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Abstract— This paper proposes a new method for estimating the
extrinsic calibration parameters between any pair of multi-beam
LiDAR sensors on a vehicle. Unlike many state-of-the-art works,
this method does not use any calibration pattern or reflective marks
placed in the environment to perform the calibration; in addition, the
sensors do not need to have overlapping fields of view. An iterative
ICP-based process is used to determine the values of the calibration
parameters, resulting in better convergence and improved accu-
racy. Furthermore, a setup based on the CARLA simulator is intro-
duced to evaluate the approach, enabling quantitative assessment
with ground-truth data. The results show an accuracy comparable
with other approaches that require more complex procedures and
have a more restricted range of applicable setups. This work also provides qualitative results on a real setup, where
the alignment between the different point clouds can be visually checked. The open-source code is available at
https://github.com/midemig/pcd calib.

Index Terms— Autonomous driving, extrinsic calibration, iterative closest point, LiDAR, sensor fusion

I. INTRODUCTION

LiDAR is currently one of the most commonly used sensor
technologies in applications such as robotics and autonomous
driving. This modality provides a point cloud with 3D spatial
information that can be used for multiple tasks, including
obstacle detection, mapping, and localization [1]. Early manu-
factured models tended to have a single plane, so they provided
scarce information; however, this type of sensor can nowadays
produce a high-resolution point cloud with up to 128 scan
planes [2].

Although the increase in the number of layers involves a
higher data resolution and, therefore, a more detailed rep-
resentation of the environment, it also entails a significantly
higher cost that does not translate into a wider field of view.
For this reason, the current trend in applications requiring an
extensive perception range (e.g., 360º around a vehicle) is
more towards using several lower resolution LiDAR scanners
placed in different positions and orientations to avoid blind
spots [3]. In some cases, this approach leads to configurations
where the sensors do not share a common field of view, as
in the example shown in Fig. 1. However, some applications
require merging the point clouds from these different LiDAR
scanners to obtain a comprehensive view of the environment.
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2Visiting Professor at Faculty of Engineering - German International
University (GIU), Cairo, Egypt
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Fig. 1. Typical two-LiDAR configuration in a long vehicle where no
scan points are shared between sensors as they are placed on the
longitudinal ends of the vehicle roof.

In practice, this involves expressing the 3D points from all
sensors in a joint coordinate system, which necessarily relies
on the accurate calibration of the sensors involved.

Two types of sensor calibration are typically identified:
intrinsic and extrinsic. When dealing with LiDAR, the first
one consists of calculating the position of each 3D point with
respect to the sensor coordinate system and is usually deter-
mined by the manufacturer. The second type of calibration,
extrinsic calibration, aims to determine the relative position of
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every sensor with respect to each other and is the main focus
of this work.

This work presents an accessible yet effective method to
obtain the extrinsic parameters of pairs of LiDAR scanners
that is especially suitable for autonomous driving perception
stacks. Our original contributions are listed below:

• We introduce a calibration pipeline based on the accu-
mulation of point clouds from only one of the devices
to be calibrated, thus allowing for a more hassle-free
application of the necessary odometry algorithm.

• We propose and validate an iterative strategy to register
clouds through the ICP method that minimizes the impact
of its tolerance parameter, improving the accuracy of
the results even when only a very rough initialization is
available.

The method does not require a fiducial calibration pattern
or distinctive reflective elements; instead, calibration can be
performed on simple driving scenarios with a flat road and
a few vertical elements (such as buildings). This removes
the burden of manufacturing and handling such elements and
creating complicated calibration scenarios. Besides, LiDAR
scanners to be calibrated do not need to share a common field
of view, contrary to what is usually the case with patternless
methods based on the correlation between two point clouds.
The approach requires a very limited amount of data to be
carried out and can provide results in a short space of time.

Experimental results show that the accuracy of the approach
is on par with other alternatives in the literature, being appro-
priate for use in automotive perception applications. However,
it also has the advantages described above, which allow the
range of applicability of the proposal to be extended beyond
the more simple sensor placements and fulfill the requirements
of cutting-edge setups.

The paper is structured as follows: Section II reviews
state-of-the-art works for calibration, Section III describes
the proposed method, Section IV shows the experiments and
results to evaluate the method, and Section V presents the
conclusions.

