.

(MMOKP ) :

“Max” z(x) = (z1(x), z2(x), . . . , zq(x))

subject to
m∑
j=1

wijxj ≤ Ci i = 1, . . . , q

zi(x) =
m∑
j=1

pijxj i = 1, . . . , q

x ∈ X,

1974



LOKMAN and KÖKSALAN/Turk J Elec Eng & Comp Sci

where pij denotes the profit of placing item j in the knapsack and wij denotes the capacity usage of item j in
knapsack i . The binary variable xj takes a value of 1 if item j is placed in the knapsacks and 0 otherwise. We

set the capacity of the knapsacks to half of the total capacity requirement of all items, i.e. Ci =

∑m
j=1 wij

2
. We

generate random instances of MMOKP for which pij and wij are generated as uniformly distributed integers
between 10 and 100. We use binary chromosome representation for MMOKP, where a gene takes the value of 1
if the corresponding item is placed in the knapsacks and takes the value of zero if not. We employ a randomly
generated binary chromosome mask in the crossover operation. If the element of the mask is 1, the first offspring
inherits the j th gene from the first parent and the second offspring inherits the j th gene from the second parent.
Similarly, if the j th element of the mask is 0, then the first offspring and second offspring inherit the j th gene
from the second and first parents, respectively. The mutation operator flips the current value of the selected
gene. To generate seed solutions, we modify the single-objective, single-knapsack greedy algorithm by sorting

the items in the descending order of
∑q

i=1 λ
r
i pij∑q

i=1 wij
, where λr = (λr

1, . . . , λ
r
q) denotes the r th weight vector given

to each criterion. We define q + 1 different weight vectors. With the first q vectors (r = 1, . . . , q ), we try to
obtain solutions that represent the best values of objectives by setting λr

r = 1 − (q − 1)ϵ , λr
i = ϵ for i ̸= r ,

where ϵ is an arbitrarily small positive constant. With the (q+1)st vector, we try to obtain a central solution
by setting λq+1

i = 1/q for i = 1, . . . , q . Since it is possible to exceed the knapsack capacities or we may not fully
utilize the knapsack capacities as a result of the crossover or mutation operators, we need a repair operator.
Instead of adding items randomly when the knapsack capacities are not fully utilized, we search for the items
iteratively and add the item that decreases the weighted Chebyshev distance from the ideal point most without
exceeding knapsack capacities. Similarly, when the knapsack capacities are exceeded, we search for the items
to remove in such a way that the weighted Chebyshev distance from the ideal point increases least. The weight
vector, w = (w1, . . . , wq) , used in the Chebyshev distance is calculated using the direction from the ideal point
towards the reference point as follows [see 23, p. 441]:

wk =


1

bk−zIP
k

[
∑q

j=1
1

bj−zIP
j

]−1 bj ̸= zIPj ∀j
1 bk = zIPk
0 bk ̸= zIPk , ∃j : bj = zIPj .

(1)

4.2. Multiobjective spanning tree problem

A spanning tree, T , defined on a graph, G = (S,E) , is a collection of |S − 1| edges connecting |S| nodes
without forming any cycles. The MOST problem can be formulated as follows:
(MOST ) :

“Min” z(x) = (z1(T ), z2(T ), . . . , zq(T ))

subject to

zi(T ) =
∑

e∈E(T )

ci(e) i = 1, . . . , q

T ∈ τ(G),

where τ(G) denotes the set of all spanning trees, E(T ) denotes the set of edges in T , and (c1(e), . . . , cq(e) is
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the cost vector associated with edge e . We generate ck(e) values as uniformly distributed integers between 10
and 100. To generate seed solutions corresponding to each weight vector, λr , we use a greedy algorithm where
the edges are sorted in ascending order of

∑q
i=1 λ

r
i ci(e) and those not creating a cycle with previously selected

ones are selected one at a time until a spanning tree is formed. We use the same weight vectors as in the
MMOKP. We keep the previous node information for each node where the direction is determined according to
the last node in the tree. In the crossover operation, we take the union of edges of both parents and then try to
select |S− 1| of them for which the weighted Chebyshev distance from the ideal point is minimum. We apply a
modified version of the greedy algorithm, where the edges are sorted in the ascending order of maxi=1,...,q wici(e)

where the weight vector is also determined by using the direction from the ideal point towards the reference
point (see Eq. (1)). The mutation operator removes a randomly chosen edge from the spanning tree and adds
another edge that does not create a cycle. Different from the MMOKP, we obtain only one offspring from the
two parents.

