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Résumé 

Le système LiDAR mobile (SLM) est une technologie d'acquisition de données de 

pointe qui permet de cartographier les scènes du monde réel en nuages de points 

3D. Les applications du SLM sont très vastes, de la foresterie à la modélisation 3D 

des villes, en passant par l'évaluation de l'inventaire routier et la cartographie des 

infrastructures portuaires. Le SLM peut également être monté sur diverses 

plateformes, telles que des plateformes aériennes, terrestres, marines, etc. 

Indépendamment de l'application et de la plateforme, pour s'assurer que le SLM 

atteigne sa performance optimale et sa meilleure précision, il est essentiel de traiter 

correctement les erreurs systématiques du système, spécialement l'erreur des 

angles de visée à laquelle on s’intéresse particulièrement dans cette thèse. L'erreur 

des angles de visée est définie comme le désalignement rotationnel des deux parties 

principales du SLM, le système de positionnement et d'orientation et le scanneur 

LiDAR, introduit par trois angles de visée. En fait, de petites variations angulaires 

dans ces paramètres peuvent causer des problèmes importants d’incertitude 

géométrique dans le nuage de points final et il est vital d'employer une méthode 

d'alignement pour faire face à la problématique de l'erreur des angles de visée de 

ces systèmes. 

La plupart des méthodes existantes d'alignement des angles de visée qui ont été 

principalement développées pour les SLM aériens et terrestres, tirent profit 

d’éléments in-situ spécifiques et présents sur les sites de levés et adéquats pour ces 

méthodes. Par exemple, les éléments linéaires et planaires extraits des toits et des 

façades des maisons. Cependant, dans les environnements sans présence de ces 

éléments saillants comme la forêt, les zones rurales, les ports, où l'accès aux 

éléments appropriées pour l'alignement des angles de visée est presque impossible, 

les méthodes existantes fonctionnent mal, voire même pas du tout. 

Par conséquent, cette recherche porte sur l'alignement des angles de visée d'un 

SLM dans un environnement complexe. Nous souhaitons donc introduire une 

procédure d'acquisition et traitement pour une préparation adéquate des données, 
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qui servira à la méthode d'alignement des angles de visée du SLM. Tout d'abord, 

nous explorons les différentes possibilités des éléments utilisés dans les méthodes 

existantes qui peuvent aider à l'identification de l’élément offrant le meilleur potentiel 

pour l’estimation des angles de visée d’un SLM. Ensuite, nous analysons, parmi un 

grand nombre de possibles configurations d’éléments (cibles) et patrons de lignes 

de balayage, celle qui nous apparaît la meilleure. Cette analyse est réalisée dans 

un environnement de simulation dans le but de générer différentes configurations de 

cibles et de lignes de balayage pour l’estimation des erreurs des angles de visée 

afin d’isoler la meilleure configuration possible. Enfin, nous validons la configuration 

proposée dans un scénario réel, soit l'étude de cas du port de Montréal. Le résultat 

de la validation révèle que la configuration proposée pour l’acquisition et le 

traitement des données mène à une méthode rigoureuse d'alignement des angles 

de visée qui est en même temps précise, robuste et répétable. Pour évaluer les 

résultats obtenus, nous avons également mis en œuvre une méthode d’évaluation 

de la précision relative, qui démontre l'amélioration de la précision du nuage de 

points après l’application de la procédure d'alignement des angles de visée. 
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Abstract 

A Mobile LiDAR system (MLS) is a state-of-the-art data acquisition technology that 

maps real-world scenes in the form of 3D point clouds. The MLS's list of applications 

is vast, from forestry to 3D city modeling and road inventory assessment to port 

infrastructure mapping. The MLS can also be mounted on various platforms, such 

as aerial, terrestrial, marine, and so on.  

Regardless of the application and the platform, to ensure that the MLS achieves its 

optimal performance and best accuracy, it is essential to adequately address the 

systematic errors of the system, especially the boresight error. The boresight error 

is the rotational misalignment offset of the two main parts of the MLS, the positioning 

and orientation system (POS) and the LiDAR scanner. Minor angular parameter 

variations can cause important geometric accuracy issues in the final point cloud. 

Therefore, it is vital to employ an alignment method to cope with the boresight error 

problem of such systems. 

Most of the existing boresight alignment methods, which have been mainly 

developed for aerial and terrestrial MLS, take advantage of the in-situ tie-features in 

the environment that are adequate for these methods. For example, tie-line and tie-

plane are extracted from building roofs and facades. However, in low-feature 

environments like forests, rural areas, ports, and harbors, where access to suitable 

tie-features for boresight alignment is nearly impossible, the existing methods 

malfunction or do not function. 

Therefore, this research addresses the boresight alignment of a marine MLS in a 

low-feature maritime environment. Thus, we aim to introduce an acquisition 

procedure for suitable data preparation, which will serve as input for the boresight 

alignment method of a marine MLS. First, we explore various tie-features introduced 

in the existing ways that eventually assist in the identification of the suitable tie-

feature for the boresight alignment of a marine MLS. Second, we study the best 

configuration for the data acquisition procedure, i.e., tie-feature(s) characteristics 

and the necessary scanning line pattern. This study is done in a simulation 
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environment to achieve the best visibility of the boresight errors on the selected 

suitable tie-feature. Finally, we validate the proposed configuration in a real-world 

scenario, which is the port of Montreal case study. The validation result reveals that 

the proposed data acquisition and processing configuration results in an accurate, 

robust, and repeatable rigorous boresight alignment method. We have also 

implemented a relative accuracy assessment to evaluate the obtained results, 

demonstrating an accuracy improvement of the point cloud after the boresight 

alignment procedure. 
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Introduction 

Context 

For more than two decades, mobile LiDAR systems (MLS) have played a pivotal role 

in mapping our world to 3D point cloud datasets with unprecedented accuracy and 

density (Kalenjuk and Lienhart 2022; Heinz et al. 2020). An MLS comprises two main 

components, the positioning and orientation system (POS) and the LiDAR scanner. 

With the novel advances in sensor hardware technology, on the one hand, these 

components have reduced drastically in terms of size and price, and on the other 

hand, they have increased significantly in terms of accuracy and efficiency. 

Therefore, nowadays, these systems can be mounted on a variety of kinematic 

platforms (Kukko et al. 2012), e.g., aerial (Skaloud and Lichti 2006), drone (Keyetieu 

and Seube 2019), terrestrial (Leslar, Wang, and Hu 2016; Glennie 2008), marine 

(Shi et al. 2017; Thies 2011; Dix et al. 2012), backpack (Rönnholm et al. 2016; 

Hyyppä et al. 2020), and motorcycles (Shi et al. 2021; Yan et al. 2019). As a result, 

they can be applied in various environments and multiple applications, such as digital 

terrain model generation (Kraus and Pfeifer 2001; Costantino and Angelini 2013; 

Wang et al. 2019; Ziyue Chen, Gao, and Devereux 2017), forest inventory mapping 

(Mokroš et al. 2021; Bauwens et al. 2016; Ryding et al. 2015), 3D city modeling for 

digital twin creation (Wang et al. 2019; Huang et al. 2013), transportation corridor 

mapping (Vosselman and Maas 2011), road assets inventory (Guan et al. 2016; 

Heinz et al. 2019), and marine infrastructure monitoring (Thies 2011; Shi et al. 2017). 

In this thesis, the center of interest is a mobile LiDAR system mounted on a marine 

platform, also known as a marine mobile LiDAR system (marine MLS), used for 

marine infrastructure monitoring applications.  

A marine MLS's main advantage is its ability to navigate through maritime 

environments such as ports, harbors, and coastal areas. It can regularly acquire 3d 

point clouds and is mainly used in maritime infrastructure inspection and coastal 

area management applications. To ensure that these infrastructures remain 

operational, they must be monitored regularly, have a clear assessment of the 

various infrastructure conditions, and finally, make a list of priorities of the required 



 

2 

maintenance and repair works based on the severity of the infrastructure damages. 

In general, for the infrastructure inspection, we need a 3D point accuracy at a 95 % 

confidence interval of less than 5 cm with a density of more than 200 pts/m2 (Olsen 

et al. 2013; Guan et al. 2016), which is approximately the accuracy and density 

delivered by an MLS. However, to attain the accuracy needed for the infrastructure 

monitoring task, various factors that can influence the 3D point accuracy of an MLS 

must be addressed.  

As mentioned earlier, an MLS comprises a POS and a LiDAR scanner. The POS 

comprises an inertial measurement unit (IMU) that measures the orientation and a 

GNSS antenna that receives the necessary data for measuring the platform's 

position. The LiDAR scanner measures the coordinates of each point of a point cloud 

in its local frame. We utilize these observations to generate a 3D point cloud of the 

area of interest. Thus, the sources that impact the 3d point cloud accuracy are 

observations from the LiDAR scanner and the POS. The other source of error is the 

POS and LiDAR scanner mounting error which can cause systematic errors and, as 

a result, degrade the accuracy of 3D points (Skaloud and Lichti 2006; Hebel and 

Stilla 2012). The mounting errors are divided into two main parts, the lever arm error 

and the boresight error (Schenk 2001). The lever arm error, which is the translation 

vector between the optical center of the LiDAR and the gravity center of the position 

and orientation system (POS), is typically measured with conventional surveying 

methods, and it is considered constant in calculations (Skaloud and Lichti 2006; 

Kalenjuk and Lienhart 2022), which is also the case in this thesis. The second 

mounting error, the boresight error, is the rotational misalignment between the POS 

and the LiDAR frames. 

Contrary to the lever arm error, the boresight error cannot be measured directly with 

an external measurement tool, and as a matter of fact, it is preferable to estimate 

this error in a dynamic (in-flight) mode midst of the scanning operation (D. Li et al. 

2016; Ravi and Habib 2020; Lindenthal et al. 2011). Therefore, by doing this, we 

ensure that the POS initialization has been done correctly and that the POS 

observation uncertainties are as small as possible. The reason for that is to reduce 
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the impact of the POS attitude observations on the estimation of the boresight error 

as much as possible, which means that if the POS attitude observations have high 

uncertainty, this will indeed affect the boresight error estimation.  

Suppose we do not adequately address the errors of an MLS when scanning objects 

of interest with multiple passages. We can witness accumulated positional deviation 

and displacement in the final datasets, as shown in Figure a. 

 
 

(a) (b) 

  
(c) (d) 

Figure a - Systematic errors effect on MLS point cloud that scanned an object of interest 

with multiple passages illustrated with a different color for each passage. (a) Drone MLS 

(Ravi et al. 2018). (b) Drone MLS (Keyetieu and Seube 2019). (c-d) Marine MLS (Shahraji 

and Larouche 2022). 

In general, approaches that address MLS error reduction consist of two main 

categories: rigorous methods and non-rigorous methods.  

The rigorous methods, also known as system-driven methods, determine the source 

of errors and estimate their standard deviations. Meanwhile, they require access to 

raw data of each component of the system, such as the trajectory observations in 
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the POS frame and the LiDAR point coordinates in the scanner frame, which are not 

always available to the end-user. 

On the other hand, the non-rigorous methods, also known as data-driven methods, 

reduce the MLS error and utilize the final georeferenced point cloud as input. They 

do not need further information on the trajectory or LiDAR scanner raw data. 

Generally, the methodology for handling MLS errors, such as boresight systematic 

error, can be described in three main steps. The first step is scanning a scene with 

overlapped strips of different directions and a specific line pattern that magnifies the 

discrepancies between generated point clouds. The second step is to connect the 

overlapped strips with tie-features. This step includes the detection of the tie-features 

and the matching of the accurate correspondences between various strips. The third 

step is to reduce the discrepancies between the tie-features on overlapped strips by 

adjustment methods such as the least squares technique. 

The prevailing tie-features that are used in the MLS errors reduction methods are 

tie-point (Morin and El-Sheimy 2002; J. Zhang, Jiang, and Jiang 2012; Glira et al. 

2015; Z. Li, Tan, and Liu 2019), tie-line (Vosselman 2002; Le Scouarnec et al. 2014; 

Ndir 2019), and tie-plane (Skaloud and Lichti 2006; Ravi and Habib 2020; Heinz et 

al. 2020). As mentioned before, these tie-features reveal the discrepancies between 

overlapped strips. These discrepancies are formed primarily because of the errors 

of the MLS, especially the boresight error. The performance of the MLS error 

reduction methods largely depends on the availability of these geometric tie-features 

and their respective configurations (D. Li et al. 2016; Ravi and Habib 2020; Heinz et 

al. 2020). The existing methods usually perform better in dense urban areas, where 

we have access to many geometric tie-features like planes with various 

configurations and orientations (Hebel and Stilla 2012). Therefore, these methods 

may encounter severe issues in low-feature environments like forest areas, rural 

zones, or port and harbor sections, which suffer from the lack of suitable geometric 

tie-features. 
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It is also essential to address the maritime context of this research. Figure b shows 

examples of marine infrastructure like quay wall surfaces. We can notice that these 

infrastructures suffer from corrosion due to the humidity of the port area. Also, due 

to the permanent exposure to salty water, the infrastructures built from iron or steel 

usually are corroded and oxidized and, thus, deformed. Therefore, we cannot count 

these surfaces as adequate tie-features for the MLS reduction methods. 

 
 

(a) (b) 

  
(c) (d) 

Figure b - (a) (b) (c) Damaged quay walls as the central port infrastructure (Courtesy of 

CIDCO) (d) Corroded steel quay wall with submerged steel surface (Allianz Global Corporate & 

Specialty 2016). 

Research Aim and Objectives 

In summary, the problem we want to address in this thesis is the reduction of errors, 

especially the boresight error of a marine mobile LiDAR system that operates in a 

low-feature maritime environment. This problem motivated the CIDCO, an R&D 

center for hydrographic mapping, and Université Laval to collaborate on a research 

project financed by Mitacs Acceleration Funding, which led to this thesis. 
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This study aims to define, design, and evaluate the optimal configuration of a suitable 

data acquisition procedure to accomplish the boresight alignment of a marine MLS 

for infrastructure inspection. Based on the aim of the study, we define the research 

objectives in the context of port infrastructure monitoring as follows, 

Objective # 1: Identify a suitable geometric tie-feature for the boresight alignment of 

a marine mobile LiDAR system. 

Objective # 2: Design an optimal site configuration and an efficient data acquisition 

procedure for extracting suitable geometric tie-features for the boresight alignment 

of a marine mobile LiDAR system. 

Objective # 3: Evaluate the proposed configurations of the data acquisition 

procedure for the boresight alignment of a marine mobile LiDAR system in terms of 

robustness, accuracy, and repeatability. 

Thesis Outline 

The thesis is divided into three main sections, each responding to one of the 

threefold objectives. 

Mobile LiDAR system, its errors, and existing method for reduction of MLS 

errors. Chapter 1 introduces an MLS and its components while describing the errors 

that may affect the system. This chapter also represents survey-grade monitoring 

applications that require high-precision, high-accuracy, and high-density point 

clouds. Chapter 2 presents a comprehensive review of the existing methods for 

reducing MLS errors and, as a result, improving the generated point cloud accuracy. 

This section responds to the first objective of the thesis. 

Optimal configuration of boresight alignment site design with a simulated 

approach. Chapter 3 addresses the development of an MLS point cloud generator 

we named ‘MLS simulator’ in this thesis. The MLS simulator puts together a virtual 

environment for the analysis of each of the systematic errors of the system 

individually and collectively with different combinations, which leads to an optimal 
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design of the best configuration for the boresight alignment site design in the context 

of port infrastructure monitoring. A peer-reviewed scientific paper entitled “Analysis 

of systematic errors of mobile LiDAR systems: a simulation approach” represents 

the main content of this chapter. This section addresses the second objective of the 

thesis. 

Implementation in the real world and accuracy assessment of the proposed 

method. Chapter 4 presents the proposed boresight alignment site design and 

configuration of a mobile LiDAR system in the real-world context of port infrastructure 

monitoring. In this chapter, we also use the MLS simulator to select the best 

configuration of the suggested geometric tie-features. It also presents the 

implementation procedure of the developed boresight alignment method to a real 

dataset acquired at the Port of Montreal. The detail of the implementation procedure 

and each part's results are described in this chapter. This chapter also describes the 

evaluation of the proposed method and the obtained results. A peer-reviewed 

scientific paper entitled “Case Study: Rigorous Boresight Alignment of a Marine 

Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure 

Monitoring” represents the main content of this chapter. This section addresses the 

third objective of the thesis. 

The Conclusion and Future Works Section presents a summary of the thesis, 

emphasizing its main contributions and perspectives for future works.  The 

bibliography and the appendices follow it. Appendix A describes the assembly 

phase of the in-house customized MLS. Appendix B presents algorithms and a 

portion of the source codes developed for this research. Finally, Appendix C is a 

complementary analysis of all the systematic errors using our simulation approach. 
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Chapter 1 - Mobile LiDAR Systems 

1.1 Introduction 

This chapter aims to give a broad description of mobile LiDAR systems (MLS), and 

at the same time, a more specific view of the in-house customized MLS mounted on 

a hydrographic vessel (marine MLS) in the context of the research presented in this 

thesis. 

Besides the overall presentation of an MLS, we discuss its main components, i.e., 

the LiDAR scanner and the positioning and orientation system (POS), with a 

particular emphasis on the errors that reduce the quality of the point cloud generated 

by an MLS. The last section of this chapter discusses two survey-grade applications 

of an MLS, e.g., road inventory assessment and port infrastructure monitoring. 

1.2 Main Components 

In this section, we introduce all components of an MLS and explain in detail the 

procedure that generates the 3D georeferenced point cloud of the scanned scene of 

interest from raw observations produced by every sensor individually. 

1.2.1 LiDAR Scanner 

The LiDAR (Light Detection and Ranging) scanner measures the distance between 

its optical center and a point on the object of interest by emitting a light pulse and 

subsequently calculating the time delay that the emitted light pulse creates by 

traveling this distance (Vosselman and Maas 2011; Shan and Toth 2008). If we 

directly measure the time delay by an internal clock, the method is called time-of-

flight or TOF (Vosselman and Maas 2011). However, if we measure the phase 

difference measurement of the transmitted and received laser beam, it is called the 

continuous wave (CW) method (Shan and Toth 2008). The TOF-based systems 

cover a much longer distance (up to 1000 m) than the CW-based systems that have 

a much shorter operating range (less than 120 m). On the other hand, the data 

acquisition rate of the CW-based systems (for example, for Z+F Profiler 9012® is 



 

9 

1.016 million points per second) is higher than the TOF-based systems (for example 

for RIEGL® VZ-400i is 500,000 points per second) (Vosselman and Maas 2011). 

In this research, we utilize a 2D profiler as a LiDAR scanner, the Z+F Profiler® 9012 

manufactured by Zoller + Fröhlich GmbH company, which is considered a CW-based 

system and is a high-speed phase-based laser scanner with a data acquisition rate 

of more than 1 million points per second (1 MHz) and maximum scan speed 

frequency of 200 scans (profiles) per second (Zoller & Frohlich GmbH 2012; Heinz 

et al. 2018). Table 1.1 provides the main characteristics of the Z+F Profiler® 9012.  

The Z+F Profiler® 9012 records single 2D profiles; therefore, to deliver 3D point 

clouds of the environment, this 2D scanner must be mounted on a mobile platform, 

such as a terrestrial vehicle or a hydrographic vessel, and traverse a 3D trajectory 

(Zoller & Frohlich GmbH 2012; Heinz et al. 2018) as shown in Figure 1.1. 

  
(a) (b) 

Figure 1.1 – Z+F Profiler ® 9012. (a) mounted on a terrestrial platform (b) scanner local frame 

with the center of phase and the scanner rotation convention 

The Z+F Profiler® 9012 has a 360º field of view, and the coordinates of the point of 

interest are first calculated in the local coordinate system (LiDAR scanner frame) 

with the origin (0, 0, 0) at the optical center of the laser scanner. Based on the 

specifications of this scanner in terms of accuracy and density, the Z+F Profiler® 

9012 has the potential to produce a 3D point cloud for survey-grade applications 

such as port infrastructure monitoring. 
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Table 1.1 – Specifications of ZF Profiler 9012 (Zoller & Frohlich GmbH 2022) 

 

Sensor Type Technology Range Error 
Angular 

Resolution 
Beam 

Divergence 
Angular 

Uncertainty 

ZF LiDAR 2D 
Profiler® 9012 

Continuous 
Wave 

0.0087 m 0.0088 ° < 0.5 mrad 0.02 ° 

 

1.2.2 Positioning and Orientation System (POS) 

As mentioned in the previous section, to generate a 3D point cloud presentation of 

the real-world environment, we need to integrate the LiDAR scanner data with a POS 

that estimates the trajectory of the moving platform at a rate between 50 to 200 Hz. 

The POS comprises two main parts: an inertial navigation system (INS) and a global 

navigation satellite system (GNSS) receiver. In the following, we explain in detail 

these two components. 

