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Abstract: 

Vision-based monitoring receives increased attention for measuring displacements of civil 

infrastructure such as towers and bridges. Currently, most field applications rely on artificial targets for 

video processing convenience, leading to high installation effort and focus on only single-point 

displacement measurement e.g. at mid-span of a bridge. This study proposes a low-cost and non-contact 

vision-based system for multi-point displacement measurement based on a consumer-grade camera for 

video acquisition and a custom-developed package for video processing. The system has been validated 

on a cable-stayed footbridge for deck deformation and cable vibration measurement under pedestrian 

loading. The analysis results indicate that the system provides valuable information about bridge 

deformation of the order of a few cm induced, in this application, by pedestrian passing. The measured 

data enables accurate estimation of modal frequencies of either the bridge deck or the bridge cables and 

could be used to investigate variations of modal frequencies under varying pedestrian loads. 

Keywords: vision-based system; bridge displacement; cable vibration; pedestrian loads; cable-stayed 

bridge. 

1 INTRODUCTION 

Structural health monitoring (SHM) is aimed at providing valuable information about structural 

performance and characterisation of structural defects to the asset owners, especially for those civil 

infrastructures beyond the design life. Vibration-based modal tests are a common way for structural 

condition and serviceability assessment, providing a direct view about the structural stiffness, mass 

properties and their distributions [1]. As well as for validating designs of civil structures, modal 

parameters extracted from vibration data obtained in short-term or long-term measurements are widely 

believed to have potential for identifying changes in structural condition or ‘damage’ [2]. The sensitivity 

of these parameters to ‘damage’ depends on the nature of the ‘damage’, for example local deterioration 

of material e.g. due to corrosion may not be detectable against background effects of environmental 

variability, whereas boundary conditions are known to have a relatively strong effect, for example fixity 

of bridge supports [3].  

Deformation is another important metric for bridge condition and performance assessment. For example, 

measurement of deformation during controlled vehicle load testing helps to estimate bridge load 

carrying capacity [4] [5].  Displacement is related to the structural stiffness, and extreme values might 



indicate either an extreme load or a deficiency in the structure. When recorded at high sample rates, 

displacement data provide valuable information about dynamic characteristics, and hence changes in 

structural condition. 

For conventional displacement sensors such as linear variable differential transformers (LVDTs) and 

dial gauges, a stationary reference point is required that could be challenging in field tests. Global 

positioning system is the proper choice for monitoring only flexible large-scale structures due to the 

limitation of the measurement accuracy (i.e. sub-centimetre [6] or centimetre level [7]). The indirect 

method through integrating the acceleration measurement is usually applied for short duration signals 

(e.g. a few seconds) and might fail to estimate static or quasi-static displacement components. 

Limitations of more traditional displacement sensing technologies have driven research in non-contact 

optical sensing.  

1.1 Review of vision-based approaches 

Vision-based systems have advantages over other sensors, e.g. easy installation, remote non-contact 

operation and distributed sensing that promotes use of a single camera for multi-point simultaneous 

measurement. Efforts have been spent on developing advanced vision-based systems to provide 

accurate and robust displacement measurement primarily of high-rise buildings [8], short-span bridges 

[9], [10], [11], [12] and long-span bridges [13], [14], [15], [16], [10]. Previous studies have indicated 

the significant potential of vision-based systems for structural condition evaluation, especially for 

system identification [18–20]. Other applications based on the camera measured displacement include 

finite element model calibration [21], damage detection [22] and bridge weigh-in-motion where another 

camera is used for the traffic monitoring [23]. However, vision-based systems still face several field 

challenges, such as the requirement for stable camera mounting [11], measurement error caused by 

lighting changes [24], and atmospheric effects affecting light refraction –particularly for long-range 

measurements. 

Most of the existing applications have relied on artificial targets for video processing convenience 

leading to necessity of direct access to the structure as well as increased installation effort. Moreover, 

the focus is commonly only for single point displacement measurement e.g. at the bridge mid-span, 

although multi-point simultaneous sensing is supported by the camera sensors. 

Non-contact sensing: 

There have been relatively few field applications using completely non-contact vision-based systems. 

In most examples, an artificial target or a set of targets with salient features and some known dimensions 

[13], [17], [20] were attached to a structure for the convenience of stable target tracking, and more 

importantly for providing point or line correspondences to determine the projection transformation 

relating the image coordinate system and the structural coordinate system. Recent non-contact field 

applications [18,25–27] have eliminated the dependency on artificial targets by using a scaling factor 

for camera projection transformation. The scaling factor is the simplest method to obtain the projection 

transformation provided that either the camera-to-target distance or a feature dimension near the region 



of interest is known. The scaling factor estimated by the camera-to-target distance is sensitive to the tilt 

angle of the camera optical axis that is suggested to be less than 10 through laboratory validation tests 

in short distance (≤ 3.7 m) [28]. Camera positioning is less critical for the scaling factor estimated by a 

known dimension [9] but the estimated scaling factor is only reliable for displacement measurement 

along the same direction as the provided dimension. 

Distributed sensing: 

Vision-based systems allow a single camera to measure structural displacements of multiple points in a 

structure. The feature of distributed sensing has been used in laboratory structures [18,20,29,30] for 

multi-storey displacement measurement and system identification, as well as for cable vibration 

monitoring [31–34] aimed at the estimation of modal frequencies or cable tensions, but applications in 

bridge deformation measurement are limited, with only a few examples [27,35]. 

1.2 Purpose of this study 

The purpose of this study is to investigate the potential of non-contact vision-based systems for multi-

point measurement in field applications. Realisation of the two features, completely non-contacting and 

multi-point simultaneous sensing are the focus of this study. In most applications to date, the hardware 

used is a professional high-resolution camera with long-focus lens, thus only a local region over the 

whole structure, e.g. mid-span of bridge is covered in the field of view. In this study, a low-cost 

consumer-grade camera with a wide angle lens is used for video acquisition with a wide area of the 

bridge included in the field of view. A custom-developed package is used for the video processing 

which supports non-contact sensing for both deck deformation and cable vibration measurement. The 

developed system enables quick installation/removal, requires no access to the bridge structure and 

provides simultaneous multi-point displacement measurement. 

To that end, Section 2 provides descriptions of the proposed vision-based system including the hardware 

and video processing methods used. Section 3 describes the validation test on a simple laboratory beam 

structure and evaluates the measurement accuracy of vision-based system. Section 4 introduces a field 

test in a cable-stayed footbridge under pedestrian crowd loading. Section 5 provides the results of the 

field test including the bridge deck deformation and cable vibration in time and frequency domain. The 

analysis results illustrate the changing bridge modal frequencies under varying pedestrian loads. 

 

2 PROPOSED VISION-BASED SYSTEM 

Applying a vision-based system for structural displacement measurement requires setting up one or 

more cameras in a stable location aimed at the ‘targets’ of interest and deriving target motions through 

video processing techniques. ‘Targets’ could be either artificial (i.e. LED markers or planar targets with 

chessboard pattern) or natural structure features (i.e. bolts or holes). However, natural targets are 

preferred on site with reduced installation efforts for the monitoring system. 



In the proposed system, the hardware comprises one consumer-grade camera (i.e. GoPro Hero 4 Black) 

and a tripod shown in Figure 1. The recorded video files are post-processed in a custom-developed 

video-processing package to extract the displacement information of structure. The programming 

environment is Visual Studio 2015 using C++ language and partly referring to OpenCV library. 

 

Figure 1 Hardware of vision-based system consisting a GoPro Camera and a tripod 

The role of the video-processing package is tracking the target locations in image sequences and 

transforming the target location information in images to a time history of structural displacements. The 

procedures could be fitted into a three-component framework shown in Figure 2, namely camera 

calibration, target tracking and structural displacement calculation. The measured displacement data 

could be interpreted for the evaluation of structural condition e.g. system identification. 

When the monitoring campaign is only for system identification and precise spatial measurements are 

not necessary [36], [37] e.g. cable vibration measurement, target tracking may be the only part of the 

whole video processing procedure needed. The prerequisite is that the cable’s depth change is much 

smaller than the camera-to-cable distance and the cable location is close to the camera’s principal axis 

so that the mapping between the world coordinates and the image plane becomes approximately linear 

[36]. 

 

Figure 2 Procedures of video processing package and the corresponding output at each step 

This section mainly introduces the video processing package and data interpretation methods used in 

bridge monitoring campaigns. Section 2.1 and 2.2 provide details of the two components, camera 

calibration and target tracking while section 2.3 demonstrates the system identification methods to 

analyse the monitoring data. 



2.1 Two-step camera calibration 

Camera calibration is aimed at determining the transformation metric between the image natural units 

(pixels) and the real world units (e.g. mm), and the structural displacement could be easily derived from 

the change of structural coordinates given the image location of a target (output of target tracking) and 

a transformation metric (output of camera calibration).  

