1,126 research outputs found

    Target-free vision-based technique for vibration measurements of structures subjected to out-of-plane movements

    Get PDF
    Vibration measurements have been widely used for structural health monitoring (SHM). Usually, wired sensors are required to attach on the testing structure, which may be arduous, costly and sometimes impossible to install those sensors on the remote and inaccessible part of the structure to be monitored. To overcome the limitations of contact sensors based vibration measurement methods, computer vision and digital image processing based methods have been proposed recently to measure the dynamic displacement of structures. Real-life structure subjected to bi-directional dynamic forces is susceptible to significant out-of-plane movement. Measuring the vibrations of structures under the out-of-plane movements using target-free vision-based methods have not been well studied. This paper proposes a target-free vision-based approach to obtain the vibration displacement and acceleration of structures subjected to out-of-plane movements from minor level excitations. The proposed approach consists of the selection of a region of interest (ROI), key-feature detection and feature extraction, tracking and matching of the features along the entire video, while there is no artificial target attached on the structure. The accuracy of the proposed approach is verified by conducting a number of experimental tests on a reinforced concrete structural column subjected to bi-directional ground motions with peak ground accelerations (PGA) ranging from 0.01 g to 1.0 g. The results obtained by the proposed approach are compared with those measured by using the conventional accelerometer and laser displacement sensor (LDS). It is found that the proposed approach accurately measures the displacement and acceleration time histories of the tested structure. Modal identification is conducted using the measured vibration responses, and natural frequencies can be identified accurately. The results demonstrate that the proposed approach is reliable and accurate to measure the dynamic responses and perform the system modal identification for structural health monitoring

    Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles.

    Get PDF
    Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc.) are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs) to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1) estimation of an appropriate scale factor; and (2) compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach

    Review of machine-vision based methodologies for displacement measurement in civil structures

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Vision-based systems are promising tools for displacement measurement in civil structures, possessing advantages over traditional displacement sensors in instrumentation cost, installation efforts and measurement capacity in terms of frequency range and spatial resolution. Approximately one hundred papers to date have appeared on this subject, investigating topics like: system development and improvement, the viability on field applications and the potential for structural condition assessment. The main contribution of this paper is to present a literature review of vision-based displacement measurement, from the perspectives of methodologies and applications. Video processing procedures in this paper are summarised as a three-component framework, camera calibration, target tracking and structural displacement calculation. Methods for each component are presented in principle, with discussions about the relative advantages and limitations. Applications in the two most active fields: bridge deformation and cable vibration measurement are examined followed by a summary of field challenges observed in monitoring tests. Important gaps requiring further investigation are presented e.g. robust tracking methods, non-contact sensing and measurement accuracy evaluation in field conditions

    Vision-based vibration monitoring of structures and infrastructures: overview of recent applications

    Get PDF
    Contactless structural monitoring has in recent years seen a growing number of applications in civil engineering. Indeed, the elimination of physical installations of sensors is very attractive, especially for structures that might not be easily or safely accessible, yet requiring the experimental evaluation of their conditions, for example following extreme events such as strong earthquakes, explosions, and floods. Among contactless technologies, vision-based monitoring is possibly the solution that has attracted most of the interest of civil engineers, given that the advantages of contactless monitoring can be potentially obtained thorough simple and low-cost consumer-grade instrumentations. The objective of this review article is to provide an introductory discussion of the latest applications of vision-based vibration monitoring of structures and infrastructures through an overview of the results achieved in full-scale field tests, as documented in the published technical literature. In this way, engineers new to vision-based monitoring and stakeholders interested in the possibilities of contactless monitoring in civil engineering could have an outline of up-to-date achievements to support a first evaluation of the feasibility and convenience for future monitoring tasks

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    A non-contact vision-based system for multi-point displacement monitoring in a cable-stayed footbridge

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Vision-based monitoring receives increased attention for measuring displacements of civil infrastructure such as towers and bridges. Currently, most field applications rely on artificial targets for video processing convenience, leading to high installation effort and focus on only single-point displacement measurement e.g. at mid-span of a bridge. This study proposes a low-cost and non-contact vision-based system for multi-point displacement measurement based on a consumer-grade camera for video acquisition and a custom-developed package for video processing. The system has been validated on a cable-stayed footbridge for deck deformation and cable vibration measurement under pedestrian loading. The analysis results indicate that the system provides valuable information about bridge deformation of the order of a few cm induced, in this application, by pedestrian passing. The measured data enables accurate estimation of modal frequencies of either the bridge deck or the bridge cables and could be used to investigate variations of modal frequencies under varying pedestrian loads

    Vision-Based Building Seismic Displacement Measurement by Stratification of Projective Rectification Using Lines

    Get PDF
    We propose a new flexible technique for accurate vision-based seismic displacement measurement of building structures via a single non-stationary camera with any perspective view. No a priori information about the camera’s parameters or only partial knowledge of the internal camera parameters is required, and geometric constraints in the world coordinate system are employed for projective rectification in this research. Whereas most projective rectifications are conducted by specifying the positions of four or more fixed reference points, our method adopts a stratified approach to partially determine the projective transformation from line-based geometric relationships on the world plane. Since line features are natural and plentiful in a man-made architectural building environment, robust estimation techniques for automatic projective/affine distortion removal can be applied in a more practical way. Both simulations and real-recorded data were used to verify the effectiveness and robustness of the proposed method. We hope that the proposed method could advance the consumer-grade camera system for vision-based structural measurement one more step, from laboratory environments to real-world structural health monitoring systems

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Sensors and Technologies in Spain: State-of-the-Art

    Get PDF
    The aim of this special issue was to provide a comprehensive view on the state-of-the-art sensor technology in Spain. Different problems cause the appearance and development of new sensor technologies and vice versa, the emergence of new sensors facilitates the solution of existing real problems. [...

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results
    corecore