4.3. Results
In order to define the region and evaluate the results, we first generate all nondominated solutions using
the algorithm developed in [24]. This algorithm efficiently generates the nondominated solutions for any
multiobjective integer program. It iteratively introduces bounds to q − 1 of the objectives and solves integer
programs sequentially, eventually generating all nondominated solutions. By using these solutions on hand, we
calculate upper (lower) bounds for each criterion for each minimization (maximization) problem. We apply
the evolutionary algorithm on the MMOKP and the MOST problems with different lower or upper bound
settings. In order to test the performance of the algorithm on different regions of each problem, we apply the
algorithm to five replications of the same problem. In each replication, we first randomly generate a weight
vector, w = (w1, . . . , wq) . Then, utilizing the true nondominated solutions that have already been generated,
we find the first 50 nondominated solutions, zn = (zn1, . . . , znq) n = 1, . . . , 50 , that minimize the weighted

Chebyshev distance from the ideal point, WD(zn, zIP ) = maxk=1,...,q wk
|znk−zIP

k |
|zNP

k −zIP
k | . That is, we find the 50

nondominated solutions in direction d = ( 1
w1

, . . . , 1
wq

) from the ideal point. Then we set lower (upper) bounds to

each criterion that cover all these 50 nondominated solutions for a given maximization (minimization) problem
as demonstrated in Figure 1. We keep the number of nondominated solutions at the same value (50) in the
region of interest in order to obtain uniformity among the problems solved.

Our experiments indicate that the algorithm converges the desired regions very well in all the problems
we solved. The solutions we find either coincide with the true nondominated solutions or are very close to them
in the desired regions. Figure 2 demonstrates how well the solutions are represented by the set of solutions in
the elite population on several instances we solved. While Figure 2a and Figure 2b illustrate the results for
bicriteria problems, the solutions for the three-criteria problems are shown in Figures 2c and 2d.

For each nondominated solution in the preferred region, zn = (zn1, . . . , znq) , n = 1, . . . , N , we find a
representative solution, rzn = (rzn1, . . . , rznq) , in EG such that the representative solution is at minimum
distance from the corresponding nondominated solution. We use the Chebyshev metric to find the distance
between the nondominated point and the representative point, i.e. we use D(zn, rzn) = maxk=1,...,q

|znk−rznk|
|zNP

k −zIP
k | .

In order to evaluate whether the nondominated solutions in the preferred region are represented well or not

by the solutions in EG , we calculate the average Chebyshev distance by using AvgDist =
∑N

n=1 D(zn,rzn)

N ,
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Figure 1. Defining a region of interest for a minimization problem.
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where the number of nondominated solutions in the preferred region is denoted as N . We also calculate the
hypervolume metric, HV , as a performance measure [see 25, 26]. The nadir point is used as a reference point in
the calculation of HV . We report these performance measures as well as the solution times for MMOKP and
MOST problems in Tables 1 and 2, respectively. Considering each of the 150 problem instances of MMOKP
summarized in Table 1, AvgDist takes an overall average value of 0.00266 with a standard deviation of 0.00278.
The average AvgDist value and standard deviation are 0.00906 and 0.01138, respectively, for the 75 instances
of the MOST problem summarized in Table 2. These results show that the solutions in the elite population

Table 1. MMOKP results obtained for different settings*.

No. of
objectives

No. of
items Pr. No. of

nond. solns
AvgDist HV N (ElitePop.)

HV N (Nond.Frt.)
Sol. time (s)

Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

2

100

1 125 0.01009 0.00252 0.96485 0.01095 23.30 2.12
2 169 0.00735 0.00606 0.97306 0.01610 25.91 5.88
3 152 0.00242 0.00083 0.97853 0.00480 19.96 1.26
4 154 0.00691 0.00321 0.96154 0.02613 25.16 11.54
5 125 0.00789 0.00305 0.96695 0.01474 20.85 1.14

200

1 448 0.00256 0.00074 0.98055 0.00354 189.90 41.41
2 457 0.00256 0.00072 0.98524 0.00450 85.42 19.65
3 414 0.00310 0.00145 0.98123 0.01160 134.93 37.58
4 439 0.00216 0.00101 0.98174 0.00669 110.86 35.44
5 407 0.00303 0.00161 0.98208 0.00828 131.09 78.01

3

25

1 182 0.00077 0.00065 0.99496 0.00830 9.62 2.15
2 168 0.00140 0.00078 0.98145 0.02031 8.89 0.59
3 76 0.00148 0.00179 0.99881 0.00184 8.57 0.54
4 163 0.00033 0.00032 0.99969 0.00032 8.46 0.60
5 470 0.00004 0.00006 0.99998 0.00005 8.64 0.95