Mathematically, the projection process from a 3D spatial domain to a 2D image plane loses some 

geometric information of the target. Thus, in a single-camera system, the calibration is realised by 

reducing the dimensions of target motion, i.e. assuming that the target moves within a plane in 3D space. 

The projection is then simplified as a 2D-to-2D transformation, enabling the recovery of the 2D 

structural displacement. For bridge applications, the dominant motions under traffic or pedestrian loads 

are in the vertical direction, making it feasible to neglect the lateral or the longitude motions in a short-

time monitoring campaign.  

Several methods are available to determine the transformation metric. 

 Scaling factor is the simplest method based on one dimensional feature correspondence or camera-

to-target distance, thus is very popular in civil applications e.g. [8], [9], [13], [16], [18]. This method 

is based on an assumption that the camera principal axis is perpendicular to the structural surface 

plane or the two motion directions of interest, which sets constraints on camera position and 

orientation on site. Although the scaling factor estimated by a known dimension is less sensitive to 

camera positioning, the calibration should be applied separately to each target using one adjacent 

dimensional feature along the same direction as the movement of interest. 

 Planar homography matrix is a transformation metric that links the 2D image plane with the 2D 

structural surface plane and is applied for the 2D motion estimation [38], [39]. The calibration is 

based on at least four sets of 2D-to-2D point correspondences [40], i.e. structural coordinates of 

points in 2D structural surface plane and image coordinates of their projections in 2D image plane. 

 Full projection matrix is the general form of transformation metric between the 2D image plane and 

the 3D structural coordinate system with no assumption, with example applications in [17], [20], 

[41], [42]. The calibration process usually comprises two steps, i) offline calibration in the 

laboratory to determine camera intrinsic parameters [43], and ii) site calibration to estimate the 

camera extrinsic matrix (i.e. camera position and orientation relative to the structural coordinate 

system) based on at least four sets of point correspondences. The full projection matrix is the 

multiplication of the camera intrinsic matrix and camera extrinsic matrix. 

Scaling factor is inappropriate for site applications due to the prerequisite of camera perpendicular 

configuration or the required dimensional features. Estimation of either planar homography matrix or 

full projection matrix requires some known geometric information in the structure which is commonly 

acquired with the assistance of some artificial targets e.g. planar targets [42], [44] and a 3D calibration 

object [17]. Since the offline camera calibration step in the full projection matrix method could consider 



lens distortion that is common in consumer-grade cameras, the full projection matrix method is used in 

the video processing package. 

In the package, offline camera calibration is performed in the laboratory using the camera to observe a 

chessboard target in different views in order to obtain the camera intrinsic matrix and the lens distortion 

parameters. For the site calibration, the camera extrinsic matrix is derived based on at least four sets of 

2D-to-3D point correspondences. Since completely non-contact sensing is preferred, the required 

geometrical information is acquired from the as-built drawings e.g. the bridge span length and the pylon 

height. To consider the lens distortion, instead of correcting the full frame before the target tracking 

step, the correction occurs after the target tracking step only to the image coordinates observed from 

the raw frame in order to save computation efforts. Finally, the 2D structural displacement along the 

vertical and longitudinal directions is derived based on the corrected image coordinates and the full 

projection matrix. 

2.2 Target tracking techniques 

Target tracking is aimed at determining target locations in frame sequences of a video record with 

several techniques available: 

 Correlation-based template matching is a classic and widely-used technique [8], [9], [13], [14], [16] 

which is realised by searching for an area in a new frame most closely resembling the reference (or 

template) that is pre-defined as a rectangular subset in the initial frame.  

 Optical flow estimation is an established method which detects motions or flows of each pixel 

within the pre-determined target region based on one temporal and one spatial constraints [45]. 

Lucas and Kanade optical flow estimation [46] has been validated in a laboratory test of a multi-

storey metal tower for system identification [18] and applied in field monitoring of bridge stay 

cables during normal operation [19]. 

 Feature point matching is an efficient approach that detects key-points in two images independently 

and then finds point correspondences based on their local appearance. Currently the applications in 

structural monitoring are limited, two examples being displacement monitoring test in a stadium 

structure using FREAK matching [26] and in a viaduct system using SIFT matching [25]. 

 Shape-based tracking is used to match special target shapes and patterns between two images, i.e. 

line-type target [34] or custom-made targets with white and black squares [47], [48]. They do not 

have generality for all target patterns. 

Target tracking methods for the deck and cable targets are chosen separately considering their pattern 

features. 

2.2.1 Tracking deck targets 

Correlation-based template matching and feature point matching are the two potential approaches for 

tracking the deck target regions. Correlation-based template matching has been applied for structural 

displacement monitoring on a railway bridge [9], a long-span bridge [16] and a high-rise building for 

tracking specific patterns [13,14,44], LED lamp targets [16] and feature targets on structural surfaces 

[9]. One critical advantage of this method is the minimal user intervention, limited to specifying the 



template region in the reference frame. However, the method is sensitive to lighting changes [24,49] 

and changes of background conditions [50]. Also, the method is not the ideal choice for tracking slender 

structural components, since a rectangular template might include background pixels that move 

differently from the structural elements.  

Feature point matching is an alternative for the target tracking based on the key-point detection and 

matching. Key-points in computer vision are those that are stable, distinctive and invariant to image 

transformation like building corners, connection bolts or other patches with interesting shapes [51]. 

Instead of the raw image intensities, a feature descriptor is used for matching that is a complex 

representation based on the shape and appearance of a small window around the key-point. Thus this 

technique is less sensitive to illumination change, shape change and scale variation. However, feature 

point matching requires the target region to have rich textures for saliency during the whole recording 

period. Also several threshold parameters need to be specified according to users’ experience or 

judgement, e.g. contrast threshold for the feature detector and distance threshold in the matching criteria. 

These threshold values might depend on environmental conditions, e.g. the threshold for outlier removal 

varies with the illumination condition [26]. The existing applications are mainly focused on the short-

range measurement [25,26,50,52] while the feasibility for long-range monitoring and the stability over 

several hours are not validated yet.  

For the studied footbridge, natural features near the bridge deck along the length direction are available 

for tracking, but these features are not very distinctive. The monitoring was continued over several 

hours, recording the different occupation states of the bridge. Thus the automatic tracking with little 

user adjustment under varied environmental conditions was preferred. With these considerations, 

correlation-based template matching is used for deck target tracking in the video processing package.  

The tracking process is given in Figure 3. A target region is selected as the template that is a subset 

image in the reference frame. A correlation criterion is defined to evaluate the similarity degree between 

the template and the new frame. Zero-mean normalised cross correlation coefficient (ZNCC) is used as 

the correlation criterion which offers robust noise-proof performance and is insensitive to offset and 

linear scale in illumination [53]. The target location in the new frame corresponds to the peak location 

in the ZNCC matrix that has the resolution at pixel level. Subpixel interpolation schemes [9] are required 

to refine the tracking results. The interpolation method used in this study is zero-padding in frequency 

domain using matrix multiplication form of discrete Fourier transform [54].  



 

Figure 3 Demonstration of correlation-based template matching for target tracking 

2.2.2 Tracking cable targets 

To enable a wider field of view covering the majority of the bridge, bridge cables are projected to be 

slender lines in a camera image e.g. with less than four pixels along the width direction. Correlation-

based template matching is inappropriate in this case since pixels within a selected template (a 

rectangular subset from the reference frame) might cover cable segments as well as some background 

(e.g. clouds and tree branches) with inconsistent motions. Optical flow estimation method faces 

challenges due to the limited numbers of salient feature points. The cable tracking method based on 

edge detection is more robust to the variations of local features and is used in the video processing 

package. 

The cable tracking consists of two steps; edge detection and motion estimation. Edge detection is aimed 

at determining the cable location in a small subset window while the cable motion is estimated from the 

distance between two extracted edges.  

In the edge detection step, a region of interest including a small cable segment is selected for tracking 

shown in Figure 4(a). Since edge points have significant local changes in image intensity that lead to a 

local peak in the first derivative, image gradient is a common measure for edge detection. One of the 

gradient-based edge detectors, Sobel operator [55] is used to detect the probable edge points (in pixel 

level) through calculating the image gradients among 3 by 3 neighbourhood and thresholding the 

magnitude of gradients. Zernike moment operator [56], [57] is then applied to re-located the edge 



precisely from the points detected by Sobel operator in Figure 4(b). Zernike moments are constructed 

by mapping the image onto a set of complex polynomials through convolving the image intensity matrix 

with three pre-determined masks. Three edge parameters (i.e. step height, perpendicular distance from 

the mask centre and the edge direction with respect to one image axis) are estimated from Zernike 

moments for the probable edge points and the edge parameters are then used as criteria to remove 

outliers and to refine image coordinates for the remaining edge points (in subpixel level). The direction 

of cable segment within the selected image region is determined by line fitting among the remaining 

edge points in Figure 4(d). 