II. RELATED WORK

Traditionally, extrinsic calibration of sensors in robotic
platforms has been performed manually, either by determining
the relative positions by hand through distance and angle mea-
surement tools or by adjusting the parameters until visually
pleasing results are obtained, in an iterative process that seeks
to match the data from both sensors in the common field of
view. However, these methods struggle to achieve the levels
of accuracy required in perception, as even tiny errors in the
estimation of the parameters can lead to substantial pairing
errors (e.g., an error of 1° in rotation translates into a deviation
of almost 1m for measurements at a distance of 50m), with
a consequent decline in the performance of algorithms using
sensor data.

Focusing on the case of LiDAR scanners, these difficulties,
coupled with the fact that manual calibration is usually a
tedious and time-consuming process, have led to an intense re-
search interest in recent years, resulting in numerous automatic

calibration approaches able to provide the relative position of
all LiDAR devices within the perception stack.

Sometimes, calibration is performed with respect to a co-
ordinate system fixed to the robotic or automotive platform,
from which the relative position among sensors can also
be straightforwardly derived. That coordinate system can be
located at the vehicle frame as in [4], where a method based on
the iterative closest point (ICP) algorithm is used to determine
the position of the sensor with respect to a robotic arm,
or in [5], where a precise 3D model of an excavator is
required to apply generalized ICP (GICP) to get the calibration
parameters. Both methods report good calibration results, but
they are oriented towards a specific type of vehicle, namely
a robotic arm and an excavator with a moving arm, making
them hardly generalizable to any ground vehicle.

The IMU sensor can also be established as a reference,
as in [6], which uses an extended Kalman filter algorithm
that exploits the motion-based calibration constraint for state
update, or in [7], which tries to optimize the quality of a
3D point cloud produced by the LiDARs on the vehicle as
it traverses an unknown environment.

Finally, calibration can also be performed with respect to
sensors of other modalities, such as cameras. Such calibration
methods frequently require a pattern with specific character-
istics [8], [9] or are based on the correspondence between
measurements provided by both sensors [10], [11]. Therefore,
their application is inevitably limited to use cases where all
LiDARs share part of their field of view with the camera,
which is not always the case in automotive setups; e.g., in
the configuration in Fig. 1, the measurements from the rear
LiDAR will be outside the field of view of a hypothetical
frontal camera.

Among the methods explicitly aimed at the calibration
between multiple LiDARs, some present a similar problem to
the one stated above; e.g., [12] analyzes the coincident planes
between two LiDARs to obtain the calibration parameters.

Some methods accumulate successive LiDAR point clouds
as the vehicle moves to overcome this limitation, enabling
the superposition of points between the different sensors. In
general, such methods seek to align the accumulated point
clouds to obtain the translation and rotation of one cloud
with respect to the other, which corresponds to the sensors’
extrinsic parameters. Within this group of approaches, [13],
[14] use reflective objects, easily detected by the LiDAR, as
a reference in both point clouds to perform the alignment.
Noteworthily, these methods rely on a good detection of the
landmarks in both sensors’ data, which can be challenging for
some particular setups as it may require placing the targets at
locations far from the vehicle if not outright inaccessible.

Closer to our work, other approaches dispense with the
targets and apply ICP on point clouds from naturalistic scenes
to determine the transformation between sensors. For exam-
ple, [15] applies ICP to align each point cloud from a sensor
with the point cloud from the other sensor that is closest
in time. A LiDAR-based SLAM method is used to express
the clouds in the same time reference. However, this method
performs ICP using only separate point clouds, where there
may be cases in which the closest clouds do not have enough
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common points. Indeed, our tests using an implementation of
this method have presented problems of convergence to an
accurate solution multiple times.

On the other hand, Liu et al. [16] proposed a LiDAR-
LiDAR and LiDAR-camera calibration method that uses point
clouds retrieved at different poses and formulates the problem
as a bundle adjustment problem where both the extrinsic
parameters and the LiDAR poses are optimized concurrently.
A custom adaptive voxelization strategy is applied to the input
clouds to reduce the computational cost of the optimization,
although it introduces the need for some manual parameter
tuning depending on the properties of the LiDAR devices.

