260 research outputs found

    MOBILE LASER SCANNING SYSTEMS FOR GPS/GNSS-DENIED ENVIRONMENT MAPPING

    Get PDF
    Indoor 3D mapping provides a useful three-dimensional structure via an indoor map for many applications. To acquire highly efficient and relatively accurate mapping for large-scale GPS/GNSS-denied scene, we present an upgraded backpacked laser scanning system and a car-mounted indoor mobile laser scanning system. The systems provide both 3D laser scanning point cloud and camera images. In this paper, a simultaneous extrinsic calibration approach for multiple multi-beam LIDAR and multiple cameras is also proposed using the Simultaneous Localization and Mapping (SLAM)-based algorithm. The proposed approach uses the SLAM-based algorithm to achieve a large calibration scene using mobile platforms, registers an acquired multi-beam LIDAR point cloud to the terrestrial LIDAR point cloud to acquire denser points for corner feature extraction, and finally achieves simultaneous calibration. With the proposed mapping and calibration algorithms, we can provide centimetre-lever coloured point cloud with relatively high efficiency and accuracy

    High-accuracy patternless calibration of multiple 3D LiDARs for autonomous vehicles

    Get PDF
    This article proposes a new method for estimating the extrinsic calibration parameters between any pair of multibeam LiDAR sensors on a vehicle. Unlike many state-of-the-art works, this method does not use any calibration pattern or reflective marks placed in the environment to perform the calibration; in addition, the sensors do not need to have overlapping fields of view. An iterative closest point (ICP)-based process is used to determine the values of the calibration parameters, resulting in better convergence and improved accuracy. Furthermore, a setup based on the car learning to act (CARLA) simulator is introduced to evaluate the approach, enabling quantitative assessment with ground-truth data. The results show an accuracy comparable with other approaches that require more complex procedures and have a more restricted range of applicable setups. This work also provides qualitative results on a real setup, where the alignment between the different point clouds can be visually checked. The open-source code is available at https://github.com/midemig/pcd_calib .This work was supported in part by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M ("Fostering Young Doctors Research," APBI-CM-UC3M) in the context of the V PRICIT (Research and Technological Innovation Regional Program); and in part by the Spanish Government through Grants ID2021-128327OA-I00 and TED2021-129374A-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Pyörivien monilaserkeilainjärjestelmien geometrinen kalibrointi

    Get PDF
    The introduction of light-weight and low-cost multi-beam laser scanners provides ample opportunities in positioning and mapping as well as automation and robotics. The fields of view (FOV) of these sensors can be further expanded by actuation, for example by rotation. These rotating multi-beam lidar (RMBL) systems can provide fast and expansive coverage of the geometries of spaces, but the nature of the sensors and their actuation leave room for improvement in accuracy and precision. Geometric calibration methods addressing this space have been proposed, and this thesis reviews a selection of these methods and evaluates their performance when applied to a set of data samples collected using a custom RMBL platform and six Velodyne multi-beam sensors (one VLP-16 Lite, four VLP-16s and one VLP-32C). The calibration algorithms under inspection are unsupervised and data-based, and they are quantitatively compared to a target-based calibration performed using a high-accuracy point cloud obtained using a terrestrial laser scanner as a reference. The data-based calibration methods are automatic plane detection and fitting, a method based on local planarity and a method based on the information-theoretic concept of information entropy. It is found that of these, the plane-fitting and entropy-based measures for point cloud quality obtain the best calibration results.Kevyet ja edulliset monilaserkeilaimet tuovat uusia mahdollisuuksia paikannus- ja kartoitusaloille mutta myös automaatioon ja robotiikkaan. Näiden sensorien näköaloja voidaan kasvattaa entisestään esimerkiksi pyörittämällä, ja näin toteutettavat pyörivät monilaserkeilainjärjestelmät tuottavat nopeasti kattavaa geometriaa niitä ympäröivistä tiloista. Sensorien rakenne ja järjestelmän liikkuvuus lisäävät kuitenkin kohinaa ja epävarmuutta mittauksissa, minkä vuoksi erilaisia geometrisia kalibrointimenetelmiä onkin ehdotettu aiemmassa tutkimuksessa. Tässä diplomityössä esitellään valikoituja kalibrointimenetelmiä ja arvioidaan niiden tuloksia koeasetelmassa, jossa pyörivälle alustalle asennetuilla Velodyne-monilaserkeilaimilla (yksi VLP-16 Lite, neljä VLP-16:aa ja yksi VLP-32C) mitataan liikuntasalin geometriaa. Tarkasteltavat menetelmät ovat valvomattomia ja vain mittauksiin perustuvia ja niitä verrataan samasta tilasta hankittuun tarkkaan maalaserkeilausaineistoon. Menetelmiä ovat tasojen automaattinen etsintä ja sovitus, paikalliseen tasomaisuuteen perustuva menetelmä sekä informaatioteoreettiseen entropiaan perustuva menetelmä. Näistä tasojen sovitus ja entropiamenetelmä saavuttivat parhaat kalibrointitulokset referenssikalibraatioon verrattaessa