 

Figure 4 Edge detection procedures for cable targets in the video processing package: (a) the selected cable 

element located at the diagonal of the cropped frame; (b) the edge detection result by Sobel operator; (c) the 

refined edge points by Zernike moment operator; and (c) line fitting results of one cable edge. 

 

The cable motion is then estimated from the distance between two edge lines along one assumed motion 

direction (see Figure 5). Even if the assumed motion direction deviates from the true direction, the 

motion estimate is proportional, so not affecting identification of cable modal frequencies. 



 

Figure 5 Cable motion estimated from edge shift 

2.3 Monitoring data interpretation 

The acquired displacement data from the video processing package could be used for data interpretation 

e.g. extracting the structural dynamic properties. Since the monitored structure in this study is a cable 

stayed footbridge loaded by crowds of passing pedestrians, the modal properties might vary with the 

loading. 

For system identification, Welch’s method [58] was used to estimate the power spectral densities of 

monitoring data by computing the average of periodograms, and the modal frequencies were estimated 

through peak picking. The data-driven stochastic subspace identification (SSI) method [59] was also 

used to extract the modal frequencies and mode shapes through estimating a state-space model from 

measurement data and performing eigenvalue decomposition to the state-space model. 

In time-frequency analysis, the continuous wavelet transform (CWT) was used to acquire the time-

frequency distribution of measured signals including the displacement and acceleration responses. The 

complex Morlet wavelet was set as the mother wavelet with the relevant parameters (frequency 

bandwidth and central frequency) tuned according to the minimisation of the Shannon wavelet entropy 

[60–62]. The instantaneous frequencies were extracted from the ridges of wavelet transform modulus 

using the modulus maxima method [63]. 

3 VALIDATION TEST IN LABORATORY 

The proposed vision-based system was first validated on a beam structure in controlled laboratory 

conditions. Since the cable tracking method based on the edge detection has been validated in the 

previous work [24], the focus of this laboratory test is to investigate the working performance of 

correlation-based template matching method for structural displacement measurement. The system was 

applied to measure the displacement responses of several points in the beam when repeatedly set into 

free vibration. The measured data during the stationary periods were used to evaluate the measurement 

accuracy, while the measured data under the excitation periods were evaluated by comparison with the 

accelerometer measurement. Section 3.1 describes the tested beam structure and sensors used and 

section 3.2 evaluates the accuracy of the displacement data measured by vision-based system. 



3.1 Description of a beam structure and the monitoring test 

A simply supported beam structure was created in the Structures laboratory of University of Exeter by 

mounting a steel circular hollow section (tube) on the top of two columns and holding in place with C-

clamps. The beam structure, with a span of 5.70 m is shown in Figure 6. 

 

(a) 

 

(b) 

 

 



(c) 

Figure 6 A beam structure mounted on the top of two columns in the laboratory with sensors installed for vibration 

monitoring: (a) configuration of the beam structure including sensor locations; (b) sample frame (with the lens 

distortion influence) from recorded videos by GoPro camera with the marked locations of tracking targets; and (c) 

corrected image of the sample frame in (b) (after removing lens distortion influence) with the marked locations 

of control points for camera calibration. 

To generate vertical free vibration the beam was repeatedly pulled down with a rope and released, and 

the free vibration response was monitored by a combination of vision-based system and four wireless 

accelerometers. 

In the vision-based system, a GoPro Hero 4 Black camera was mounted on the top of a tripod 

approximately 4.59 m from beam mid-span. The entire beam was in the field of view with one sample 

frame indicated in Figure 6(b) showing an obvious lens distortion effect in the four corner regions of 

the captured frame. The nominal sample rate was set as 60 Hz while the actual rate was 59.94 Hz. 

Narrow field of view setting was selected with the corresponding focal length equivalent to 30-34 mm. 

The image dimensions was 1920 pixels × 1080 pixels. 

The video processing consists of the three main steps to extract the time histories of beam displacement, 

camera calibration, target tracking and displacement calculation. In terms of camera calibration, camera 

intrinsic matrix and lens distortion parameters were pre-determined by analysing the chessboard images 

taken from different views in the laboratory. The lens distortion parameters were used to correct the 

lens distortion influence with the corrected frame shown in Figure 6(c). Camera extrinsic matrix was 

determined based on five pairs of point correspondences between the structural coordinate system and 

the image plane. The structural coordinate system was defined as the origin at the mid-span of the beam 

with the X axis along the beam span direction and the Y axis in the vertical direction (See Figure 6(a)). 

The control points (CP) with known structural coordinates used for calibration are marked in Figure 

6(c) as red dots. The camera extrinsic matrix was derived by minimising the total re-projection error 

between the observed image points and the calculated projected image points given the estimated 

projection relation. The re-projected image points according to the estimated camera extrinsic matrix 

and the structural coordinates are indicated in Figure 6(c) as the ‘+’ markers in light colour. The 

coordinate information and re-projection errors are given in Table 1. An obvious deviation between the 

observed and the projected image points (re-projection error = 10.4 pixel) occurs at control point CP3 

that is the mid-span point of the beam. This deviation might be caused by the error in the provided 

structural coordinates of CP3 since the initial deformation of the beam induced by self-weight was not 

considered. 

In the second step of target tracking, four targets (T1~4) were chosen for tracking along the span 

direction located at 1/8, 1/4, 3/8 and 1/2 span points of the beam, respectively. When using the 

correlation-based template matching method, a planar area with a proper projection size in the video 

frame (e.g. 40 pixels) is required as the target region. This could be easily satisfied in the bridge 



monitoring test, for example using the deck area in Baker Bridge. However, the required planar area 

was not available in the structural surface of this simply-supported beam due to the long, thin shape. 

Thus several planar boards with black random patterns were attached to the beam for selection as 

regions of interest, shown in Figure 6(a). 

In the last step, the structural displacement along the vertical and longitude directions was estimated 

based on the camera calibration and target tracking results. 

Reference sensors were required for evaluating the measurement by the vision-based system. 

Conventional sensors for displacement measurement like LVDT and dial gauges would not work 

because the target regions on the beam structure were over 2 m higher than the stationary base (the 

ground). Integration schemes from accelerometer data have some limitations due to low frequency noise 

and attempts to filter it out that result in loss of quasi-static components. However, for a short signal, 

e.g. a few seconds, it is possible to derive the reliable displacement information from accelerometer 

measurement [64]. With the consideration of feasibility and installation effort, wireless accelerometers 

were chosen as the reference in this laboratory test. Four tri-axial APDM OpalTM wireless sensors were 

attached to the beam to record the acceleration responses. The sensors were fixed at the top right of 

target plate using black tape, as indicated in Figure 6(a). The Opal sample rate was set to 128 Hz. 

The GoPro camera and the wireless sensors had independent clocks but were separately synchronised 

with an online reference time. Before comparing the signals, the small time shift (i.e. 0.004 s) between 

the two sensing systems clocks was corrected by finding the maximum of cross correlation of two 

velocity signals respectively derived from acceleration data and displacement, both resampled at 256 

Hz. 

3.2 Measurement and analysis results 

Four points (T1~4) along the half span of the beam structure were tracked by the vision-based system 

with the measured displacement in vertical direction shown in Figure 7. Free vibration was induced 

three times by pulling and releasing at mid-span and in each case vibrations decayed within 5 seconds. 

The third free vibration response is the strongest and clearest and is replotted in Figure 7(b) with 

expanded timescale for a clearer visualisation. The maximum deformation at the mid-span (T4) reaches 

5.93 mm at the time T = 40.5 s with the corresponding deflection at 1/8, 1/4 and 3/8 points (T1/2/3) at 

1.20 mm, 3.09 mm, and 4.85 mm, respectively. Vibrations decayed to less than 0.3 mm within 2 s and 

showed a modal frequency of approximately 4.5 Hz. 



 

Figure 7 Vertical displacement of four targets along the span direction measured by vision-based system: (a) time 

history signals within a 55-s duration recording three excitations; and (b) zoom-in view of time history signals 

during the third excitation. 

The displacement measurement shown in Figure 7(a) include data during several stationary periods (i.e. 

the time intervals of [0, 12] s, [17, 24] s, [31, 38] s and [46, 55] s). The data samples collected during 

these periods were used to evaluate the measurement accuracy of the vision-based system. The non-

zero measured data is regarded as the measurement error since the true value of displacement is zero. 

The estimated distribution of measurement error is shown in Figure 8 indicating standard deviations of 

measurement error at the four targets (T1~4) to be almost identical, varying from 0.018 mm to 0.019 

mm. The measurement accuracy with 95% confidence interval was estimated by the standard deviation 

multiplying a critical value determined from the T distribution (i.e. ±1.96). Thus the measurement 

accuracy during the stationary period was ±0.037 mm. For dynamic displacement data, the 

measurement accuracy might be decreased because the possible deviation in estimated projection 

transformation influences more on the measured displacement with larger amplitudes. 