In conclusion, whereas a wide variety of methods has been
proposed to solve the LiDAR extrinsic calibration problem, ex-
isting solutions either present limitations when applied outside
the domain for what they were designed or have requirements
that can be unfeasible for some particular sensor setups found
in autonomous vehicles (e.g., with non-overlapping fields of
view). This work aims to provide an accurate calibration
solution applicable to a broader range of sensor configura-
tions without requiring complex calibration scenarios, ad-hoc
fiducial devices, or meticulous parameter tuning.

III. METHOD OVERVIEW

We propose a method to estimate the 3D transformation
(i.e., the relative 6-DOF pose) between two LiDAR scanners
based on their output data. Both devices are assumed to be
attached to the body of a vehicle and placed in arbitrary
positions and orientations.

The point clouds provided by each sensor at time step
t are denoted by Ct

T and Ct
S , respectively. The subscript

T designates the ’target’ LiDAR, whereas S corresponds to
the ’source’ LiDAR; we will elaborate on this terminology
later. Sensors must be synchronized so that both clouds are
timestamped with respect to a shared time reference; i.e., the
time offset between them must be known.

The method’s outcome is a set of transformation param-
eters Tcalib = {x, y, z, q0, q1, q2, q3} comprising a three-
axis translation (x, y, z) and a rotation given as a quaternion
(q0, q1, q2, q3).

An overview of the approach is shown in Fig. 2. The
different parts of the calibration pipeline will be described
in the following sections.

A. Sensor Odometry
The method relies on sequences of LiDAR point clouds

scanned while the vehicle is moving. In that way, the point
clouds can be accumulated over time to generate a denser 3D
reconstruction where better correspondences can be found.

This approach requires determining precisely the position
of the target LiDAR at each time stamp. Therefore, the choice
of the localization method is critical for the accuracy of
the calibration, although the results will show later that the
proposed method is remarkably robust to positioning errors
within a wide range.

GNSS receivers are typically the method of choice for
outdoor localization; however, using this kind of localization

for the present task would require an extremely accurate
calibration between the GNSS receiver and the target LiDAR
so that the localization data could be effectively referenced to
the LiDAR frame. In practice, that step could introduce a non-
negligible bias that would affect the quality of the resulting
LiDAR-LiDAR calibration.

In contrast, we propose employing a LiDAR odometry
approach that avoids this intermediate transformation by di-
rectly providing the LiDAR scanner localization. To that end,
different methods have been proposed in the literature; one of
the most popular paradigms is LOAM [17], which has given
rise to numerous variants, such as the lighter LegoLOAM [18].
Our setup uses LOAM to obtain the location of the target
LiDAR scanner, thus benefiting from its high accuracy and
robustness.

Let Lt
LOAM denote the location, expressed as a transforma-

tion, with respect to the origin of the target LiDAR point cloud
CT at time step t, for t ranging from 0 to T . For practical
reasons, we set the origin at LT/2

LOAM and refer the rest of the
locations to this point. Once the complete set of localizations
provided by the LiDAR odometry is available, each of the
target LiDAR point clouds can be transformed to the origin
and concatenated to obtain the reconstruction C full

T :

C full
T =

T⋃
t=0

(L
T/2
LOAM)−1 · Lt

LOAM · Ct
T (1)

Contrarily, point clouds from the source LiDAR are not
accumulated. In that way, the need for accurate localization is
reduced to only one of the devices, allowing the source scanner
to be placed in unusual poses (i.e., extreme orientations)
that would otherwise degrade the performance of odometry
algorithms such as LOAM.

B. ICP Point Cloud Matching

The core of the proposed approach lies in the registration of
pairs of point clouds, where each of them is obtained from one
of the LiDAR scanners to be calibrated. This task is performed
by employing the iterative closest point (ICP) algorithm [19],
which estimates the transformation that minimizes the distance
between two point clouds. We use the PCL implementation
described in [20].

The way of applying ICP follows [15]; nonetheless, we
propose performing the ICP registration between each point
cloud from the source LiDAR, Ct

S , and the entire reconstruc-
tion from the target sensor, C full

T , instead of using each of the
instantaneous clouds Ct

T . In that way, the number of potential
correspondences increases, and registration is made possible
even in cases where the two LiDAR scanners do not share a
common field of view.