An INS consists of an inertial measurement unit (IMU) and a processing unit, which 

its IMU comprises three gyroscopes for the angular rates measurement and three 

accelerometers for the linear accelerations measurement of the system in three 

sensitive axes. The output of such a system is an estimation of the position and the 

platform's velocity (Lefevre et al. 2020). 

The GNSS receiver consists of an antenna and an embedded processor. The 

position of each satellite in the Earth’s orbit and its precise atomic time are 

transmitted to the GNSS receiver by electromagnetic signals. With the information 

of a minimum of four visible satellites, we can estimate the system's position, 

velocity, and time (Schaer 2010). 

INS and GNSS can both estimate the position and velocity of the system. However, 

there are some differences between these two technologies. The INS estimates the 

six degrees of freedom or parameters at a higher frequency (up to 200 Hz) with 

reasonable accuracy for a short period. However, it usually drifts drastically after that 

short time. Some studies show that a trajectory adjustment using INS observations 
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only is feasible for distances below 100 m (Hussnain, Elberink, and Vosselman 

2018). On the other hand, although the GNSS receiver collects data at a lower 

frequency (below 10 Hz) and contains more noise, the capability to re-adjust its 

position frequently makes this technology a more stable source of position data for 

a more extended period. Thus, the natural approach is to integrate these two 

technologies for the estimation of the position and velocity of the trajectory in a long 

scanning operation on mobile platforms. 

One approach to integrating GNSS and INS technologies is the GNSS-aided INS 

technique. The GNSS-aided INS estimates unknown variables, i.e., position, 

orientation, and velocity, based on a series of uncertain measurements. The GNSS-

aided INS is done with the help of a Kalman Filter estimation/prediction algorithm 

(Petovello 2003; Skog 2007; Kalman 1960). Thus, using a Kalman Filter, the GNSS-

aided INS technique provides more accurate position, velocity, and attitude 

(orientation) parameters than each GNSS or INS in a standalone mode.  Also, the 

GNSS-aided INS can fill the gap between the GNSS and INS measurements. As 

mentioned earlier, the GNSS measurements typically have 1 Hz (one measurement 

per second), and the INS measurements typically have 200 Hz (200 measurements 

per second). Therefore, GNSS measurements can adjust the drift issue of INS 

measurements (Farrell 2008; Jekeli 2012; Groves 2013). 

In the following, we describe the characteristics of the GNSS-aided INS used in the 

customized in-house MLS that was conceived in this research, the Hydrins GNSS-

aided INS manufactured by iXBlue company. This navigation-grade INS designed 

explicitly for hydrographic surveys is composed of an IMU with three fiber-optic 

gyroscopes (FOG), three high-precision pendulum-type accelerometers, and a 

Septentrio GNSS receiver (Lefevre et al. 2020; IXblue 2019), as shown in Figure 

1.2. 
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Figure 1.2 – Hydrins/iXBlue gyroscope conceptual model (courtesy of iXBlue.inc) 

Here, we present two essential characteristics of the IMU component of the 

Hydrins/iXblue GNSS-aided INS. 

Bias Stability: This parameter presents the deviation of the gyroscope from its 

mean value.  Since the FOG is a solid-state sensor, it does not produce any acoustic 

vibration over a high dynamic range. For Hydrins/iXblue, this value is 0.0065 

(deg/hr), which means that it will take approximately six days for a drift of 1 deg with 

this gyroscope, which shows its stability. 

Angle Random Walk (ARW): This parameter is a noise specification of the sensor 

in units of deg/(hr)1/2. It describes the average deviation or error the gyroscopes will 

have when the integrated signal (Stockwell 2003). In Hydrins/iXblue, the FOG has 

an ARW of 0.003 deg/(hr) ½, which means after 10,000 sec (2.7 h), the standard 

deviation will be 0.3 deg, which is considered a shallow level of noise. 

These two characteristics of Hydrins/iXblue justify their utilization in integrating with 

the LiDAR scanner. Figure 1.3 illustrates a GNSS-aided INS, which integrates the 

IMU with the GNSS receiver and an embedded processor that implements the 

Kalman filter algorithm.  
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Figure 1.3 – Hydrins/AsteRx GNSS-aided inertial navigation system   

The embedded computer in the INS uses these measurements and, through its 

algorithms, calculates the 3D angular positions, also known as orientations (roll, 

pitch, and heading), 3D velocity, and 3D position of the moving platform. The 

algorithm in the embedded computer also uses data from the GNSS receiver to 

provide initial values for the integrations and to refine the estimated parameters. 

One of the main advantages of Hydrins INS is the possibility to calculate the true 

heading only with a single GNSS receiver. A Kalman filter also does this calculation 

in the embedded computer inside the INS (Petovello 2003; Angrisano 2010). With 

some specific maneuver on the trajectory, we initiate a necessary variation on the 

velocity vector, which eventually leads the Kalman filter to converge the initial 

approximative heading towards a true heading estimation.  

The marine MLS is exposed to a vertical displacement due to the rise and fall 

movements of the vessel, which is caused by the sea wave motion and often occurs 
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in marine survey environments. This vertical displacement can cause an error 

relative to the mean sea level, called the heave (see Figure 1.4). Hydrins INS 

measures this vertical displacement and implements a post-processing adjustment 

to reduce its impact on the final trajectory data. (IXblue 2019; Novatel 2021; Applanix 

2021). 

 

Figure 1.4 – Heave measurement relative to the mean sea level (Novatel 2021) 

Heave measurements mainly aid the acquisition system sensors like SONAR and 

LiDAR to mitigate the impact of this vertical error that can cause a significant error 

in the range measurement. Table 1.2 represents the specifications of the iXblue 

Hydrins. 

Table 1.2 – Hydrins specifications (IXblue 2019) 

 

Sensor Type Type 
Heading 
accuracy 

Roll and Pitch 
accuracy 

Horizontal 
accuracy 

Vertical 
accuracy 

Hydrins iXblue 
Navigation 
grade INS 

0.01 ° 0.01 ° 
0.006 + 0.5 

ppm 
0.01 + 1 

ppm 

 

Finally, we employ a post-processing procedure on the logged trajectory data to 

reduce the uncertainty of the orientation and positioning data. Offline post-

processing procedure makes it easy to access the data for each epoch of the 

trajectory and before and after that epoch. Thus, we can use all this information to 
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optimize the orientation and positioning data and produce a so-called “smoothed 

best estimation trajectory” or SBET solution (Vosselman and Maas 2011). 

1.3 Direct Georeferencing Mathematical Model 

In this section, we define the direct georeferencing procedure that takes the raw 

point cloud data observed by the LiDAR scanner and the trajectory data observed 

by the POS and delivers a georeferenced 3D point cloud of the scanned scene. As 

shown in Figure 1.5, we transfer the raw data into three coordinate systems (or 

frames); from the LiDAR local frame to the POS frame and finally to the Local 

Geodetic Frame (LGF). When applying the boresight alignment, only a tiny portion 

of the earth is used, which can be considered tangential to the earth's surface. This 

assumption allows us to simplify the calculation of the georeferenced coordinates of 

the points onto a local geodetic frame. 

Equation (1.1) represents the mathematical model of the direct georeferencing 

module of an MLS, similar to the formulation presented in different articles 

(Ackermann 1999; Wehr and Lohr 1999). 

The output of the Equation (1.1) model is the georeferenced point in a coordinate 

system such as the Local Geodetic Frame (LGF), which is a relative frame with 

respect to the tangential plane on the area of interest on the earth. 

[
𝑋𝐿𝐺𝐹

𝑌𝐿𝐺𝐹

𝑍𝐿𝐺𝐹

] = [

𝑃𝑋
𝐿𝐺𝐹

𝑃𝑌
𝐿𝐺𝐹

𝑃𝑍
𝐿𝐺𝐹

] + 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ) (𝑅𝐿𝑖𝐷𝐴𝑅

𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) [

𝑥𝐿𝑖𝐷𝐴𝑅

𝑦𝐿𝑖𝐷𝐴𝑅

𝑧𝐿𝑖𝐷𝐴𝑅

] + [

𝑎𝑋
𝑃𝑂𝑆

𝑎𝑌
𝑃𝑂𝑆

𝑎𝑍
𝑃𝑂𝑆

] ) (1.1) 

In Equation (1.1), we recognize three frames, the LiDAR sensor local frame, the POS 

navigation frame, and the LGF mapping frame. 
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Figure 1.5 – Transformation between three main reference frames (LiDAR, POS, and LGF) 

Here, we describe each part of the direct georeferencing mathematical model, 

• [𝑋𝐿𝐺𝐹 𝑌𝐿𝐺𝐹 𝑍𝐿𝐺𝐹]𝑇 is the computed 3D position vector of the georeferenced point 

in the LGF frame. 

• [𝑃𝑋
𝐿𝐺𝐹 𝑃𝑌

𝐿𝐺𝐹 𝑃𝑍
𝐿𝐺𝐹]𝑇 is the observed 3D position vector for each trajectory point in 

the LGF frame by the GNSS receiver. 

• 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ) is the rotation matrix, made of three attitude angles: roll (r), pitch (p), 

and heading (h) observed by the IMU, between the gravity center of the POS frame 

and the reference point of the LGF frame. 

• 𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) is the rotation matrix, which consists of three boresight angles (𝛼, 𝛽, 𝛾) 

estimated by calibration between the LiDAR frame and the POS frame. 
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• [𝑥𝐿𝑖𝐷𝐴𝑅 𝑦𝐿𝑖𝐷𝐴𝑅 𝑧𝐿𝑖𝐷𝐴𝑅]𝑇 is the observed 3D position vector of each target point by 

the LiDAR scanner with respect to the optical center of the scanner in the LiDAR 

frame. 

• [𝑎𝑋
𝑃𝑂𝑆 𝑏𝑌

𝑃𝑂𝑆 𝑎𝑍
𝑃𝑂𝑆]𝑇 is the 3D lever arm vector between the LiDAR scanner and the 

POS origin estimated by calibration. 

Figure 1.6 illustrates the three principal coordinate systems that enable us to 

generate a 3D georeferenced point cloud. 

 

Figure 1.6 – Three main coordinate systems in a georeferencing mathematical model, 

Geographic coordinate system (latitude, longitude, and ellipsoidal height), Earth-Centric-Earth-

Fix (ECEF), and North-West-Up (NWU). (Groves 2013) 

The GNSS receiver delivers the position of the platform in a geographic coordinate 

system, which consists of latitude (𝜑), longitude (𝜆), and ellipsoid height (ℎ). 

The positioning coordinates from the geographic coordinate system are passed 

through the Earth-Centric-Earth-Fix (ECEF) coordinate system to achieve the 

coordinates in the local geodetic frame. The transformation between various 

coordinate systems is illustrated in Figure 1.7. Also, the positions of the points are 
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at the GNSS receiver in a geographical coordinate system with latitude (𝜑), longitude 

(𝜆), and ellipsoid height (ℎ). The points from the geographic coordinate system with 

(𝜑, 𝜆, ℎ) are transformed to coordinates of the terrestrial reference frame (TRF) of the 

ECEF coordinate system (Cai, Chen, and Lee 2011). 

 

Figure 1.7 – Transformations between coordinate systems 

Finally, the coordinates from TRF are then transformed to a local geodetic frame 

(LGF) with NWU (North-West-Up) convention in our case (IXblue 2019). All these 

transformations are available in Equation (1.2). 

𝑃𝐿𝐺𝐹 = 𝑅𝐸𝐶𝐸𝐹
𝐿𝐺𝐹 (𝜆𝑅𝑒𝑓, 𝜑𝑅𝑒𝑓

) [𝑃𝐸𝐶𝐸𝐹(𝜆, 𝜑) − 𝑃𝐸𝐶𝐸𝐹(𝜆𝑅𝑒𝑓, 𝜑𝑅𝑒𝑓
)] (1.2) 

Equation (1.2) consists of the coordinates of the points in the ECEF coordinate 

system (𝑃𝐸𝐶𝐸𝐹), which are calculated with Equation (1.3) from the geographical 

coordinates of each point (𝜑, 𝜆, ℎ), 
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𝑃𝐸𝐶𝐸𝐹 = (
𝑥
𝑦
𝑧
)

𝐸𝐶𝐸𝐹

= [

(𝑁𝐸 + ℎ)𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆
(𝑁𝐸 + ℎ)𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆

(𝑁𝐸(1 − 𝑒2) + ℎ)𝑠𝑖𝑛𝜑

] (1.3) 

 
Radius of curvature in the vertical prime WGS84 datum 

𝑁𝐸 =
𝑎

√1 − 𝑒2 sin2 𝜑
 

Semi-major axis First eccentricity 

𝑎 = 6378137.0 𝑚 𝑒 = 0.08181919 

 

Another part of Equation (1.2) is the rotation matrix between the ECEF and LGF 

(𝑅𝐸𝐶𝐸𝐹
𝐿𝐺𝐹 ). Figure 1.8 illustrates this rotation matrix, composed of two inner rotation 

matrices. 

 

(a) 
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(b) 

Figure 1.8 – Two rotations from LGF to ECEF coordinate system with their respective rotation 

matrix. (a) Rotation around the Z axis. (b) Rotation around the Y axis 

Equation (1.4) represents the formulation to calculate 𝑅𝐸𝐶𝐸𝐹
𝐿𝐺𝐹  based on the schematic 

illustration of the rotations in Figure 1.8. 

𝑅𝐸𝐶𝐸𝐹
𝐿𝐺𝐹 (𝜆, 𝜑) = [𝑅𝐿𝐺𝐹

𝐸𝐶𝐸𝐹(𝜆, 𝜑)]𝑇 = [𝑅𝑍(π + 𝜆)𝑅𝑌(
π

2
− 𝜑)]

𝑇

 

 
(1.4) 

𝑅𝑍(π + 𝜆) = [
cos (π + 𝜆) −sin (π + 𝜆) 0
sin (π + 𝜆) cos (π + 𝜆) 0

0 0 1

] 𝑅𝑌 (
π

2
− 𝜑) =

[
 
 
 
 cos (

π

2
− 𝜑) 0 −sin (

π

2
− 𝜑)

0 1 0

sin (
π

2
− 𝜑) 0 cos (

π

2
− 𝜑) ]

 
 
 
 

 

 

  

Finally, to calculate the latitude and longitude of the reference point (𝜆𝑅𝑒𝑓 , 𝜑𝑅𝑒𝑓),  we 

use the average of the latitudes and longitudes of all the 'n' points on the trajectory, 

described in Equation (1.5), 
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𝜆𝑅𝑒𝑓 =
∑𝜆

𝑛
 𝜑𝑅𝑒𝑓 =

∑𝜑

𝑛
 (1.5) 

 

This section briefly introduced the direct georeferencing procedure that generates 

3D point clouds used as input for the boresight alignment. A complete explanation 

of this process is presented in Appendix B. 

1.4 Sources of Errors 

The direct georeferencing model is based on abstraction, which means the 

acquisition system and the environment are both errorless and ideal (Schenk, 2001), 

which is necessary for the error analysis of the system. However, we know that the 

real world in which the measuring procedure occurs consists of imperfect 

instruments and uncertainties due to the environment (Keyetieu et al. 2018). 

Eventually, atmospheric conditions interfere with the scanning operation and impose 

errors on the direct georeferencing abstract model, which generates the 

georeferenced point cloud (Schenk, 2001). Thus, the georeferenced point 

coordinates based on the direct georeferencing model are not the same as the real 

ground truth point coordinates. In this section, we will address the main factors that 

result in errors in a mobile LiDAR system. 

Four main factors cause errors in a mobile LiDAR system measuring procedure; 

POS-related, LiDAR-related, POS/LiDAR mounting, and errors related to object 

properties and scanning geometry (Schenk 2001; Schaer 2010; Soudarissanane et 

al. 2009). These errors have a three-fold nature, i.e., random, systematic, and 

blunders (Heinz et al. 2020; Glennie 2008). In this research, we are mainly 

concerned about the systematic errors, e.g., POS/LiDAR assembly errors, of an MLS 

and the methods that reduce them and result in more accurate data. 

1.4.1 LiDAR-Related Errors 

The LiDAR system is a sensor for measuring the range and scan angle of the emitted 

beam in the local coordinate system of the LiDAR (Schenk 2001). In this regard, the 

LiDAR system consists of two main parts, i.e., range finder and scan angle encoder, 

which carry out the measurement procedure, but at the same time, they may be 
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sources of errors. Considering the LiDAR-related error model, which depends on 

physical parameters and the design of the range finder and the scan angle encoder, 

it is not easy to distinguish between random and systematic errors (Schenk 2001; 

Vosselman and Maas 2011). However, LiDAR-related errors are constants (Schenk 

2001; Skaloud and Lichti 2006). As mentioned in Section 1.2.1, the LiDAR scanner 

used in this research is exact, and in the worse scenario, the range error is 3.1 mm, 

which plays a minor role in the error budget of the MLS. Therefore, errors related to 

the scanner range finder and scan angle encoder can be neglected in this research. 

1.4.2 POS-Related Errors 

The POS consists of two main components, a positioning sensor, i.e., GNSS, and 

an orientation sensor, i.e., INS. In the following, we will address each of the two 

components, their uncertainties, and solutions to overcome these errors. 

Two main factors affect the positioning accuracy of the GNSS positioning sensor. 

The first one is the satellite configuration and signal observability and the second 

one is the accuracy of the observations that can be affected by the differential 

troposphere and ionosphere and multipath effects (Schenk 2001). The second can 

be improved with corrections from regional or national reference networks 

(Vosselman and Maas 2011). Uncertainties influence the positioning data due to the 

environment (Keyetieu and Seube 2019). In urban canyons, with various obstacles, 

the GNSS signals can be blocked or deviated, which can considerably affect the 

precision in relative positioning (Vosselman and Maas 2011). Also, it is worth 

mentioning that while using a navigation-grade instrument, e.g., Hydrins iXblue 

system, the relative positioning will remain precise for 1 to 2 minutes after the loss 

of GNSS signals (Vosselman and Maas 2011). In recent years, a novel trajectory 

adjustment method was introduced in GNSS-deprived environments, which 

augments the spatial consistency and reduces the errors related to the estimated 

trajectory (Hussnain, Oude Elberink, and Vosselman 2021; Hussnain, Elberink, and 

Vosselman 2019; Gao et al. 2015).  
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The errors related to the INS are caused mainly by initialization errors, misalignment, 

and gyro drifts (Schenk 2001). These errors might be time-dependent, even 

dependent on the line pattern, and affect the platform's position (Skaloud and Schaer 

2007; Schenk 2001). Therefore, a Kalman filter is used to remove a part of the non-

overlapping errors and, as a result, refine the trajectory, but it cannot eliminate all 

the residual errors (Vosselman and Maas 2011). Once again, with an adaptation of 

a navigation-grade INS like Hydrins, we can assume that the effects of INS error are 

negligible. 

1.4.3 POS/LiDAR Mounting Errors 

As mentioned earlier, the MLS comprises two distinguished components, i.e., POS 

and LiDAR, with different locations on the platform and measuring frequency. 

Therefore, we must know the 3D rigid body transformation between the POS and 

LiDAR frames to georeference the point cloud with the observations from these two 

components. Also, they must be synchronized properly. These procedures lead to 

three significant POS/LiDAR mounting errors, i.e., boresight, lever arm, and latency, 

that must be addressed carefully to generate data with high accuracy. 

The latency error, also known as the synchronization error (Schenk 2001), is defined 

as the time difference between the LiDAR system and the POS. The reason for that 

is the different measuring rates of the two components. The LiDAR scanner points 

and the POS trajectory points have been acquired in separate procedures with 

different systems. To synchronize these two components, each time the GNSS 

receiver acquires the platform's position, it sends a signal to the LiDAR sensor, called 

a pulse per second (PPS) signal. The latency error can mitigate significantly if the 

PPS signal is transferred adequately between the GNSS receiver and the LiDAR 

sensor. However, this is not always the case; sometimes, the latency error remains 

in MLS and causes errors of synchronization, which is addressed in existing 

research (Seube, Picard, and Rondeau 2012; W. Liu 2017; Keyetieu et al. 2018). 

Seube (2012) proposed an estimation method for total latency based on rotating the 

LiDAR/IMU with various rotation rates while scanning a spherical target. The method 

observes position shifts of the target center and requires a precise rotating table. Liu 
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(2017) proposed a fusion method that combines the iterative closest point (ICP) and 

the iterated sigma point Kalman filter (ISPKF) where the ICP estimates the 

transformation between the LiDAR/IMU and the ISPKF estimates the time delay 

error (W. Liu 2017). Keyetieu (2018) introduced a latency estimation method for a 

multibeam echosounder and IMU, which requires a scan with a survey strip over a 

flat, smooth, and regular seafloor with a surveying platform with a relatively high 

attitude rate (Keyetieu et al. 2018). These methods estimate whether there is a 

latency error in the final point cloud and how to reduce them. This thesis considers 

that the PPS signal between the two components transfers correctly and without 

interruption, and the latency error is negligible. 