 

Figure 8 Distribution of error in measured displacement in vertical direction collected during the stationary periods 

corresponding to four time intervals in Figure 7(a) (i.e. [0, 12] s, [17, 24] s, [31, 38] s and [46, 55] s) 

Accelerometers were used as reference sensors to evaluate the measurement accuracy of vision-based 

system because their acceleration resolution at 4.5 Hz, limited by noise of 128 µg/√Hz translates to 

velocity resolution of 0.044 mm/s and displacement resolution of 0.0016 mm in the band 4.5±0.5 Hz. 

Ideally, the displacement data could be directly recovered from the accelerometer measurement through 

double integration. However, to mitigate the amplification and accumulation of acceleration error 

during the integration procedures, the accelerometer measurement was integrated to velocity response 

that was then compared with velocity derived from vision-based measurement. 

Acceleration response at the beam mid-span (T4) during the third period of free vibration was truncated 

for comparison with displacement data for the corresponding period shown in Figure 7(b). Figure 9(a) 

indicates the measured acceleration and displacement from Opal accelerometer and vision-based system. 

The derived velocity results are shown in Figure 9(b) indicating high similarity with 98.86% cross 

correlation coefficient, while the normalised root mean square deviation between two velocity signals 

is 3.70 mm/s compared to the maximum amplitude value of velocity response at 95.89 mm/s. 



 

Figure 9 Velocity responses of the beam structure at mid-span (T4) including the third free vibration period 

derived from accelerometer and vision-based measurement: (a) time history signals of acceleration and 

displacement by Opal accelerometer and vision-based system; (b) time history signals of velocity derived from 

the acceleration integration and displacement differentiation. 

Having demonstrated the reliability of the vision-based system for displacement measurement in the 

laboratory, the proposed system was applied in a monitoring test of a full-scale footbridge having 

dominant vibration modes with frequencies below 2.5 Hz. The low frequencies make it more 

challenging to recover the deflection information from accelerometer measurement. Therefore, the 

vision-based system has the advantage in quantifying the quasi-static deflection under heavy loads and 

also provides the capacity for the evaluation of bridge dynamic performance. 

4 FIELD TEST ON A CABLE-STAYED FOOTBRIDGE 

The vision-based system was applied in a monitoring test of a cable-stayed footbridge, Baker Bridge in 

Exeter, UK. This section described both the bridge and the configuration of vision-based system on site. 

4.1 Bridge description 

Baker Bridge is a 109 m cable-stayed footbridge crossing the A379 dual-carriageway in Exeter, UK 

(See Figure 10). The bridge provides cyclist and pedestrian access to Sandy Park Stadium (south side 

of bridge), the home ground of Exeter Chiefs Rugby Club, and thus experiences heavy pedestrian traffic 

on match days. The bridge comprises a single A-shaped tower that supports the continuous steel deck 

over a simple support at the pylon cross-beam as well as via seven pairs of stay cables. 



 

Figure 10 Baker Bridge information and the sensor locations: (a) the west elevation of the bridge with the marked 

locations of six wireless accelerometer sensors APDM OpalTM (B1~4, A1~2); (b) the tower elevation of the bridge; 

(c) the deck plan of the bridge with the marked location of the GoPro camera in the west side; and (d) a typical 

deck section of the bridge. 

In a previous ambient modal test [66], four modal frequencies below 2.5 Hz were observed in the 

vertical direction, i.e. 0.94 Hz, 1.62 Hz, 2.0 Hz and 2.24 Hz. Thus, the bridge has noticeable vibration 

response due to pedestrian traffic. 

4.2 Description of a monitoring test 

A four-hour monitoring test was performed from 13:37 to 17:42 on the afternoon of the Exeter Chiefs 

vs. Newcastle Falcons fixture on 25th Feb 2017, with a crowd of 10,469 spectators [67], many of them 

arriving by train (Digby and Sowton Station) and crossing the bridge to reach the stadium. Match kick 

off was at 15:00 with two halves of 40 minutes each plus stoppages and a 10 minute interval. A GoPro 

Hero 4 Black camera, Figure 10 (c), was mounted on the top of a tripod at the central reservation of the 

A379 carriageway below and approx. 55.30 m southwest of the bridge tower. The west side of bridge 

was included in the field of view with one sample frame indicated in Figure 11(a). The nominal frame 

rate was set as 30 Hz while the actual one was 29.97 Hz. Narrow field of view setting was selected with 

the corresponding focal length equivalent to 30-34 mm. The image dimensions was 1920 pixels × 1080 

pixels. The weather was overcast with little illumination change during recording. 

The video processing procedures consist of three main steps similar to those in the laboratory validation 

test. During the camera calibration, camera intrinsic parameters were determined ahead of the test. A 

sample corrected frame after removing the influence of lens distortion is shown in Figure 11(b). Camera 

extrinsic matrix was determined on site based on several pairs of 2D-to-3D point correspondences. The 



structural coordinate system was specified with the origin at the deck height of the tower section, the Y 

axis along the vertical direction and the Z axis along the transverse direction (See Figure 10(a) and (b)). 

The control points (CP) are marked in Figure 11(b) with known structural coordinates from the as-built 

drawings provided by the Devon County Council: CP1-4 along the edge of the bridge tower and CP5-

11 near the outer-section of the crossbeams to which the cables are secured. 

For target tracking, four targets (D1-4) along the deck longitude direction and two targets (C1-2) at the cable 

edges were chosen for tracking, all at the southwest side of the bridge in Figure 11(a). The pixel dimensions of 

the selected targets in video frames are indicated in 



Table 2. Due to the limited availability of stable features in the bridge deck, the height of these deck 

targets is  approximately 20 pixels, smaller than the suggested value (40 pixels) in the previous study 

[24]. 

For deck targets (D1-4), the structural displacement along the longitude and vertical direction was 

estimated based on camera calibration and target tracking results. For the cable targets (C1-2), the cable 

motion estimated in the target tracking step was directly outputted. 

 

 

(a) 

 

(b) 

Figure 11 Sample frames from the video records: (a) one raw frame (including apparent lens distortion) with 

markers on deck and cable targets for video tracking; and (b) one corrected frame (removing lens distortion 

influence) with markers on control points (CP1~11) used for the calibration of camera extrinsic matrix. 

As well as the vision-based system, six tri-axial wireless accelerometers (APDM OpalTM) were installed 

on the bridge: four (B1~4) on the deck parapet and two (A1~2) on the cables with locations marked in 

Figure 10(a). The purpose of the Opal sensors was to corroborate the identification of modal parameters 



of bridge deck and cables obtained using the vision-based system. The Opal sensors B1~4 corresponded 

to the target regions D1~4 in the vision-based system while the sensors A1~2 were collocated to the 

same cable sequences as the target regions C1~2. The sample rate was set to 128 Hz. 

5 MEASUREMENT AND ANALYSIS RESULTS 

In this section, the measurement results obtained by the vision-based system are illustrated in time and 

frequency domains. The time interval for analysis from 16:39 to 17:14 (35 min) thus included periods 

when large crowds of spectators crossed the bridge on the way home after the match. The measured 

data from the vision-based system was analysed to investigate the dynamic properties of the bridge 

including the changing modal frequencies under varying pedestrian loads. Section 5.1 and 5.2 

demonstrate the measurement and analysis results of bridge deck displacement and cable vibration, 

respectively. 

5.1 Measurement and analysis of deck displacement 

The vertical displacements of the four deck targets along the bridge span are described in this section. 

The measured data are presented in time domain (section 5.1.1) and frequency domain (section 5.1.2), 

respectively. 

5.1.1 Time history measurement of vertical displacement 

Four deck targets (D1~4) were tracked with the time histories of vertical displacement shown in Figure 

12 and four extracted frames from the video files in Figure 13. During the recording, the bridge changed 

from almost empty (Figure 13(a)) to almost full (Figure 13(b)), then reverting to a trickle of pedestrians 

(Figure 13(d)). 

In Figure 12, an obvious downward trend of the bridge deck is observed from 800 s to 1250 s in the 

measured data at D1 and D2 with the maximum deformation value reaching 72.58 mm and 64.10 mm, 

respectively. A quick deformation recovery is seen at approximately 1300 s from the measurement at 

D1~D3 that should correspond to a sudden reduction in bridge loading. The captured frame at 1315 s 

(Figure 13(c)) shows a clear gap (approx. 16.5 m) between two groups of pedestrians, which accords 

with observations from the measured data.  



 

Figure 12 Time histories of vertical displacement at four deck targets D1~D3 by the vision-based system 

 

Figure 13 Four captured frames for the recorded video files corresponding to the time step: (a) at 10 s; (b) at 1000 

s; (c) at 1315 s and (d) at 1500 s. 