In practice, ICP is carried out at each instant t using
as inputs the clouds C full,t

T and Ct
S , where C full,t

T is the
reconstructed target cloud C full

T transformed in such a way
that the origin of coordinates lies in the location represented
by Lt

LOAM:

C full,t
T =

(
(L

T/2
LOAM)−1 · Lt

LOAM

)−1

· C full
T (2)
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Fig. 2. Method overview. First, point clouds from the target LiDAR (in blue) are transformed and accumulated using the localization provided by
the LOAM odometry. Later, an estimate of the transformation between LiDAR devices is found by using ICP to register each of the individual source
LiDAR clouds (in red) to the accumulated target reconstruction. Then, the estimated transformation is obtained as the average of the transformations
provided by ICP for each source cloud. Finally, this procedure is iteratively repeated using the output from each iteration as an initial guess for the
next step, where the maximum correspondence distance (MCD) parameter of ICP is modified. The output from the last iteration can be used to
accurately align the data from both sensors.

Hence, a local estimate T t
local of the transformation between

both LiDAR devices can be obtained through ICP:

T t
local = ICP(C full,t

T , Ct
S , Tguess), (3)

where Tguess is an initial guess of the transformation that
must be provided as input along with both clouds.

Remarkably, the different executions of ICP corresponding
to each time step (and, therefore, to each Ct

S cloud) can be
parallelized, thus improving the method’s efficiency.

However, in our preliminary experiments, we found that
the accuracy of the final result provided by the ICP algorithm
under these conditions was highly dependent on some config-
uration parameters. In particular, it proved closely related to
the quality of the first estimation of the transformation, as well
as to the value chosen as maximum correspondence distance
(MCD), a parameter that controls the admissible distance
threshold between two correspondent points. This parameter
should be high when using rough initial guesses but lower
with better-informed initializations. Because of this, in the next
section, we introduce an iterative strategy to adapt the MCD
value as available estimates improve.

C. Transformation Estimation

The procedure to estimate the transformation linking the
LiDAR devices in space starts with the application of the ICP
registration algorithm to pairs of clouds obtained over time,
as described in the previous section. As a result, a set of local
transformation estimates {T t

local}Tt=0 is obtained.
It should be noted that, as shown in (3), ICP requires an

initial estimate of the aimed transformation, Tguess; in practice,
this guess can be obtained by measuring by hand as it does
not need to be very accurate. In our experiments, we allow
errors up to 20 cm and 15°, values above the usual range when

manually setting these parameters. A single Tguess is used as
input in the computation of the different T t

local transformations.
These local results are combined into an overall estimate

Tglobal by averaging each of their components over time; that
is, the component i of Tglobal is computed by:

Tglobal,i = T t
local, i =

1

T
·

T∑
t=0

T t
local, i (4)

Note that the transformations are composed of three com-
ponents expressing the translation (x, y, z) and another four
describing the rotation as a quaternion (q0, q1, q2, q3). Using
the quaternion components instead of the Euler angles pro-
duces a better approximation to a rotation mean, as stated
in [21].

To minimize the impact of the MCD parameter and improve
the accuracy, this procedure is iteratively repeated, feeding
each resulting Tglobal as Tguess for the next iteration. As each
iteration improves the initial estimate, the MCD threshold
value is reduced by a factor of γ. Empirically, we found that an
initial value of 0.5m and γ = 0.95 yield satisfactory results.

The iterative process stops when the maximum number of
iterations, set as a parameter N , is reached. The procedure’s
outcome is the result Tglobal obtained at the last iteration.
Algorithm 1 provides a summary of the method.

IV. EXPERIMENTAL RESULTS

The validation of the proposed method has been conducted
in two different ways. On the one hand, experiments have been
carried out in a virtual environment to obtain qualitative results
with ground truth. On the other hand, the method has also
been applied to a real vehicle with different LiDAR sensors,
where the quality of the union between the two point clouds
with the obtained calibration parameters has been qualitatively
evaluated.
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Algorithm1:Proposedmethod.

