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Abstract: Vibration measurements have been widely used for structural health monitoring (SHM). 

Usually, wired sensors are required to attach on the testing structure, which may be arduous, costly 

and sometimes impossible to install those sensors on the remote and inaccessible part of the structure 

to be monitored. To overcome the limitations of contact sensors based vibration measurement 

methods, computer vision and digital image processing based methods have been proposed recently 

to measure the dynamic displacement of structures. Real-life structure subjected to bi-directional 

dynamic forces is susceptible to significant out-of-plane movement. Measuring the vibrations of 

structures under the out-of-plane movements using target-free vision-based methods have not been 

well studied. This paper proposes a target-free vision-based approach to obtain the vibration 

displacement and acceleration of structures subjected to out-of-plane movements from minor level 

excitations. The proposed approach consists of the selection of a region of interest (ROI), key-feature 

detection and feature extraction, tracking and matching of the features along the entire video, while 

there is no artificial target attached on the structure. The accuracy of the proposed approach is verified 

by conducting a number of experimental tests on a reinforced concrete structural column subjected 

to bi-directional ground motions with peak ground accelerations (PGA) ranging from 0.01g to 1.0g. 

The results obtained by the proposed approach are compared with those measured by using the 

conventional accelerometer and laser displacement sensor (LDS). It is found that the proposed 

approach accurately measures the displacement and acceleration time histories of the tested structure. 

Modal identification is conducted using the measured vibration responses, and natural frequencies 

can be identified accurately. The results demonstrate that the proposed approach is reliable and 

accurate to measure the dynamic responses and perform the system modal identification for structural 

health monitoring. 
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1 Introduction 
 

Timely structural condition inspection, monitoring and safety evaluation is very important for 

cost-effective repair and maintenance planning of civil engineering structures. In industry practices, 

structural condition monitoring of civil engineering infrastructure, such as buildings, bridges and 

roads, mainly depends on the visual inspection carried out by the professional inspectors to obtain 

structural health information and rate structural conditions. Physical inspection and non-destructive 

testing provide quantitative data of structural conditions, but may not be feasible for the inaccessible 

part of large-scale structures or at least are very labour intensive, such as long-span bridges and high 

rise buildings. Though the existing physical inspection and condition assessment are mostly carried 

out by well trained and qualified inspectors, several remarks have been recognized, such as: (i) 

Manual inspection depends on the personal judgment of inspector and may be lack of consistency [1, 

2]. The accuracy and trustworthiness of the inspection results rely mainly on the expert knowledge 

and professional experience of the inspectors. Consequently, the structural health condition 

evaluation outcomes sometimes encompass errors and extensive deviations lead to misguide for 

appropriate decision making and cost-effective maintenance design; (ii) The visual inspection is time 

consuming and labour intensive [3, 4], specifically for long span bridges and high rise buildings, 

which significantly increases the expenses; (iii) Manual inspection may not be feasible for 

quantitative condition monitoring and maintenance design [5]. In addition, a number of life safety 

hazards are posed to the inspectors [6]. In a word, lack of proper training, vision problems, location 

and accessibility may cause error prone results from visual inspections [7]. 

 
According to a study by Kim [8], the aim of Structural Health Monitoring (SHM) can be stated 

as a cost-effective evaluation of structural performance and level of service, detection and location of 

damage, structural lifetime prognosis as well as maintenance management. Structural system 

identification is one of the key components of SHM that can be used to update the analytical model 

and detect the damage. Conventional sensors like accelerometer, strain gauge and linear variable 

differential transducer (LVDT) [9-14] are widely used in SHM systems to measure vibration 

acceleration, strain and displacement for structural performance and serviceability assessment. 

However, such conventional sensory system could be highly expensive to operate and maintain with 

a good service condition, mainly due to labour-oriented, time-consuming and expensive to install a 

large number of cables involved and the possibility of sensor failures or malfunctions. In addition, 

the installation of the contact type sensors is sometimes difficult or impossible for inaccessible parts 

of the structure. For a small structure, the additional mass of the contact sensors may change structural 
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properties and responses, resulting in error-prone measurements. Therefore, the potential use of non- 

contact based vibration measurement techniques has received a significant interest in the field of 

SHM and damage detection. Non-contact measurement methods, such as Global Positioning System 

(GPS), Laser Doppler Vibrometer, Radar Interferometry, Speckle Photography and Hologram 

Interferometry, provide significant advantages with ease of operation and flexibility to extract 

structural displacements of multiple points from a single record [15, 16]. However, most of the non- 

contact type measurement equipment require high setup cost and complex data interpretation to 

reflect structural conditions. This may constraint the wide applications of these techniques for SHM 

and damage assessment of practical engineering structures [17]. 

 
In the recent years, as an innovative approach, the vision-based techniques enable to extract 

object vibrations from video images. A vision-based measurement system consists of a camera, zoom 

lens and computer installed with post-processing software. Zhang et al. [17] used fast motion 

magnification algorithm and artificial target based image processing approach for vibration 

measurement of structure in the laboratory condition. The same procedure was applied in the field for 

vibration analysis of a railway bridge. Further challenges that need to be overcome in future are 

complex geometries of structure, closely spaced modes and outdoor measurement perspectives such 

as wind, camera movement, lighting conditions, the variation of temperature and index of refraction. 

Lee et al. [18] presented a computer vision-based approach for structural dynamic displacement 

measurement with artificial pattern or targets fixed on the surface of the structure. The robust light- 

induced image degradation method was introduced in the field testing condition to evaluate the 

performance of the technique under strong sunlight. By using the precise target, dynamic 

displacement of a railway bridge was measured by Ribeiro et al. [19]. However, the method was 

limited to the application with the use of artificial illuminated target and camera distance 25 m from 

the target location. The vertical displacement of the bridge was measured by the camera installed at 

5m, 10m, 15m and 25m from the bridge, and the obtained displacement results were compared with 

those measured by LVDT. An experimental investigation was carried out by Yang et al. [20], where 

speckle pattern was used for image-based strain fields measurement of a reinforced concrete wall. 

Luo et al. [21] adopted high contrast artificial target vision-based approach for multi-point bridge 

displacement monitoring. A realistic method was developed by tracking both the structure and 

stationary reference point to eliminate the error due to camera vibration. Ye et al. [22] developed a 

vision-based system for displacement measurement of long-span bridges based on digital image 

processing technology. The proposed algorithm was verified with experimental tests and exhibited 

an excellent capability in measuring the dynamic displacements under the uni-axial seismic motions 
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and in-situ bridge tests. Guo and Zhu [23] proposed a computer vision-based Lucas-Kanade template 

tracking approach to measure the large-scale structural dynamic displacement. The proposed method 

used pre-designed black and white circular target fixed on the surface of the structure, and the video 

was captured by a stationary camera 3m away from the target structure. Dong et al. [24] proposed a 

machine vision technology for structural system identification. Multi-point structural dynamic 

displacements were measured by using LED lamp and black spots target. Ostrowska et al. [25] 

developed a vision based digital image correlation technique to measure the deflection of a beam in 

the laboratory. Image registration algorithm was used, and the measured deflection values obtained 

in this study were compared with those from the laser tracker system with a mean percentage error of 

1.11%. The applied pickle marks and pattern are the important factors for accurate measurement of 

deflection by using digital image correlation. Ye et al. [26] measured structural dynamic displacement 

using different multi-object tracking algorithms. Multi-point structural dynamic displacements can 

be obtained effectively with three different image processing and object tracking algorithms. Shao et 

al. [27] demonstrated a vision-based motion tracking algorithm to measure the human-induced 

vibration of civil engineering infrastructure. The developed vision-based system used artificial targets 

to extract good results in the field of human-induced vibrations when compared to classical sensors. 