Frequent local sharp peaks are observed only in the vertical displacement of D1 in Figure 12. Figure 

14(a) zooms into 60 s of signal, and inspection of the video recording shows that the sharp peak of 

14.89 mm in the time interval from 34 s to 41 s was induced by the passing of two small groups of 

pedestrians from the opposite directions shown in Figure 14(b) and (c).  



 

 

Figure 14 A 60-s time history signal of deck displacement in vertical direction at the target D1 with passing 

pedestrians: (a) time history of vertical displacement at D1; (b) Frame 1 at 36 s; and (c) Frame 2 at 42 s. 

5.1.2 Frequency components of vertical displacement 

The power spectral densities (PSD) of vertical displacement and acceleration measurement were 

estimated using Welch’s method with the window length of one minute duration and a 50% overlap. 

Figure 15 illustrates the estimation results for the signals recorded during three time intervals i.e. ([0, 

400] s, [800, 1200] s and [1600, 2000] s). The first time interval ([0, 400] s) was at the end of the match 

(during stoppage time) and thus few pedestrians crossed the bridge; the second duration ([800, 1200] s) 

was after the Rugby match and the bridge was almost fully occupied by pedestrians; and the third time 

interval was after most spectators had left and still a few pedestrians were crossing the bridge. 

Acceleration data of the deck at B3 was not available due to a faulty battery.  

In Figure 15(a), four apparent modal frequencies are identified using peak-picking with the values of 

0.92 Hz, 1.61 Hz, 2.00 Hz and 2.23 Hz, which match well with the results from acceleration 

measurement in (b). The displacement measurement at the deck point D1 contains significant quasi-

static response due to the local deformations resulting from passing pedestrians (See Figure 14), 

preventing identification of the first modal frequency at 0.92 Hz.  

In the second time interval shown in (c), only the second modal frequency is clearly indicated, with the 

value decreased to 1.48 Hz (from 1.61 Hz). The signal power near this frequency value is increased 

sharply compared with the data in the other two periods. The shift of the second modal frequency is 

also observed in (d) from acceleration data. 

In the third time interval shown in (e), the second mode still contains the highest power with frequency 

value shifted back to 1.59 Hz. The first and third modal frequencies are identified with the same values 

(0.92 Hz and 2.00 Hz) as in the first time interval. The observations match well with the analysis results 

of the acceleration data shown in (f). 

Through the analysis, it indicates that: 



 The measured data by vision-based system captures the modal frequencies of the bridge deck 

accurately through the comparison with the acceleration data; 

 The second mode of the bridge deck is very sensitive to the occupation status of the bridge and the 

frequency value reduced from 1.61 Hz to 1.48 Hz with full pedestrian occupancy, corresponding to 

a reduction of 8%. 

 

Figure 15 Power spectral densities (PSD) of time history signals with the three rows representing the three time 

intervals, the left column representing the PSD of displacement measured by vision-based system and the right 

column representing the PSD of acceleration measured by Opals: (a) PSD of vertical displacement at the time 

range of [0, 400] s; (b) PSD of vertical acceleration at the time range of time range of [0, 400] s; (c) PSD of 

vertical displacement at the time range of [800, 1200] s; (d) PSD of vertical acceleration at the time range of [800, 

1200] s; (e) PSD of vertical displacement at the time range of [1600, 2000] s; and (c) PSD of vertical acceleration 

at the time range [1600, 2000] s. 

The SSI method [59] was used to identify the modal frequencies and mode shapes from the collected 

data in the third time interval (i.e. [1600, 2000] s) and the analysis results were compared with those 

observed from a previous ambient modal test using APDM opal sensors [66]. Figure 16 compares 

results for the two bending modes in vertical direction:  

 The second modal frequency estimated by displacement data is 1.58 Hz, lower than the value (1.62 

Hz) reported in [66]. This is due to more frequent crossing pedestrians on the test day.  



 The third modal frequency (2.00 Hz) estimated by displacement data matches the value in [66]. 

 For these two bending modes, the mode shape ordinates (red circular dots) at the points D1~4 

predicted by the vision-based measurement match well with the mode shapes (blue curves) 

previously estimated in [66]. 

 

Figure 16 Mode shapes and frequency estimates of the bridge longer span: blue curves represent the mode shapes 

extracted from the previous ambient modal test [66] corresponding to the longer span closest to the stadium; and 

red dots represent the mode shapes extracted from displacement data measured by vision-based system. 

The frequency responses of measured signals in Figure 15 indicate dependency on time, whose study 

requires time-frequency analysis rather than methods based on the Fourier transform (e.g. Welch’s 

method) that are designed for the analysis of stationary signals. Continuous wavelet transform (CWT) 

analysis was therefore used to acquire the time-frequency distribution of displacement and acceleration 

measurement.  

Figure 17(a) indicates the CWT results for displacement measurement at the deck target D1 with the 

frequency range from 1.3 Hz to 1.8 Hz which covers the variations of the second modal frequency of 

the bridge deck (varying from 1.48 Hz to 1.61 Hz in Figure 15). During the analysis, the two parameters 

(frequency bandwidth bf  and central frequency cf ) in the complex Morlet wavelet were tuned 

according to the minimisation of Shannon wavelet entropy, reaching optimal parameters at bf =4.5 Hz 

and cf = 29 Hz. To consider the edge effect, the influenced region was estimated to be 40 s duration 

according to [61] and the padding scheme of reflecting the signal at two ends was used to mitigate the 

edge effect. A threshold (e.g. -0.5 in Figure 17(a)) was set for the wavelet transform modulus value 

during the plotting for a clear visualisation. The instantaneous frequencies were estimated by the 

modulus maxima at each time step and are shown as the sparse dots in the figure. The results in Figure 

17(a) indicate an obvious variation of the second modal frequency during the recording period. 

 In the first 500 s, the modal frequency has small deviation with the value over 1.60 Hz. 

 During the time interval from 600 s to 1100 s, a sharp decrease of the modal frequency value is 

observed with the lowest shifting to approx. 1.37 Hz, a reduction of 15%. 

 The data after 1500 s reflects a recovery of frequency value to approx. 1.58 Hz.  



 These observations match well with the analysis results for acceleration data (B1) shown in Figure 

17(b). 

 

Figure 17 Contour plot of CWT analysis results of displacement measurement (D1) and acceleration measurement 

(B1): (a) wavelet transform modulus for the measured displacement by vision-based system at the frequency range 

of [1.3, 1.8] Hz with the estimated instantaneous frequencies marked as sparse dots; and (b) wavelet transform 

modulus for the measured acceleration at the frequency range of [1.3, 1.8] Hz with the estimated instantaneous 

frequencies marked as sparse dots. 

5.2 Measurement and analysis of cable vibration 

This section presents the measurement results of cable vibration using the vision-based system. The 

measured data were directly used to estimate cable modal frequencies by peak-picking from power 

spectral densities as well as using SSI. To evaluate the variations of cable modal frequency with 

changing pedestrian loads, the CWT analysis was performed on the measured data to identify the time-

frequency distribution of cable vibration that was compared with the observations from acceleration 

measurement. 

Two cable targets C1 and C2 shown in Figure 11(a) were tracked, with the time histories of cable motion 

shown in Figure 18(a) and (c). The cable motion here corresponds to the motion of cable projection in 

the image in pixel units. The power spectral densities of the cable motions during the three time intervals 

(i.e. ([0, 400] s, [800, 1200] s and [1600, 2000] s) are indicated in Figure 18 (b) and (d) for the cable 

targets C1 and C2, respectively.  

 The modal frequency of the cable C1 is approximately 1.66 Hz for the first and third time intervals 

and slightly increased for the second time window. 



 For the cable C2, the modal frequency could be identified as approximately 2.10 Hz during the first 

and third time intervals while the analysis result for the data from the second time interval indicates 

no obvious peak frequency, but rather a frequency range with higher energy near 2.2 Hz. 

 

Figure 18 Measurement of cable motions by the vision-based system: (a) image motion at C1; (b) power spectral 

densities of image motion at C1 in three marked time windows shown in (a) ([0, 400] s, [800, 1200] s and [1600, 

2000] s); (c) image motion at C2; and (d) power spectral densities of image motion at C2 in three marked time 

windows shown in (c) ([0, 400] s, [800, 1200] s and [1600, 2000] s). 

The SSI method was used to identify the modal frequencies from the collected displacement and 

acceleration data during the third time interval (i.e. [1600, 2000] s). Cable target C1 (in Figure 11(a)) 

and accelerometer A1 (in Figure 10) correspond to the same bridge cable (the longest one, in the 

southwest side) while the sensor locations were different. C1 was at approximately ¼ span point close 



to the bridge tower and A1 was in the lower height close to the cable end where it is attached to the 

bridge deck. Similarly, C2 and A2 correspond similarly. 