The lever arm error is caused by the translation vector measurement between the 

POS and LiDAR system origins (Vosselman and Maas 2011). The lever arm is 

usually measured by the conventional surveying method, i.e., tacheometric means 

(Skaloud and Schaer 2007), after installing the sensors on the platform with sub-

centimetric accuracy (Schenk 2001; Vosselman and Maas 2011; Skaloud and 

Schaer 2007). We must also measure the translation vector between the GNSS 

phase center and the IMU gravity center within the POS, which can also be 

accurately measured by the surveying method. Some methods estimate the lever 

arm in a calibration procedure (Heinz et al. 2020). 

The boresight error, also known as mounting errors (Schenk 2001), is defined as the 

uncertainty of the relative orientation measurement between the LiDAR system local 

frame and the POS body frame, which has a significant role in the MLS error budget 

and the overall accuracy of the point cloud (Vosselman and Maas 2011). The angular 

nature of the boresight error magnifies its effect. Thus, the impact of boresight error 

on the target accuracy increases with the range value (Schaer 2010). As discussed 

earlier, it is preferable to estimate the boresight error in dynamic (in-flight) mode, 

where we decorrelate the boresight angles with the attitudes observed by the POS 

(Schaer 2010).and as a result, the boresight angles accuracies will be below the 

average attitude noise level of POS which is approximately 0.01° in the case of this 

thesis (Schaer 2010).  
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Chapter 2 will address the state-of-the-art methods for reducing MLS errors, 

emphasizing the boresight errors. 

To have a clear idea about the impact of the error sources of an MLS, we take the 

example of the customized in-house system used in this thesis. This system 

comprises the Z+F 2D Profiler® LiDAR scanner and the Hydrins/iXBlue INS POS 

device. Table 1.3 represents the impact of the error sources on the positioning error 

of a point scanned at a 50 m distance. 

Table 1.3 – Example of the impact of individual sources of error on a point position at a 50 m 

distance. 

Sources of Error 
Point Positioning Error at 50 m 

distance 

POS 
GNSS-related errors (PPK) 1.3 cm 

IMU-related errors 1.5 cm 

LiDAR Scanner 
Ranging accuracy 0.9 cm 

Footprint size 2.5 cm 

Leverarm error 2 cm 

Boresight error of 1.2° 105 cm 

 

The impact of the various sources of error on a point positioning accuracy located at 

a 50 m distance from the platform is 1 to 3 cm, except for the boresight error. The 

value estimated for the boresight error is based on a real-world experiment of the 

port of Montreal survey. In this survey, we estimated an a priori boresight error of 1.2 

degrees (before calibration), resulting in a positioning error of over 100 cm due to 

the angular errors, which increase with distance. Thus, it is crucial to accurately 

estimate the minor variations in the angular deviations between the POS and the 

LiDAR frames, which is the main interest of our research. 

1.4.4 Object Properties and Scanning Geometry-Related Errors 

The surface property, such as the material and the shape, and the scanning 

geometry, such as the incidence angle, the local range, and the local point density 

of the scan points (Schaer 2010; Soudarissanane et al. 2009), have a significant 
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impact on the final data error in-situ and have a significant effect on the target 

accuracy and the measured range parameter (Schaer 2010; Vosselman and Maas 

2011). Thus, it is necessary to consider these factors in the MLS data quality 

assessment procedure. 

If the surface properties, e.g., the roughness of the surface, and scanning geometry, 

e.g., incidence angle, do not change dramatically, the accuracy evolution pattern 

remains homogeneous (Vosselman and Maas 2011).  

In the context of this thesis, we deal with harsh maritime environments where in-situ 

surfaces that construct this environment can be deformed and corroded and affect 

the accuracy of the generated point clouds. The limited number of reliable in-situ 

features for the alignment of the LiDAR scanner in this type of low-feature 

environment makes the systematic error reduction method challenging to apply and 

may result in erroneous solutions. 

1.5 Survey Grade Applications 

Mobile LiDAR systems can be mounted on various platforms, and the generated 3D 

point cloud can be applied to several applications. MLS has proved its capabilities 

to acquire high accuracy and high-density 3D point clouds. For engineering surveys 

such as road pavement and infrastructure inspection, a 3D accuracy of less than 5 

cm at a 95 % confidence interval with a density of more than 200 pts/m2 is required 

and achievable (Olsen et al. 2013; Guan et al. 2016). 

In this research, we are particularly interested in survey-grade applications, e.g., 

infrastructure monitoring that demands high accuracy and high-density point cloud 

(Vosselman and Maas 2011). The utilization of a mobile LiDAR system in 

infrastructure monitoring was first employed in the roads and highways corridor 

mapping context (Guan et al. 2016), and then, it was adapted to the port 

infrastructure monitoring application (Wyllie et al. 2012; Thies 2011). Thus, in this 

section, we will first discuss the monitoring and inventory assessment task in the 

road and highways context, and then, we will present the more recent MLS 

application for port infrastructure monitoring. 
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1.5.1 Road Asset Inventory Context 

To rapidly and accurately generate a 3D geospatial representation of long corridors 

like roads and highways, one solution is to mount a mobile LiDAR system on a 

vehicle platform (Guan et al. 2016). The MLS provides two main advantages that 

distinguish it from other corridor mapping measuring systems. The first one is the 

safety and feasibility aspect of MLS that allows a safe drive along the road corridor 

without interrupting the actual traffic flow (Guan et al. 2016; Soilán et al. 2019; 

Williams et al. 2013; De Blasiis, Di Benedetto, and Fiani 2020). The second one is 

associated with the sufficiently accurate, precise, and dense 3D point clouds 

generated by MLS (Puente et al. 2013), which can be used for planarity verification, 

subsidence analysis in the order of a few centimeters of road surfaces (Heinz et al. 

2019) and pavement surface distress analysis (De Blasiis, Di Benedetto, and Fiani 

2020). Figure 1.9 illustrates (a-b) commercialized terrestrial MLS and (c) customized 

in-house MLS. 

 
 

(a) (b) 

 
(c) 

Figure 1.9 – Terrestrial MLS. (a) Trimble MX50 (TrimbleGeospatial 2022) (b) Riegl Mobile 

Laser Scanning System VMX-250 (Riegl 2022). (c) Jakarto Mobile Mapping Unit (Courtesy of 

Jakarto) 
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1.5.2 Port Infrastructure Monitoring Context 

As a prominent part of the maritime transport system, port infrastructure plays a 

significant role in national and international economic growth (Munim and Schramm 

2018). More than 80% of the merchandise transport is through seawater transport 

systems (United Nations Publications 2020). 

Due to specific conditions of the maritime context, i.e., the permanent exposure to a 

highly aggressive and humid environment (Ruggeri, Fruzzetti, and Scarpelli 2021; 

Valdez et al. 2016), an accurate and regular infrastructure inspection is highly 

recommended. The inspection results lead to rapid identification of damaged and 

ruined sections and allow the port authority to apply essential maintenance and 

repairment procedures (Alho et al. 2009; Kishi et al. 2015; Moisan et al. 2015; 

Rondeau and Pelletier 2013; Ruggeri, Fruzzetti, and Scarpelli 2021; Böder et al. 

2011). 

Routine and accurate surveillance operation of port infrastructure, e.g., quay walls, 

which support all the existing infrastructures and play a crucial role in the loading 

and unloading procedure of the cargos, is of crucial importance. The quay walls must 

be monitored periodically, and their maintenance must be prioritized based on the 

3D as-built models of such structures. We must be able to estimate the verticality of 

quay walls and compare them to previous scans. Therefore, routine monitoring is 

essential to prevent early damage and catastrophes, as illustrated in Figure 1.10. 

  
(a) (b) 

Figure 1.10 – Example of failure of a quay wall. (a) (Sentry et al. 2007). (b) (Stewart and 

Bastidas-Arteaga 2019) 
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Thus, we must consider an acquisition system with geometric stability and flexibility 

that can perform routine monitoring tasks. Additionally, based on the highly active 

circulation in a maritime environment, especially ports and harbors, we must adopt 

a data acquisition system that produces data with a high level of detail using a 

dynamic acquisition method without interfering with the port traffic. An MLS mounted 

on a hydrographic vessel can offer this capability. 

Based on the reasonable time and cost of terrestrial MLS for roads and highways 

monitoring applications, we suppose that a mobile LiDAR system mounted on a 

hydrographic vessel (Marine MLS), also known as a vessel-based mobile LiDAR 

System (Thies 2011), boat-based laser scanning (Alho et al. 2011), ship-borne 

mobile surveying system (Lu et al. 2019), and vessel-mounted LiDAR system (Wyllie 

et al. 2012), would have the same capability and efficiency for the acquisition of high-

quality LiDAR data applied to port infrastructure monitoring. Hydrographic vessels 

are already equipped with SONAR sensors integrated with POS for bathymetric 

surveying. The addition of a LiDAR sensor to the SONAR and POS integrated 

acquisition system enables full 3D scans of the above (emergent) and under the 

water (submergent) surface infrastructure simultaneously (Dix et al. 2012; Lu et al. 

2019; Shi et al. 2017; Thies 2011; Böder et al. 2011; Kishi et al. 2015). This 

integration leads to a possible all-inclusive solution for simultaneous monitoring of 

under and above the water surface, which is beneficial for most of the port 

infrastructure that is partly under and partly above the water surface. Figure 1.11 

presents the mobile LiDAR system mounted on the hydrographic vessel used in this 

Ph.D. project. 
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Figure 1.11 – Mobile LiDAR system mounted on a hydrographic vessel (Courtesy of CIDCO) 

The mobile LiDAR system employed in this thesis consists of a high-resolution and 

precise LiDAR scanner and a navigation-grade GNSS/INS, introduced in Section 

1.2. This system can achieve survey-grade accuracy while generating high-density 

point clouds of port infrastructure for monitoring applications. This state-of-the-art 3D 

geospatial data acquisition technology with high density and high accuracy data 

acquisition capacity perfectly satisfies all the infrastructure requirements of ports 

monitoring data (Wyllie et al. 2012; Thies 2011). 

1.6 Discussions and Conclusions 

This chapter introduced an in-house mobile LiDAR system mounted on a 

hydrographic vessel platform. We presented its main components and the principal 
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errors that impact the point cloud. We also introduced the direct georeferencing 

procedure that produces the 3D point cloud from data collected with this in-house 

MLS. We also addressed the errors this MLS can encounter to using this system for 

survey-grade applications, such as port infrastructure monitoring.  

Among the different errors, we considered that the POS/LiDAR assembly error has 

more influence on the data quality. We also discussed the importance of minimizing 

the effect of the object properties and scanning geometry-related errors on the 

calibration data. In low-feature environments like maritime areas, to minimize the 

error related to the object properties and scanning geometry, one solution can be 

the utilization of well-designed targets that can be installed in proper places that can 

be scanned with the specific scanning geometry. This solution involves designing 

appropriate calibration targets, developing an efficient calibration data acquisition 

procedure, and configuring an appropriate acquisition site, which is the central 

subject of this thesis and will be covered in detail in Chapters 3 and 4.  

Before that, in the next chapter, we will address the state-of-the-art methods that aim 

to reduce MLS errors with a comprehensive review of the existing literature on this 

subject. 
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Chapter 2 – Overview of Error Reduction Methods 

in Mobile LiDAR Systems 

2.1 Introduction 

The objective of this chapter is to review the existing error reduction methods that 

can be applied to mobile LiDAR systems. As mentioned earlier, errors cause 

discrepancies on overlapping strips of the same scene scanned by the MLS. We can 

take advantage of the discrepancies on overlapping strips to mitigate their effects on 

the generated point cloud. The existing methods aim to reduce discrepancies and 

enhance the point cloud's accuracy (Shan and Toth 2008). In the introduction, we 

mentioned that these methods are categorized into two main categories, rigorous 

and non-rigorous. Moreover, they use tie-features such as tie-points, tie-lines, and 

tie-planes as input. 

2.2 Rigorous Methods 

The rigorous methods, also known as system-driven methods, address the causes 

of the errors in the overlapping point clouds. These methods can derive statistical 

analysis such as the estimated error standard deviation due to their access to the 

raw measurements (Skaloud and Lichti 2006). This group of methods was inspired 

by the bundle block adjustment procedure applied in photogrammetric operations 

(Morin and El-Sheimy 2002; Skaloud and Schaer 2003). In rigorous methods, the 

raw observations mentioned earlier are the position and orientation of the platform, 

i.e., POS trajectory data from INS/GNSS and LiDAR sensor measurements (Y. 

Zhang et al. 2015). These methods use the direct georeferencing equation as the 

adjustment model to estimate the parameters that cause the errors of the MLS (Le 

Scouarnec et al. 2014; Y. Zhang et al. 2015). 

In summary, in rigorous methods, while addressing the reduction of the 

discrepancies between the tie-features of overlapping strips, we model and estimate 

the unknown systematic errors that cause these discrepancies in the first place. 

Therefore, rigorous methods have three main characteristics. The first characteristic 
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is their consideration of all the raw measurements of each sensor of the MLS. The 

second characteristic is the utilization of the direct georeferencing model as the 

functional model for further adjustment procedures. The third characteristic is the 

provision of statistical quality assurance measures for the estimated parameters. In 

the following, we categorize the rigorous methods based on the option of tie-feature 

used in their procedures. 

2.2.1 Tie-Point  

This category's first series of methods do not require external reference control 

points. They were first applied for estimating boresight angles of an aerial MLS while 

inserting interpolated tie-points within an iterative least-squares adjustment model 

(Morin and El-Sheimy 2002). A method based on the virtual corresponding point 

model, which consists of a corresponding point and three real laser footprints, was 

proposed to overcome the correspondence interpretation problem within discrete 

points of aerial MLS (J. Zhang, Jiang, and Jiang 2012). To compensate for the 

systematic measurement errors in aerial MLS, Glira et al. (2015) suggested a fully 

automatic strip adjustment using point correspondences from overlapping strips. 

This approach is considered rigorous due to the utilization of the original scanner 

measurements and the trajectory observations. While estimating the ALS scanner 

calibration parameters, the method minimizes the point-to-plane distances of all 

correspondences based on Iterative Closest Point (ICP) algorithms. Z. Li et al. 

(2019) suggest a direct point-to-point correspondence for estimating the boresight 

errors of an MLS mounted on terrestrial and drone platforms. The reason for this 

choice is the high density of point clouds we can obtain due to the recent advances 

in hardware technology. An ICP algorithm also sets the correspondences between 

points in overlapping strips (Z. Li, Tan, and Liu 2019). 

The second series of rigorous methods, based on tie-point features, require external 

ground truth, such as reflective signalized surveyed control points, which are used 

as observations in the adjustment procedure (Talaya et al. 2004). These control 

points generate higher intensity points and facilitate the extraction procedure, which 

is used as observations in the adjustment procedure. Also, for estimating the 
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mounting parameters of pair of LiDAR scanners on a terrestrial platform, five to 

seven control points distributed on horizontal and vertical surfaces can satisfy the 

required accuracy (Leslar, Wang, and Hu 2016). 

Additionally, inspired by the sonar multibeam patch test (Brahim, Daniel, and Guériot 

2008), a rigorous tie-point laser patch test method is applied to marine MLS that 

calculates three rotational angles: roll, pitch, and yaw between the POS and LiDAR 

scanner. This method requires scanning specific objects like poles and bridge pillars 

with a specific line pattern as input data. Based on the discrepancies of the point 

cloud generated with different passages, the LiDAR patch test tries to approach them 

while estimating the boresight angles. The disadvantage of this method is the 

requirement of clean data without noise, the procedure is relatively long and time-

consuming, and in the end, it does not deliver any standard deviation for the 

estimated parameters.  

2.2.2 Tie-Line 

This category of methods utilizes linear features (tie-line), e.g., long edges, gable 

roofs intersections, and ditches for height and planimetric offsets estimation, in case 

finding suitable tie-points between strips becomes a non-trivial task (Vosselman 

2002). 

Le Scouarnec et al. (2014) proposed a position-free method that does not depend 

on the GNSS observations to estimate the boresight angles while constraining a set 

of lines on a planar surface. Based on this method, the same boresight alignment 

method was adapted to a terrestrial MLS (Ndir 2019), which scans a vertical planar 

surface with different orientations, and each orientation forms a linear feature (tie-

line) on the surface. Due to the boresight misalignment, the linear features do not lie 

perfectly on the planar surface. Thus, the adjustment model estimates the boresight 

error while fitting the linear features on the planar surface. This method necessitates 

that the MLS operates in a static mode and with multiple exaggerated line patterns 

near a vertical planar surface with a noticeable height, like a very high wall, which is 

not always accessible. Also, near a vertical surface like a wall, the GNSS signal can 
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be blocked, or multipath effects can arise, which will seriously affect the coordinates 

of the georeferenced point. This approach has two main disadvantages. First, the 

MLS does not arrive at the optimal performance (minimum uncertainties) like in a 

dynamic (in-flight) mode. Second, the data is affected by POS-related errors due to 

the close distance of the system from the vertical planar surface like a wall. 

2.2.3 Tie-Plane 

This section introduces the planar surface as the tie-feature, also known as tie-plane. 

The methods that use tie-planes are divided into two main categories. First, the 

methods that do not have access to prior information of the tie-plane (without 

external reference information). This category of methods is considered 

independent, and its advantage is that it does not require any ground truth of the tie-

plane. Second, methods that have access to the tie-plane information are usually 

measured by an external instrument (with external reference information). In the 

following, these two categories based on tie-plane are discussed with specific 

attention to methods that address the boresight error of an MLS.  

2.2.3.1 Tie-Planes without External Reference Information 

At first, discrepancies between overlapping strips generated by the MLS mounted 

on aerial platforms were mainly on the elevation data (Burman 2000). Therefore, 

elevation and intensity data of distinct tie-planes were used for the estimation of the 

boresight errors of the system (Burman 2000). Multiple overlapping strips with 

different directions were employed to increase the accuracy of the estimated 

boresight angles (Toth, Csanyi, and Grejner-Brzezinska 2002). However, the fact 

that the surface points were converted to a regular grid reduces the accuracy of the 

estimated parameters due to the interpolation process (Toth, Csanyi, and Grejner-

Brzezinska 2002). Filin (2003) suggests the utilization of natural and man-made 

surfaces with moderate slopes oriented in different directions to overcome the 

surface-to-grid point interpolation issue (Filin 2003). The solution is based on 

conditioning a set of points to lie on a planar surface while introducing an error 

recovery model for the system (Filin 2003; Skaloud and Lichti 2006). This solution 

proposed a method that simultaneously estimates the three boresight angles and 



 

36 

the rangefinder offset (Skaloud and Lichti 2006). In this category of methods, the 

only a priori information considered is the surface's planar form. A similar method 

based on planar surfaces was tested on simulated aerial MLS data (Friess 2006). 

Further studies illustrate the impact of planar features characteristics, such as shape, 

size, smoothness, low curvature, variation in slope, and orientation that can be found 

in roof planes in urban areas, on the performance of the boresight alignment method 

(Lindenthal et al. 2011; Pothou et al. 2008). The same method was adopted for an 

oblique forward-looking LiDAR installed on a helicopter, emphasizing precise POS 

accuracy and accessibility to various roof shapes and varying building orientations 

to achieve an optimal result (Hebel and Stilla 2012). Moreover, the boresight 

alignment of drone MLS was addressed using tie-planes extracted from parallel and 

crossing overlapping survey strips over an area containing roofs or regular natural 

slopes (Keyetieu and Seube 2019). This method concentrates mainly on the best 

local horizontal planar patch selection based on boresight errors observability criteria 

defined by a sensitivity function (Keyetieu and Seube 2019). The latter method, 

designed for aerial platforms, will face some difficulties for terrestrial platforms with 

a lateral point of view on the scene of interest. As we can notice, most of the 

mentioned methods rely on tie-planes that are abundant in urban areas and man-

made structures (Skaloud and Lichti 2006). 

The rigorous boresight alignment of aerial MLS based on in-situ tie-planes was 

adapted to terrestrial MLS (Glennie and Lichti 2010), which emphasizes the 

utilization of points with low incident angles that confirm once again the importance 

of considering the object properties and scanning geometry in the boresight 

alignment procedure (Glennie and Lichti 2010; Glennie 2012).  

All the above methods rely on in-situ tie-planes abundant in urban scenes, such as 

building facades, ground surfaces, bridge bottoms, and inclined large traffic signs 

(Chan, Lichti, and Glennie 2013). These in-situ features and their accessibility are 

crucial to the efficiency of the MLS error reduction methods. 
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2.2.3.2 Tie-Planes with External Reference Information or Ground Truth 

This category of methods takes advantage of reference ground truth in the error 

reduction procedure.  

We know that systematic errors such as boresight errors have a symmetric 

characteristic, which means the effect of boresight errors on tie-planes on 

overlapping areas with opposite directions is equal. Li (2016) presented a method 

for estimating the boresight errors of an aerial MLS that takes advantage of planar 

reference surfaces from four gable-roof buildings with various orientations and 

distributions (D. Li et al. 2016). The disadvantage of this method is the complexity of 

having access to the reference planar surfaces of buildings' roofs. 