 
To remove the limitation of using artificial targets in the above mentioned techniques, studies 

are being conducted to develop target-free vision-based approaches for vibration displacement 

measurements. Ji et al. [28] proposed a target-free image based optical flow estimation method for 

small cable vibration measurement. The proposed method was verified both in the laboratory and in 

the field on a pedestrian bridge. No camera calibration was required, however, the method was 

restricted for the long-span bridge cable vibration measurement. Dorn et al. [29] proposed phase- 

based video motion magnification for blind identification of full-field vibration modes and vision 

based operational modal analysis. Multi-scale image processing technique was applied on the video 

frames of vibrating structure to blindly extract natural frequencies, damping ratios and full-field mode 

shapes from the recorded video. Davis et al. [30] developed a target free vision-based motion 

magnification algorithm for modal identification of a simple beam structure and visualizing the 

operational deflection shapes. Elanwar et al. [31] used a consumer grade camera as a vision-based 

tool for structural system identification. Consumer grade GoPro Hero3 camera and LG G3 

smartphone were used in this study, and the captured images were processed by the feature extraction 

algorithm developed by Harris and Stephens [32]. Daniel et al. [33] developed the target-less 

computer vision method for the vibration measurement of traffic signal structure. Ambient wind 

excitation was used, and measured dynamic displacement and identified structural system parameters 
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obtained from the vision-based technique were compared with those obtained with the traditional 

sensory system. Feng and Feng [34] performed laboratory and field investigations to study the 

effectiveness of using vision based techniques for damage detection. Feng et al. [35] developed a 

non-target vision sensor to measure the bridge dynamic response. The proposed approach was 

validated in the laboratory shaking table test and in the field test on a railroad bridge. Moreover, the 

method is capable of measuring multi-point displacements from a single recorded video. Chen et al. 

[36] developed a computer vision system to measure structural displacement and identify structural 

properties such as stiffness and damping coefficient of a cantilever beam in the laboratory condition 

by using phase-based optical flow and unscented Kalman filter. In addition, Chen et al. [37] proposed 

high speed video based motion magnification technique to obtain modal identification parameter of 

a simple cantilever steel column structure. Furthermore, video camera based motion magnification 

technique was demonstrated to measure the vibration of an antenna tower from a distance over 175 

m [30]. The camera motion was eliminated by capturing the reference object in the same image and 

video down sampling enhanced Signal-to-Noise Ratio (SNR). Hu et al. [38] used target free high 

speed video with consensus based matching and tracking algorithm to measure the vibration of the 

bus rapid transit viaduct. The performance of the method was verified in the laboratory with a 

normalized mean squared error (NRMSE) of 2.092 %. Choi et al. [39] proposed a target-less vision 

based sensor to measure the dynamic response of building structure by using convex hull optimization 

algorithm. The structure was excited by white noise vibration and structural response obtained from 

the developed vision-based method was compared with that measured from the conventional sensory 

system. Khuc and Catbas [40] proposed a camera based structural health monitoring system to 

measure structural displacement and vibration without using any physical target. Khuc and Catbas 

[41] also developed a vision based method for dynamic measurement of a railway bridge with an 

acceptable error compared to using the conventional LVDT. 

 
Despite that the existing vision-based techniques have received successes for the applications of 

measuring structural vibration displacements of the experimental and in-field structures, several 

limitations may still exist. For example, many existing methods require to attach physical targets on 

the surface of the structure, which could make the system setup time consuming and even practically 

impossible for the inaccessible locations of the real large scale structures, i.e. the long-span bridges 

and high rise buildings as mentioned above. Physical targets and template matching algorithm have 

been used to extract vibration displacements, which is also computationally expensive. The existing 

vision-based methods depend on the high frame rate and high-resolution camera or sometimes 

demand additional equipment and lenses, which may restrict the system as a low-cost real-life 
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implementation. Besides these, issues such as lens distortion, temporal aliasing, the field of view 

(FOV) and sampling frequency variation have not been fully discussed and investigated. Furthermore, 

the current target-free vision-based vibration measurement methods are usually used to extract high 

level vibrations, which produce large displacements. However in the real-world practical 

applications, low level vibration measurement is more challenging for structural health monitoring 

and damage detection. Most of the existing vision-based studies extract vibration information when 

the structure is subjected to significant and uni-directional movements. No research has yet been 

carried out to investigate the applicability of vision based vibration displacement technique when the 

structure is subjected to minor ambient vibrations and bi-directional out-of-plane movements, which 

is very much realistic for the real word structure vibrations. 

 
This paper proposes a target-free vision-based approach for dynamic vibration measurement 

when the structure is subjected to bi-directional excitations and out-of-plane movements. The 

proposed approach is capable of identifying the time domain minor displacement histories under low 

level excitations. The proposed approach uses a consumer-grade video camera to derive the vibration 

displacement, removing the hassle of installing an artificial target on the structure. The camera 

calibration is carried out to remove the radial distortion from the raw video images, which is 

enormously crucial for accurate displacement measurement. After the elimination of distortion, the 

dynamic displacement of the structure is obtained by analysing the calibrated video frame by frame. 

The region of interest (ROI) of the first frame of the video is selected by image segmentation 

algorithm. Key features are detected and extracted by using the binary robust invariant scalable 

keypoints (BRISK) feature detection and extraction algorithm which is invariant to scale, rotation 

and orientation. This is one of the advantages of this study to detect and extract key-features while 

the images are captured with a certain camera angle. The fast BRISK algorithm also reduced the 

computational time of large volume image processing. The extracted key features points are used to 

calculate the displacement of each frame of the entire video by using Lucas-Kanade tracking (KLT) 

algorithm which ensure the maximum number of matching of key-points between consecutive image. 

The false match outliers are discarded by using the maximum likelihood estimation sample consensus 

(MLESAC) algorithm which produced maximum error-free dynamic displacement. The accuracy of 

the proposed approach is validated experimentally on a reinforced concrete column model subjected 

to bi-directional ground motion excitations. The results obtained from the proposed approach are 

compared with those measured from the high accuracy laser displacement sensors (LDSs) to validate 

the effectiveness and accuracy of the proposed approach. 
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2 Target-free vision-based technique for vibration measurement 
 

The proposed target-free vision-based technique for vibration measurements of structures 

consists of the following significant components as shown in Figure 1, namely, (i) Acquisition of raw 

video clip; (ii) Removal of geometric distortion from images; (iii) Image segmentation and selection 

of ROI in the first frame; (iv) Feature detection, extraction, tracking, matching and outlier discarding 

to measure dynamic displacement; and (v) System identification based on the measured 

displacements and derived acceleration. 
 
 
 

 
 
 
 
 

Figure 1: Overview of the proposed target-free vision-based approach for vibration measurements. 
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2.1 Camera Calibration 
 

As the beginning step, camera calibration is performed to: (i) Remove the radial distortion from 

the captured images; (ii) Obtain camera intrinsic parameters; and (iii) Calculate the conversion factor 

from the pixel to engineering unit. Although consumer grade camera lenses are upgraded with the 

advanced modern camera technology intensely in the recent years, the FOV of low-cost and 

lightweight cameras may be introduced with considerable radial distortion. This will affect the 

accuracy of dynamic displacement measurements. From this point of view, camera calibration is 

essential to remove the geometric distortion from the images for the physical displacement 

measurement. The camera calibration method developed by Zhang [42] is adopted in this study by 

capturing images of known geometric points with the checkerboard pattern, from different points of 

view to estimate the camera intrinsic parameter matrix including camera focal length, lens axis offset, 

principal points, skewness and lens distortion characteristics. This permits the uncalibrated video 

images to be converted into calibrated images to measure dynamic displacements precisely. The 

conducted camera calibration uses a pinhole camera model and precisely estimate the camera intrinsic 

parameters. The camera pinhole model is expressed as follows: a two dimensional (2D) projected 

point 𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜 = [𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣]𝑇𝑇𝑇𝑇 on an image plane obtained from a three dimensional (3D) point 𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜 = 

[𝑋𝑋𝑋𝑋, 𝑌𝑌𝑌𝑌, 𝑍𝑍𝑍𝑍]𝑇𝑇𝑇𝑇 in the world coordinate system. The augmented vectors by adding a unity as the last 

element are denoted by 𝑚𝑚𝑚𝑚 = [𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣, 1]𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀 = [𝑋𝑋𝑋𝑋, 𝑌𝑌𝑌𝑌, 𝑍𝑍𝑍𝑍, 1]𝑇𝑇𝑇𝑇 . The relationship between 3D 

points and its image projection is given as 

 
𝑆𝑆𝑆𝑆 × 𝑚𝑚𝑚𝑚 = 𝐴𝐴𝐴𝐴 × [𝑅𝑅𝑅𝑅 𝑡𝑡𝑡𝑡] × 𝑀𝑀𝑀𝑀 (1) 