The displacement signal at C1 indicates two close modal frequencies at 1.59 Hz and 1.66 Hz while the 

acceleration signal at A1 captures the first modal frequency at 1.63 Hz as well as the higher modal 

frequencies at 4.96 Hz, 6.62 Hz and 8.27 Hz. Through comparison, the fundamental frequency of the 

longest cable (C1) was at approximately 1.66 Hz. The mode at 1.59 Hz identified from the displacement 

signal might correspond to the second bending mode of the bridge deck. The first modal frequency 

estimated from the acceleration data is different from the estimated fundamental frequency, which 

might be due to mixing of frequency responses between the cable fundamental mode and the second 

bending mode of bridge deck. 

The displacement signal at C2 indicates modal frequencies at 2.10 Hz and 4.16 Hz while the 

acceleration data at A2 capture modal frequencies at 2.12 Hz, 6.30 Hz, 8.36 Hz and 10.48 Hz. Therefore, 

the fundamental frequency of the second longest cable (C2) was at approximately 2.10 Hz. 

The analysis indicates that the vision-based system works better to capture the lower modal frequencies 

of cables while the accelerometers provide reliable estimations of higher frequency modes. 

CWT analysis was performed to acquire the time-frequency distribution of cable vibrations from the 

vision-based system and accelerometers. The analysis results are shown in Figure 19 and Figure 20 for 

the cables C1 and C2, respectively. In terms of accelerometer measurement, instead of plotting directly 

the results near the fundamental frequency of the cable, higher frequency ranges i.e. near the fifth modal 

frequency for the measurement at A1 and near the third modal frequency for the measurement at A2 

are illustrated in Figure 19 (b) and Figure 20 (b), with the corresponding values near the fundamental 

frequency marked in the right y-axis. 

Figure 19 (a) indicates the CWT analysis results for the measurement at the cable C1 by vision-based 

system. The instantaneous frequencies estimated by the modulus maxima (shown in the figure as sparse 

dots) initialled at approximately 1.66 Hz, rose to over 1.70 Hz during the time interval from 900 s to 

1160 s and then recovered to 1.66 Hz after 1500 s. Since the time interval from 900 s to 1160 s 

corresponds to the period where the deck points D1 and D2 experienced a large deformation (See Figure 

12), the observations indicate that heavy pedestrian loads on the bridge lead to a rise in cable modal 

frequency by 2.4%, probably by increasing the cable tension. Compared with the analysis result of 

acceleration measurement shown in Figure 19(b), the time-frequency distribution acquired by vision-

based measurement captures the general trend of frequency shift under pedestrian loads over the whole 

35 min. However, some details of frequency variation within a short-time range are only identified by 

acceleration measurement, e.g. a sharp decrease and recovery of cable modal frequency at approx. 1280 

s. 

As well as the cable C1 modal frequency at approx. 1.66 Hz, another less obvious mode is indicated in 

Figure 19(a) with frequency value lower than the cable fundamental frequency. This mode is salient in 

the lighter loading condition e.g. (i) in the time interval from 200 s to 900 s with the modal frequency 



decreasing from 1.62 Hz to 1.46 Hz; and (ii) the time interval from 1400 s to 2100 s with the modal 

frequency increasing from 1.53 Hz to 1.60 Hz. The observed mode shows a similar trend as the variation 

of the second modal frequency of the bridge deck. Therefore, this mode might be due to forced vibration 

of the cable by motion of the bridge deck. 

 

Figure 19 Contour plot of CWT analysis results of cable vibration for the longest cable in the southwest side of 

the bridge: (a) wavelet transform modulus for the cable motion (C1) measured by vision-based system at the 

frequency range of [1.4, 1.8] Hz with the estimated instantaneous frequencies marked as sparse dots; and (b) 

wavelet transform modulus for the cable vibration measured by the accelerometer (A1) at the frequency range of 

[7, 9] Hz with the estimated instantaneous frequencies marked as sparse dots. 

The CWT analysis results for the measurement by vision-based system at the cable C2 are indicated in 

Figure 20 (a) with the estimated instantaneous frequencies shown as sparse dots. The cable modal 

frequency started off at approx. 2.08 Hz when the bridge was occupied by only a few pedestrians. An 

obvious rise of modal frequency (exceeding 2.2 Hz) is observed during the time range from 900 s to 

1260 s when the bridge was under heavy pedestrian loads. Compared with the quiet period, the 

maximum shift of cable modal frequency reaches 9.1% with the frequency value reaching 2.27 Hz. In 

the period after 1500 s, the modal frequency of cable vibration was recovered to approx. 2.1 Hz. These 

observations match well with those from Figure 20 (b) corresponding to the acceleration measurement 

(A2) of the same cable. However, the analysis results of acceleration data illustrate better resolution of 

the variations of cable modal frequency with time, especially during heavy load periods from 900 s to 

1260 s. 



 

Figure 20 Contour plot of CWT analysis results of cable vibration for the second longest cable in the southwest 

side of the bridge: (a) wavelet transform modulus for the cable motion (C2) measured by vision-based system at 

the frequency range of [1.9, 2.3] Hz with the estimated instantaneous frequencies marked as sparse dots; and (b) 

wavelet transform modulus for the cable vibration measured by the accelerometer (A2) at the frequency range of 

[7, 9] Hz with the estimated instantaneous frequencies marked as sparse dots. 

6 DISCUSSION OF MEASUREMENT ACCURACY OF VISION-BASED SYSTEM 

In the field test, the multi-point displacement measurements by the vision-based system were validated 

to be viable for tracking both deformation induced by passing pedestrians and modal properties of the 

deck and cables under varying pedestrian loads. Based on this demonstration the procedure would be 

viable for other (e.g. larger) bridges. 

The issue of measurement accuracy of a vision-based system is critical but hard to quantify, especially 

on site. In the laboratory validation test, the accuracy level was evaluated as measurement of a stationary 

structure, as well as by comparing measurement using the vision system with accelerometer data, both 

converted to velocity. However, the measurement accuracy might not be directly comparable to that 

obtained in other applications such as in the field. 

The measurement accuracy of a vision-based system depends on several parameters, e.g. camera-to-

target distance [26], estimation of camera intrinsic parameters, dimension information [17] and 

dispersion of target tracking results in images [68], etc.. Theoretically, displacement measurement using 

a vision-based system is derived from two parts: i) target tracking results and ii) the transformation 

metric between the real structure and their projection in image. 



 In terms of target tracking, the nominal algorithm resolution can be better than 0.01 pixel with an 

interpolation scheme while the reported accuracy varies from 0.5 to 0.01 pixel [68]. In this study, 

the tracking accuracy was quantified to be 0.013 pixel in the laboratory condition while the tracking 

accuracy in the field test was not evaluated. The ideal image size of the target for correlation-based 

template matching is suggested to be no less than 40 × 40 pixels [24] to ensure good performance. 

For field application, determining the camera set-up location should consider the balance between 

measurement accuracy and the possibility to monitor a large portion of the bridge. 

 During the camera calibration in this case, the structural coordinates of control points were derived 

according to the as-built drawings which might not represent the current condition, e.g. effects of 

self-weight deflection. Since the calibration process of camera extrinsic matrix is by minimising 

the total re-projection error between the detected image points and the calculated image projection 

points based on least-squares optimisation, a better and more stable estimation might be made using 

more control points. 

Other factors on site might influence the measurement accuracy and stability using a vision-based 

system. For example, Figure 12 shows that the displacement measurement at the deck point D1 did not 

recover to the initial condition; this might be due to the error caused by camera movement. During the 

recording, data loss was found due to partial obstruction of the target as well as pattern blur by raindrops. 

The measurement could also be influenced by atmospheric refraction and turbulence [69].  

For a robust sensing system, the measurement accuracy and uncertainty are required for quality 

assurance and metrological traceability, thus further study is necessary. 

7 CONCLUSIONS 

A non-contact single-camera vision-based system used for non-contact measurement of bridge 

displacement provided results comparable to those obtained using an array of wireless accelerometers 

and offered additional information about quasi-static response to varying pedestrian loads. 

In the laboratory validation test, the measurement accuracy of vision-based system was evaluated to be 

±0.037 mm under the camera-to-target distance of 5.70 m, but it was not possible to test accuracy 

directly in the field application, only to compare with another measurement, in this case using the 

accelerometers. 

The multi-point deformation data obtained using the vision system proved to be effective for tracking 

cable dynamic properties at the same time as bridge deformation, allowing for the effect of varying load 

on cable tensions to be observed. This provides a powerful diagnostic capability for larger cable-

supported structures. 



8 ACKNOWLEDGEMENT 

We would like to thank Devon County Council for permission to use their bridge and for assistance 

they provided. Also thanks to Vincent Ao and Jose Capilla for support in the field testing. Finally the 

authors would like to thank the two anonymous reviewers for their constructive comments. 