input:Cfull,tT ,CtS,Tguess,N,δ,γ
output:Tcali

n←0
∆L←0
MCD←0.5
whilen<Ndo
Tguess−1←Tguess
fort←0toTdo

Ttlocal←ICP(C
full,t
T ,CtS,Tguess,MCD)

end

Tguess←Ttlocal
n←n+1
MCD←MCD×γ

end
Tcali←Tguess

A.SimulationEnvironmentSetup

Theevaluationofextrinsiccalibrationresultsisanon-trivial
challenge,asitisimpossibletomeasurethesensorpositions
withthenecessaryaccuracytoobtainreliableground-truth
references. Mostworksintheliteraturemerelycomparethe
resultswiththoseobtainedfrom manual measurementsor
performapurelyvisualassessment.
Incontrast,weproposeusingasimulationenvironment
toevaluateourapproachfromaquantitativeperspective.To
thatend,weuseCARLA[22],asoftwarespecializedin
thesimulationofautonomousvehiclesknownforitsrealistic
scenarios.CARLAcansimulatedifferentsensors,including
LiDARscanners,andallowstuningitsparameterstoadjust
themaccordingtoaparticularsensormodel(e.g.,numberof
layers,aperture,ornoise).
Inourexperiments,thesimulatedsensorfollowsthespeci-
icationsofVelodyne’sHDL-32model,whichhasanaperture
of40°,astandarddeviationindistance measurementsof
0.008m,andadropoffrateof0.1.Datawereobtainedfrom
recordingsmadeinthesimulatorwhilethevehiclewasdriving
throughdiverseareasofthevirtualenvironment,featuring
differentsetups(i.e.,relativeposes)oftheLiDARsensors.
Thecollecteddataincludesthepointcloudsfrombothsensors,
theirrelativepositions(i.e.,thegroundtruthoftheparameters
beingsought),thevehicle’slocation,andthetimestampat
whicheachpieceofdatawascollected.
ThesetupsusedintheexperimentsareshowninTableI.
ConigurationsA-Careusedinmostoftheexperimentsand
correspondtothemostusualpositionsusedinautonomous
vehicles,withoneLiDAR(target)placedparalleltotheground
planeandtheother(source)sittinginpositionssimilartothose
used.Itshouldbenotedthat,inthesesetups,theieldsof
viewofbothLiDARscannersbarelyoverlap;forexample,
conigurationCissimilartotheoneshowninFig.1,where
eachLiDARcoversonly180°aroundoneendofthevehicle.
Ontheotherhand,conigurationDisaimedtoestablisha

faircomparisonwithastate-of-the-artalternativethatrequires
ield-of-viewoverlappingforitsoperation.

TABLEI

GROUND-TRUTHSOURCELIDARPOSITION(METERS)ANDROTATION

(DEGREES)REFERENCEDTOTHETARGETLIDARFORTHETHREE
TESTEDSCENARIOS.

Cfg. X Y Z Roll Pitch Yaw
A −1.0 0.0 −0.4 0.0 −40.0 0.0
B 0.0 −0.5 −0.2 0.0 45.0 90.0
C −5.0 0.0 0.0 0.0 0.0 180.0
D −0.2 −1.0 −0.4 10.0 0.0 0.0

B.SimulationResults

Experimentsinthesimulationenvironmentmimicrealsit-
uationswherethevehicleequippedwiththepairofLiDARs
tobecalibratedmovesalongatraficscenario.Thevehicle’s
positionisknownatalltimes.Thecalibrationaccuracyis
assessedthroughtheerrorbetweentheoutputprovidedbythe
methodandtheground-truthtransformationintermsofboth
puretranslation(distance)androtation(angularerror).
Toremovetheeffectofexternalfactors,weperformed50
differentexperimentsforeachsetup,varyingthevehicle’s
startinglocationinthevirtualenvironmentandtheinitialguess
values,whichwereobtainedbyaddingarandomerrorto
thecalibrationgroundtruth.Thiserrorreachesupto20cm
ineachtranslationcomponentand0.2radineachrotation
component.Whenestablishingcomparisons,anidenticalseed
wasusedforeachmethodwhengeneratingtherandomerrors,
thusguaranteeingthattheinitialestimateswerethesamefor
eachevaluatedmethod.
Ineachexperiment,atotalof50pointcloudswerepro-

cessedforeachsensor,collectedevery0.5s;therefore,the
totaldurationofthesequenceis25s,wherethevehicletravels
adistanceofapproximately70mthroughoneofthecitymaps
ofthesimulator.
First,toassesstheproposedmethodandtesttheeffective-