𝑢𝑢𝑢𝑢 𝛼𝛼𝛼𝛼 𝛾𝛾𝛾𝛾 𝑢𝑢𝑢𝑢0 𝑋𝑋𝑋𝑋 
Or, 𝑆𝑆𝑆𝑆 × � 𝑣𝑣𝑣𝑣 � = � 0 𝛽𝛽𝛽𝛽 𝑣𝑣𝑣𝑣0 � [ 𝑅𝑅𝑅𝑅3𝑥𝑥𝑥𝑥3 𝑡𝑡𝑡𝑡3𝑥𝑥𝑥𝑥1 ] � 𝑌𝑌𝑌𝑌 � ; 

1 0 0 1 𝑍𝑍𝑍𝑍 
1 

 
𝛼𝛼𝛼𝛼 𝛾𝛾𝛾𝛾 𝑢𝑢𝑢𝑢0 

𝐴𝐴𝐴𝐴 = � 0 𝛽𝛽𝛽𝛽 𝑣𝑣𝑣𝑣0 � 
0 0 1 

 
 
 
 

(2) 

 
where 𝑆𝑆𝑆𝑆 and 𝐴𝐴𝐴𝐴 are the arbitrary scale factor and camera intrinsic matrix, respectively; 𝑅𝑅𝑅𝑅 is the rotation 

matrix with three degrees of freedom; 𝑡𝑡𝑡𝑡 is the translation vector; (𝑢𝑢𝑢𝑢0, 𝑣𝑣𝑣𝑣0) is the coordinate of the 

principal point (optical centre); 𝛼𝛼𝛼𝛼 and 𝛽𝛽𝛽𝛽 are the scale factors in the 𝑢𝑢𝑢𝑢 and 𝑣𝑣𝑣𝑣 axes of the image, 

respectively; and 𝛾𝛾𝛾𝛾 is the parameter describing the skewness of these two image axes. Camera 
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intrinsic matrix is solved by attaching the checkerboard pattern and analysing the captured image 

from different points of view. 

 
To deal with the radial distortion, (𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣) is considered as the ideal pixel image coordinates and 

(𝑢𝑢𝑢𝑢1, 𝑣𝑣𝑣𝑣1) the corresponding real observed image coordinates. The ideal points are also considered as 

the projection of the model points according to camera pinhole model. Likewise, (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) and (𝑥𝑥𝑥𝑥1, 𝑦𝑦𝑦𝑦1) 

are defined as the normalized ideal and real image coordinates, respectively. Then we have 

 
𝑥𝑥𝑥𝑥1 = 𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥[𝑘𝑘𝑘𝑘1(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2) + 𝑘𝑘𝑘𝑘2(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2)2] (3) 

𝑦𝑦𝑦𝑦1 = 𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑦𝑦[𝑘𝑘𝑘𝑘1(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2) + 𝑘𝑘𝑘𝑘2(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2)2] (4) 
 

where 𝑘𝑘𝑘𝑘1 and 𝑘𝑘𝑘𝑘2 are known as the radial distortion coefficients and the principal point (𝑢𝑢𝑢𝑢0, 𝑣𝑣𝑣𝑣0) is the 

centre of the radial distortion. Based on 𝑢𝑢𝑢𝑢1 = 𝑢𝑢𝑢𝑢0 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥1 and 𝑣𝑣𝑣𝑣1 = 𝑣𝑣𝑣𝑣0 + 𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦1 with the assumption 𝛾𝛾𝛾𝛾 = 

0, we have 

 
𝑢𝑢𝑢𝑢1 = 𝑢𝑢𝑢𝑢 + (𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢0)[𝑘𝑘𝑘𝑘1(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2) + 𝑘𝑘𝑘𝑘2(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2)2] (5) 

𝑣𝑣𝑣𝑣1 = 𝑣𝑣𝑣𝑣 + (𝑣𝑣𝑣𝑣 − 𝑣𝑣𝑣𝑣0)[𝑘𝑘𝑘𝑘1(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2) + 𝑘𝑘𝑘𝑘2(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2)2] (6) 
 

From Equations (5) and (6), two equations are obtained for each point in each image, that is 
 
 

(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢0)(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2) (𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢0)(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2)2 𝑘𝑘𝑘𝑘1 𝑢𝑢𝑢𝑢1 − 𝑢𝑢𝑢𝑢 � (𝑣𝑣𝑣𝑣 − 𝑣𝑣𝑣𝑣 )(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2) (𝑣𝑣𝑣𝑣 − 𝑣𝑣𝑣𝑣 )(𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2)2 � � 𝑘𝑘𝑘𝑘2 
� = � 𝑣𝑣𝑣𝑣1 − 𝑣𝑣𝑣𝑣 � 

0 0 

(7) 

 
For 𝑚𝑚𝑚𝑚 points of 𝑎𝑎𝑎𝑎 images, 2 × 𝑚𝑚𝑚𝑚 × 𝑎𝑎𝑎𝑎 equations will be obtained to form a matrix, i.e. 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎, where 

𝑘𝑘𝑘𝑘 = [ 𝑘𝑘𝑘𝑘1, 𝑘𝑘𝑘𝑘2]𝑇𝑇𝑇𝑇. Then the least square solution can be found by 
 
 

𝑘𝑘𝑘𝑘 = (𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷)−1 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎 (8) 

 
By using Equation (8), the radial distortion coefficients 𝑘𝑘𝑘𝑘1 and 𝑘𝑘𝑘𝑘2 are obtained to remove the 

geometric distortion from the video images. It is noted that the distortion function is mandatory to be 

computed once for each camera, and is used to remove distortion from the image frame obtained from 

video images taken by this camera. 

 
In this study, the conversion ratio from the image pixel to an engineering unit, i.e. mm is 

calculated by using the known distance of two pre-selected points on the target between the image 

pixel coordinate and the world coordinate systems as below 



11  

 𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑁𝑁 �unit: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (9) 

 
where 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 is the conversion factor from the image coordinate to the world coordinate; 𝑁𝑁𝑁𝑁 is the pixel 

distance of the object in the image coordinate and 𝐷𝐷𝐷𝐷 is the world coordinate distance of the object in 

mm. 

 
It is simple to have the image coordinate pixel distance on an image, but to obtain the world 

coordinate on an image, especially when the structure to be investigated is out of reach which is very 

common for real structures, might be difficult. To resolve this issue, an alternative approach is 

suggested by forming a relationship between the conversion ratio 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 and camera distance 𝑍𝑍𝑍𝑍 from the 

aiming point to the camera position. The pinhole camera model is illustrated in Figure 2. 
 
 

𝑓𝑓𝑓𝑓 𝑍𝑍𝑍𝑍 
 
 
 

 
Image sensor 

Object plane 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 

 

𝑅𝑅𝑅𝑅′
𝑠𝑠𝑠𝑠

  

Projection centre (lens) 
 

Figure 2: Camera calibration to determine the conversion factor. 
 
 
 

From the similar triangle which is made by the image sensor and object plane with the lens 

projection centre, we have 

 
𝑅𝑅𝑅𝑅′𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓 

= 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 𝑍𝑍𝑍𝑍 

(10) 

 
It can be simplified as 

 
 

𝑓𝑓𝑓𝑓 
𝑍𝑍𝑍𝑍 = � ′ � 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 

𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠 
(11) 

𝑍𝑍𝑍𝑍 = 𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 (12) 
𝑍𝑍𝑍𝑍 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 𝐾𝐾𝐾𝐾 (13) 
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where 𝐾𝐾𝐾𝐾 = � 𝑓𝑓𝑓𝑓 � is the camera constant which needs to be determined; 𝑓𝑓𝑓𝑓 is focal length and 
𝑅𝑅𝑅𝑅′ 

𝑅𝑅𝑅𝑅′𝑠𝑠𝑠𝑠 

𝑠𝑠𝑠𝑠 is 

the image sensor spatial resolution; 𝑍𝑍𝑍𝑍 is the distance from the object plane to the projection centre of 

the camera lens. For a known dimension object in the image coordinate and world coordinate systems, 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 is to be calculated by using Equation (9). With calculated 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 and known distance 𝑍𝑍𝑍𝑍 , the camera 

constant 𝐾𝐾𝐾𝐾 can be computed by using Equation (13). Once 𝐾𝐾𝐾𝐾 is found, for any known distance from 

the camera to the object, the conversion ratio 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 for any unknown object dimension can be calculated 

by using Equation (13). 