 

9 REFERENCES 

1. Brownjohn JMW, Koo KY, Scullion A, List DI. Operational deformations in long-span bridges. 

Structure and Infrastructure Engineering 2015; 11(4): 556–574. DOI: 

10.1080/15732479.2014.951857. 

2. Carden EP, Fanning P. Vibration Based Condition Monitoring: A Review. Structural Health 

Monitoring: An International Journal 2004; 3(4): 355–377. DOI: 10.1177/1475921704047500. 

3. Brownjohn JMW, Moyo P, Omenzetter P, Lu Y. Assessment of highway bridge upgrading by 

dynamic testing and finite-element model updating. Journal of Bridge Engineering 2003; 8(3): 

162–172. 

4. Wang N, O’Malley C, Ellingwood BR, Zureick AH. Bridge Rating Using System Reliability 

Assessment. I: Assessment and Verification by Load Testing. Journal of Bridge Engineering 

2011; 16(6): 854–862. DOI: 10.1061/(ASCE)BE.1943-5592.0000172. 

5. BBC News. Lorry tests as monitors installed in Forth Road Bridge first. BBC News Web Site 

2015. 

6. Casciati F, Fuggini C. Engineering vibration monitoring by GPS: long duration records. 

Earthquake Engineering and Engineering Vibration 2009; 8(3): 459–467. 

7. Nickitopoulou  a, Protopsalti K, Stiros S. Monitoring dynamic and quasi-static deformations of 

large flexible engineering structures with GPS: Accuracy, limitations and promises. Engineering 

Structures 2006; 28(10): 1471–1482. DOI: 10.1016/j.engstruct.2006.02.001. 

8. Liao WY, Chen WH, Ni YQ, Xia Y. Development of a Vision-based Real-time Displacement 

Measurement System for Guangzhou New TV Tower. In: Casciati F, editor. Fifth European 

Workshop on Structural Health Monitoring 2010, Itlay: 2010. 

9. Feng D, Feng M, Ozer E, Fukuda Y. A Vision-Based Sensor for Noncontact Structural 

Displacement Measurement. Sensors 2015; 15(7): 16557–16575. DOI: 10.3390/s150716557. 

10. Kim SW, Kim NS. Multi-point Displacement Response Measurement of Civil Infrastructures 

Using Digital Image Processing. Procedia Engineering 2011; 14: 195–203. DOI: 

10.1016/j.proeng.2011.07.023. 

11. Ribeiro D, Calçada R, Ferreira J, Martins T. Non-contact measurement of the dynamic 

displacement of railway bridges using an advanced video-based system. Engineering Structures 

2014; 75: 164–180. DOI: 10.1016/j.engstruct.2014.04.051. 

12. Chang CC, Xiao XH. Three-Dimensional Structural Translation and Rotation Measurement 



Using Monocular Videogrammetry. Journal of Engineering Mechanics 2010; 136(7): 840–848. 

13. Stephen GA, Brownjohn JMW, Taylor CA. Measurements of static and dynamic displacement 

from visual monitoring of the Humber Bridge. Engineering Structures 1993; 15(3): 197–208. 

14. Macdonald JHG, Dagless E, Thomas B, Taylor C. Dynamic Measurements Of The Second 

Severn Crossing. Proc. Inst. Civil Engineers : Transport, vol. 123, 1997. 

15. Wahbeh AM, Caffrey JP, Masri SF. A vision-based approach for the direct measurement of 

displacements in vibrating systems. Smart Materials and Structures 2003; 12: 785–794. DOI: 

10.1088/0964-1726/12/5/016. 

16. Ye XW, Ni YQ, Wai TT, Wong KY, Zhang XM, Xu F. A vision-based system for dynamic 

displacement measurement of long-span bridges: algorithm and verification. Smart Structures 

and Systems 2013; 12(3_4): 363–379. DOI: 10.12989/sss.2013.12.3_4.363. 

17. Martins LL, Rebordão JM, Ribeiro AS. Structural observation of long-span suspension bridges 

for safety assessment: implementation of an optical displacement measurement system. Journal 

of Physics: Conference Series 2015; 588: 12004. DOI: 10.1088/1742-6596/588/1/012004. 

18. Yoon H, Elanwar H, Choi H, Golparvar-Fard M, Spencer BF. Target-free approach for vision-

based structural system identification using consumer-grade cameras. Structural Control and 

Health Monitoring 2016; 23(12): 1405–1416. DOI: 10.1002/stc.1850. 

19. Caetano E, Silva S, Bateira J. Application of a vision system to the monitoring of cable structures. 

Seventh International Symposium on Cable Dynamics 2007: 225–236. 

20. Oh BK, Hwang JW, Kim Y, Cho T, Park HS. Vision-based system identification technique for 

building structures using a motion capture system. Journal of Sound and Vibration 2015: 1–14. 

DOI: 10.1016/j.jsv.2015.07.011. 

21. Feng D, Feng MQ. Model Updating of Railway Bridge Using In Situ Dynamic Displacement 

Measurement under Trainloads. Journal of Bridge Engineering 2015; 20(12): 4015019. DOI: 

10.1061/(ASCE)BE.1943-5592.0000765. 

22. Cha YJ, Chen JG, Büyüköztürk O. Output-only computer vision based damage detection using 

phase-based optical flow and unscented Kalman filters. Engineering Structures 2017; 132: 300–

313. DOI: 10.1016/j.engstruct.2016.11.038. 

23. Ojio T, Carey CH, OBrien EJ, Doherty C, Taylor SE. Contactless Bridge Weigh-in-Motion. 

Journal of Bridge Engineering 2016; 21(7): 4016032. DOI: 10.1061/(ASCE)BE.1943-

5592.0000776. 

24. Brownjohn JMW, Xu Y, Hester D. Vision-Based Bridge Deformation Monitoring. Frontiers in 

Built Environment 2017; 3(April): 1–16. DOI: 10.3389/fbuil.2017.00023. 

25. Khuc T, Catbas FN. Computer vision-based displacement and vibration monitoring without 

using physical target on structures. Structure and Infrastructure Engineering 2017; 13(4): 505–

516. DOI: 10.1080/15732479.2016.1164729. 

26. Khuc T, Necati Catbas F. Completely contactless structural health monitoring of real-life 



structures using cameras and computer vision. Structural Control and Health Monitoring 2016. 

27. Feng D, Feng MQ. Experimental validation of cost-effective vision-based structural health 

monitoring. Mechanical Systems and Signal Processing 2017; 88: 199–211. DOI: 

10.1016/j.ymssp.2016.11.021. 

28. Choi I, Kim J, Kim D. A Target-Less Vision-Based Displacement Sensor Based on Image 

Convex Hull Optimization for Measuring the Dynamic Response of Building Structures. 

Sensors 2016; 16(12): 2085. DOI: 10.3390/s16122085. 

29. Chen JG, Wadhwa N, Cha YJ, Durand F, Freeman WT, Buyukozturk O. Modal identification 

of simple structures with high-speed video using motion magnification. Journal of Sound and 

Vibration 2015; 345: 58–71. DOI: 10.1016/j.jsv.2015.01.024. 

30. Yang Y, Dorn C, Mancini T, Talken Z, Kenyon G, Farrar C, et al. Blind identification of full-

field vibration modes from video measurements with phase-based video motion magnification. 

Mechanical Systems and Signal Processing 2017; 85: 567–590. DOI: 

10.1016/j.ymssp.2016.08.041. 

31. Caetano E, Silva S, Bateira J. A vision system for vibration monitoring of civil engineering 

structures. Experimental Techniques 2011; 35(4): 74–82. DOI: 10.1111/j.1747-

1567.2010.00653.x. 

32. Kim SW, Jeon BG, Kim NS, Park JC. Vision-based monitoring system for evaluating cable 

tensile forces on a cable-stayed bridge. Structural Health Monitoring 2013; 12(5–6): 440–456. 

DOI: 10.1177/1475921713500513. 

33. Feng D, Scarangello T, Feng MQ, Ye Q. Cable tension force estimate using novel noncontact 

vision-based sensor. Measurement 2017; 99: 44–52. DOI: 10.1016/j.measurement.2016.12.020. 

34. Ji YF, Chang CC. Nontarget Stereo Vision Technique for Spatiotemporal Response 

Measurement of Line-Like Structures. Journal of Engineering Mechanics 2008; 134(6): 466–

474. DOI: 10.1061/(ASCE)0733-9399(2008)134:6(466). 

35. Busca G, Cigada A, Mazzoleni P, Zappa E. Vibration Monitoring of Multiple Bridge Points by 

Means of a Unique Vision-Based Measuring System. Experimental Mechanics 2014; 54: 255–

271. DOI: 10.1007/s11340-013-9784-8. 

36. Chen CC, Wu WH, Tseng HZ, Chen CH, Lai G. Application of digital photogrammetry 

techniques in identifying the mode shape ratios of stay cables with multiple camcorders. 