nessoftheiterativeprocess,Fig.3showstheevolutionof
thecalibrationerrorswiththenumberofiterationsforeachof
theexperimentsperformed(i.e.,differentsetupsanddifferent
initializations).Ascanbeseen,alltestsconvergetoalmost
negligibleerrors,eveninthoserarecasesinwhichpeaks
appearinearlyiterations.
Theseresultsvalidatetheiterativeapproachintroducedin

thisworkasopposedtotheuseofasingleICPiteration
result,asproposedin[15].Asapparent,resultsforN>20
consistentlyoutperformthesingle-runalternativebyalarge
margin.
Thesecondsetofexperimentsaimstoevaluatehowdif-

ferentfactorsaffecttheproposedmethod.Hence,thebeneit
ofusingadecayfactorγforthe MCDparameterhasbeen
testedbyperformingthesameexperimentswithoutdecay(i.e.,
γ=1.0).AsshowninFig.4,theerrorwithoutthisfactor
increasessince,insomecases,thealgorithmdoesnotconverge
toaresultasaccurateastheoneobtainedusingtheproposed
valueofγ=0.95.
Anothercriticalfactortobeanalyzedistheeffectof

localizationaccuracy, which willimpactthetargetcloud
accumulationand,therefore,thequalityofthereconstruction
CfullT .Therefore,experimentstostudytheeffectoftheuse
ofanimperfectsourceofodometrywerealsoperformed.
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Fig. 3. Evolution of the translation and rotation error with each iteration
n of the proposed method. Each color corresponds to a different
experiment (i.e., different setups and initializations).

Fig. 5 depicts the results of the proposed method using the
ground-truth localization, a degraded localization generated by
adding Gaussian noise to the ground-truth localization, and the
actual LOAM odometry. As shown, although the introduction
of odometry errors naturally deteriorates the accuracy of the
result, the method is still robust to relatively large localization
errors, and the effect of this factor becomes minimal when
using the proposed LiDAR odometry method.

Next, a different set of experiments is devoted to bench-
marking the performance of the proposed approach. Firstly,
we compare our approach with a state-of-the-art extrinsic cal-
ibration method with an analogous set of features, MLCC [16].
Similar to our approach, MLCC is intended to calibrate LiDAR
pairs with non-overlapping fields of view by performing cloud
accumulation. However, it also includes additional procedures
for pose optimization that are out of the scope of our work.

For fairness, our experiments feed the MLCC procedure
with the pose estimation provided by LOAM, as is the case
with our algorithm, and apply only the stages corresponding to
the extrinsic parameter optimization and the final joint pose–
extrinsics optimization. The values chosen for the parameters
controlling the voxel size and the point cloud downsampling
are identical to the ones used by the authors for the AVIA
device. The results of the comparison are shown in Table II.
They suggest that the accuracy of the parameters provided by
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Fig. 4. Box plot comparison of the error made by the proposed method
with and without the use of a decay factor.

our approach consistently surpasses the estimation by the two
extrinsic parameter optimization steps from MLCC.

TABLE II
TRANSLATION AND ROTATION ERROR COMPARISON BETWEEN THE

PROPOSED METHOD AND THE EXTRINSIC PARAMETER OPTIMIZATION

PROPOSED IN MLCC [16] USING CONFIGURATIONS A, B, AND C.

Translation Rotation
Cfg. Method error (m) error (rad)

A MLCC (w/o. pose opt.) 0.05873 0.02510
Ours 0.01431 0.00025

B MLCC (w/o. pose opt.) 0.27862 0.03306
Ours 0.00350 0.00052

C MLCC (w/o. pose opt.) 0.09049 0.01622
Ours 0.04891 0.00245

Lastly, the proposed method is compared with velo2cam [9],
a state-of-the-art method that uses a fiducial pattern to perform
an offline calibration procedure for any pair of sensors involv-
ing LiDARs or cameras. As stated before, configuration D is
used in this comparison as the cited approach requires overlap
between the sensors’ fields of view. To perform this compar-
ison, the calibration target used in that work was recreated in
CARLA, and the same setup was employed to obtain results
in the simulation environment with both approaches. Table III
suggests that the accuracy of the results from both approaches
is comparable, with the velo2cam approach achieving a lower
translation error, whereas the proposed method yields a lower
rotation error.