 
For professional cameras with higher specifications, the values of camera constants may be 

provided by its manufacturing company. The camera calibration is necessary to obtain the camera 

constant values for most of the consumer level cameras. This is why the values of distance 𝑍𝑍𝑍𝑍 and 

conversion factor 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 are obtained by using the above mentioned camera calibration algorithm in this 

study. In this research, SONY PXW-FS5 4K XDCAM video camera is calibrated by using a 

checkerboard of 7x10 square shape of alternate black and white colours with a square unit dimension 

of 21 x 21 mm. A series of videos are taken by targeting the checkerboard from different known 

distances, denoted as 𝑍𝑍𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 . The value of 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 is obtained from the checkerboard image in the 

pixel by using an image processing technique known as Harris corner detection algorithm [32]. It 

should be noted that the maximum zoom factor is used during all the camera implementation while 

the focus is adjusted manually to eliminate blurriness from images. The conversion ratio 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 is 

calculated as 

 
𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑁𝑁 �unit: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 

(14) 

 
where 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 is the pixel distance of two corner points on the checkerboard image; 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 is the world 

dimension of the unit square on the checkerboard (21mm). A series of images are captured and 

measured values of 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 corresponding to various camera distances 𝑍𝑍𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 are given in Table 1. 

To obtain the relationship between the conversion ratio and distance, the results obtained from 

calibration tests are curve fitted. The fitted curves in Figure 3 show that the conversion factor and 

distance are proportional, which is supported by Equation (13). The relationship function derived 

from the curve fitting is provided as 

 
𝑍𝑍𝑍𝑍1.1442 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 
33333 

�unit: 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

�
 (15) 
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When the conversion ratio is calculated, the FOV of the camera in the horizontal and vertical 

directions are also computed by using the following relationship 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹 ∗ 𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠 (16) 

 
where 𝐹𝐹𝐹𝐹 is the number of sensor resolution in pixel. In this study, 𝐹𝐹𝐹𝐹 = [1920𝑥𝑥𝑥𝑥1080] pixel is adopted 

for the calculation of FOV in both horizontal (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ) and vertical (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑣𝑣𝑣𝑣) directions, respectively. 

The results are shown in Figure 3 and Table 1. 

 
Table 1: Measured conversion factor corresponding to camera distance and field of view. 

 
Test 
No. 

𝑍𝑍𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 (𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 � � 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑣𝑣𝑣𝑣 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

1 1810 21.0 113.190 0.186 356.215 200.371 
2 2860 21.0 70.350 0.299 573.134 322.388 
3 3750 21.0 53.550 0.392 752.941 423.529 
4 4850 21.0 39.060 0.538 1032.258 580.645 
5 5500 21.0 35.490 0.592 1136.095 639.053 
6 6900 21.0 27.090 0.775 1488.372 837.209 
7 7970 21.0 25.200 0.833 1600.000 900.000 
8 8970 21.0 22.680 0.926 1777.778 1000.000 
9 10500 21.0 18.795 1.117 2145.251 1206.704 
10 12170 21.0 15.813 1.328 2549.801 1434.263 
11 13880 21.0 11.739 1.789 3434.705 1932.021 
12 15890 21.0 10.059 2.088 4008.351 2254.697 
13 17640 21.0 8.946 2.347 4507.042 2535.211 
14 19690 21.0 7.665 2.740 5260.274 2958.904 
15 21830 21.0 7.119 2.950 5663.717 3185.841 
16 23920 21.0 5.502 3.817 7328.244 4122.137 
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Figure 3: Relationship between camera distance and FOV and the conversion factor for SONY 

PXW-FS5 4K XDCAM. 

 
 
 

2.2 Image processing for displacement measurement 
 

By using the camera intrinsic parameters such as focal length, skewness and principle points, the 

captured video is calibrated to eliminate the geometric distortion from images and the vibration 

displacement is calculated by analysing the captured video clip frame-by-frame. In the beginning, the 

first frame is extracted from the video clip and is segmented using an image segmentation algorithm 

[43] to select ROI by drawing a user-defined box. The ROI covers the object of interest to be targeted 

and tracked along the entire video clip. In the field of image processing, ROI should consist of some 

special image features or key points such as image corner points and the image edges, which have 

dominant characteristics compared with its neighbour. Key features in the images could be identified 

by using different feature detection algorithms, such as Harris corner features [32], scale invariant 

feature transformation (SIFT) [44], BRISK [45], speed-up-robust features (SURF) [46], fast retina 

key points (FREAK) [47] and features from accelerated segment test (FAST) [48] etc. Their 

applicability is varying by their capability of detection and invariant to scale, translation, rotation, 

light and illumination along with other environmental perspectives for accurate dynamic 

displacement monitoring. Conventional vision-based methods for vibration displacement 

measurement employ physical targets such as known dimension circles or rectangles, which are 

attached on the surface of the testing structure. The motions of these targets are tracked, and the 

Rs = Z 1 . 1 4 4 2 /33333 
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displacement is measured by means of different image processing algorithms. In this study, the 

requirement of an artificial target is eliminated by using natural features of the testing structure as 

targets. The BRISK algorithm [45] is adapted to detect and extract key features from the images, for 

calculating the dynamic displacement of the vibrating test structure. The powerful and fast BRISK 

algorithm reduced the computational time for large volume image processing while it is invariant to 

scale and rotation. This is one of the advantages of this study to detect and extract key-features while 

the images are captured with a certain camera angle. The BRISK detector is used to estimate the true 

scale of each key point in a continuous scale space and uses a pattern for sampling the neighbourhood 

of the key point. For positioning and scaling of a key point 𝑘𝑘𝑘𝑘 in the image, considering 𝑁𝑁𝑁𝑁 × (𝑎𝑎𝑎𝑎 − 

1)/2 sampling-point pairs (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗), the intensity values of these points are 𝐼𝐼𝐼𝐼(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖) and 𝐼𝐼𝐼𝐼(𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗, 𝜎𝜎𝜎𝜎𝑗𝑗𝑗𝑗) and 

then the local gradient 𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗) is estimated as 

 
 

𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗� = (𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗 − 
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖). 

𝐼𝐼𝐼𝐼�𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗, 𝜎𝜎𝜎𝜎𝑗𝑗𝑗𝑗� − 𝐼𝐼𝐼𝐼(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖) 
2 (17) 

��𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖�� 
 

where (𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖, 𝜎𝜎𝜎𝜎𝑗𝑗𝑗𝑗) is the standard deviation of intensity which is proportional to the distance between the 

points. If 𝐴𝐴𝐴𝐴 is a set of all sampling pairs 

 
𝐴𝐴𝐴𝐴 = {(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗) ∈ ℝ2|𝑝𝑝𝑝𝑝 < 𝑁𝑁𝑁𝑁 ∧ 𝑗𝑗𝑗𝑗 < 𝑝𝑝𝑝𝑝 ∧ 𝑝𝑝𝑝𝑝, 𝑗𝑗𝑗𝑗 ∈ ℕ} (18) 

 
𝑆𝑆𝑆𝑆 is a short distance sub-set pairs and another subset of 𝐿𝐿𝐿𝐿 is the long-distance pair ℒ, and they can be 

expressed as 

 
𝑆𝑆𝑆𝑆 = {𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴��𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖� < 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥} ⊆ 𝐴𝐴𝐴𝐴 (19) 

ℒ = {𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴��𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖� < 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚} ⊆ 𝐴𝐴𝐴𝐴 (20) 
 

where 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥 = 9.75𝑡𝑡𝑡𝑡 and 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 13.67𝑡𝑡𝑡𝑡; 𝑡𝑡𝑡𝑡 is the scale of 𝑘𝑘𝑘𝑘. Then the overall characteristics of the 

gradient of the key point 𝑘𝑘𝑘𝑘 is 

 

𝑖𝑖𝑖𝑖 
 
 

The pattern rotation 𝛼𝛼𝛼𝛼 = 𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2�𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦, 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥� is estimated around the key point 𝑘𝑘𝑘𝑘 by considering 

the short distance intensity comparison of point pairs (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗𝛼𝛼𝛼𝛼) ∈ 𝑆𝑆𝑆𝑆 , and each bit 𝑏𝑏𝑏𝑏 corresponds to 

𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 1 
= � � = � 𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗� 

𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 𝐿𝐿𝐿𝐿 
(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗)∈ℒ 

(21) 
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1, 𝐼𝐼𝐼𝐼�𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗𝛼𝛼𝛼𝛼, 𝜎𝜎𝜎𝜎𝑗𝑗𝑗𝑗� > 𝐼𝐼𝐼𝐼(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖) 
𝑏𝑏𝑏𝑏 = � 

0, 𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝 
(22) 

 

∀�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗𝛼𝛼𝛼𝛼� ∈ 𝑆𝑆𝑆𝑆 

 
When key points detection and extraction are performed from the first frame in the selected ROI, 

the robust KLT algorithm [49] is used to track the key features in the images of entire video clip 

which ensure the maximum number of matching of key-points between consecutive image. 