Contrary to the aerial MLS, the MLS error reduction method with known reference 

tie-planes has gained more popularity with the terrestrial platform due to the 

simplicity of acquiring reference ground truth in the terrestrial context. The precise 

and accurate in-situ reference planar surface can be generated by a static terrestrial 

laser scanner that will eventually be utilized in the adjustment procedure for 

estimating mounting parameters of the MLS, i.e., boresight angles and lever arms 

(Hong et al. 2017).  

Using prefabricated tie-planes is a solution in low-feature environments with low 

accessibility to in-situ reference data (Hong et al. 2017). The first step is that the 

prefabricated tie-planes are installed in a calibration field and scanned by a static 

terrestrial laser scanner to generate the ground truth. The second step is scanning 

the same prefabricated tie-planes setup with a terrestrial MLS (Heinz et al. 2020). 

Due to the errors of the MLS, the two datasets acquired from the mobile and static 

systems reveal discrepancies when compared to each other. The error reduction 

method minimizes these discrepancies while adjusting the terrestrial MLS mounting 

parameters, i.e., boresight angles and lever arms, until the two datasets fit together 

(Heinz et al. 2020).  

A similar MLS alignment method was applied to a marine MLS, which uses ten planar 

reference targets with various orientations and sizes inside a pool used as a 
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calibration site (Lu et al. 2019). This calibration site might present an ideal 

environment, but it can hardly be reproduced. 

2.3 Non-Rigorous Methods 

The other main MLS error reduction method category is non-rigorous, also known 

as data-driven methods. In this category of methods, the problem is viewed from the 

end user’s perspective (Kalenjuk and Lienhart 2022), and the reduction of errors 

occurs by solely manipulating the final georeferenced point clouds and estimating a 

rigid body transformation (Filin and Vosselman 2004). In this method, end-users do 

not need access to raw measurements such as the POS or LiDAR scanner raw data. 

The non-rigorous methods' sources of error are not the focal point.  

Additionally, there are different possible transformations from one dataset to another 

one. Only three positional translations are considered if the method addresses the 

positional biases (Filin and Vosselman 2004). For complex transformation, a seven 

parameters similarity transformation is pertinent (You and Lee 2020). If the rotations 

between strips are also considered, an affine transformation is used (van der Sande, 

Soudarissanane, and Khoshelham 2010). In a complete case, a total 3D rigid body 

transformation is used (K. Liu et al. 2019). Although these rigid body transformation 

parameters reduce the discrepancies between strips, they are not representative of 

physical parameters in the real world, which is considered one of the disadvantages 

of non-rigorous methods. 

Non-rigorous methods also take advantage of tie-features as input data. Thus, in the 

following, we present three types of non-rigorous methods based on their entry tie-

features. 

2.3.1 Tie-Point 

As mentioned earlier, this category of methods uses only the final point cloud (Csanyi 

et al. 2005; Ressl, Mandlburger, and Pfeifer 2009; Ressl, Pfeifer, and Mandlburger 

2012; Bang et al. 2009) or a byproduct of the point cloud, e.g., Triangulated Irregular 
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Network (TIN) structure (Maas 2002) or digital terrain model (DEM) form (M. 

Crombaghs et al. 2002). 

In the earlier methods, point data such as height were used as correspondences for 

matching strips within a triangulated irregular network (TIN) to reduce the 

discrepancies (Maas 2002; Filin and Vosselman 2004; Zequan Chen, Li, and Yang 

2021). The accuracy of methods based on the TIN can be affected by the 

uncertainties related to the presentation of the earth's surface by this kind of 

structure. 

To facilitate the detection and matching of the tie-point on a point cloud, Csanyi 

(2005) suggests the utilization of circular LiDAR-specific ground targets as input. 

These tie-points enter as correspondences on a 3D similarity transformation module, 

resulting in centimeter-level engineering scale mapping accuracy for the final point 

clouds (Csanyi et al. 2005). The 3D similarity transformation replaced a 3D affine 

transformation with more output parameters to increase the method's accuracy, 

inspired by the photogrammetry bundle block adjustment (Ressl, Pfeifer, and 

Mandlburger 2012; Munjy 2015).  

Recently, a novel profile-based method has emerged, similar to the tie-point non-

rigorous method (Ravi and Habib 2020; Kalenjuk and Lienhart 2022). The main 

objective of the profile-based methods is to minimize the discrepancies between the 

corresponding profiles of two datasets while estimating the transformation 

parameters, such as shifting and rotating parameters. The advantage of this method 

is that high-frequency errors can be detected and corrected within a small portion of 

the point cloud (profiles) (Kalenjuk and Lienhart 2022). 

2.3.2 Tie-Line 

This category of methods aims to reduce the systematic residual errors based on 

tie-lines, which are found abundantly on man-made structures in urban areas, e.g., 

roof ridgelines and roof planes intersection (Lee et al. 2007; Rentsch and Krzystek 
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2012). The advantage of tie-line features is that the extraction procedure is generally 

much more straightforward than tie-point features (Lee et al. 2007). 

2.3.3 Tie-Plane 

In this approach, the input is the tie-planes extracted from the georeferenced point 

cloud on overlapping areas, and the aim is to minimize the discrepancies between 

these tie-planes. To considerably mitigate the correlation between the 3D rigid body 

transformation parameters, natural in-situ planar surfaces with different orientations, 

various slopes, and evenly distributed are chosen as tie-planes, resulting in better 

accuracy and efficiency (K. Liu et al. 2019). Here, we present some examples of 

these in-situ planar surfaces; sloped terrains (Filin and Vosselman 2004) and man-

made in-situ surfaces, i.e., gable building roofs (van der Sande, Soudarissanane, 

and Khoshelham 2010; K. Liu et al. 2019; You and Lee 2020). These methods are 

more applied to aerial platforms in urban areas with many planar surfaces. However, 

its success is more limited in areas without man-made tie-planes, e.g., rural and 

forest areas (Song, Guoqing, and Wang 2021). 

2.4 Other Tie-Features 

In this section, a few other tie-features that are used in MLS reduction methods are 

discussed. In urban areas, power cables on highway sides and transmission lines 

across the highways are considered common geometric objects that can be used for 

the estimation of mounting parameters of an MLS (Chan, Lichti, and Glennie 2013). 

The disadvantage of using cables is the instability of these features, especially in 

extreme meteorological conditions like windy weather constantly displacing the 

cables. 

Other tie-features are prefabricated spherical targets used for the MLS boresight 

alignment (Landry 2017; Guo et al. 2021). Landry (2017) presents the rigorous 

boresight alignment consisting of spherical targets with known positions as ground 

truth scanned with an MLS in a laboratory. The actual location of the spheres and 

their position extracted from the point cloud generated by the MLS will have 

discrepancies due to the misalignment parameters of the MLS. The mounting 
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parameters are then simultaneously estimated. Because of the high cost of 

laboratory installation and the time-consuming procedure of establishing a high-

precision network, this method is considered a less practical solution for boresight 

alignment problems. A similar method was presented for outdoor scenes with 

spherical reference targets measured a priori with a total station (Guo et al. 2021). 

The terrestrial MLS scans the spheres, and then, discrepancies between the two 

datasets have been reduced with an adjustment procedure. The output of the 

adjustment procedure is an estimation of the mounting parameters, boresight, and 

lever arms errors (Guo et al. 2021). Both methods are dependent on to ground truth 

of the prefabricated spherical targets. 

Another surface used for estimating the mounting parameters of an MLS is a foldable 

corner-cube trilateral pyramid made from white corrugated plastic, which can be 

determined precisely within a point cloud acquired by a drone MLS (Wilkinson et al. 

2019). These pyramids are placed along strips, while their positions are established 

using post-processed kinematic (PPK) GNSS. A modified ICP relates to these 

dispersed pyramids from various strips (Wilkinson et al. 2019). Next, discrepancies 

between the strips are minimized by an adjustment solution that simultaneously 

estimates the mounting parameters, i.e., boresight and lever arm errors (Wilkinson 

et al. 2019). 

2.5 Discussions and Conclusions 

This chapter comprehensively reviews the existing MLS error reduction methods, 

especially the boresight systematic errors. We categorized these methods primarily 

by two main characteristics: the rigorousness of the method and the type of tie-

features that connect dispersed overlapped strips, as illustrated in Figure 2.1. 
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Figure 2.1 – Categorization of the MLS error reduction methods. 

Table 2.1 and Figure 2.2 summarize MLS error reduction methods with related 

references in the existing literature. 

In summary, the main advantage of rigorous methods is the determination of sources 

of error with their standard deviation, and their main disadvantage is the requirement 

for the raw data from the POS and LiDAR scanner. On the other side, the main 

advantage of non-rigorous methods is that they do not require access to raw data of 

the system that facilitates their utilization for the end user, while their main 

disadvantage is not addressing the cause of the errors. 
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Table 2.1 – MLS Systematic Errors Reduction Methods 
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The overall MLS reduction methods take advantage of tie-features such as tie-point, 

tie-line, and tie-plane. In the following, we discuss each of the tie-features in detail. 

The point as a feature to tie the strips together is not a good choice. The reason for 

that goes back to the unorganized, discrete, and random nature of the point cloud 

generated by an MLS, which demands an interpretation process for finding the 

corresponding points between two overlapping strips (van der Sande, 

Soudarissanane, and Khoshelham 2010; Nagarajan and Moafipoor 2018). In other 

words, the LiDAR footprints have a sparse and unorganized nature, and we cannot 

localize a well-defined object with the same LiDAR point in various strips (Friess 

2006; Gonsalves 2010). Thus, interpreting the corresponding tie points between 

strips is not always a straightforward task (Ressl, Mandlburger, and Pfeifer 2009). 

The methods based on tie-points are prevalent in areas with insufficient in-situ 

geometric objects, i.e., mountainous areas (Zequan Chen, Li, and Yang 2021) or 

forest areas (Fekry et al. 2021). Therefore, the detection of tie-points is a trivial task. 

However, the correspondence between two tie-points belonging to two datasets is a 

challenging task due to the irregular nature of the MLS point cloud.   

Tie-lines are not easy to detect in an individual point cloud, but if we can define a tie-

line in an overlapped area of two individual point clouds, the corresponding task is 

simple due to the known mathematical model of a line. 

Finally, tie-planes detection and corresponding tasks in an overlapped area are 

considered trivial. Most existing methods required in-situ dispersed planar surfaces, 

e.g., roofs, walls, and slope terrain, with different orientations and configurations 

(Kager 2004; Friess 2006; Skaloud and Lichti 2006). However, this is not always the 

case in certain areas like rural, natural environments, vegetated and forest areas, 

and seaport areas (Ressl, Pfeifer, and Mandlburger 2012). Therefore, using 

prefabricated planar targets seems to be a reasonable solution for featureless 

environments (Heinz et al. 2020; Ravi et al. 2018). 
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Figure 2.2 – Chronological overview of MLS error reduction methods 
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Based on the review of existing methods, we choose to reduce the errors of the MLS 

by a rigorous method. The main reason is that we have access to the raw 

measurements of the POS and LiDAR data; therefore, we can estimate the causes 

of errors and their uncertainties. We do not choose the non-rigorous method 

because it applies a rigid transformation between two dispersed datasets in a blindly 

and unjustifiable way (Vosselman and Maas 2011), and as a result, the exact 

georeferenced position of the points will be blurred (Hebel and Stilla 2012). 

Also, based on the above comprehensive review of the existing methods that 

address the reduction of errors in an MLS, we decided to go forward with a rigorous 

method that uses prefabricated tie-plane features. This thesis will also concentrate 

on one sort of MLS error: boresight errors. 

We must also consider that having reference ground truth in certain circumstances 

is nearly impossible, e.g., quay wall of port environment, which leads to methods 

independent of external reference ground truth. Therefore, apart from the planar 

form of the targets used, the proposed method must not require any a priori 

information.  

In summary, based on the comprehensive review of the existing methods that 

address the reduction of errors in an MLS, we decided to go forward with a rigorous 

method based on prefabricated tie-plane features without any a priori information 

except the planar form of the target. Therefore, apart from the planar form of the 

targets used, the proposed method must not require any a priori information.  

In the next chapter, based on the selected tie-feature, we address the optimal 

configuration of these targets to achieve the best result for the reduction of error of 

an MLS in the low-feature and challenging context of this thesis, the maritime 

environment. 
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Chapter 3 – Analysis of Systematic Errors of 

Mobile LiDAR Systems: A Simulation Approach 

To achieve the required accuracy for marine infrastructure monitoring applications, 

we must address the various sources of error of a marine MLS. The literature review 

presented in Chapter 2 led to the conclusion that for the context of this research, it 

is recommended to insert and install prefabricated planar targets as tie-features 

which could eventually be served as input for marine MLS error reduction methods. 

This chapter aims to analyze the impact of MLS errors on prefabricated tie-planes 

with various configurations. In this thesis, the term configuration is referred to the 

setup of prefabricated tie-planes and the line pattern used for the data acquisition 

procedure. This analysis will ultimately demonstrate which configurations of 

prefabricated planar targets result in better visibility of the MLS errors.  

For this analysis, it is essential to understand the impact of each error, individually 

and collectively, on prefabricated tie-planes, known as error analysis (Schenk 2001) 

or biased impact analysis (Ravi and Habib 2020) in the existing literature. 

There are two approaches for MLS error analysis, first, an analysis based on a 

normalized scan line, in which the MLS platform is fixed in a stationary mode (Schenk 

2001; Cassol 2018), and second, the utilization of a simple point cloud generator or 

simulator to emulate systematic errors of an MLS on geometric features like planes 

on a dynamic mode (Heinz et al. 2020; Ravi et al. 2018).  

This chapter adopts the second approach for the MLS error analysis. We elaborate 

in detail on the design of an MLS simulator. This simulator generates a point cloud 

on a hypothetical tie-plane using the mathematical georeferencing model that allows 

the insertion of different errors individually and collectively. The advantage of using 

a simulator is that the error analysis is performed without all other sources of error, 

like random noise and blunders due to positioning errors. We can also define various 

configurations, such as characteristics for tie-planes, like the dimension and 
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orientation of targets, the number of required tie-planes, and the specification of the 

scanning line patterns.  

To study the systematic error visibility analysis, we introduce two types of criteria, 

Type I and Type II, which we discussed in detail in this chapter. Based on these 

criteria, we can study the best configuration for the MLS, resulting in higher visibility 

of systematic errors. 

In this thesis, these analyses are performed on eight systematic errors: three 

boresight errors, three lever arm errors, the range offset, and the scan angle offset. 

Considering eight systematic errors gives a better understanding of the impact of 

each error on a tie-plane and the correlation between errors. 

Furthermore, we applied the suggested configuration to a real-world dataset 

generated by a terrestrial MLS, which approved the analysis result based on the 

simulated dataset.  

Although the configuration validation is done on a terrestrial MLS, we can adapt the 

same configuration for another platform, like a marine MLS.  

While the simulator introduced in this chapter is tailored for planar surfaces, we can 

readily adapt the simulator to other types of surfaces, such as spheres and pyramids, 

by solely adapting the mathematical model to the one proper to the surface. 

This chapter presents the integral of a peer-reviewed conference paper published in 

the International Society for Photogrammetry and Remote Sensing (ISPRS) 

Congress 2020 annals3. 

Moreover, due to the limited page capacity of the peer-reviewed conference paper, 

we could not publish all the results of the analysis of the systematic errors. Appendix 

 
3        Shahraji, M. H., C. Larouche, and M. Cocard. 2020. “ANALYSIS OF SYSTEMATIC ERRORS 

OF MOBILE LiDAR SYSTEMS: A SIMULATION APPROACH.” ISPRS Annals of 
Photogrammetry, Remote Sensing and Spatial Information Sciences V-1–2020 (August): 253–
260. https://doi.org/10.5194/isprs-annals-V-1-2020-253-2020. 
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C provides the detailed results of the impact of all eight systematic errors of a 

terrestrial MLS using the simulation approach based on Type I and Type II criteria. 

Finally, Section 3.9, “Complementary of Chapter 3,” has been added. It provides a 

similar analysis for a marine MLS that is the focus of this thesis. 

3.1 Résumé 

L'analyse des erreurs systématiques du système LiDAR mobile (SLM) est toujours 

une tâche difficile dans des situations réelles. Ce défi est principalement dû au 

mélange d'erreurs systématiques et d'erreurs non systématiques. Pour résoudre ce 

problème, nous présentons un modèle conceptuel d'un simulateur SLM. Dans 

l'approche de simulation proposée, nous ne prenons en compte que les erreurs 

systématiques qui affectent le nuage de points géoréférencés simulé. Pour simplifier 

notre analyse, nous nous concentrons uniquement sur la modélisation des effets 

des erreurs systématiques sur les cibles planaires et nous nous concentrons 

uniquement sur la plateforme terrestre. Nous suggérons l’utilisation de deux cibles 

planaires de dimensions 1m x 1m, une avec une inclinaison verticale et l’autre 

inclinées et un patron de cinq lignes d’acquisition. Pour valider notre méthodologie, 

nous avons effectué un levé réel avec notre SLM maison sur un site comprenant un 

ensemble de 3 cibles planaires avec différentes inclinaisons. 

3.2 Abstract 

The systematic error analysis of the mobile LiDAR system (MLS) is always a 

challenging task in real-world situations. This challenge is mainly due to the mixture 

of systematic and non-systematic errors. To tackle this issue, we introduce a 

conceptual model of an MLS simulator in this paper. The main advantage of the 

simulation-based approach is complete control over the incorrect systematic and 

non-systematic parameters that affect an MLS’s output. We only consider systematic 

errors that affect the simulated georeferenced point cloud in the proposed simulation 

approach. These systematic errors are as follows, POS-LiDAR boresight angles, 

POS-LiDAR lever arms, range offset, and scan angle offset. To simplify our analysis, 

we concentrate only on modeling the effects of systematic errors on planar targets, 
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and we focus solely on the terrestrial platform. Based on an independent analysis 

performed on each of the eight systematic errors of an MLS, to obtain strong visibility 

over systematic errors of an MLS, we suggest two planar targets of 1m x 1m 

dimensions with vertical and inclined inclinations and a five-line pattern for MLS, two 

parallel and three side-looking passages. The proposed configuration generates an 

ideal input point cloud for detecting systematic errors (except for the Z lever arm 

error), and ultimately it will lead to the correct input data for the calibration of a 

terrestrial MLS. To validate our methodology, with an in-house assembled terrestrial 

MLS, we scanned a set of planar targets with three different inclinations (vertical, 

inclined, and horizontal). This real-data validation test illustrated that with only two 

out of three planar targets (vertical and inclined) and with five out of six passages 

(two parallel to the planar targets and three side-looking passages), we would obtain 

expected visibility over the systematic errors of a terrestrial MLS, which approves 

the results with the simulation data. 

KEYWORDS: Mobile LiDAR System, Systematic Errors, Simulation, Planar Target, 

Systematic-error visibility criteria. 

3.3 Introduction 

In the last four decades, mobile LiDAR systems (MLS) have evolved from a cutting-

edge, expensive, and unreachable geomatics technology into a more user-friendly 

and accessible surveying technique for acquiring georeferenced point clouds. We 

categorize them based on their platforms as terrestrial, marine, and aerial MLS. MLS 

has enabled geomatics professionals to rapidly generate millions of georeferenced 

points at a lower cost than other surveying techniques. The product of these systems 

can be used in various fields and applications, such as 3D city modeling, 

autonomous vehicle, and virtual reality (Vosselman and Maas 2011; Shan and Toth 

2008). 

An MLS consists of two main components: a position and orientation system (POS) 

and a LiDAR scanner (Ackermann 1999; Wehr and Lohr 1999; Shan and Toth 2008; 

Vosselman and Maas 2011). The POS combines a GNSS antenna with an inertial 
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measurement unit (IMU). However, the interconnection between these components 

can be affected by systematic and non-systematic errors degrading the quality of the 

final georeferenced points. 

The main systematic errors are POS-LiDAR boresight angles, POS-LiDAR lever 

arms, range offset, and scan angle offset. These errors have a systematic, repetitive, 

and constant effect on the data. The non-systematic errors consist of two categories; 

blunders or gross errors, such as GNSS multipath error, which affects the platform 

trajectory, and random errors, such as noise originating from the sensors (LiDAR or 

POS), which affects the quality of the point cloud. It is relatively difficult to separate 

these two kinds of errors to study them independently without the influence of one 

on the other. For example, we must acquire trajectory data to georeference the 

points to generate an accurate and precise point cloud. Thus, the georeferenced 

points will inevitably influence the trajectory errors, and as a result, the impact of 

other systematic errors will not be clear on the georeferenced points; therefore, the 

analysis of such errors will be complex. 