TABLE III
TRANSLATION AND ROTATION ERROR COMPARISON BETWEEN THE

PROPOSED METHOD AND VELO2CAM USING CONFIGURATION D.

Translation Rotation
Method error (m) error (rad)
Proposed method 0.00161 0.00012
velo2cam [9] 0.00017 0.00106

We note that, unlike the approach being compared, our
method can perform the calibration while the vehicle moves
without requiring a specific setup; furthermore, LiDAR scan-
ners do not need to share a common field of view, which
makes possible the calibration of configurations such as A, B,
and C in Table I.
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Fig. 5. Box plot of the calibration errors for different sources of
odometry: gt loc. represents the ground-truth localization, LOAM loc.
the LOAM localization, and 0.05m error and 0.1m error, the ground-
truth localization with additive Gaussian noise.

C. Real Environment Results

Results in the previous section quantitatively analyze the
proposed method’s performance in a simulation environment.
However, for a complete assessment of the performance of
the approach, we also carried out experiments in real environ-
ments. Although ground truth is unavailable in this case, the
final result can still be qualitatively evaluated by analyzing the
alignment between both point clouds when transformed into a
common coordinate system using the calibration data.

To perform these experiments, two different platforms have
been used. On the one hand, two LiDAR sensors were mounted
in different positions on the autonomous vehicle platform
shown in Fig. 6 and described in [3], [23]. On the other
hand, we also obtained results from an automated minibus
with a configuration similar to the one depicted in Fig. 1.
In both cases, a 32-layer LiDAR was used as the source
sensor, and a 16-layer LiDAR as the target sensor. In the first
platform, the target device was tilted with respect to the source
device, as shown in Fig. 6, whereas in the second platform,
both LiDARs were aligned but placed at opposite ends of the
bus. Both vehicles were naturalistically driven through urban
environments while the data was being recorded. As with the
simulation experiments, 50 clouds from each sensor, sampled
with an interval of 0.5 s, were used.

The results of the subsequent calibration using these record-
ings are shown in Fig. 7, which shows the alignment of both

Fig. 6. Autonomous vehicle platform used to perform real experiments
with LiDAR sensors attached.

clouds focusing on key points of the calibration, such as the
ground, buildings’ edges, or trees and streetlights. As can be
seen, the accuracy of the calibration results enables the use
of the combined information from both sensors to represent
the scene, thus enhancing the performance of the perception
algorithms downstream.

V. CONCLUSIONS

A new LiDAR sensor calibration method based on the
iterative application of the ICP algorithm has been described.
The results present accuracy levels compatible with the re-
quirements of automotive applications, enabling proper sensor
data alignment even at long distances.

The proposed method allows LiDAR calibration to be
performed on a broad range of sensor setups, including those
in which sensors do not share a common field of view,
which is a feature that is not usual in comparable approaches.
Another key advantage of the approach is its simplicity, as
parameters can be obtained through a fast procedure that does
not require specific calibration setups or fiducial markers. The
scenario used to perform the calibration should ideally have
elements that can serve as a reference, such as a flat road
and several nearby objects or buildings that will help both the
LOAM odometry and the ICP algorithm; nonetheless, these
requirements can be easily fulfilled on a wide variety of typical
traffic scenarios.

The experiments, both in simulated and real environments,
have validated the method’s usefulness. Furthermore, the
source code of this algorithm has been publicly released
as a Robot Operating System (ROS) package so that the
community can replicate the results and apply the method to
different use cases.

Future work will focus on the following lines: first, we
will explore the possibilities of generalizing this method to
work with different point-cloud-based sensors, such as radar
or stereo cameras. On the other hand, we aim to determine
the initial estimation of the sensors’ poses automatically, thus
removing the only manual intervention currently required in
the procedure. Finally, optimizing the process will result in
fewer requirements to execute the method, facilitating its use
in all kinds of automotive platforms.
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(a) (b)

Fig. 7. Real experiments results where the accumulated point clouds from both LiDAR sensors (each one in a different color) are transformed to
a common frame. In 7(a), an overview is provided on the left side, and certain relevant details marked with A and B are cropped and zoomed in
on the right side. In 7(b), two different views of the same scene are provided, with A and B pointing out details showing a good calibration in both
views.
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