Considering that the intensity of a point 𝑋𝑋𝑋𝑋 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) in the current image frame at the time instant 𝑡𝑡𝑡𝑡 

is (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡) , the displacement of point 𝑋𝑋𝑋𝑋 is 𝑎𝑎𝑎𝑎 = (𝜇𝜇𝜇𝜇, 𝜌𝜌𝜌𝜌) and the intensity of point 𝑋𝑋𝑋𝑋 at the time 

instant 𝑡𝑡𝑡𝑡 + 𝜏𝜏𝜏𝜏 is 

 
𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡 + 𝜏𝜏𝜏𝜏) = 𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇, 𝑦𝑦𝑦𝑦 − 𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) (23) 

 
The intensity of current image frame 𝐽𝐽𝐽𝐽𝑥𝑥𝑥𝑥 = 𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡 + 𝜏𝜏𝜏𝜏) and the previous image frame 𝐼𝐼𝐼𝐼 (𝑋𝑋𝑋𝑋 − 𝑎𝑎𝑎𝑎) = 

𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇, 𝑦𝑦𝑦𝑦 − 𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) for a small motion is represented by 
 
 

𝐽𝐽𝐽𝐽𝑥𝑥𝑥𝑥 = 𝐼𝐼𝐼𝐼 (𝑋𝑋𝑋𝑋 − 𝑎𝑎𝑎𝑎) + 𝑎𝑎𝑎𝑎(𝑋𝑋𝑋𝑋) = 𝐼𝐼𝐼𝐼 (𝑋𝑋𝑋𝑋)– 𝑖𝑖𝑖𝑖. 𝑎𝑎𝑎𝑎 (24) 
 

where 𝑖𝑖𝑖𝑖 is the gradient vector; d is the displacement vector between two frames and 𝑎𝑎𝑎𝑎 is the noise 

assumed to zero. 

 
The residual of the intensity change for a small window 𝑤𝑤𝑤𝑤 can be found as 

 
 2 2 

𝜀𝜀𝜀𝜀 = ∫𝑤𝑤𝑤𝑤[𝐼𝐼𝐼𝐼(𝑋𝑋𝑋𝑋) − 𝑖𝑖𝑖𝑖. 𝑎𝑎𝑎𝑎 − 𝐽𝐽𝐽𝐽(𝑋𝑋𝑋𝑋)] 𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋 = ∫𝑤𝑤𝑤𝑤(ℎ − 𝑖𝑖𝑖𝑖. 𝑎𝑎𝑎𝑎) 𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋 (25) 
 

where ℎ = 𝐼𝐼𝐼𝐼(𝑋𝑋𝑋𝑋) − 𝐽𝐽𝐽𝐽(𝑋𝑋𝑋𝑋). The residual value when differentiating Equation (26) with respect to 𝑎𝑎𝑎𝑎, is 

equal to zero 

 
∫𝑤𝑤𝑤𝑤 (ℎ − 𝑖𝑖𝑖𝑖. 𝑎𝑎𝑎𝑎)𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴 = 0 (26) 

 
With (𝑖𝑖𝑖𝑖. 𝑎𝑎𝑎𝑎)𝑖𝑖𝑖𝑖 = (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇)𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 assumed to be constant within the window 𝑤𝑤𝑤𝑤, we have 

 
𝑎𝑎𝑎𝑎 

 
where 𝑝𝑝𝑝𝑝 = ∫𝑤𝑤𝑤𝑤 (𝐼𝐼𝐼𝐼 − 𝐽𝐽𝐽𝐽)𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴 and 𝐺𝐺𝐺𝐺 = ∫𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴, the displacement vector 𝑎𝑎𝑎𝑎 is calculated for each 

matched key features 𝑋𝑋𝑋𝑋 in each frame of the video. 

= 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺−1 (27) 
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During the matching and tracking, the outlier of the matching features is discarded by using 

outlier removing algorithm. Several methods have been developed for geometric transformation and 

estimation of multiple view relationship between corresponding features points, such as random 

sample consensus (RANSAC) developed by Fischler and Bolles [50], least median square (LMS) by 

Rousseeuw [51] and Maximum likelihood estimation of sample consensus (MLESAC) by Torr and 

Zisserman [52]. The motion of points between two views is estimated by the fundamental matrix, 

planar projective transformation and quadratic transformation. If the sets of image feature points 𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 

in the first image frame and the transformed feature points 𝑥𝑥𝑥𝑥′𝑖𝑖𝑖𝑖 in the second image frame with the 

motion, their positions related for the translation between views can be expressed by 

 
𝑥𝑥𝑥𝑥′𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 0 (28) 

 
where 𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 1)𝑇𝑇𝑇𝑇 is homogeneous image coordinate and 𝐹𝐹𝐹𝐹 is the fundamental matrix. 

Fundamental matrix is a 3𝑥𝑥𝑥𝑥3 singular matrix, which describes the epipolar geometry by which two 

perspective images of a single scene are related. The fundamental matrix can be estimated by 

parameterization and optimization procedure of image matching algorithm. If all points lie on a plane 

and the camera rotation instead of the translation occurs, a planar projective transformation is given 

as 

 
𝑥𝑥𝑥𝑥′𝑖𝑖𝑖𝑖 = 𝐻𝐻𝐻𝐻𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 (29) 

 
where 𝐻𝐻𝐻𝐻 is the transformation matrix. Quadratic transformation is a combination of camera motion 

and scene with all scene points. The camera optic centre lying on the quadric surface and points are 

related by using 

 
𝑥𝑥𝑥𝑥′𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹1𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 x 𝐹𝐹𝐹𝐹2𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 (30) 

 
where F1 and F2 are also the fundamental matrices. 

 
In this study, MLESAC is adopted which produced maximum error-free dynamic displacement. 

The projective transformation matrix is taken into account for the out-of-plane motion of the structure. 

Projective transformation requires a minimum of four pairs of key features to track and match 

between the consecutive frames. Gaussian noise is considered on the image of two images coordinate 

(𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣) and (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) with zero mean and uniform standard deviation 𝜎𝜎𝜎𝜎 , and the probability density 

function is 



18  

𝑖𝑖
 

1 𝑚𝑚𝑚𝑚 ∑𝑗𝑗𝑗𝑗=1,2(𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖−𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖)2+(𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖−𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗
𝑖𝑖𝑖𝑖)2 

𝑃𝑃𝑃𝑃 = (𝐷𝐷𝐷𝐷|𝑀𝑀𝑀𝑀) = � �  � 𝑝𝑝𝑝𝑝− 2𝜎𝜎𝜎𝜎2 𝑟𝑟𝑟𝑟 
𝑖𝑖𝑖𝑖=1,….,𝑚𝑚𝑚𝑚 √2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎 

 
(31) 

 
where M , n and D are the view relation projective matrix, the number of correspondences and the 

match sets, respectively. The residual error of the projective transformation is the sum of the distance 

between the original and transformed features. For correspondence 𝑥𝑥𝑥𝑥1,2, with the maximum 

likelihood estimate 𝑢𝑢𝑢𝑢� 1 , 2  of the true position 𝑥𝑥𝑥𝑥1,2, the maximum likelihood error (MLE) for any point 

is calculated by 

 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖2 = � (𝑢𝑢𝑢𝑢� 𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖)2 + (𝑣𝑣𝑣𝑣� 𝑗𝑗 𝑗𝑗 𝑖𝑖 𝑖𝑖  − 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 )2 

𝑗𝑗𝑗𝑗=1,2 
(32) 

 
The error is minimized by using expectation maximization algorithm, when points are fitted more 

closely to the given transformation. The error minimization is given as 
 
 