In recent years, there have been two significant tendencies in MLS simulation-based 

approach in the geomatics world. The first type is a radiometric simulation approach 

based on the radiometric and spectral interaction of LiDAR photons with 

environmental complex scenes like forest canopy (Brown, Blevins, and Schott 2005; 

Cifuentes et al. 2018; Kukko et al. 2007). The second type is a geometric simulation 

approach in which a direct georeferencing mathematical model constitutes the base 

of the simulator (Friess 2006; Lohani, Reddy, and Mishra 2006; Kim et al. 2009; 

Heinz et al. 2015). Lohani (2006) introduced a simulation of aerial altimetry MLS to 

generate specific terrain surfaces with objects on top of that surface. In Friess 

(2006), simulated data are used as input data to test the proposed boresight error 

estimation algorithms without discussing the data production details (Skaloud and 

Lichti 2006). Kim (2009) proposed a geometric model of the LiDAR sensor to 

simulate aerial mobile LiDAR data of a ray-tracing algorithm and to facilitate the 

assessment of data quality and the development of the data processing algorithms. 

Heinz (2015) generates simulated planar targets with a robotic simulation toolbox 
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called (V-REP). Most geometric-based simulation approaches produce simulated 

data from airborne MLS with a nadir look at scenes (Friess 2006; Kim et al. 2009). 

Moreover, as we can see, the most famous geometric feature in the geometric-based 

simulation approach is a planar target. Indeed, a planar target shows a simple 

mathematical model and can be used to demonstrate the effect of MLS systematic 

errors very well (Filin 2003). In various MLS systematic error estimation approaches, 

for geometric features of their algorithms, they consider in-situ planar targets like 

building roofs and facades (Glennie, Kusari, and Facchin 2016; Skaloud and Lichti 

2006; Zeng et al. 2018; Heinz et al. 2015). 

In this paper, the objective is to analyze the effects of the systematic errors of an 

MLS on simulated planar targets. For this purpose, we introduce the concept of an 

MLS simulator that generates simulated point clouds on a pre-defined hypothetical 

planar target. This design makes it easy to choose each of the systematic errors of 

an MLS individually and study its impact on the simulated point cloud. This ability 

allows one to study systematic errors separately and independently without 

influencing other systematic and non-systematic errors. After generating various 

simulated point clouds, we present the systematic-error visibility criteria to find the 

best configuration for planar target inclinations and MLS passages for each 

systematic error separately. 

The subsequent sections of the paper are organized as follows. Section 3.4 presents 

the conceptual model of the proposed simulator and the visibility criteria index. 

Section 3.5 discusses the results of analyzing the systematic errors for the simulated 

data. The validation procedure with the real-data point clouds is presented in Section 

3.6. Finally, conclusions and future works are recommended in Section 3.7. 

3.4 Methodology 

This section introduces the conceptual model of the simulator that enables us to 

study the effect of systematic errors of an MLS in a simulated environment. Figure 

3.1 illustrates this conceptual model and different parts of the methodology that 
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generates an MLS simulated point cloud. As shown in Figure 3.1, two kinds of input 

data enter the direct georeferencing module function: the positioning and orientation 

system (POS) as observations and the LiDAR range with systematic error effects as 

the result of the LiDAR range estimation function. The following section describes 

the mathematical model of direct georeferencing and its components. 

 

Figure 3.1– Flowchart of the methodology to produce a simulated point cloud with inserted 

systematic errors. Red boxes represent the functions and green boxes the functions' results. 

Blue boxes are for simulated observations and the yellow boxes are for common observations 

or functions. 



 

54 

3.4.1 Direct georeferencing mathematical model 

Equation (3.1) presents the mathematical model of the direct georeferencing of an 

MLS (Ackermann 1999; Wehr and Lohr 1999; Shan and Toth 2008; Vosselman and 

Maas 2011). The output of the Equation (3.1) model, (𝑋 𝑌 𝑍)𝐿𝐺𝐹
′ , is the 3D 

position vector of the georeferenced point in a relative coordinate system such as 

the Local Geodetic Frame (LGF). 

In Equation (3.1), we have two transformations between three frames, from the 

LiDAR frame to the POS frame and from the POS frame to the LGF frame. Here 

also, to simplify our simulation design, we consider that the GNSS antenna phase 

center and the IMU gravity center are located at the POS reference center. 

[
𝑋𝐿𝐺𝐹

𝑌𝐿𝐺𝐹

𝑍𝐿𝐺𝐹

] = [

𝑃𝑋
𝐿𝐺𝐹

𝑃𝑌
𝐿𝐺𝐹

𝑃𝑍
𝐿𝐺𝐹

] + 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ)(𝑅𝐿𝑖𝐷𝐴𝑅

𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) [

𝑥𝐿𝑖𝐷𝐴𝑅

𝑦𝐿𝑖𝐷𝐴𝑅

𝑧𝐿𝑖𝐷𝐴𝑅

] + [

𝑎𝑋
𝑃𝑂𝑆

𝑎𝑌
𝑃𝑂𝑆

𝑎𝑍
𝑃𝑂𝑆

] ) (3.1) 

  

We choose to georeference the data in a relative coordinate system such as LGF 

instead of a projection system like UTM because the survey and the area we 

consider for analyzing systematic errors, such as boresight error, typically covers a 

small area. Thus, we avoid using a projection coordinate system to simplify 

calculations and remain in a relative local coordinate frame.  

The following section explains each part of the direct georeferencing mathematical 

model by considering their respective contribution to the proposed simulation design 

and concept. 

3.4.1.1 Trajectory Position Vector 

In the simulator design, the positions of the trajectory, (𝑃𝑥 𝑃𝑦 𝑃𝑧)𝐿𝐺𝐹
′  , a 3D position 

vector for each trajectory point in the Local Geodetic Frame (LGF) system is 

represented by a sequence of points. Figure 3.2 shows a sample of trajectory points 

(in black) and simulated LiDAR points (in red) on a hypothetical planar target. We 

consider that the trajectory follows a straight line at a fixed height from the ground.  
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Figure 3.2 -Trajectory points (large black points) and LiDAR points (small red points) 

For trajectory lines parallel to the planar target and the X-Z plane, the values of ‘y’ 

are zero, the values of ‘z’ are constant, and the values of ‘x’ gradually increase, as 

illustrated in Figure 3.2. 

3.4.1.2 Attitude Angles Transformation Matrix 

The 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹 transformation matrix consists of three attitude angles: roll (r), pitch (p), 

and heading (h) between LGF and POS frames. These angles define the orientation 

of the platform. For example, for having round-trip parallel trajectories, we consider 

that in the first passage, the heading angle is 0°, and in the second passage, the 

heading angle is 180°. In our simulation, we can change the heading angle to 

produce other passages, for example, 45°, 225°, 315°, and 135° headings. Figure 

3.3 illustrates the simulated trajectory of the six passages with respect to the planar 

target. 
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Figure 3.3 – Simulated trajectory of the six passages with respect to the planar target 

This paper considers only these trajectories to simplify the analysis of systematic 

errors. Our objective is to consider a simple platform (vehicle) motion scenario and 

analyze the effect of systematic errors on the planar targets based on the proposed 

configurations. 

3.4.1.3 Target Point Position Vector 

The vector 𝑟𝐿𝑖𝐷𝐴𝑅 describes the position of the target point w.r.t the optical center of 

the LiDAR scanner. This vector consists of two parameters, the 𝝆 (range) distance 

from the optical center of the LiDAR scanner to the target point and 𝜶𝑳𝒊𝑫𝑨𝑹 (scan 

angle), which can be between 0° and 360°. The direct georeferencing mathematical 

model uses the polar coordinates representation for the 𝑟𝐿𝑖𝐷𝐴𝑅 vector. In the 

proposed simulation design, inside the range estimation function, we directly insert 

systematic errors such as the boresight angle errors, lever arm errors, range offset, 

and scan angle offset. Section 3.4.2 will describe the systematic error insertion 

procedure using the range estimation function. Figure 3.4 illustrates a schematic 

LiDAR scanner with its corresponding spherical representation in the simulation 

design. 
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(a) 

 

 

(b) 

Figure 3.4 – (a) Schematic LiDAR scanner with optical center (b) Local LiDAR frame with 

spherical parameters representation 

3.4.1.4 POS-LiDAR Lever arm Vector 

In the proposed simulator, to simplify the design, we consider the POS-LiDAR lever 

arm vector, (𝑎𝑥 𝑎𝑦 𝑎𝑧)𝐿𝐺𝐹
′  , as a translation vector between the LiDAR frame and 
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the POS frame, to be zero, which means that the POS and LiDAR are superposed 

in the same location. Thus, we only consider the lever arm components to have 

errors in the X, Y, and Z directions.  

3.4.1.5 Boresight Angles Transformation Matrix 

The 𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆  transformation matrix consists of three boresight angles (𝛼, 𝛽, 𝛾) between 

the LiDAR frame and POS frame. This imposed boresight error affects the calculated 

range of the LiDAR scanner w.r.t a specific target. Because of these parameters on 

the range of georeferenced data, we expect that generated point clouds with 

imposed POS-LiDAR boresight angles will be placed at the wrong location or may 

even be placed outside the hypothetical planar surface. 

3.4.2 LiDAR Range Estimation Function 

Among the presented direct georeferencing parameters of Equation (3.1), as 

described in Section 3.4.1, the range (𝝆), which is one of the parameters of 𝑟𝐿𝑖𝐷𝐴𝑅 

vector has a significant role in modeling the POS-LiDAR systematic errors of an 

MLS. By considering the misaligned MLS due to systematic errors such as boresight 

and lever arm errors, we calculate the range of the LiDAR point (Morin and El-

Sheimy 2002). To generate a simulated point cloud with imposed systematic errors 

to the system, we must be able to implicitly introduce systematic errors such as POS-

LiDAR boresight angles, POS-LiDAR lever arms, LiDAR range offset, and LiDAR 

scan angle offset to the simulator algorithm. Ultimately, the simulator produces data 

affected by these misalignments created by the MLS systematic errors. In the first 

step, as shown in Equation (3.2), we calculate the georeferenced point without 

considering any systematic errors, 

[
𝑋
𝑌
𝑍
]

𝐿𝐺𝐹

= [

𝑃𝑥

𝑃𝑦

𝑃𝑧

]

𝐿𝐺𝐹

+ 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ) (𝝆 [

0
cos (𝛼𝐿𝑖𝐷𝐴𝑅)
sin (𝛼𝐿𝑖𝐷𝐴𝑅)

]) (3.2) 

   𝑟𝐿𝑖𝐷𝐴𝑅  
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In the second step, we introduce a function that explicitly calculates the range (𝝆) of 

the emitted point from an MLS with imposed systematic errors. The concept of the 

MLS systematic errors is exactly like in a real-world situation where we do not have 

any a priori knowledge about these systematic errors. Hence, we can generate 

misaligned points by adding systematic errors to boresight angles, lever arm vectors, 

range, and scan angle errors. After georeferencing the point cloud, we can observe 

a data misalignment coming from these POS-LiDAR systematic errors. Figure 3.5 

illustrates calculating the LiDAR range in the simulation model. 

 

Figure 3.5 – Flowchart of the range estimation function 

As mentioned before, the geometric feature used in our analysis is a planar target. 

Thus, we study how systematic errors of an MLS impact points constrained to lie 
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over a planar target. Equation (3.3) represents the mathematical model for the planar 

target. 

𝐴𝑋𝐿𝐺𝐹 + 𝐵𝑌𝐿𝐺𝐹 + 𝐶𝑍𝐿𝐺𝐹 + 𝐷 = 0 (3.3) 

  

In Equation (3.3), the (𝑋𝐿𝐺𝐹, 𝑌𝐿𝐺𝐹 , 𝑍𝐿𝐺𝐹) are the coordinates of the georeferenced point 

obtained with Equation (3.1). The plane parameters (𝐴, 𝐵, 𝐶, 𝐷) define the 

hypothetical planar target where parameters 𝐴, 𝐵, and 𝐶 are the normalized (unit 

length) normal vector of the planar target and the parameter 𝐷 is the negative 

orthogonal distance of the planar target w.r.t the origin of the LGF coordinate system 

(Skaloud and Lichti 2006). 

Thus, each georeferenced point generated by the simulator is constrained to lie on 

the hypothetical planar target. Based on this assumption, we calculate the range of 

each point, defined as the distance between the mobile LiDAR system and the planar 

target. This range variable is part of the 𝑟𝐿𝑖𝐷𝐴𝑅 vector of the direct georeferencing 

model in Equation (3.1). 

We use symbolic language to define the explicit function for range based on the 

georeferencing mathematical model. In this paper, we have used the MATLAB 

symbolic toolbox to generate the explicit function of the range. Thus, the explicit 

range function will be a function of all input parameters described in Figure 3.5 (blue 

cases), as follows: 

• Position and Orientation System (POS) parameters 

• Inserted systematic errors: POS-LiDAR boresight angles error, lever arm 

error, range offset, and scan angle offset 

• Planar target constraint 

3.4.3 Point to Plane Belonging Function 

One of the crucial parts of the simulator design is to verify if a georeferenced point 

belongs to a planar surface or not. Using a mathematical model that defines an 
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infinite plane, we first define four corner points of our planar target with respect to 

the system frame. If a point is in a rectangle, the area summation of the four triangles 

must be equal to the area of the triangle, as illustrated in Figure 3.6. These four 

triangles are made by connecting the point to the four vertices of the rectangle. 

 

Figure 3.6 – Point M inside the rectangle M1-M2-M3-M4 

The point “M” belongs to rectangle “𝑀1 𝑀2 𝑀3 𝑀4" because the summation of the 

areas of the following four triangles: ∆𝑀1 𝑀 𝑀2, ∆𝑀2 𝑀 𝑀3, ∆𝑀3 𝑀 𝑀4 and 

∆𝑀4 𝑀 𝑀1 is equal to the area of the rectangle "𝑀1 𝑀2 𝑀3 𝑀4". If the point is outside 

the rectangle, the above summation will produce a greater value than the area of the 

rectangle, and therefore, the algorithm will reject it. 

3.4.4 Systematic-Error Visibility Criteria Function 

Until now, we explained how to generate a point cloud, which lies on a planar target 

using an MLS with inserted systematic errors. With this capability, we can produce 

various simulated point clouds with specific configurations. We define the term 

“Configuration” as the setup that leads to the final point cloud, which is as follows, 

(1) The inclination of the planar target 

(2) The passage of the MLS  

(3) The dimension of the planar target 

(4) The height difference between MLS and planar target 

In this research, we consider parameters (1) and (2) of the configuration as variables 

and parameters (3) and (4) as constants.  
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We will have simulated point clouds on the planar target based on various 

configurations. To quantify the impact of systematic errors on the plane’s point cloud, 

we introduce two types of “systematic-error visibility criteria.” Type I, which makes a 

raw selection from the configurations, is a quantitative value based on two 

parameters: planarity and centroidal distance, and Type II, which makes a fine 

selection from the retained configurations, consists of two parameters: angular 

deviation and signed orthogonal distance.  

Figure 3.7 details the algorithm of calculation of the centroid, eigenvalues, and the 

normal of the plane. 

ALGORITHM 1: ALGORITHM TO CALCULATE CENTROID AND NORMAL OF A PLANE 

 Input: 3D coordinates of the plane 

 Output: centroid and normal of the plane 

1 number-of-Points ← count the total number of points in the dataset 

2 Initialization of variables: assign zero to the variable i, X, Y, Z, C, 𝝀𝟏, 𝝀𝟐, 𝝀𝟑 

3 for (i  <  number-of-Points) // read all the points and accumulate their values into one variable 

4  X ← read the x coordinate of each point and add to the variable 

5  Y ← read the y coordinate of each point and add to the variable 

6  Z ← read the z coordinate of each point and add to the variable 

7 end 

8 𝒙𝒄 ← X / number-of-Points 

9 𝒚𝒄 ← Y / number-of-Points 

10 𝒛𝒄 ← Z / number-of-Points 

11 C  ← covariance matrix with 3D coordinates [X, Y, Z] of the plane 

12 𝝀𝟏, 𝝀𝟐, 𝝀𝟑 ← eigenvalues calculated based on C in descending mode 𝝀𝟏  ≥ 𝝀𝟐  ≥ 𝝀𝟑  ≥ 𝟎 

13 n  ← normal of the plane (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) 

14 d  ← −(𝑥𝑐𝑛𝑥+𝑦𝑐𝑛𝑦+𝑧𝑐𝑛𝑧)        // perpendicular distance of the plane from the origin 

Figure 3.7 – Algorithm to calculate centroid, eigenvalues, and normal of a plane 

3.4.4.1 Type I – Planarity and centroidal distance 

As mentioned, the Type I systematic-error visibility criterion consists of two 

parameters, planarity, and centroidal distance, which make an initial selection from 

all the available configurations.  

We consider the eigenvalues of the simulated point cloud covariance matrix to 

calculate the planarity parameter (West et al. 2004; Pauly, Keiser, and Gross 2003; 
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Blomley, Jutzi, and Weinmann 2016; Gross, Jutzi, and Thoennessen 2007). On the 

other hand, the centroidal distance calculates the distance between the hypothetical 

planar target's centroid and the simulated planar target and is considered a 

dispersion indicator. If the “CentroidalDistance” is considered as 𝑥𝑖, its normalized 

value between [0, 1]  𝑧𝑖 is calculated based on Equation (3.4). 

𝑧𝑖 =
𝑥𝑖 − min (𝑥)

max(𝑥) − min (𝑥)
 (3.4) 

The algorithm to calculate Type I systematic-error visibility criteria is demonstrated 

in Figure 3.8. 

ALGORITHM 2: ALGORITHM TO CALCULATE VISIBILITY CRITERIA TYPE I 

 Input: 3D coordinates of the simulated plane, 𝑪𝒓𝒆𝒇 and 𝒏𝒓𝒆𝒇      // 𝒏𝒓𝒆𝒇 reference plane’s 

normal                                                                                                   // 𝑪𝒓𝒆𝒇 reference plane’s centroid 

 Output: Type I visibility criteria 

1 Initialization of variables: assign zero to variable Type I 

2 centroid ← calculate the centroid of the simulated plane from algorithm 1 

 3 n ← calculate the normal of the simulated plane from algorithm 1 

4 𝝀𝟏, 𝝀𝟐, 𝝀𝟑 ← calculate the descendent eigenvalues of the simulated plane from algorithm 1 

5 planarity ← (𝝀𝟐 − 𝝀𝟑)/ 𝝀𝟏 

6 CentroidalDistance ← Euclidean distance between centroid and 𝑪𝒓𝒆𝒇 

7 Type I ← planarity (1- CentroidalDistance) 

Figure 3.8 – Algorithm to calculate Type I visibility criteria 

The more the Type I is near a plane shape (planarity) and at the same time it is near 

the reference plane (CentroidalDistance near zero), the more the value of Type I 

criteria will be near 1. The considerable centroidal distance typically occurs when the 

simulated plane inclination is parallel to the direction of the LiDAR scanner beam, 

which decreases the accuracy of the generated point cloud (Cassol 2018).  

As a result, the Type I visibility criteria applies for an initial analysis of all the possible 

configurations. In Figure 3.9, two samples are introduced, one for a strong (near 1) 

and one for a weak (near 0) Type I systematic-error visibility criteria. As we can see 

schematically in Figure 3.9 (a), the Type I systematic-error visibility criterion is strong 

because the different instances of the planar target are sufficiently close to the 

hypothetical plane. In Figure 3.9 (b), the Type I systematic-error visibility criterion is 
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weak because the different instances of the planar target are too far from the 

hypothetical plan. Therefore, we eliminate the latter configuration for further analysis. 

 
(a) 

 
(b) 

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure 3.9  – (a) Strong configuration Type I systematic-error visibility criterion (-60 deg) (b) Weak 

configuration Type I systematic-error visibility criterion (60 deg)  
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3.4.4.2 Type II – Angular Deviation and Signed Orthogonal Distance 

This section considers Type II systematic error visibility criteria, which make a more 

delicate selection from the retained configurations. The normal vector between the 

planar surfaces is a solid and simple indicator that shows the angular deviation 

between the hypothetical plane and the plane generated by the simulator. The 

signed orthogonal distance also shows the shortest distance between the centroid 

of the simulated planar surface point cloud and the hypothetical planar target. The 

algorithm to calculate both parameters of the Type II visibility criteria is demonstrated 

in Figure 3.10. 

ALGORITHM 3: ALGORITHM TO CALCULATE VISIBILITY CRITERIA TYPE II 

 Input: 3D coordinates of a simulated plane 𝒏𝒓𝒆𝒇      // 𝒏𝒓𝒆𝒇 reference plane’s normal 

 Output: Type II visibility criteria 

1 Initialization of variables: assign zero to the variable centroid, n, Type I 

2 centroid ← calculate the centroid of the simulated plane from algorithm 1 

 3 n ← calculate the normal of the simulated plane from algorithm 1 

4 AngularDeviation ← 𝒕𝒂𝒏−𝟏(‖𝒏 ×  𝒏𝒓𝒆𝒇‖/(𝒏 . 𝒏𝒓𝒆𝒇) )  // this variable is always in [0°, 90°] 

interval 5 OrthogonalDistance ← (𝒏𝒓𝒆𝒇 . centroid) / ‖𝒏‖        // distance btw ref and simulated planes 

Figure 3.10 – Algorithm to calculate Type II visibility criteria 

As shown in Figure 3.11, a systematic error of the roll boresight angle in parallel 

round-trip passages w.r.t the planar target impacts the generated point clouds 

compared to the hypothetical planar surface (a) angular deviation and (b) orthogonal 

distance drift. For Type II criteria, we must compare various passages and then 

choose the configuration with a more significant angular deviation difference and 

higher orthogonal distance. 

