997 research outputs found

    Performance of a wireless telemedicine system in a hospital accident and emergency department

    Get PDF
    The article version is the pre-edited accepted version of the paper which is entitled: Performance of a wireless telemedicine system: MedLANThis paper validates a medical videoconferencing system previously developed, called MedLAN. Besides the positive comments that medical consultants might have regarding a wireless videoconferencing system designed for use inside the A&E wards, a methodically and exhaustive clinical testing of such a system must take place before adopting such technology in a wider scale. Clinical testing using a wide number of patients, modalities and a number of medical consultants proved that the suggested system could operate effectively under most conditions and it would be beneficiary to the patients. After this clinical evaluation, a number of hospitals showed interest on installing such a system in their A&E wards

    A paediatric telecardiology service for district hospitals in south-east England: an observational study.

    Get PDF
    The attached article is a Publisher version of the final published version which may be accessed at the link below. Copyright © 2010 BMJ Publishing Group Ltd & Royal College of Paediatrics and Child Health. All rights reservedOBJECTIVES: To compare caseloads of new patients assessed by paediatric cardiologists face-to-face or during teleconferences, and assess NHS costs for the alternative referral arrangements. DESIGN: Prospective cohort study over 15 months. SETTING: Four district hospitals in south-east England and a London paediatric cardiology centre. PATIENTS: Babies and children. INTERVENTION: A telecardiology service introduced alongside outreach clinics. MEASUREMENTS: Clinical outcomes and mean NHS costs per patient. RESULTS: 266 new patients were studied: 75 had teleconsultations (19 of 42 newborns and 56 of 224 infants and children). Teleconsultation patients generally were younger (49% being under 1 year compared with 32% seen personally (p = 0.025)) and their symptoms were not as severe. A cardiac intervention was undertaken immediately or planned for five telemedicine patients (7%) and 30 conventional patients (16%). However, similar proportions of patients were discharged after being assessed (32% telemedicine and 39% conventional). During scheduled teleconferences the mean duration of time per patient in sessions involving real-time echocardiography was 14.4 min, and 8.5 min in sessions where pre-recorded videos were transmitted. Mean cost comparisons for telemedicine and face-to-face patients over 14-day and 6-month follow-up showed the telecardiology service to be cost-neutral for the three hospitals with infrequently-held outreach clinics (1519 UK pounds vs 1724 UK pounds respectively after 14 days). CONCLUSION: Paediatric cardiology centres with small cadres of specialists are under pressure to cope with ever-expanding caseloads of new patients with suspected anomalies. Innovative use of telecardiology alongside conventional outreach services should suitably, and economically, enhance access to these specialists.The Department of Health and the Charitable Funds Committee of the Royal Brompton and Harefield NHS Trust funded the project

    An investigation into the use of 3G mobile communications to provide telehealth services in rural KwaZulu-Natal

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Abstract Background: We investigated the use of third-generation (3G) mobile communications to provide telehealth services in remote health clinics in rural KwaZulu-Natal, South Africa. Materials and Methods: We specified a minimal set of services as our use case that would be representative of typical activity and to provide a baseline for analysis of network performance. Services included database access to manage chronic disease, local support and management of patients (to reduce unnecessary travel to the hospital), emergency care (up to 8 h for an ambulance to arrive), e-mail, access to up-to-date information (Web), and teleclinics. We made site measurements at a representative set of health clinics to determine the type of coverage (general packet radio service [GPRS]/3G), its capabilities to support videoconferencing (H323 and Skype™ [Microsoft, Redmond, WA]) and audio (Skype), and throughput for transmission control protocol (TCP) to gain a measure of application performance. Results: We found that none of the remote health clinics had 3G service. The GPRS service provided typical upload speed of 44 kilobits per second (Kbps) and download speed of 64 Kbps. This was not sufficient to support any form of videoconferencing. We also observed that GPRS had significant round trip time (RTT), in some cases in excess of 750 ms, and this led to slow start-up for TCP applications. Conclusions: We found audio was always so broken as to be unusable and further observed that many applications such as Web access would fail under conditions of very high RTT. We found some health clinics were so remote that they had no mobile service. 3G, where available, had measured upload speed of 331 Kbps and download speed of 446 Kbps and supported videoconferencing and audio at all sites, but we frequently experienced 3G changing to GPRS. We conclude that mobile communications currently provide insufficient coverage and capability to provide reliable clinical services and would advocate dedicated wireless services where reliable communication is essential and use of store and forward for mobile applications.The Royal Society, United Kingdom

    Emergency TeleOrthoPaedics m-health system for wireless communication links

    Get PDF
    For the first time, a complete wireless and mobile emergency TeleOrthoPaedics system with field trials and expert opinion is presented. The system enables doctors in a remote area to obtain a second opinion from doctors in the hospital using secured wireless telecommunication networks. Doctors can exchange securely medical images and video as well as other important data, and thus perform remote consultations, fast and accurately using a user friendly interface, via a reliable and secure telemedicine system of low cost. The quality of the transmitted compressed (JPEG2000) images was measured using different metrics and doctors opinions. The results have shown that all metrics were within acceptable limits. The performance of the system was evaluated successfully under different wireless communication links based on real data

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Telemedicine Systems and Telecommunications

    Get PDF
    The practice of telemedicine can be divided into two distinct categories: realtime and store-and-forward. Realtime telemedicine involves synchronous interaction between the parties concerned. For example, a health-care professional and a patient may interact by videoconferencing. While realtime telemedicine is often effective in terms of consultation and patient satisfaction,[1][2] it presents challenges. Foremost is the scheduling of the parties concerned, because there are usually two health-care providers involved in the consultation (the local provider and the remote physician), and they both need to be available at the same time

    Telemedicine for cardiac surgery candidates

    Get PDF
    Background: Cardiac surgery is generally well or over-represented in many Western countries. Since the southern part of Switzerland relies on 300 km distance centers for cardiac surgery, we started a project of telemedicine for the distant evaluation of cardiac surgery candidates. We report our experience of the results of the diagnosis made by telemedicine and by direct scrutiny of coronary angiograms. Methods: Coronary angiography was performed at the distant hospital by an invasive cardiology team. Teletransmission of images was performed using three Integrated Service Digital Network (ISDN) lines by direct transmission of recent recording. A total of 98 cases were reviewed (87 aorto-coronary bypass candidates, seven valvular and four congenital heart disease). We further performed a prospective blinded comparison of 47 consecutive cases with severe coronary artery disease (CAD) with respect to localization and number of significant coronary lesions, obtained by direct scrutiny of the original angiograms and the evaluation obtained with the teletransmitted images. Results: In 89 cases of the 98 analyzed (91%) correct diagnosis and surgical approach could be established by distant transmission. In nine cases (9%, all aortocoronary bypass candidates) definitive diagnosis and treatment was feasible only by direct scrutiny of the original angiograms. Five critically ill patients were urgently referred to the surgical care center based on the correct distant diagnosis. The blinded comparison of distant diagnosis and direct scrutiny of angiograms in defining 1-2-3 vessel CAD was good: r=0.87, P≪0.01. Conclusion: Initial experience using non-sophisticated telemedical transmission of angiograms of cardiac surgery candidates seems to be a promising facility for distantly located center
    corecore