1 𝑚𝑚𝑚𝑚 1 
𝐿𝐿𝐿𝐿 = � 𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 �𝛾𝛾𝛾𝛾 �     �   𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �− � � (𝑢𝑢𝑢𝑢� 𝑗𝑗𝑗𝑗 𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥 𝑗𝑗𝑗𝑗 𝑖𝑖𝑖𝑖)2 + (𝑣𝑣𝑣𝑣�𝑗𝑗𝑗𝑗 𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗  )2 ��(2𝜎𝜎𝜎𝜎2) + (1 − 𝛾𝛾𝛾𝛾)    �� 

√2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎 𝑖𝑖𝑖𝑖 𝜗𝜗𝜗𝜗 
𝑖𝑖𝑖𝑖 𝑗𝑗𝑗𝑗=1,2 

(33) 

 
 

where 𝛾𝛾𝛾𝛾 is the mixing parameter, and 𝜗𝜗𝜗𝜗 is a constant. The same procedure is repeated until all the 

outliers are removed, and the inlier is tracked by using the KLT algorithm from the first frame image 

to the end of the video frame. Finally, the displacement of the object is found as a pixel unit which is 

converted to engineering unit by using the conversion factor obtained from camera calibration results, 

as described in Section 2.1. Technical difficulties involved with this study are camera vibration during 

image acquisition, processing of large volume of images, camera configuration and functional setting 

for high-quality image acquisition, and synchronization of displacement measurements between laser 

sensor and proposed vision-based technique. Details of these difficulties and their corresponding 

technical solution are described in the results and discussion section. 

 
 
 

2.3 Obtaining the acceleration and modal Identification 
 

Dynamic vibration displacement obtained from the proposed approach is used to identify the 

dynamic characteristic of the structure. The analysis consists of two parts: at the beginning, time 

domain acceleration responses are derived from the time domain displacement data obtained from 
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the proposed approach. The time domain displacement history is low-pass filtered, and numerical 

central difference algorithm is implemented for the second derivative to calculate the time domain 

acceleration. In the second step, natural frequencies of the structure are identified with fast Fourier 

Transformation (FFT). The results are compared with those obtained from the wired sensory systems 

with installed accelerometers and LDSs. 

 
 
 
3 Experimental Setup for Validations 

 
A series of experimental tests are conducted to verify the accuracy and effectiveness of using the 

proposed approach in measuring the vibration displacement and acceleration of civil engineering 

structures subjected to out-of-plane movements. Figure 4 shows the testing reinforced concrete 

column model subjected to the different magnitudes of bi-directional ground motions in the 

laboratory. The reinforced concrete column has a diameter of 100 mm and a height of 600 mm, which 

is supported on a footing with a dimension of 400 mm x 400 mm x 150 mm. The dimension of the 

column top cap is 500mm x 500mm x 150 mm, which is used to support a top slab of 1000 x 1000 x 

150 mm to simulate the mass on the column. Moreover, the column was constructed with concrete of 

compressive strength 37 MPa and reinforced with 6 mm diameter longitudinal rebar with 3 mm 

diameter stirrup provided yield strength of 555 Mpa and 346 Mpa, respectively. Furthermore, a 

prestress force was applied to the column model by using 9.3 mm diameter tendon of yield strength 

1674 Mpa and modulus of elasticity 195 GPa. The foundation of the structural column model is fixed 

on four separate shaking tables, which can be used to provide bi-directional ground motion 

excitations. In this study, the band limited white noises are used with the peak ground acceleration 

(PGA) magnitudes from 0.01g to 1.0g, which represent the structural vibration conditions from very 

minor level excitations to strong excitations. To validate the accuracy of using the proposed approach 

for displacement and acceleration measurements, LDSs and accelerometers are installed to take the 

vibration measurements for comparison analyses. 
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(a) (b) 

 
 

Figure 4: Experiment setup for the proposed vision-based vibration measurement. 
 
 

 

Figure 5: Features detection and tracking: (a) Features detection and extraction; (b) Features 

tracking and matching between consecutive frames. 

 
Sony PXW-FS5 4K XDCAM camera is used to record the video of the structural vibrations. The 

camera can record videos with a frame rate of 50 frame per second (fps) and a spatial resolution of 

1920x1080 pixel in slow and quick motion modes. However, the camera is also capable of recording 
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videos with a maximum frame rate of 960 fps at a reduced spatial resolution of 1280x720 pixel in the 

super slow motion mode. In this study, videos of the structural vibration during the shaking table tests 

are captured with a frame rate of 50 fps and 100 fps with a resolution of 1920x1080 pixel, since the 

use of high resolution and frame rate is important for accurate feature detection and tracking in 

vibration measurement as well as the subsequent modal identification. The BRISK algorithm [45] is 

adapted to detect and extract key features from the images, and the robust KLT algorithm [49] is used 

to track the key features in the images of entire video clip between the consecutive frames for 

calculating the dynamic displacement of the vibrating test structure as shown in Figure 5. The camera 

calibration described in Section 2.1 is conducted to remove the radial distortion from image geometry 

and to obtain the unit conversion factor. The camera is focused on the structure with a vertical angle 

of 9 degree and horizontal angle 5 degree to the perpendicular line of sight of the testing structure. 

The distance from the testing structure to the camera was 4 m in different tests. 

 
Three CMOS multi-function LDSs (Keyence IL-300) are installed on a fixed steel frame to 

measure the translational displacement of the column model at the top of the column. Seven 

accelerometers (PCB 393B04) are installed on the testing structural model at different heights and 

sides. All the accelerometers and LDSs are connected to a HBM data acquisition (DAQ) system, 

which is connected to a laptop to collect and store the vibration responses. The sampling frequency 

is set as 200 Hz with the active anti-aliasing filter. 

 
 
 
4 Experimental Results 
4.1 Displacement measurement 

 
The accuracy of the proposed approach is experimentally investigated in this study to measure 

the structural dynamic displacement. The videos are captured and analyzed to obtain the structural 

vibration when the structure is subjected to different bi-directional ground motions. To further 

demonstrate the potential applicability of the measured displacements from the proposed method, 

structural modal identification is also performed. The obtained time domain displacement responses 

from the proposed approach are compared with those by using the LDSs. Although eleven tests are 

carried out, four of them are analysed in this study with ground motions of different PGAs, i.e., 0.01g, 

0.1g, 0.3g and 0.8g. These four tests represent the structural vibration conditions from very minor 

ambient excitations to strong excitations. Figures 6(a) and (b) show the measured input ground 

motions for cases with a PGA of 0.1g and 0.8g, respectively. It can be observed that the inputs along 
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X- and Y- directions are significantly different. Dynamic displacement results in these four tests are 

shown in Figure 7 to Figure 10. 
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Figure 6: Input ground motions in the both directions of the testing: (a) 0.1g; (b) 0.8g. 
 
 
 

The time domain displacement resposnes measured from the LDS and calculated from the 

proposed approach are shown in Figure 7(a) and (b), respectively, for the testing case with a PGA of 

0.01g. It is observed that the displacement responses are less than 1mm, which means minor 

vibrations of the structure. Figure 7(a) shows the comparsion between the dynamic displacements 

obtained from the two methods. The comparson indicates that the displacment response time history 

obtained from the proposed approach has a very good match with that measured from LDS up to 48 

seconds. Afterwards, there is some visible difference between the two displacement results due to the 

rotation of the structure, evidenced by the different ground motions in both directions as shown in 

Figure 6. The reason for this difference is that the video is captured from the front side of the structure 

while LDS is located on the right side of the model to measure the vibration displacement. At the end 

of each excitation test, the structure experiences certain rotations, which cannot be properly measured 

by the LDS because it only measures the displacement perpendicular to the transducer. This 

measurement inaccuracy causes a difference at the end of vibration test. Even though the maximum 

displacement amplitude obtained from the both methods is less than 1 mm, the proposed image based 

method still gives accurate measurement with minimum differences from those recorded by LDS. 

This demonstrates that the proposed approach is powerful to capture the minor displacement 

responses accurately. 
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Accurate displacement measurement results are also observed for the test with excitations of 

0.1g, as shown in Figure 8. The dynamic displacement results from the proposed approach show a 

good agreement with those from LDS. A minor difference is observed from Figure 8(a), at the end of 

vibration test after 20 seconds because of structural rotation as mentioned above. It is found that the 

rotational response always occurs, but when response is large its influence is insignificant because it 

is relatively small compared to the lateral displacement. It is also noted that for the above mentioned 

two cases, the videos are captured with a frame rate of 50 fps and a spatial resolution of 1920 x 1080 

pixel. The videos of the structure under the ambient excitations with PGA magnitudes of 0.3g and 

0.8g are captured with a higher frame rate of 100 fps and the same resolution of 1920 x 1080 pixel. 