Thus, Type I and Type II systematic-error visibility criteria make a raw and fine 

selection from configurations that ultimately generate the simulated point clouds. 

Configurations at their Type I and Type II criteria value attain the expected threshold 

and will be considered an ideal input for detecting systematic errors and will 

consequently be chosen for calibration of an MLS. 
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(a) (b) 

Figure 3.11  – Type II systematic-error visibility criteria for roll systematic error analysis (a) angular 

deviation (b) signed orthogonal distance  

In the next section, these two types of systematic-error visibility criteria will be used 

as an indicator to select the best planar target configurations. 

3.5 Results and Discussions 

In the analysis of systematic errors of an MLS, the objective is to find out the best 

configuration (which in this paper is considered the combination of Plane inclination 

and MLS passage) to obtain Type I and Type II systematic-error visibility criteria for 

each of the eight MLS systematic errors in the expected threshold. In the terrestrial 

MLS simulator, we consider that the system's height is fixed and is ‘h = 2.5 m’ from 

the ground, and the planar target is on the ground at a lower height (less than h). 

We consider 19 inclinations of the planar target with respect to the terrestrial MLS 

simulator, which varies between -90° and 90° with 10° intervals, as illustrated in 

Figure 3.12. 
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Figure 3.12  – All the 19 planar target inclinations versus a terrestrial MLS  

 

3.5.1 Line Pattern 

As previously shown in Figure 3.3, the line pattern consists of six passages with 0°, 

180°, 45°, 225°, 315°, and 135° heading directions. 

3.5.2 Systematic-Error Visibility Criteria Analysis 

In this section, we analyze each of the eight systematic errors. Based on the Type I 

criteria, the configurations that produce point clouds with acceptable planar shape 

will have a value near 1 for the Type I criteria and proximity to the hypothetical plane 

(the centroidal distance around 0). Thus, we keep only the configurations that result 

in a Type I value around 1. Once we have selected the configurations with the Type 

I criteria, we then use the Type II criteria, which will make a more delicate selection 

and result in a single plane’s inclination. The result of Type II criteria of each 

terrestrial MLS systematic error represents the best possible configuration to 

generate a point cloud with the best visibility for that specific error. A complete 

analysis of the pitch systematic error is performed in the following. Based on the 



 

68 

same procedure, we analyze the other seven MLS systematic errors and summarize 

the best configurations for each of them. 

To demonstrate the procedure, we consider the impact of the pitch boresight angle 

of 2° inserted into the MLS on the hypothetical planar target. Figure 3.13 presents 

the values of the Type I criteria, and Figure 3.14 represents the Type II criteria for 

all the six MLS passages and the 19 plane inclinations. The blue box in these two 

figures is considered the plane’s inclination that the Type I and Type II criteria are 

within the expected threshold. 

 
 

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure 3.13  – Pitch boresight angle Type (I) systematic-error visibility criterion of all the 

possible inclinations (horizontal axis in degree) 

Based on the Type I criteria, Table 3.1 represents all the possible configurations that 

result in the expected visibility of the pitch boresight angle systematic error. 
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Table 3.1 – Possible configurations for pitch boresight angle systematic error  

MLS Passage Possibilities 

(0°, 45°, 225°) (0°, 135°, 225°) 

(0°, 45°, 315°) (0°, 135°, 315°) 

(180°, 45°, 225°) (180°, 135°, 225°) 

(180°, 45°, 315°) (180°, 135°, 315°) 

 From To 

Possible Plane Inclinations -90° 20° 

 

Based on the possible configurations in Table 3.1, we perform the fine selection with 

the Type II criteria. As shown in Figure 3.14, the best visibility configuration for the 

pitch boresight angle systematic error is one of the eight passage possibilities 

introduced in Table 3.2 – Best configurations for all systematic errors, like (180° - 

blue color, 135° - black color, 315° - pink color) passages and 0° inclination (vertical 

plane). This configuration produces the maximum value of both the signed 

orthogonal distance and the angular deviation when using a vertical plane (0° 

inclination), while we have inserted pitch boresight angle systematic error in our 

system. Table 3.2 summarizes the best configurations for all eight systematic errors. 

Table 3.2 – Best configurations for all systematic errors based on simulated data 

Systematic Error Value 
Best Configuration 

MLS Passages Plane Inclination 

Roll boresight error 2° (0°, 180°, 45°, 225°) -40° 

Pitch boresight error 2° (0°, 45°, 225°) 0° 

Yaw boresight error 2° (0°, 45°, 315°) 0° 

X lever arm error 10 cm (0°, 45°, 225°) 0° 

Y lever arm error 10 cm (0°, 180°, 45°, 225°) 0° 

Z lever arm error 10 cm Nan Nan 

Range offset 10 cm (180°, 225°) -60° 

Scan angle offset 2° (0°, 180°, 45°, 225°) -50° 

 

While analyzing all MLS systematic errors, we recognized a correlation between the 

scan angle offset and the roll boresight angle systematic error due to the same 

rotational effect of two systematic errors on the planar target. 
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(a) 

 
(b) 

Passage 0° 180° 45° 225° 315° 135° 

Color       

Figure 3.14  – Pitch boresight angle systematic error Type (II) criteria (a) Signed orthogonal 

distance (vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible 

inclinations (horizontal axis in degree) 
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Also, we did not suggest any possible configuration for the Z lever arm systematic 

error due to the nature of the Z lever arm error, which is a translation and shift in the 

Z direction in a similar fashion for all the points of all passages. Thus, it is impossible 

to observe the Z lever arm error with our actual planar target configurations (Leslar, 

Hu, and Wang 2014; Skaloud and Lichti 2006). Therefore, measuring the Z lever 

arm with a precise and accurate surveying technique, like the total station method, 

is suggested. Then, this value can be entered as a constant in the georeferencing 

model to generate the point cloud (Leslar, Hu, and Wang 2014; Skaloud and Lichti 

2006). 

Based on our analysis results, most systematic errors can be assessed with a planar 

target of 0° inclination, represented by a vertical plane, and the remaining systematic 

errors with an inclined planar target between -60° and -40°. We must choose the 

combination of necessary passages for the line pattern passages that cover all the 

systematic errors. Table 3.3 suggests the best configuration (combining plane 

inclinations and MLS passages) to obtain expected visibility for all the terrestrial MLS 

systematic errors. 

Table 3.3 – Suggested combination of MLS passages and planar targets with different 

inclinations for estimation of systematic errors of a terrestrial MLS. 

 
Best Configurations (passages + plane inclinations) 

 

MLS Passage Possibilities 

(1) (0°, 180°, 45°, 225°, 135°) 

(2) (0°, 180°, 45°, 225°, 315°) 

(3) (0°, 180°, 315°, 135°, 45°) 

(4) (0°, 180°, 315°, 135°, 225°) 

Possible Plane Inclinations 
One inclined plane (between -40° and -60°) 

and one vertical plane (0°) 
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3.6 Experiments and Validation 

To validate the proposed methodology, we implemented a real-world test with a 

mobile LiDAR system composed of a LiDAR scanner (Z+F 9012 profiler), an IMU 

(iXBlue ATLANS-C), and GNSS antenna (Septentrio), and a structure made of three 

planar targets as seen in Figure 3.15. 

  
(a) (b) 

Figure 3.15  – (a) Terrestrial MLS for validation test (b) Location of the validation test on 

OpenStreetMap with the line pattern and the location of the three planar targets 

The validation test was carried out on a parking lot where we installed the three 

planar (horizontal, vertical, and inclined) target assembly and collected data by 

following our proposed six-line pattern.  The dimension of each planar target is 1 m 

x 1 m for simplicity and applicability. To be able to compare the results of this real-

data validation test with those of the simulated data from Section 3.5, we consider 

that the vertical planar target inclines [-10°, 10°], the inclined planar target inclines [-

60°, -40°], and inclination between [70°, 90°] is considered a horizontal target. Also, 

we tried to follow the same line pattern presented in Figure 3.3 for the simulation. 

Based on the Type I analysis, five out of six passages were around 1, which is the 

value that defines the planarity and proximity to the centroid. Only passage P4, one 

of the side-looking passages whose Type I value was far below the value one, was 

eliminated. On the other hand, as the horizontal plane does not satisfy the Type I 

criterion for most of the passages, it was not used. Thus, our experiment considers 

only the vertical and inclined planar targets and the five passages (P1, P2, P3, P5, 

and P6). 
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We analyze the Type II criteria based on these selected configurations in the next 

step. For the orthogonal distance criteria with the vertical plane, the difference 

between the maximum value obtained in passage P6 and the minimum value 

obtained in passage P3 is 9.4 mm.  With the inclined plane, the difference between 

the maximum value obtained in passage P3 and the minimum value obtained in 

passage P2 is 49.6 mm. Thus, the inclined plane generates point clouds with the 

highest orthogonal distances, demonstrating strong visibility for some of the 

systematic errors of the selected MLS. Based on the angular distance criteria, for 

the vertical plane, the difference between the maximum (P3) and minimum (P2) is 

1.0892°, and for the inclined plane, the difference between the maximum (P5) and 

the minimum (P3) is 0.3863°. Thus, the vertical plane generates point clouds with 

the highest angular deviations, demonstrating strong visibility for some of the 

systematic errors of the selected MLS. We conclude that both planar targets (vertical 

and inclined) are essential to satisfy the Type II criteria and, as a result, to obtain 

strong visibility of all systematic errors of a terrestrial MLS.  

Even though we tried as much as possible to reproduce in the real-data validation 

test the same configurations recommended in the simulation analysis, there are still 

significant differences between the real and simulation configurations, leading to 

different values for Type II criteria, especially for the orthogonal distance. However, 

these configurations produce point cloud data with the necessary deviation and drift 

to generate strong visibility of all systematic errors of a mobile LiDAR system. 

3.7 Conclusions and Future Works 

This paper analyzes eight systematic errors of an MLS with a simulation approach. 

We introduced the concept, design, and methodology of the MLS simulator. The 

advantage of adopting this simulation approach is to study each systematic error 

independent of other errors (e.g., trajectory-based errors and sensor noises). On the 

other hand, the simulator can generate point clouds on hypothetical planar targets 

with various configurations without any limitations. The term configuration in this 

paper mainly refers to the inclination of the planar target and the set of passages, 

known as a line pattern, followed by an MLS. To detect the best configuration of the 
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systematic errors of an MLS, we introduced two types of systematic-error visibility 

criteria, which implement a raw and a fine selection of the existing configurations. 

The results show that a configuration of two planar targets of 1 m x 1 m size with 

vertical and inclined inclination, combined with a five passages line pattern, will lead 

to strong visibility of the systematic errors of an MLS. This result was confirmed with 

a real data acquisition test. The proposed configuration in this research will lead to 

relevant information for the calibration of an MLS mounted on a terrestrial platform. 

Furthermore, the approach adopted in this paper shows that we can study the 

behavior (here, systematic errors) of a mobile LiDAR system (here, a terrestrial 

MLS), merely with a conceptual mathematical model, without the need to invest in 

expensive and time-consuming field tests. 

In future works, we will consider more variables for the configuration parameters, 

like the dimension and inclination of tie-planes. Consequently, we will generate many 

more possible configurations that will not be easy to analyze using the proposed 

approach. Thus, we will adopt other techniques to optimize the selection of the best 

configuration with strong visibility of the systematic errors of a mobile LiDAR system. 
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3.9 Complementary for Chapter 3 

In Chapter 3, we introduced the analysis of terrestrial MLS systematic errors with a 

simulation approach, and we covered the detailed analyses of the eight systematic 

errors of a terrestrial MLS in Appendix C. 

However, in this thesis, we are interested in the maritime context with a marine MLS. 

Therefore, in this complementary section, we apply the same analysis introduced in 

this chapter to the marine MLS context. We first briefly introduce the environment 

and the possibilities for setting up the predefined planar targets, and then, we 

present the results for Type I and Type II criteria for the configuration selection 

procedure. Also, we only study the impact of the three boresight angles on the tie-

planes. 

Figure 3.16 illustrates a marine MLS schematically in a maritime context while we 

set up a planar target on the quay wall. The target is considered 1 m x 1 m with a 

horizontal distance from the hydrographic vessel of 15 m and a vertical distance of 
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5m. These parameters are chosen to approach the real-world port characteristics 

scanning environment. 

We can establish 28 possibilities for the planar target inclination with respect to the 

MLS, as illustrated in Figure 3.17. Each plane has a 10° rotational offset from the 

plane nearby. 

 

Figure 3.16 – Setup of the target and platform placement in a marine context 

 

 

Figure 3.17 – All the possibilities in terms of inclination for a planar target in a maritime context 
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Based on the inclinations shown in Figure 3.17, we apply the Type I visibility criteria 

while inserting 2° for all three boresight angles: roll, pitch, and yaw. Type I, 

considered raw selection criteria, eliminates the inclinations that do not satisfy the 

requirement of this criteria. Thus, we consider only inclinations that are between 0° 

(vertical plane) and 90° (horizontal plane), illustrated in Figure 3.18. 

 

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

 

Figure 3.18  – Boresight angles Type I systematic-error visibility criterion (vertical axis in 

meter) of all the possible inclinations (horizontal axis in degree) 

Along with the Type I criteria, we apply Type II for a more delicate selection of 

the best configuration of the planar target.  This time the Type II criteria are 

employed on each boresight error individually. The results of these analyses are 

demonstrated for three boresight angles in Figure 3.19, Figure 3.20, and Figure 

3.21, respectively. These three figures use the same color code as in Figure 

3.18. All three boresight errors strongly impact the vertical or near-vertical plane 

(0°). At the same time, we must consider that these boresight angles are 

correlated. Thus, we may introduce other non-vertical planes that lead to a better 

configuration that can decorrelate these parameters. Therefore, we must 
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introduce other criteria for the parameters that contribute to the configuration of 

the planar targets, which is the topic of Section 4.2.1 of Chapter 4. 

 

(a) 

 

(b) 

Figure 3.19  – Roll boresight angle systematic errors Type II criteria (a) Signed orthogonal 

distance (vertical axis in meter) (b) Angular deviation (vertical axis in degree) of possible 

inclinations (horizontal axis in degree) 
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(a) 

 

(b) 

Figure 3.20  – Pitch boresight angle systematic errors Type II criteria (a) Signed orthogonal 

distance (vertical axis in meter) (b) Angular deviation (vertical axis in degree) of possible 

inclinations (horizontal axis in degree) 
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(a) 

 

(b) 

Figure 3.21  – Yaw boresight angle systematic errors Type II criteria (a) Signed orthogonal 

distance (vertical axis in meter) (b) Angular deviation (vertical axis in degree) of possible 

inclinations (horizontal axis in degree) 
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Chapter 4 - Case Study: Rigorous Boresight 

Alignment of a Marine Mobile LiDAR System 

Addressing the Specific Demands of Port 

Infrastructure Monitoring 

In Chapter 3, based on an MLS systematic error analysis and a visibility analysis on 

simulated and real datasets, we proposed the best configuration for the tie-planes 

that will be input for the boresight alignment method of the MLS mounted on the 

hydrographic vessel. 

In this chapter, while considering the recommendation of Chapter 3 that reduces the 

searching window considerably, we delve more into the subject by introducing other 

criteria to refine the selected configuration. Thus, the first part of this chapter will go 

further with the best configuration selection with simulated data. We then validate 

the best configuration with a real dataset acquired from a survey at the Port of 

Montreal. We describe the context of the acquisition procedure with a concise 

presentation of the in-house customized MLS mounted on a hydrographic vessel. 

The boresight alignment method based on this real-world dataset confirms the 

approach's accuracy, repeatability, and robustness. Comparison of planar surfaces 

of a tower scanned in a parallel round-trip before and after boresight alignment of 

the system gives a relative accuracy assessment of the proposed method. The result 

of the accuracy assessment is satisfactory, and as a result, the point cloud accuracy 

has considerably improved due to the suggested configuration of tie-planes as inputs 

of the boresight alignment method. 

This chapter aims to respond to the third objective of the thesis, which is to evaluate 

the suggested configuration of the data acquisition procedure for the boresight 

alignment of a mobile LiDAR system in a port infrastructure monitoring context in 

terms of robustness, accuracy, and repeatability. Furthermore, this chapter presents 
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the integral of an accepted peer-reviewed journal paper submitted to the Marine 

Geodesy journal4. 

4.1 Résumé 

La surveillance précise des infrastructures portuaires est une opération vitale menée 

par l'autorité portuaire. Pour opérer régulièrement dans cet environnement 

hautement dynamique, nous explorons le potentiel des systèmes LiDAR mobiles 

(SLM) marins. Pour générer un nuage de points 3D de haute qualité, le scanner 

LiDAR et le système de positionnement et d'orientation doivent être alignés 

angulairement. Dans cette recherche, nous introduisons une méthodologie 

d'alignement des angles de visée d’un SLM. Les résultats obtenus ont permis 

d’estimer avec précision les angles de roulis et de lacet avec des écarts types 

inférieurs à 0,002 degré et l'angle de tangage avec un écart type inférieur à 0,015 

degré. Enfin, nous avons défini un site de validation contenant des surfaces 

planaires. La comparaison relative des nuages de points géoréférencés, avant et 

après l'alignement des angles de visée, démontre l'atténuation de l'impact de l'erreur 

systématique des angles de visée sur le nuage de points final. 

4.2 Abstract 

Accurate infrastructure monitoring of ports and harbors is a vital operation conducted 

by the port’s authority. To operate regularly in this highly dynamic environment, we 

explore the potential of cutting-edge mobile LiDAR systems (MLS) mounted on a 

vessel. The LiDAR scanner and the positioning and orientation system (POS) must 

be angularly aligned. This procedure is also known as boresight alignment, which is 

necessary for generating a high-quality 3D point cloud that would satisfy the 

expected accuracy required in the monitoring task. This research introduces a 

boresight alignment methodology adapted to the port infrastructure surveillance 

based on prefabricated planar targets. After analyzing planar target simulated data, 

 
4 Shahraji, Mohsen H., and Christian Larouche. 2022. “Case Study: Rigorous Boresight Alignment 

of a Marine Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure 
Monitoring.” Marine Geodesy. Taylor & Francis, 1–33. doi:10.1080/01490419.2022.2025503. 
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we propose a boresight alignment site design. Then, we apply this boresight 

alignment site design in a real-world scenario. Obtained results estimate accurately 

roll and yaw angle errors with standard deviations of less than 0.002 degrees and 

pitch angle errors with a standard deviation of fewer than 0.015 degrees. Finally, we 

defined a validation site and described the procedure that uses these features to 

validate the quality of the estimated parameters. The relative comparison of the 

georeferenced point clouds before and after boresight alignment demonstrates the 

mitigation of the boresight systematic error impact on the final point cloud. 

Keywords: port infrastructures monitoring; marine mobile LiDAR system; boresight 

alignment; planar targets; simulation analysis. 

4.3 Introduction 

Regular and accurate monitoring of port and coastal infrastructure, i.e., quay walls, 

concrete infrastructures, piers, wharves, jetties, and breakwaters, is a highly 

demanded task by port authorities that enables the rapid identification of ruined 

sections and consequently apply essential maintenance procedures (Alho et al. 

2009; Kishi et al. 2015; Moisan et al. 2015; Rondeau and Pelletier 2013; Ruggeri, 

Fruzzetti, and Scarpelli 2021; Böder et al. 2011). The quay wall is the most critical 

structure among the port’s infrastructures (De Gijt 2010). Quay wall, which is an 

earth-retaining structure, is used chiefly for mooring the ships, and also, it is the 

location where vital equipment like cranes, roads, and rails network that enables 

vessels’ discharging and loading tasks, are installed on it (Karamperidou 2008; Böse 

2011). The quay wall goes through two main loads; vertical and horizontal. The 

vertical load comes from trucks, cargo loads, and cranes, and the horizontal load 

stems from ship impacts, wind, and soil pressure (Karamperidou 2008). All these 

heavy loads and the high-humidity environment are the leading cause of 

deterioration and deformation issues of the quay walls (Firoozi et al. 2014).  

In recent years, many researchers explored the potential of 3D data acquisition 

sensors like mobile LiDAR systems as a novel cutting-edge remote sensing 

approach for 3D scanning and modeling emergent objects (Thies 2011; Böder et al. 
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2011). At first, a static LiDAR system located on a nearby spot on the land was 

adopted for the 3D modeling structures like bridges and pillars (Moisan et al., 2015). 

Subsequently, the ability of terrestrial mobile LiDAR systems to extract dense 3D 

point clouds in highways and cities inspired the marine geomatics experts to 

integrate LiDAR with POS on the hydrographic vessel as a mobile platform to create 

a marine mobile LiDAR system (marine MLS). A marine MLS aims to perform a 

comprehensive and accurate 3D scan for surveillance and monitoring of port and 

coastal emergent infrastructure located above the water surface. The marine MLS 

has the advantage of regularly navigating through the different port sections and 

collecting 3D point clouds with the accuracy required for the monitoring task.  