    ISPRS BENCHMARK ON MULTISENSORY INDOOR MAPPING AND POSITIONING

    Get PDF
    Abstract. In this paper, we present a publicly available benchmark dataset on multisensorial indoor mapping and positioning (MiMAP), which is sponsored by ISPRS scientific initiatives. The benchmark dataset includes point clouds captured by an indoor mobile laser scanning system in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three fields: (1) LiDAR-based Simultaneous Localization and Mapping (SLAM); (2) automated Building Information Model (BIM) feature extraction; and (3) multisensory indoor positioning. The MiMAP project provides a common framework for the evaluation and comparison of LiDAR-based SLAM, BIM feature extraction, and smartphone-based indoor positioning methods. This paper describes the multisensory setup, data acquisition process, data description, challenges, and evaluation metrics included in the MiMAP project

    Progress on isprs benchmark on multisensory indoor mapping and positioning

    Get PDF
    This paper presents the design of the benchmark dataset on multisensory indoor mapping and position (MIMAP) which is sponsored by ISPRS scientific initiatives. The benchmark dataset including point clouds captured by indoor mobile laser scanning system (IMLS) in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three fields: (1) SLAM-based indoor point cloud generation; (2) automated BIM feature extraction from point clouds, with an emphasis on theelements, such as floors, walls, ceilings, doors, windows, stairs, lamps, switches, air outlets, that are involved in building managementand navigation tasks ; and (3) low-cost multisensory indoor positioning, focusing on the smartphone platform solution. MIMAP provides a common framework for the evaluation and comparison of LiDAR-based SLAM, BIM feature extraction, and smartphoneindoor positioning methods

    Autonomous underwater vehicle navigation and mapping in dynamic, unstructured environments

    Get PDF
    Thesis (Ph.D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 91-98).This thesis presents a system for automatically building 3-D optical and bathymetric maps of underwater terrain using autonomous robots. The maps that are built improve the state of the art in resolution by an order of magnitude, while fusing bathymetric information from acoustic ranging sensors with visual texture captured by cameras. As part of the mapping process, several internal relationships between sensors are automatically calibrated, including the roll and pitch offsets of the velocity sensor, the attitude offset of the multibeam acoustic ranging sensor, and the full six-degree of freedom offset of the camera. The system uses pose graph optimization to simultaneously solve for the robot's trajectory, the map, and the camera location in the robot's frame, and takes into account the case where the terrain being mapped is drifting and rotating by estimating the orientation of the terrain at each time step in the robot's trajectory. Relative pose constraints are introduced into the pose graph based on multibeam submap matching using depth image correlation, while landmark-based constraints are used in the graph where visual features are available. The two types of constraints work in concert in a single optimization, fusing information from both types of mapping sensors and yielding a texture-mapped 3-D mesh for visualization. The optimization framework also allows for the straightforward introduction of constraints provided by the particular suite of sensors available, so that the navigation and mapping system presented works under a variety of deployment scenarios, including the potential incorporation of external localization systems such as long-baseline acoustic networks. Results of using the system to map the draft of rotating Antarctic ice floes are presented, as are results fusing optical and range data of a coral reef.by Clayton Gregory Kunz.Ph.D

    Development of a novel data acquisition and processing methodology applied to the boresight alignment of marine mobile LiDAR systems