The displacement results obtained from the proposed method for the testing case of 0.3g well match 

with those measured by using LDS, as shown in Figure 9. In addition, for the large excitation test of 

0.8g, the proposed approach can measure dynamic displacement precisely until the rotation of the 

structure is observed after 13 seconds, as shown in Figure 10. For all the test cases, there is about 

32% difference of excitation input in the both directions. When the structure experiences a certain 

degree of rotation due to the bi-direction excitation force and out-of-plane movement, this will cause 

the inaccurate displacement measurement from LDS. Furthermore, there is a bit phase difference 

observed between two displacement signals at the beginning of bi-directional ground motion as 

shown in Figure 9(a) and Figure 10(a). The reason for this phase difference is a degree of rotation of 

the structural model as the model subjected to 32% variation of bi-directional ground motion in both 

directions and out-of-plane movement. It is also noted that the displacement measurement obtained 

from the proposed vision-based method and laser sensor were synchronized by using cross- 

correlation function between two signals. Timeshift is determined corresponding to the maximum 

cross-correlation function and the obtained time shift is used to align two displacement signals during 

analysis. 
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Figure 7: For bi-directional excitations with a PGA of 0.01g: (a) comparison of LDS and vision- 

based displacement; (b) a zoom window for comparison of displacement. 
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Figure 8: For bi-directional excitations with a PGA of 0.1g: (a) comparison of LDS and vision- 

based displacement; (b) a zoom window for comparison of displacement. 
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Figure 9: For bi-directional excitations with a PGA of 0.3g: (a) comparison of LDS and vision- 
based displacement; (b) a zoom window for comparison of displacement. 
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Figure 10: For bi-directional excitations with a PGA of 0.8g: (a) comparison of LDS and vision- 

based displacement; (b) a zoom window for comparison of displacement. 

 
 
 

More experimental tests with bi-directional excitations from 0.01g to 1.0g are conducted, and the 

videos are analyzed to extract the displacement, which are compared with those from the conventional 

LDS measurements. The error analysis of the obtained results is presented in Table 2. The errors in 

the maximum displacement, the correlation between two measurements are calculated. It is observed 

from Table 2 that the proposed approach is able to accurately extract the maximum dynamic 

displacement with a minimum and a maximum error of 2.2% and 5.7%, respectively when compared 

to the conventional displacement sensor. It is also noted that when compared with LDS 

measurements, the proposed approach is capable of measuring the dynamic displacements of the 

structure subjected to different excitations with a Root-Mean-Square-Error (RMSE) of 1.14 mm. The 

maximum and minimum errors are observed when the videos are captured in 50 fps for excitations 

of 0.2g and 0.1g, respectively. 

 
The correlation between measured displacement from sensor and obtained displacement from the 

proposed vision-based method is established by determining the coefficient of correlation (𝜌𝜌𝜌𝜌) and 

coefficient of determination (𝑅𝑅𝑅𝑅2) using Equations (34) and (35), respectively. 

 
|∑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿(𝑝𝑝𝑝𝑝) − 𝜇𝜇𝜇𝜇𝐿𝐿𝐿𝐿) ⨯ (𝑥𝑥𝑥𝑥𝑣𝑣𝑣𝑣(𝑝𝑝𝑝𝑝) − 𝜇𝜇𝜇𝜇𝑣𝑣𝑣𝑣)| 

𝜌𝜌𝜌𝜌 =   
 �∑ (𝑥𝑥𝑥𝑥 (𝑝𝑝𝑝𝑝) − 𝜇𝜇𝜇𝜇 )2 �(𝑥𝑥𝑥𝑥 (𝑝𝑝𝑝𝑝) − 𝜇𝜇𝜇𝜇 )2 

𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿 𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣 

 
(34) 

∑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿(𝑝𝑝𝑝𝑝) − 𝑥𝑥𝑥𝑥𝑣𝑣𝑣𝑣(𝑝𝑝𝑝𝑝))2 
𝑅𝑅𝑅𝑅2 = 1 − 

∑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿(𝑝𝑝𝑝𝑝) − 𝜇𝜇𝜇𝜇𝐿𝐿𝐿𝐿)2 
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where 𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿 and 𝑥𝑥𝑥𝑥𝑣𝑣𝑣𝑣 are the dynamic displacements obtained from LDS and the proposed vision-based 

method, respectively; 𝜇𝜇𝜇𝜇𝐿𝐿𝐿𝐿 and 𝜇𝜇𝜇𝜇𝑣𝑣𝑣𝑣 are the mean values of two displacement data sets. The peak values 

of the whole time history displacement of LDS and vision based method data sets are used to measure 

the correlation coefficient. From Table 2, it is seen that the correlation coefficient varies from 0.9215 

to 0.9787 and the coefficient of determination values ranges from 0.9831 to 0.9994, which shows the 

strong relationship and similarity between the conventional LDS and the proposed vision-based 

displacement responses. It is concluded that the displacement obtained from the proposed approach 

has a very good agreement and correlation with that measured by using the conventional displacement 

sensor. 

 
The accurate displacement measurement results demonstrate that the proposed target-free vision- 

based appraoch can be used as an accurate and efficient technique to measure the dynamic vibration 

displacements for SHM and other purposes. It shall be noted that one significant advantage of the 

proposed method is that no target is required in the experimental setup on the testing structure. This 

may significantly reduce the complexity of using the vision-based techniques for the vibration 

measurements of real word engineering structures, particularly for those structures which might be 

very difficult or inaccessible to install the artificial targets. 

 
Table 2: Comparison of displacement results and error analysis of the proposed method. 

 
 

  Camera 
Frame 
Rate 
(fps) 

 
LDS 

Vision Based 
Method 

   

 
Test No. 

Excitation 
Force (g) 

Maximum displacement 
(mm) 

Error (%)  
Corr.(𝜌𝜌𝜌𝜌) 

 
𝑅𝑅𝑅𝑅2 

1 0.01 50 0.9151 0.9535 -4.1 0.9628 0.9984 

2 0.1 50 4.7195 4.6110 2.2 0.9531 0.9925 

3 0.2 50 14.3357 13.5090 5.7 0.9384 0.9912 

4 0.3 100 16.8042 16.1425 3.9 0.9725 0.9989 

5 0.4 100 18.6223 19.2752 -3.5 0.9787 0.9994 

6 0.5 100 23.7109 22.5254 4.9 0.9618 0.9943 

7 0.6 50 29.3151 30.8187 -5.1 0.9135 0.9831 

8 0.7 50 32.3695 33.2156 -2.6 0.9364 0.9876 

9 0.8 100 35.2334 36.3925 -3.2 0.9687 0.9969 
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(b)   Vision 

10 0.9 100 38.4591 40.1044 -4.2 0.9358 0.9928 

11 1.0 100 53.2391 55.3295 -3.9 0.9215 0.9953 

 
 
 
 

4.2 Obtaining acceleration and modal identification 
 

Vibration acceleration is obtained by using numerical central difference method to differentiate 

the displacement obtained from the proposed approach for the testing structural model under bi- 

directional excitations and out-of-plane movements. These acceleration responses are also compared 

with that measured from the installed accelerometers to investigate whether accurate acceleration 

measurement can be achieved. Modal identification is conducted to identify the vibration 

characteristics of the structure. It is expected that extracting the displacement under lower level 

vibrations is more challenging than that under the higher level vibrations. To investigate the 

effectiveness of using the vibration measurement from the proposed approach for modal 

identification, two tests with PGA magnitudes of 0.01g and 0.3g are considered for determining 

acceleration and natural frequency. It is noted in Table 2 that the videos of the experimental tests are 

taken with 50 fps with a spatial resolution of 1920x1080 pixel for the case with 0.01g excitation and 

100 fps with the same spatial resolution for the case with 0.3g excitation. The acceleration responses 

measured from the accelerometer and obtained from the proposed vision-based approach are 

compared, and the results from modal identification are shown in Figure 11 and Figure 12 for the 

testing cases of 0.01g and 0.3g, respectively. 
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Figure 11: Results for the test with 0.01g excitation: (a) acceleration from the installed 

accelerometer; (b) derived acceleration from the proposed method; (c) natural frequency obtained 

from the measured acceleration; (d) natural frequency obtained from the derived acceleration with 

the proposed method. 
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Figure 12: Results for the test with 0.3g excitation: (a) acceleration from the installed 

accelerometer; (b) derived acceleration from the proposed method; (c) natural frequency obtained 

from the measured acceleration; (d) natural frequency obtained from the derived acceleration with 

the proposed method. 