Measurement: Journal of the International Measurement Confederation 2015; 75: 134–146. 

DOI: 10.1016/j.measurement.2015.07.037. 

37. Kim SW, Kim NS. Dynamic characteristics of suspension bridge hanger cables using digital 

image processing. NDT & E International 2013; 59: 25–33. DOI: 10.1016/j.ndteint.2013.05.002. 

38. Xu Y, Brownjohn J, Hester D, Koo K. Dynamic displacement measurement of a long span 

bridge using vision-based system. 8th European Workshop On Structural Health Monitoring, 

Bilbao, Spain: 2016. 



39. Lee J hwa, Cho S, Sim S han. Monocular Vision-based Displacement Measurement System 

Robust to Angle and Distance Using Homography. 6th International Conference on Advances 

in Experimental Structural Engineering, University of Illinois, Urbana-Champaign, United 

States: 2015. 

40. Hartley R, Zisserman A. Multiple view geometry in computer vision. Cambridge university press; 

2003. 

41. Park SW, Park HS, Kim JH, Adeli H. 3D displacement measurement model for health 

monitoring of structures using a motion capture system. Measurement 2015; 59: 352–362. DOI: 

10.1016/j.measurement.2014.09.063. 

42. Kim SC, Kim HK, Lee CG, Kim SB. A vision system for identifying structural vibration in civil 

engineering constructions. 2006 SICE-ICASE International Joint Conference, Bexco, Busan, 

Korea: 2006. DOI: 10.1109/SICE.2006.315227. 

43. Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern 

Analysis and Machine Intelligence 2000; 22(11): 1330–1334. DOI: 10.1109/34.888718. 

44. Chang CC, Ji YF. Flexible Videogrammetric Technique for Three-Dimensional Structural 

Vibration Measurement. Journal of Engineering Mechanics 2007; 133(6): 656–664. DOI: 

10.1061/(ASCE)0733-9399(2007)133:6(656). 

45. Sun D, Roth S, Black MJ. Secrets of optical flow estimation and their principles. 2010 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, IEEE; 2010. DOI: 

10.1109/CVPR.2010.5539939. 

46. Tomasi C. Detection and Tracking of Point Features Technical Report CMU-CS-91-132. vol. 

91. School of Computer Science, Carnegie Mellon Univ. Pittsburgh; 1991. DOI: 

10.1016/S0031-3203(03)00234-6. 

47. Lee JJ, Shinozuka M. A vision-based system for remote sensing of bridge displacement. NDT 

& E International 2006; 39(5): 425–431. DOI: 10.1016/j.ndteint.2005.12.003. 

48. Lee JJ, Cho S, Shinozuka M. Evaluation of Bridge Load Carrying Capacity Based on Dynamic 

Displacement Measurement Using Real-time Image Processing Techniques. Steel Structures 

2006; 6: 377–385. 

49. Guo J, Zhu C. Dynamic displacement measurement of large-scale structures based on the Lucas–

Kanade template tracking algorithm. Mechanical Systems and Signal Processing 2016; 66–67: 

425–436. DOI: 10.1016/j.ymssp.2015.06.004. 

50. Ehrhart M, Lienhart W. Monitoring of Civil Engineering Structures using a State-of-the-art 

Image Assisted Total Station. Journal of Applied Geodesy 2015; 9(3): 174–182. DOI: 

10.1515/jag-2015-0005. 

51. Szeliski R. Computer Vision : Algorithms and Applications. vol. 5. Springer Science & Business 

Media; 2010. DOI: 10.1007/978-1-84882-935-0. 

52. Ehrhart M, Lienhart W. Development and evaluation of a long range image-based monitoring 



system for civil engineering structures. In: Shull PJ, editor. Proc. SPIE, vol. 9437, 2015. DOI: 

10.1117/12.2084221. 

53. Pan B, Qian K, Xie H, Asundi A. Two-dimensional digital image correlation for in-plane 

displacement and strain measurement: a review. Measurement Science and Technology 2009; 

20(6): 62001. DOI: 10.1088/0957-0233/20/6/062001. 

54. Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. 

Optics Letters 2008; 33(2): 156. DOI: 10.1364/OL.33.000156. 

55. Sobel I. Neighborhood coding of binary images for fast contour following and general binary 

array processing. Computer Graphics and Image Processing 1978; 8(1): 127–135. 

56. Ghosal S, Mehrotra R. Orthogonal moment operators for subpixel edge detection. Pattern 

Recognition 1993; 26(2): 295–306. DOI: 10.1016/0031-3203(93)90038-X. 

57. Ying-Dong Q, Cheng-Song C, San-Ben C, Jin-Quan L. A fast subpixel edge detection method 

using Sobel-Zernike moments operator. Image and Vision Computing 2005; 23(1): 11–17. DOI: 

10.1016/j.imavis.2004.07.003. 

58. Welch PD. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method 

Based on Time Averaging Over Short, Modified Periodograms. IEEE Transactions on Audio 

and Electroacoustics 1967; 15(2): 70–73. DOI: 10.1109/TAU.1967.1161901. 

59. Peeters B, De Roeck G. Reference-based stochastic subspace identification for output-only 

modal analysis. Mechanical System & Signal Processing 1999; 13(6): 855–878. DOI: 

10.1006/mssp.1999.1249. 

60. Lin J, Qu L. Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical 

Fault Diagnosis. Journal of Sound and Vibration 2000; 234(1): 135–148. DOI: 

10.1006/jsvi.2000.2864. 

61. Yan B, Miyamoto A. A comparative study of modal parameter identification based on wavelet 

and Hilbert-Huang transforms. Computer-Aided Civil and Infrastructure Engineering 2006; 

21(1): 9–23. DOI: 10.1111/j.1467-8667.2005.00413.x. 

62. Wang H, Mao JX, Huang JH, Li AQ. Modal Identification of Sutong Cable-Stayed Bridge 

during Typhoon Haikui Using Wavelet Transform Method. Journal of Performance of 

Constructed Facilities 2016; 30(5): 1–11. DOI: 10.1061/(ASCE)CF.1943-5509.0000856. 

63. Carmona R, Hwang WL, Torresani B. Practical Time-Frequency Analysis. vol. 9. Academic 

Press; 1998. DOI: 10.1016/S1874-608X(98)80033-2. 

64. Hester D, Brownjohn J, Bocian M, Xu Y. Low cost bridge load test: Calculating bridge 

displacement from acceleration for load assessment calculations. Engineering Structures 2017; 

143. DOI: 10.1016/j.engstruct.2017.04.021. 

65. Stiros SC. Errors in velocities and displacements deduced from accelerographs: An approach 

based on the theory of error propagation. Soil Dynamics and Earthquake Engineering 2008; 

28(5): 415–420. DOI: 10.1016/j.soildyn.2007.07.004. 



66. Brownjohn JMW, Bocian M, Hester D, Quattrone A, Hudson W, Moore D, et al. Footbridge 

system identification using wireless inertial measurement units for force and response 

measurements. Journal of Sound and Vibration 2016; 384: 339–355. DOI: 

10.1016/j.jsv.2016.08.008. 

67. Exeter Chief News. Chiefs 36 Falcons 14. Exeter Chiefs Website 2017. 

68. Bing P, Hui-min X, Bo-qin X, Fu-long D. Performance of sub-pixel registration algorithms in 

digital image correlation. Measurement Science and Technology 2006; 17(6): 1615–1621. DOI: 

10.1088/0957-0233/17/6/045. 

69. Martins LL, Nunes Vicente Rebordão JM, Silva Ribeiro Á. Thermal Influence on Long-Distance 

Optical Measurement of Suspension Bridge Displacement. International Journal of 

Thermophysics 2014; 35: 693–711. DOI: 10.1007/s10765-014-1607-3. 

 



Table 1 Geometric information of control points used to calibrate the projection relation including their 

coordinates in structural coordinate system and image plane as well the re-projected image coordinates based on 

the estimated projection relation. 

CP 

No. 

Structural 

Coordinates (mm) 

Observed image 

coordinates (pixel) 

Re-projected image 

coordinates (pixel) Re-projection 

error (pixel) 
X Y Z U V U V 

1 -2700 -570 0 44 663 45.1 664.9 2.2 

2 -2700 0 0 37 466 36.5 469.5 3.5 

3 0 0 0 967 471 966.7 460.6 10.4 

4 2700 0 0 1859 464 1858.5 469.2 5.3 

5 2700 -570 0 1850 655 1850.3 655.7 0.8 

 



Table 2 Image pixel dimensions of the selected targets in video frames 

Target no. 
Image size / pixels 

(width × height or length) 

D1 33 ×17 

D2 43 × 19 

D3 21 × 21 

D4 21 × 26 

C1 110 

C2 96 

 