Typically, hydrographic vessels are equipped with SONAR sensors integrated with 

POS for bathymetric surveying. The integration of a LiDAR scanner to the SONAR 

and POS sensors enables the acquisition system to produce full 3D scans of the 

above and under the water surface infrastructures simultaneously (Dix et al. 2012; 

Lu et al. 2019; Shi et al. 2017; Thies 2011; Böder et al. 2011; Kishi et al. 2015). 

A LiDAR scanner, while integrated into POS on a hydrographic vessel, must be 

aligned before fully operational and accurate. Such marine MLS has two main types 

of misalignment, POS-LiDAR lever arm and POS-LiDAR boresight angles. POS-

LiDAR lever arm can be measured at a millimetric accuracy level by employing 

classical surveying instruments like a total station in laboratory-controlled conditions. 

The POS-LiDAR boresight angles estimation, which we will name boresight 

alignment, cannot be implemented in the same laboratory-controlled conditions 

(Thies 2011; Skaloud and Lichti 2006; Heinz et al. 2017). The boresight alignment, 

which is the angular alignment between two non-tangible points, the optical center 

of the LiDAR sensor and the gravity center of the POS, is preferable to be estimated 

while each of these sensors is at its highest performance. In other words, while the 

MLS is operational and ready to scan the environment. This constraint will prevent 

other sources of errors, for example, positional errors, from intervening with the 

boresight alignment procedure.  
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Since the introduction of MLS at an academic and commercial level in the last two 

decades, many researchers have addressed the boresight alignment problem to 

decrease the systematic errors of such systems and improve the quality of the final 

point cloud. These methods can be classified into two main categories; rigorous 

(system-driven) and non-rigorous (data-driven) (Kersting 2006). The data-driven 

approach, also known as strip adjustment, utilizes the generated point cloud to 

reduce the discrepancies between the points of various strips of the same scanned 

scene. On the other hand, the system-driven approach considers raw observations 

from LiDAR and POS sensors (Kersting 2006). These raw measurements are then 

introduced to the georeferencing mathematical model, and at the same time, they 

are constrained to fit on an in-situ geometric primitive like a planar target (Filin 2003; 

Glennie 2012; Hebel and Stilla 2012; D. Li et al. 2016; Skaloud and Lichti 2006). The 

major drawback of this method is its dependence on geometric surfaces, primarily 

available in structured environments like urban areas (Kersting 2006). Thus, in 

recent years, inspired by system-based boresight alignment, researchers have 

explored the possibility of using prefabricated planar targets (Lu et al. 2019; Heinz 

et al. 2017; Heinz et al. 2020; Ravi et al. 2018). Lu et al. (2019) introduced an 

approach to estimate the rotation and displacement systematic errors for ship-borne 

mobile surveying systems using planar surfaces on a calibration site. 

The limitation of this approach is that it needs a specific calibration site, i.e., a 

calibration pool, with over ten planar in situ surfaces installed on the floor and walls, 

and the MLS is fixed on a crane. This setup is far less tangible than an actual scan 

on a surveying vessel platform (Lu et al. 2019). This systematic error estimation 

approach underestimates the necessity to initialize the POS sensors to achieve 

maximum accuracy for position and orientation observations of the marine platform. 

Also, there is no justification for using ten planar targets and their localization and 

orientation around the mobile LiDAR system.  Heinz et al. (2020) introduced a 

comprehensive approach to designing a calibration site and evaluating the boresight 

calibration results. In their proposed methodology, all the planar targets must be 

scanned and georeferenced in advance with an accurate acquisition system such 

as a static scanner or a total station (Heinz et al. 2020). The method necessitates 
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the establishment of a well-defined and accurately measured planar-based 

calibration site, which is not a feasible option in a marine MLS case. Ravi et al. (2018) 

proposed a planar features approach based on the positional deformations of the 

planes. However, this approach does not justify the configurations of the planar 

targets and the line patterns used for the calibration procedure (Ravi et al., 2018). 

Therefore, in this paper, due to the unorganized environment constraint of the port 

area, we address the POS-LiDAR boresight alignment issue with a system-driven 

approach using prefabricated planar targets. At the same time, it is necessary to 

define the best configuration of planar targets, i.e., the minimum number of planes, 

their best orientations with respect to the marine vessel platform, and the appropriate 

line pattern. The main contribution of this research is to present the best 

configuration for the boresight alignment site based on a comprehensive analysis of 

planar target simulated data. The detailed design procedure for this MLS planar 

target simulated data generator was introduced in our previous publication (Shahraji, 

Larouche, and Cocard 2020).  

We also tested the boresight alignment site design and the proposed acquisition 

methodology on a real dataset at the Port of Montreal. The boresight angle 

uncertainties were less than 0.002º for roll and yaw angles and less than 0.015º for 

the pitch angle, demonstrating high accuracy. The lower accuracy for the pitch 

boresight error is related to the LiDAR scanner field of view, which is lateral for a 

marine MLS, just like a terrestrial MLS. For this lateral field of view, the pitch 

boresight error effect will be on the same plane as the scene of interest. Therefore, 

its visibility will decline, and its uncertainties will increase.  In an aerial MLS where 

the LiDAR scanner has a nadir field of view on the scene of interest, the impact of 

the yaw boresight error is in the scene of interest plane, and as a result, this error is 

less accurate than the two other boresight errors: roll and pitch. 

Furthermore, the estimation and the analysis of the correlation matrix between the 

boresight angles demonstrate an acceptable decorrelation between the parameters. 

The estimated boresight angles also were compared with the results of a LiDAR 

patch test (Qinsy-Validator), and the results are similar. Based on our validation 
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analysis of points located further away or higher up, the average error obtained with 

the a priori values used after the installation of the scanner has been reduced to a 

few cm after the boresight alignment, which is near the expected theoretical 

accuracy obtained from the total propagated uncertainty model of the MLS. 

The rest of the paper is organized as follows; in the next section, our proposed 

methodology is detailed and brief results from the boresight angles simulation 

analysis are provided. In the following section, we present the results of real-world 

survey experiments at the Port of Montreal and the quality assessment of the 

method. Finally, in the last section, we present a discussion, our conclusions, and 

some other research tracks for future work.  

4.4 Methodology 

Figure 4.1 presents the three main phases of the methodology. First phase is the 

data collection carried out on the terrain and is considered the main contribution of 

this research. Second phase is the calibration done in a laboratory condition, which 

results to accurate measurement of the lever arm vector. Third phase, done in office, 

is the data processing for estimating the boresight error. 



 

89 

 

Figure 4.1– Mobile LiDAR system boresight alignment methodology 

The data collection phase consists of two modules. The first module includes the 

boresight alignment site design and setup made of prefabricated planar targets and 

a pre-defined line pattern. The best inclination of planar targets and line patterns was 

selected based on a simulation approach (Shahraji, Larouche, and Cocard 2020). 

The second module consists of the scanning of planar targets in the field. The 

calibration phase concerns the POS-LiDAR lever arms measurement operation 

performed in a controlled environment like a laboratory with very accurate and 

conventional surveying methods. It is essential to accomplish this step before 

carrying out the actual boresight alignment survey. The data processing phase 

consists of four modules: the direct georeferencing module, the planar targets 

extraction and preparation module, the boresight angles estimation module, and the 

validation and quality analysis module. All three phases of the proposed 
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methodology require POS and LiDAR raw observation data. The following 

subsections explain each module in detail. 

4.4.1 Boresight Alignment Site Design and Setup 

This module, which is the main contribution of this paper, consists of the design of 

the boresight alignment site, installation, and acquisition of the prefabricated planar 

targets. To find the best configuration, we first addressed the effect of different 

boresight angles on simulated planar targets (Shahraji, Larouche, and Cocard 

2020). With the understanding that we obtain from the behavior of boresight angles 

on the simulated planar target, we eventually define several configurations, then 

evaluate the effect of various configuration scenarios on the performance of the 

boresight alignment algorithm. 

4.4.1.1 Boresight Angle Systematic Error Analysis 

Based on the simulated planar target point cloud generator (Shahraji, Larouche, and 

Cocard 2020), we can better understand and analyze the effect of each boresight 

angle on the generated point cloud without the presence of other sources of error, 

i.e., blunders, sensor noises, and other random errors (Glennie 2012; Skaloud and 

Lichti 2006; Heinz et al. 2020).  

As shown in Figure 4.2, we consider one square-shaped vertical planar target of 

dimensions 1m x 1m, located at 5 m height and 15 m horizontal distance of an MLS. 

For this analysis, we inserted a value of 2º for each simulated boresight angle. Also, 

we consider six passages for the scan line pattern for generating the simulated point 

cloud showing the target. 

To study the effect of each boresight angle on the simulated vertical plane, we 

consider three-line patterns; round-trip parallel passages (0º-180º), round-trip side-

looking passages (45º - 225º or 315º - 135º), and two-direction crossing passages 

(45º - 135º or 315º - 225º). 
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Figure 4.2– Schematic presentation of various tie-planes with different inclinations and 

dimensions (this figure is not to scale) 

The first line pattern, i.e., round-trip parallel passage (0º - 180º), is presented in 

Figure 4.3. 

We insert a roll boresight systematic error to analyze its impact on round-trip parallel 

passages. Figure 4.4 illustrates that the original vertical plane generated with a 0º 

roll boresight angle is represented in full cyan color and the plane generated with a 

2º roll boresight angle at a 0º direction represented by the red arrow is the red dotted 

plane. 

 

Figure 4.3 – round-trip parallel passages (0° – 180°) 
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The plane generated with a 2º roll boresight angle at a 180º direction, represented 

by the blue arrow, is the blue dotted plane. Similar symbology is used for all the other 

figures presented in this section. We can see a remarkable sensitivity to the roll 

boresight angle systematic error, as illustrated in Figure 4.4. 

 
 

(a) (b) 

Figure 4.4 – POS-LiDAR roll boresight angle systematic error (2º) effect on a vertical planar 

target. (a) simulated point cloud with the XYZ viewpoint. (b) simulated planar targets with YZ 

viewpoint. The cyan color plane is the hypothetical plane without error. 

Contrary to the roll boresight angle, the other two boresight angles, pitch and yaw, 

have no effect on the vertical plane with a round-trip parallel pattern, presented in 

Figure 4.5, which means that with the insertion of a pitch or a yaw boresight angle 

of 2º into the simulator, all the points in the round-trip parallel passages superimpose. 

Thus, with round-trip parallel passages, we can decorrelate or isolate the roll 

boresight angle error from the other two boresight angles. 
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(a) (b) 

Figure 4.5 – (a) POS-LiDAR pitch boresight angle systematic error (2º) effect on a vertical planar 

target. (b) POS-LiDAR yaw boresight angle systematic error (2º) effect on a vertical planar 

target. 

The second line pattern, i.e., round-trip side-looking passages (45º - 225º or 315º - 

135º), is presented in Figure 4.6. 

  

(a) (b) 

Figure 4.6 – Round-trip side-looking passages. (a) 45º - 225º (b) 315º - 135º 
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The line pattern illustrated in Figure 4.6 is sensitive to roll and pitch boresight errors. 

We decorrelated the roll error with the first line pattern (0º - 180º) and considered 

the current passages to function as a decorrelator for the pitch error. The impact of 

the pitch error on a vertical planar target with the round-trip side-looking passage 

(45º - 225º) is illustrated in Figure 4.7. The other round-trip side-looking passage 

(315º - 135º) has the same effect. 

  

(a) (b) 

Figure 4.7 – POS-LiDAR pitch boresight angle systematic error (2º) effect on a vertical planar 

target with round-trip side-looking passages 45º - 225º. (a) simulated point cloud with the 

XYZ viewpoint. (b) simulated planar targets with YZ viewpoint. 

On the other hand, the yaw boresight angle systematic error does not affect the line 

pattern presented in Figure 4.6, which we illustrate in Figure 4.8. This result shows 

that the round-trip side-looking line pattern decorrelates the pitch boresight angle 

systematic error. 
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(a) (b) 

Figure 4.8 – POS-LiDAR yaw boresight angle systematic error (2º) effect on a vertical planar 

target with round-trip side-looking passage (45º - 225º) (a) simulated point cloud with the XYZ 

viewpoint. (b) simulated planar targets with YZ viewpoint. 

The third line pattern, i.e., the two-direction crossing passages (45º - 135º or 315º - 

225º), is presented in Figure 4.9. 

  

(a) (b) 

Figure 4.9 – Two-direction crossing passages. (a) 315º - 225º  (b) 45º - 135º 
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This two-direction crossing nomination is because the passages have two opposite 

directions. Figure 4.10 illustrates this configuration's effect on yaw boresight angle 

systematic error. 

  

(a) (b) 

Figure 4.10 – POS-LiDAR yaw boresight angle systematic error (2º) effect on a vertical planar 

target with round-trip two-direction crossing passage (45º - 135º). (a) simulated point cloud with 

the XYZ viewpoint. (b) simulated planar targets with YZ viewpoint. 

Thus, the round-trip two-direction line pattern decorrelates the systematic yaw error 

effect. However, this line pattern does not impact the systematic pitch error based 

on the results presented in Figure 4.11. 
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(a) (b) 

Figure 4.11 – POS-LiDAR pitch boresight angle systematic error (2º) effect on a vertical planar 

target with round-trip two-direction crossing passage (45º - 135º) (a) simulated point cloud with 

the XYZ viewpoint. (b) simulated planar targets with YZ viewpoint. 

Based on the preliminary analysis of the boresight systematic errors presented in 

this section, we can conclude that it is possible to decorrelate these three boresight 

angles. At least one vertical plane is needed with a combination of line pattern as 

follow: a parallel round-trip passage (0º - 180º) for roll boresight error, a side-looking 

round-trip passage (45º - 225º or 315º - 135º) for pitch boresight error, and finally, a 

two-directional crossing passage (45º - 135º or 315º - 225º) for yaw boresight error. 

At the same time, if we combine the side-looking round-trip and the two-directional 

crossing line pattern, the impact of the pitch and yaw on the vertical plane will 

intervene, and the decorrelation effect of each line pattern mitigates. Therefore, we 

can decorrelate the boresight angles error to some extent to the proposed line 

pattern. For further decorrelation of these parameters, which is essential for more 

accurate estimation, we explore the possibility of adding more planar targets. In the 
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next section, we define the best selection of planes and their characteristics for 

maximizing decorrelation between the three boresight angles. 

4.4.1.2 Best Planar Target Configuration Selection Procedure 

The configuration of a planar target is the combination of the plane specification and 

the line pattern that the platform follows with respect to that plane. The best 

configuration selection method is based on the definition of various planar targets 

and line patterns, followed by the generation of a simulated point cloud for each 

defined combination, and finally, by estimating boresight angles and their 

uncertainties with these simulated point clouds.  

An advantage of using an iterative least-squares method to estimate the boresight 

angles is that it can also estimate the corresponding uncertainties (Skaloud and 

Lichti 2006). The boresight angles, estimated uncertainties, and the simulated point 

clouds generated by each configuration can then be used to create the best 

configuration selection index. The estimated boresight angle with the smallest 

uncertainty, which means the highest accuracy, is considered the best configuration. 

Furthermore, we designed the simulation environment very similar to a real-world 

environment consisting of planar targets installed on the quay walls or the port’s 

infrastructures higher in altitude than the platform position floating on the water 

surface. Thus, we assume that the horizontal distance between the platform and the 

planar targets is 15 m and the vertical distance is 5 m, as illustrated in Figure 4.2. 

We consider realistic boresight angles (dr = 2º, dp = 2º, dh = 2º) for the generation 

of simulated data. In our analysis, we study the following four types of scenarios:  

• Scenarios based on passage direction combination of the platform with 

respect to planar targets 

• Scenarios based on the orientation of a planar target with respect to the 

platform 

• Scenarios based on the dimension of a planar target 

• Scenarios based on the combination of planar targets (two or three planes) 
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Figure 4.12 illustrates the results of these different scenarios. Figure 4.12 (a) 

considers different combinations of passages of the six-fold line pattern on one 

vertical plane. As we can see, when we combine all six passages, we obtain the best 

results based on boresight angles standard deviations, which is the same result as 

the previous section analysis on each of the boresight angles individually. Thus, as 

we expected, a six-fold line pattern maximizes the accuracy of the estimated 

boresight angles. This six-fold line pattern is schematically illustrated in Figure 3.3. 

The second configuration parameter is the plane's orientation with respect to the 

platform, as shown in Figure 4.12 (b). We consider the dimensions of the plane to 

be equal to 1 m x 1 m and all the six-fold line patterns in this scenario. Then, we 

consider seven different orientations (0º - horizontal, 15º, 30º, 45º, 60º, 75º, and 90º 

- vertical) of the planar target w.r.t the platform. This range of orientations is based 

on the boresight systematic error analysis from our previous research (Shahraji, 

Larouche, and Cocard 2020) that limited the orientations based on two systematic 

error visibility criteria; angular deviation (Type I) and orthogonal distance drift (Type 

II). As we can see from the results in Figure 4.12 (b), the plane orientation that 

provides the minimum standard deviation for the boresight angles is the vertical 

plane (90º). 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.12 – Results of various scenarios (a) passages combination, (b) plane inclination, (c) 

plane dimension, (d) multiple plane combinations. The unit of the vertical axis of all four figures 

is the uncertainty in deg (°) 
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The third configuration parameter is based on the dimension of the planar target. We 

consider four dimensions, i. e., 25 cm, 50 cm, 75 cm, and 100 cm. As shown in 

Figure 4.12 (c), the planar target with vertical orientation and 100 cm dimension has 

the minimum standard deviation for boresight angles. The reason is that a larger 

target contains more points extended along the surface, which are more sensitive to 

the boresight angles’ systematic errors. Thus, the observability of these errors 

augments, and as a result, the estimation of these parameters is more accurate. 

Figure 4.13 demonstrates the planar target’s simulated data based on the three first 

scenarios; (a), (b), and (c). 

  
(a) (b) 

Figure 4.13 – Simulated point cloud of a vertical planar target with insertion of boresight angles 

errors (2°) based on the results of the first three scenarios; passage combination, plane 

orientation, and the plane dimension analysis. (a) view XYZ. (b) view YZ. 

We mentioned in the last section that boresight alignment with only one vertical 

planar target is not feasible in real-world situations due to other sources of errors 

different than boresight angles' systematic error. Thus, in the last scene of the best 

configuration selection analysis shown in Figure 4.12 (d), we address the effect of 

adding more than one planar target and study the impact of multiple planar targets 
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on the estimated boresight angle accuracies. Therefore, we consider the various 

reasonable combinations of multiple planar targets(s), two and three planes with 

different orientations. Our analysis results indicate that using three planes with the 

following three inclinations (90º, 60º, and 30º) estimates boresight angles with the 

minimum standard deviation. Figure 4.14 demonstrates the results of the fourth 

scenario with the simulated data. 

Figure 4.12 (d) also shows that the result obtained with the combination of only two 

planes with the following two inclinations (90º and 30º) provides a very close result 

compared to three planes with three orientations. Therefore, combining the two 

planes can be considered a more feasible option for the boresight alignment 

estimation procedure for the marine MLS case. 

 

 
(a) 



 

104 

 
(b) 

Figure 4.14 – Results of the fourth scenario, multiple plane combinations on simulated data. (a) 

Inclined orientation (60º) (b) Inclined orientation (30º)  

 

4.4.2 Lever Arm Measurement 

The lever arm is the vectorial translation between the POS gravity center and the 

LiDAR scanner optic center. Based on the analysis of these systematic errors with 

simulated point clouds on a planar target, we concluded that the effect of the X lever 

arm is parallel to the direction of the platform and that the effect of the Y lever arm 

is perpendicular to the direction of the platform. Regarding the Z lever arm, it is 

impossible, with an MLS installed on a vehicle or vessel platform, to see any effect 

on the planar target unless the vessel platform could scan the planes in an upside-

down manner, which is not feasible in a real-world situation (Shahraji, Larouche, and 

Cocard 2020). The lever arm vector is correlated with boresight angle parameters. 

It is preferable to measure it a priori in controlled laboratory conditions with 

conventional surveying instruments like a total station, a static laser scanner, or a 

camera and close-range photogrammetry techniques (Thies 2011; Skaloud and 

Lichti 2006; Heinz et al. 2017). 
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4.4.3 Data Acquisition and Direct Georeferencing Mathematical Model 

An MLS comprises two main sub-systems, the positioning and orientation system 

(POS) and the LiDAR scanner. The POS comprises an IMU that measures the 

platform’s orientation and a GNSS receiver and antenna, which gives the platform’s 

position. All these components provide the inputs for the georeferencing 

mathematical model of an MLS. After acquiring the raw observations from LiDAR 

and POS, we enter them into the direct georeferencing mathematical model.  