 
Figure 11(a) and (b) show the acceleration responses collected from the installed accelerometer 

and calculated from the proposed method, respectively. The natural frequencies of the structural 
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model can be identified with these two acceleration responses, as shown in Figure 11(c) and (d). Two 

significant modal frequencies can be identified at 3.02Hz and 23.70Hz, and the results from 

acceleration responses measured from the conventional accelerometer and calculated from the 

proposed approach match very well. For the test with a PGA of 0.3g, Figure 12(b) shows the 

acceleration calculated with the displacement from the proposed method, which has a good agreement 

with that measured by the installed accelerometer as shown in Figure 12(a). The first two natural 

frequencies in this test obtained from the measured acceleration are 2.67Hz and 20.58Hz as shown in 

Figure 12(c), which are very close to the natural frequencies obtained from the proposed approach at 

2.71Hz and 21.34Hz respectively as shown in Figure 12(d). These results demonstrate that the 

proposed vision-based approach can efficiently identify the structural vibration frequencies with the 

errors of 1.49% and 3.69% for the first and the second modes, respectively, in this case. To explain 

more clearly about the source of error, the rotations as mentioned above cause the variation in the 

displacement and acceleration responses measured by the vision-based method and conventional 

sensors. A closer investigation reveals that with the increase of excitation force intensity, the vision- 

based method produces the natural frequency with a higher percentage of error than low level 

excitation. This may be because of the significant rotation introduced by the large ground motions 

and errors in the numerical calculations from displacement to obtain the acceleration. Nevertheless, 

the results in this section demonstrate that the proposed method can identify structural natural 

frequencies accurately compared with the traditional measurements from the accelerometer. The 

proposed approach has a promising performance in measuring real engineering structural vibrations. 

 
 
 
5 Discussions 

 
This paper presents a decent target-free vision-based technique to measure structural vibrations 

in terms of dynamic displacement, acceleration and natural frequency when the structure is exposed 

to real-world excitation forces and out-of-plane movements. In spite of favourable results, some 

challenges need to be considered carefully during the implementation of each involved steps of the 

proposed method to achieve the precise results. These concerns will be described and discussed as 

follows. 

 
i. During video acquisition, the captured video image may be polluted by unwanted camera 

vibrations from human induced vibrations and environmental conditions such as strong winds. 

This camera vibration can produce error prone displacement results as well as structural modal 
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identification. To remove the camera vibration associated with the camera operation, 

additional pre-processing may be required which could be time-consuming. In this study, the 

remote control is used to operate the camera from a certain distance during the test to 

overcome certain unwanted camera vibration that might be induced by the manual operations. 

 
ii. Accurate vibration measurement through vision-based techniques mostly depends on the 

quality of video images, which can be obtained by using adequate camera configuration such 

as frame rate, resolution, lens focal length, zoom factor and shutter specification. The 

professional high-speed camera is very useful for structural vibration measurement, yet, it is 

far expensive. The low-cost consumer-grade commercial camera has a lower frame rate 

varying from 25 fps to 60 fps. However, in most cases the camera frame rate provided by the 

manufacturer may not be exactly accurate. For example, a camera shows the specification of 

a frame rate of 25 fps. However, the test from measured data shows that the actual frame rate 

is at 24.48 fps, which exposes an error of 2%. In this investigation, camera configuration such 

as frame rate, resolution, lens focal length, zoom factor, and shutter specifications are 

confirmed by using video metadata before the proposed vision-based method is implemented. 

 
iii. The video captured by a low frame rate camera will produce temporal aliasing effect, and 

measured displacement is contaminated with noise and even not accurate in the high 

frequency range. In the vision-based methods, the camera frame rate should be at least two 

times of the structural vibration frequency to accurately measure the dynamic displacement 

as well as to identify the frequency effectively. In addition, the adequate resolution should be 

maintained along with the higher frame rate as the poor resolution image is not suitable for 

feature detection, extraction, tracking and matching. It is also noticed that most of the 

commercial video cameras designed in such a way that the resolution drops significantly while 

increasing the frame rate. Furthermore, to obtain a clear information from the large area of 

the structure with different FOV, the camera should have a good lens with a high focal length, 

zoom factor and shutter specification. 

 
iv. The proposed method requires manual pre-processing of the video clip to extract frame and 

to select ROI for the detection of key features, which could be time-consuming. Moreover, 

to store and handle a large volume of video images is also another challenging task in the 

vision-based vibration measurement, since it requires high configuration hardware that 

increases the computational cost. In this study, a powerful BRISK algorithm is used to detect 
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and extract key-features which dramatically reduced computational time. Moreover, 

sometimes the recorded video images need to be converted to another video format for further 

processing and to store within a relatively small capacity without losing any information. To 

get more precise results from the vision-based method, light and illumination, wind, weather 

condition, and other environmental perspectives need to be considered very carefully as they 

may have noticeable influences on the results. 

 
v. In most of the previous studies, the position of the camera should be perpendicular to the axis 

of vibration direction of the structure. The concept is not always applicable in the real-life 

structures as there may be some obstacles or place is inaccessible due to the geographic point 

of view. In this situation, further investigation needs to be carried out to verify the capability 

of feature detection and tracking algorithm for a larger deviation from the perpendicular line 

of sight in both horizontal and vertical directions. A powerful BRISK feature detection and 

extraction algorithm used in the present study, which is robust and invariant to rotation, scale, 

and orientation. However, the camera is positioned 50 horizontal and 90 vertical angle with 

the perpendicular line of sight to the vibration axis of the structure from 4 m distance. The 

results derived from the proposed vision-based method shows very good agreement when 

compared with the traditional sensor system. For this small variation of the angle from the 

perpendicular axis of the structure with small camera distance, there is no significant variation 

of results observed when compared with the traditional sensor technique. However, for small 

image rotation angle, the BRISK algorithm can successfully detect and extract key-features 

from images. The present study is greatly focused on the vision-based vibration measurement 

of the structure which is subjected to different (very low to high) level of bi-directional ground 

motion and out-of-plane movements while the effect of camera frame rates is also 

investigated. To investigate the effect of a different angle of image acquisition, a future 

intensive study has planned to verify the proposed vision-based technique when the image 

will be captured from 00 to ±800 horizontal and vertical angle with the perpendicular line of 

sight to the vibration axis of the structure along with the variable distance between the camera 

and target structure. 
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6 Conclusion 
 

This paper proposes a target-free vision-based approach to measure the dynamic displacement of 

the structure subjected to out-of-plane movements due to the bi-directional excitations. A targetless 

vision-based technique is developed by camera calibration, detection and extraction of BRISK 

features, tracking of features between consecutive frame by KLT algorithm, and detection of false 

matching along with outlier discarding by using MLESAC algorithm. Currently most vision-based 

methods for displacement measurement require the target fixed on the structure. Many of the current 

targetless vision-based researches are conducted on the structures in the laboratory with uni- 

directional excitation force to measure the vibration response, which is not always realistic. The real- 

world structures subjected to dynamic loads experience multi-directional out-of-plane movement. 

The proposed approach is able to accurately extract structural vibration without using any artificial 

target while the structure is subjected to bi-directional excitations which is more realistic in real 

situations. The proposed method is validated by conducting a series of experimental tests, and the 

results are compared with those obtained from the traditional sensory system in terms of the time 

domain dynamic displacement, maximum displacement, acceleration and natural frequencies. The 

experimental results show that the proposed method can accurately measure the dynamic 

displacement and effectively identify the natural frequencies of structures. Moreover, the limitations 

of the proposed method such as camera frame rate, camera configuration, camera vibration, pre- 

processing of data and data storage are discussed. The future study may include the further 

development based on the proposed approach for 3D dynamic displacement measurement and using 

the measurements for structural condition assessment and damage detection. 
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