    Get PDF
    Le système LiDAR mobile (SLM) est une technologie d'acquisition de données de pointe qui permet de cartographier les scènes du monde réel en nuages de points 3D. Les applications du SLM sont très vastes, de la foresterie à la modélisation 3D des villes, en passant par l'évaluation de l'inventaire routier et la cartographie des infrastructures portuaires. Le SLM peut également être monté sur diverses plateformes, telles que des plateformes aériennes, terrestres, marines, etc. Indépendamment de l'application et de la plateforme, pour s'assurer que le SLM atteigne sa performance optimale et sa meilleure précision, il est essentiel de traiter correctement les erreurs systématiques du système, spécialement l'erreur des angles de visée à laquelle on s'intéresse particulièrement dans cette thèse. L'erreur des angles de visée est définie comme le désalignement rotationnel des deux parties principales du SLM, le système de positionnement et d'orientation et le scanneur LiDAR, introduit par trois angles de visée. En fait, de petites variations angulaires dans ces paramètres peuvent causer des problèmes importants d'incertitude géométrique dans le nuage de points final et il est vital d'employer une méthode d'alignement pour faire face à la problématique de l'erreur des angles de visée de ces systèmes. La plupart des méthodes existantes d'alignement des angles de visée qui ont été principalement développées pour les SLM aériens et terrestres, tirent profit d'éléments in-situ spécifiques et présents sur les sites de levés et adéquats pour ces méthodes. Par exemple, les éléments linéaires et planaires extraits des toits et des façades des maisons. Cependant, dans les environnements sans présence de ces éléments saillants comme la forêt, les zones rurales, les ports, où l'accès aux éléments appropriées pour l'alignement des angles de visée est presque impossible, les méthodes existantes fonctionnent mal, voire même pas du tout. Par conséquent, cette recherche porte sur l'alignement des angles de visée d'un SLM dans un environnement complexe. Nous souhaitons donc introduire une procédure d'acquisition et traitement pour une préparation adéquate des données, qui servira à la méthode d'alignement des angles de visée du SLM. Tout d'abord, nous explorons les différentes possibilités des éléments utilisés dans les méthodes existantes qui peuvent aider à l'identification de l'élément offrant le meilleur potentiel pour l'estimation des angles de visée d'un SLM. Ensuite, nous analysons, parmi un grand nombre de possibles configurations d'éléments (cibles) et patrons de lignes de balayage, celle qui nous apparaît la meilleure. Cette analyse est réalisée dans un environnement de simulation dans le but de générer différentes configurations de cibles et de lignes de balayage pour l'estimation des erreurs des angles de visée afin d'isoler la meilleure configuration possible. Enfin, nous validons la configuration proposée dans un scénario réel, soit l'étude de cas du port de Montréal. Le résultat de la validation révèle que la configuration proposée pour l'acquisition et le traitement des données mène à une méthode rigoureuse d'alignement des angles de visée qui est en même temps précise, robuste et répétable. Pour évaluer les résultats obtenus, nous avons également mis en œuvre une méthode d'évaluation de la précision relative, qui démontre l'amélioration de la précision du nuage de points après l'application de la procédure d'alignement des angles de visée.A Mobile LiDAR system (MLS) is a state-of-the-art data acquisition technology that maps real-world scenes in the form of 3D point clouds. The MLS's list of applications is vast, from forestry to 3D city modeling and road inventory assessment to port infrastructure mapping. The MLS can also be mounted on various platforms, such as aerial, terrestrial, marine, and so on. Regardless of the application and the platform, to ensure that the MLS achieves its optimal performance and best accuracy, it is essential to adequately address the systematic errors of the system, especially the boresight error. The boresight error is the rotational misalignment offset of the two main parts of the MLS, the positioning and orientation system (POS) and the LiDAR scanner. Minor angular parameter variations can cause important geometric accuracy issues in the final point cloud. Therefore, it is vital to employ an alignment method to cope with the boresight error problem of such systems. Most of the existing boresight alignment methods, which have been mainly developed for aerial and terrestrial MLS, take advantage of the in-situ tie-features in the environment that are adequate for these methods. For example, tie-line and tie-plane are extracted from building roofs and facades. However, in low-feature environments like forests, rural areas, ports, and harbors, where access to suitable tie-features for boresight alignment is nearly impossible, the existing methods malfunction or do not function. Therefore, this research addresses the boresight alignment of a marine MLS in a low-feature maritime environment. Thus, we aim to introduce an acquisition procedure for suitable data preparation, which will serve as input for the boresight alignment method of a marine MLS. First, we explore various tie-features introduced in the existing ways that eventually assist in the identification of the suitable tie-feature for the boresight alignment of a marine MLS. Second, we study the best configuration for the data acquisition procedure, i.e., tie-feature(s) characteristics and the necessary scanning line pattern. This study is done in a simulation environment to achieve the best visibility of the boresight errors on the selected suitable tie-feature. Finally, we validate the proposed configuration in a real-world scenario, which is the port of Montreal case study. The validation result reveals that the proposed data acquisition and processing configuration results in an accurate, robust, and repeatable rigorous boresight alignment method. We have also implemented a relative accuracy assessment to evaluate the obtained results, demonstrating an accuracy improvement of the point cloud after the boresight alignment procedure

    Machine Vision: Approaches and Limitations

    Get PDF
    corecore