50

1 784 0.00227 0.00100 0.98881 0.01207 41.71 10.25
2 912 0.00151 0.00045 0.99086 0.00472 42.38 2.89
3 519 0.00190 0.00027 0.99158 0.00943 46.57 17.63
4 280 0.00190 0.00128 0.98995 0.00680 29.00 2.68
5 356 0.00207 0.00079 0.99130 0.00806 34.72 8.21

100

1 2790 0.00148 0.00071 0.99427 0.00500 73.45 11.92
2 8288 0.00331 0.00208 0.97380 0.01934 136.74 60.16
3 10701 0.00246 0.00126 0.96701 0.02580 144.43 101.88
4 5652 0.00242 0.00093 0.97694 0.02556 155.43 53.90
5 6500 0.00232 0.00076 0.95975 0.02346 121.56 49.49

4 25

1 211 0.00094 0.00113 0.99800 0.00412 8.60 0.83
2 401 0.00153 0.00115 0.97843 0.03171 7.47 0.44
3 489 0.00139 0.00111 0.98906 0.01963 11.10 1.62
4 396 0.00100 0.00094 0.99729 0.00454 12.19 2.26
5 629 0.00125 0.00054 0.99683 0.00278 17.44 5.88

*Different lower and upper bounds are used for the same problem (different regions).
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Table 2. MOST results obtained for different settings*.

No. of
objectives

No. of
nodes Pr. No. of

nond. solns
AvgDist HV N (ElitePop.)

HV N (Nond.Frt.)
Sol. time (s)

Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

2

15

1 76 0.01488 0.00487 0.91349 0.02665 5.36 0.63
2 68 0.01271 0.00991 0.94117 0.04143 5.01 0.19
3 94 0.00650 0.00073 0.96227 0.00800 5.36 0.28
4 86 0.00469 0.00086 0.96975 0.00753 5.54 0.62
5 85 0.02385 0.01241 0.89244 0.04414 4.89 0.53

20

1 143 0.00677 0.00596 0.94888 0.04576 13.27 1.02
2 133 0.01043 0.00703 0.94415 0.03572 8.86 4.02
3 245 0.01028 0.00521 0.92959 0.04245 10.96 4.61
4 139 0.02435 0.03034 0.87059 0.14535 6.36 0.71
5 162 0.00987 0.01071 0.94460 0.05296 7.44 0.72

3 10

1 655 0.00252 0.00165 0.97787 0.03128 13.10 1.23
2 486 0.00121 0.00125 0.99013 0.01924 12.46 0.54
3 704 0.00161 0.00091 0.98950 0.01295 13.13 0.58
4 549 0.00248 0.00240 0.98182 0.02019 8.10 2.70
5 733 0.00382 0.00235 0.94817 0.06171 6.89 0.46

*Different lower and upper bounds are used for the same problem (different regions).

represent the nondominated solutions in the preferred region well for both MMOKP and MOST problems. In

addition, the hypervolume ratio, HV N (ElitePop.)
HV N (Nond.Frt.)

, has an average value of 0.98382 and standard deviation of

0.01742 for the MMOKP. For the MOST problem, this ratio takes an average value of 0.94696 with standard
deviation of 0.05715. Note that the best ratio that could be obtained would be 1.00000, which corresponds to
identifying all true nondominated solutions in the region exactly. Based on these results, we can conclude that
the hypervolume metric of the elite solutions is very close to the hypervolume metric for the nondominated
solutions in the desired region. We observe that solution times and both performance measures are consistently
small for all problems, indicating that the algorithm works well in convergence and diversity.

5. Conclusions
We developed an evolutionary algorithm to represent the nondominated solutions in a predetermined region.
We test the performance of the algorithm on MMOKP and MOST problems, focusing on various parts of the
solution space. The results show that the algorithm approximates the desired regions of the nondominated
frontier well in these problems. Different than existing approaches, our algorithm concentrates only on the
regions the DM is interested in and generates a set of points to represent the preferred nondominated points. In
contrast to the existing literature, we also integrate an approximation procedure into the evolutionary algorithm
and evaluate the fitness of each solution based on the approximation method. We evaluate the performance of
our algorithm comparing our output with that of the exact algorithm in [24] that is designed to generate all
nondominated points for any MOCO problem.

Modifying the algorithm and experimenting for other MOCO problems is a direction for future research.
Using the main idea of focusing on desired regions, we can develop an interactive algorithm. The algorithm
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would utilize the responses of the decision-maker to update the bounds throughout the algorithm and converge
the preferred regions.
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