Equation (4.1) represents the mathematical model of the direct georeferencing 

module of an MLS, similar to the formulation presented in different articles 

(Ackermann 1999; Wehr and Lohr 1999; Skaloud and Lichti 2006). The output of the 

Equation (4.1) model is the georeferenced point in a relative coordinate system such 

as a Local Geodetic Frame (LGF), which is a relative frame to the tangential plane 

of the area of interest on the earth. 

[
𝑋𝐿𝐺𝐹

𝑌𝐿𝐺𝐹

𝑍𝐿𝐺𝐹

] = [

𝑃𝑋
𝐿𝐺𝐹

𝑃𝑌
𝐿𝐺𝐹

𝑃𝑍
𝐿𝐺𝐹

] + 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ) (𝑅𝐿𝑖𝐷𝐴𝑅

𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) [

𝑥𝐿𝑖𝐷𝐴𝑅

𝑦𝐿𝑖𝐷𝐴𝑅

𝑧𝐿𝑖𝐷𝐴𝑅

] + [

𝑎𝑋
𝑃𝑂𝑆

𝑎𝑌
𝑃𝑂𝑆

𝑎𝑍
𝑃𝑂𝑆

] ) (4.1) 

In Equation (4.1), we recognize three frames, the LiDAR sensor local frame, the POS 

navigation frame, and the mapping frame, which we consider a Local Geodetic 

Frame (LGF). Here we describe each part of the direct georeferencing mathematical 

model, 

• [𝑋𝐿𝐺𝐹 𝑌𝐿𝐺𝐹 𝑍𝐿𝐺𝐹]𝑇 is the 3D position vector of the georeferenced point in the LGF 

frame. 

• [𝑃𝑋
𝐿𝐺𝐹 𝑃𝑌

𝐿𝐺𝐹 𝑃𝑍
𝐿𝐺𝐹]𝑇 is the 3D position vector for each trajectory point in the LGF 

frame. 

• 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ) is the rotation matrix made of three attitude angles: roll (r), pitch (p), and 

heading (h) between the gravity center in the POS frame and the reference point of 

the LGF frame. 
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• 𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) is the boresight angles rotation matrix between the LiDAR and POS 

frames. 𝛼 is the roll boresight angle, 𝛽 is the pitch boresight angle, and 𝛾 is the yaw 

boresight angle. 

• [𝑥𝐿𝑖𝐷𝐴𝑅 𝑦𝐿𝑖𝐷𝐴𝑅 𝑧𝐿𝑖𝐷𝐴𝑅]𝑇 is the 3D position vector of the target point with respect to 

the optical center of the scanner in the LiDAR frame. 

• [𝑎𝑋
𝑃𝑂𝑆 𝑏𝑌

𝑃𝑂𝑆 𝑎𝑍
𝑃𝑂𝑆]𝑇 is the 3D lever arm vector between the LiDAR and POS 

frames. 

In our methodology, we use a comprehensive and explicit approach for the 

calculation of 𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾). In the following, we present a direct mathematical 

formula for the rotations between the LiDAR frame and the POS frame, which is a 

multiplication of three rotations 𝑅𝑋(𝛼), 𝑅𝑌(𝛽) and 𝑅𝑍(𝛾), that is 𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) =

 𝑅𝑍(𝛾)𝑅𝑦(𝛽) 𝑅𝑥(𝛼) illustrated in Equation (4.2). Notice that the POS frame is in NWU 

(North–West–Up) convention. 

𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) =  (

cos 𝛾 −sin 𝛾 0
sin 𝛾 cos 𝛾 0

0 0 1
)(

cos𝛽 0 sin𝛽
0 1 0

−sin𝛽 0 cos𝛽
)(

1 0 0
0 cos𝛼 −sin𝛼
0 sin𝛼 cos 𝛼

) (4.2) 

After the multiplication operations, Equation (4.2) is explicitly expressed as a 3D 

rotation matrix given by Equation (4.3). We initialize the boresight angle parameters 

with approximative initial values based on an iterative least-squares adjustment 

procedure. Then, by considering boresight angle corrections as one part of the 

unknown values in the functional model, these corrections are applied to initial or 

corrected values of the previous iteration to refine the boresight angle parameters 

until convergence of the solution, which is typically reached after a few (3 or 4) 

iterations. 

𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾)

= (

cos𝛾 cos𝛽 cos𝛼 sin 𝛾 + cos 𝛾 sin𝛽 sin𝛼 cos𝛾 cos𝛼 sin𝛽 − sin𝛾 sin𝛼
− cos𝛽 sin𝛾 cos 𝛾 cos𝛼 − sin𝛾 sin𝛽 sin𝛼 −cos 𝛾 sin𝛼 − cos𝛼 sin𝛾 sin 𝛽

−sin𝛽 cos𝛽 sin𝛼 cos𝛽 cos𝛼
) 

(4.3) 
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4.4.4 Planar Target Extraction and Subsampling 

After georeferencing all point clouds (one per scan collected on each passage), we 

extract the pre-defined planar targets visible on the different scans. As we expect, 

the point density is high, and if we use all the points on the planar targets, we will 

encounter intensive calculation costs during the least squares estimation process. 

Thus, we perform a homogeneous spatial-based subsampling method to reduce the 

high redundancy of the observations, which reduces the calculation cost of the 

method without decreasing the accuracy of the estimated parameters (Glennie 

2012). We also estimate approximately the centroid and the normal of all the 

combined subsampled data, which will be served as a priori parameters for the 

boresight estimation module. 

4.4.5 Boresight Angles Estimation Module 

Usually, due to boresight misalignment deficiency in a mobile LiDAR system, the 

generated point clouds of the same planar targets acquired in multiple scans diverge 

and do not entirely overlap. The estimation algorithm applied here enables the 

estimation of the boresight angles (𝛼, 𝛽, 𝛾) of an MLS based on an iterative least-

squares adjustment solution of a non-linear system based on direct georeferencing 

equations (Equation (4.1)). The method is inspired by the bundle block adjustment 

procedure, a proven approach used in photogrammetry (Filin 2003; Skaloud and 

Lichti 2006; Glennie 2012). This approach was initially adapted for boresight self-

calibration of aerial mobile LiDAR systems (Skaloud and Lichti 2006). Consequently, 

after the boresight alignment of the MLS, a considerable improvement in the relative 

accuracy of the point clouds is achieved. The following paragraphs briefly present 

the steps for the boresight error estimation in mathematical terms.  

Figure 4.15 illustrates that point i in the yellow plane (passage with 45º of heading) 

deviated from the original plane j (cyan color) due to boresight angle offsets between 

the LiDAR scanner and the POS sensor. Equation (4.4), the observation equation of 

the least-square adjustment process, represents the connection between point i and 



 

108 

plane j, which conditions a georeferenced point (𝑋𝑖
𝐿𝐺𝐹, 𝑌𝑖

𝐿𝐺𝐹 , 𝑍𝑖
𝐿𝐺𝐹) to lie on the 

plane 𝑗 with (𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗) parameters. 

𝐹(𝐿⃗ 𝑖, 𝑋 𝑏 , 𝑋 𝑗) =  𝑎𝑗𝑋𝑖
𝐿𝐺𝐹 + 𝑏𝑗𝑌𝑖

𝐿𝐺𝐹 + 𝑐𝑗𝑍𝑖
𝐿𝐺𝐹 + 𝑑𝑗 = 0 (4.4) 

The observation equation, 𝐹, is a function of the POS observations, GNSS and INS, 

and the LiDAR scanner local coordinates for each point i, 𝐿⃗ 𝑖 =

[𝑃𝑋
𝐿𝐺𝐹 , 𝑃𝑋

𝐿𝐺𝐹 , 𝑃𝑋
𝐿𝐺𝐹 , 𝑟, 𝑝, ℎ, 𝑥𝐿𝑖𝐷𝐴𝑅 , 𝑦𝐿𝑖𝐷𝐴𝑅, 𝑧𝐿𝑖𝐷𝐴𝑅]𝑇, the boresight angles parameters, 𝑋 𝑏 

= [𝛼, 𝛽, 𝛾] and finally, the plane j  parameters, 𝑋 𝑗 = [𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗]. 

 

Figure 4.15 – Simulated planar target (in cyan) with different scanned instances obtained 

after subsampling due to boresight angle offsets.  
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Equation (4.5) demonstrates the constraint equation of the functional model, which 

consists of direction cosines of plane j, which must form a unit vector. 

G(𝑋 𝑗) =  𝑎𝑗
2 + 𝑏𝑗

2 + 𝑐𝑗
2 − 1 = 0 (4.5) 

The iterative least-squares adjustment procedure, which forces the point i to lie onto the 

original plane j and simultaneously estimates 𝑋 𝑏, 𝑋 𝑗, and their uncertainties are presented 

in detail in the literature (Skaloud and Lichti 2006). 

4.4.6 Plane-Based Relative Accuracy Assessment 

We proposed a plane-based relative accuracy assessment method for validation and 

quality assessment. This relative accuracy analysis and validation approach 

compare the same planar patches on round-trip passages before and after boresight 

alignment. To this end, we utilized the cloud-to-cloud comparison method available 

in CloudCompare software (Ahmad Fuad et al. 2018; Girardeau-Montaut 2021), a 

handy tool for point cloud analysis. Comparative results obtained with this tool are 

presented in the following section. 

4.5 Field Experiments and Results 

This section applies the proposed methodology in a real-world scenario. The main 

difference between a simulated and a real-world scenario is the presence of other 

sources of errors, like sensor noises and blunders caused by GNSS signal blockage, 

which can dramatically influence the quality of the MLS point cloud accuracy. To 

address these issues, based on the results from the previous analysis, we suggest 

adding more planes of different inclinations to ensure a good accuracy of the 

estimated boresight errors. Based on a simulated data scenario, using three tie-

planes with (90º, 60º, and 30º) inclinations results in highly accurate boresight error. 

At the same time, utilization of two tie-planes with (90º and 30º) inclinations can also 

result in similar accuracy. In the real-world scenario, the two tie-planes option is 

considered to address the feasibility and simplicity criteria of the method. This 

configuration is also practical in a marine MLS boresight alignment case, which 
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imposes some limitations on the installation of planar targets on the quay wall and 

port structures. 

4.5.1 Boresight Alignment Site Description 

The experimental site of our proposed methodology is located at the Port of 

Montreal, on the St. Lawrence River in the province of Quebec, Canada. This survey 

was done on July 9, 2019. It is an international container port that welcomes cruise 

ships and considerably impacts the region's economy. The main infrastructures of 

this port consist of four terminals, a 25 km waterfront, 470 wharf boxes, 1161 

bollards, 100 km of railroad, 14 embarkment areas, and 14 km of quay wall. Thus, 

routine maintenance and renovation of the port’s infrastructure and facilities is an 

essential task of the port’s authorities. 

To prioritize the maintenance task, the port’s officials need an as-built 3D model of 

the port’s infrastructures in their current condition (Kalyan et al. 2016). These models 

give a near-to-reality perspective of the structures and facilitate analyzing the state 

of the port’s infrastructures and taking the necessary action to repair them. As 

mentioned earlier, the state-of-the-art technology for 3D data acquisition in the 

context of the port’s emergent infrastructure is the mobile LiDAR system installed on 

a vessel. To access high-quality data from the mobile LiDAR system, we must 

ensure that the LiDAR sensor is fully aligned with the POS. 

Figure 4.16 illustrates three prominent locations; the boresight alignment site, the 

validation site, and the GNSS base station. The dimension of the boresight alignment 

site is around 250 m by 250 m (including the line pattern). The boresight alignment 

site is located on Quai Alexandra where there are no tall buildings or other 

infrastructure to cause multipath or signal occlusions for the GNSS data. On the 

other hand, we installed a GNSS base station within a 500 m distance from the 

boresight alignment site. The correction for the position was received from this base, 

and a more accurate POS solution was obtained after the post-processing 

procedure. 
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Figure 4.16 – Boresight alignment site, validation site, and GNSS base station 

Based on the results of the post-processed trajectory with the APPS software (IXblue 

Software Manual 2017), the uncertainties of each of the six POS parameters; three 

positional parameters (northing, easting, and height) and three orientation 

parameters (heading, roll, and pitch) are calculated and presented in Figure 4.17 

and Figure 4.18. 
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Figure 4.17 – Standard deviation of northing, easting, and height in meters of the post-

processed trajectory (reported by the APPS software) 

 

Figure 4.18 – Standard deviation of heading, roll, and pitch in degrees of the post-processed 

trajectory (reported by the APPS software) 



 

113 

As illustrated in Figure 4.17 and Figure 4.18, the accuracy of the POS parameters is 

within the expected threshold. The location (easting, northing, and height) standard 

deviation is mostly less than 2 cm, and the orientation (heading, roll, and pitch) 

standard deviation is around 0.012 deg. 

As shown in Figure 4.19, the boresight alignment site consists of two planar targets 

installed on the quay walls with the following characteristics. The square-shaped 

vertical planar target dimensions are 123 cm x 122 cm x 1 cm, and its orientation is 

90°. The rectangle-shaped inclined planar target dimensions are 123 cm x 76 cm x 

1 cm, and its orientation is 45°. The material used for each plane is white melamine 

paper-faced chipboard MDF (medium-density fiberboard) that can easily be found in 

hardware stores. These two planar targets are scanned following a six-fold survey 

line pattern similar to the one in Figure 3.3.  

Based on the alignment approach introduced in the methodology section, 3 or 4 

iterations are sufficient to estimate the boresight angle parameters with these two 

planar targets. The point clouds of each six-fold line pattern were entered as input in 

the boresight alignment module. 

 
 

Figure 4.19 – Prefabricated planar targets installed on the quay wall for the marine MLS 

boresight angles estimation 
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4.5.2 In-house Marine MLS 

This research studies the boresight alignment of an in-house customized marine 

MLS, as illustrated in Figure 4.20. This marine MLS comprises a Z&F 9012 2D 

profiler as the LiDAR scanner and a Hydrins iXBlue/Septentrio as the POS sensor. 

The range resolution of the 2D Laser scanner is 0.1 mm, and its beam divergence 

is less than 0.5 mrad, which is more accurate than the INS positioning and 

orientation uncertainty, bringing up to 2 to 3 cm expected total uncertainty for the 

final georeferenced point. 

 

Figure 4.20 –Marine MLS for the inspection of quay walls, composed of a Hydrins iXblue INS 

and a Z&F 9012 2D profiler (Courtesy of CIDCO) 

4.5.3 Results and Discussions 

Table 4.1 shows the estimated boresight angles of the marine MLS using the 

approach described in this paper and applied to the Port of Montreal infrastructure. 
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Table 4.1 – Boresight angles with their uncertainties 

Roll ± σRoll Pitch ± σPitch Yaw ± σYaw 

0.208 ° ± 0.0010 ° -1.245 ° ± 0.0118 ° 0.149 ° ± 0.0008 ° 

 

Table 4.2 presents the correlation matrix between the three boresight angles based 

on the variance-covariance matrix calculated in the least-squares solution. Based on 

the correlation values between the three boresight errors, which are near zero, these 

parameters are decorrelated with the proposed configuration for the calibration site. 

Table 4.2 – Correlation matrix between the boresight angles 

 Roll Pitch Yaw 

Roll 1 -0.0034 0.0000 

Pitch -0.0034 1 0.0030 

Yaw 0.0000 0.0030 1 

 

The proposed method allows a non-expert user to efficiently implement the boresight 

alignment workflow in a short period before starting the actual scanning project. After 

installing the planar targets on the quay wall, it takes about 30 minutes to scan the 

two planes with the marine MLS by following the six-fold line pattern survey and 

another 30 minutes to estimate the boresight angles of the marine MLS by 

processing the calibration dataset at the office. This boresight alignment step 

guarantees the quality of point clouds generated by the marine MLS to a few 

centimeters, as we expect from this system. 

The plane extraction procedure, considered semi-automatic, is presented in Figure 

4.21. The non-expert operator must only select approximatively the plane in the 

overall georeferenced point cloud. The plane extraction module, which has two main 

parameters; stop criterion, i.e., a fraction of total points in planes with the default 

value of 0.98 and the distance threshold with the default value of 0.01 m, extract in 

a semi-automatic mode, the necessary planar targets. The plane extraction module 
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utilizes the RANSAC module in the PCL library (Fischler and Bolles 1981; Rusu, 

Cousins, and Garage 2011). 

 

Figure 4.21 – Plane extraction procedure from overall point cloud to the final subsampled 

dataset. (a) overall point cloud with high-density representation. (b) approximative location of 

the vertical plane by a manual procedure. (c) plane extracted automatically based on the 

RANSAC approach. (d) subsampled dataset. 

To analyze the impact of reducing the point density (subsampling) on the accuracy 

of the boresight angles estimation, we used data from the Port of Montreal planar 

targets and subsampled them at 5 cm, 10 cm, and 20 cm point density. Afterward, 

we take each subsampled planar target and estimate the boresight angles. Table 

4.3 represents the estimated boresight angles for each of the subsampling 

categories. 
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Table 4.3 – Point density (subsampling) analysis results with processing time 

Subsampling 

Distance 

(cm) 

File 

Size 

(KB) 

Average  

Point 

Number 

Roll ± 

σRoll 

Pitch ± 

σPitch 

Yaw ± 

σYaw 
Time (Second) 

10 374 1297 
0.208 ° ± 

0.0010 ° 

-1.245 ° ± 

0.0118 ° 

0.149 ° ± 

0.0008 ° 
532 

15 185 635 
0.205 ° ± 

0.0011 ° 

-1.242 ° ± 

0.0160 ° 

0.148 ° ± 

0.0010 ° 
145 

20 115 396 
0.209 ° ± 

0.0016 ° 

-1.242 ° ± 

0.0210 ° 

0.148 ° ± 

0.0010 ° 
18 

 

Comparing the results of the 10 cm, 15 cm, and 20 cm subsampled datasets, we 

observe very close boresight angles and respective uncertainty values. On the other 

hand, the speed of the calculations from the 20 cm subsampled dataset is much 

faster than the ones computed for the 10 cm and 15 cm. Based on the results of this 

analysis and considering a trade-off between boresight angles accuracies and the 

calculation cost, we suggest the adoption of a 15 cm subsampling that adequately 

covers the planar surface and calculates the solution in an adequate amount of time. 

The calculation was done with an ordinary personal computer with the following 

characteristics, Intel Core i7-3770 CPU @ 3.40GHz, 3401 MHz, 4 cores, 8 

processors, and 4 GB RAM. The programming language used is C++, and the PCL 

library has been utilized to extract planar targets. 

We have also compared our approach with commercial software (Qinsy Validator) 

that can also estimate the values of the boresight angles of our POS/LiDAR system. 

It first registers deviated point clouds acquired on bridges and overhead structures 

visible from various passages. Afterward, by applying a minimization procedure, 

boresight angles are estimated individually while the discrepant point clouds are 

fitted together. This approach is categorized in the data-driven boresight alignment 

method, also known as the strip adjustment technique (Kager 2004; Maas 2002; Filin 

and Vosselman 2004; M. J. . Crombaghs, Brugelmann, and Min 2000). The results 
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estimated with the LiDAR patch test method of the Qinsy Validator software on the 

same dataset of the Port of Montreal are presented in Table 4.4. 

Table 4.4 – Estimated boresight angles with Qinsy Validator 

Method Name Roll (º) Pitch (º) Heading (º) 

Planar Targets 0.208 ° ± 0.0010 ° -1.245 ° ± 0.0118 ° 0.149 ° ± 0.0008 ° 

LiDAR Patch Test 0.25 -1.20 0.20 

 

However, we observe the following limitations with the Qinsy Validator. This 

approach needs to have a point cloud around a pole or pillar near the scan location, 

which may not be accessible all the time. Also, underneath poles or bridges, there 

is a risk of losing GPS signals or meeting GNSS multipath effects, which can affect 

the data accuracy. On the other hand, the boresight alignment method described in 

this paper considers that the boresight angles have a natural correlation and must 

be estimated simultaneously. The method applied in this paper is considered a 

sensor-driven robust technique, which uses prefabricated planar targets without the 

need for specific in-situ primitives. 

4.5.4 Relative Accuracy Assessment Analysis 

In this section, we assess the relative accuracy of the point cloud generated by the 

estimated boresight error before and after boresight alignment. Therefore, we 

perform a relative accuracy assessment by comparing the displacement of point 

clouds acquired from various round-trip passages around a tower at the Port of 

Montreal, which is considered our validation site (Brunner 2007). To quantify our 

relative accuracy assessment, we use the cloud-to-cloud distance module in the 

CloudCompare open-source software (Heinz et al. 2017; Ahmad Fuad et al. 2018; 

Girardeau-Montaut 2021) to compare two sets of point clouds before and after the 

boresight alignment. Figure 4.22 presents five planar patches on the validation site 

we use for the relative accuracy assessment. 
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Figure 4.22 – The location of the five planar surfaces (V1 to V5) on the validation site 

Figure 4.23 shows a top view of the tower showing the difference between the point 

clouds before and after applying the boresight alignment. We can visually recognize 

the enhancement of the point cloud geometric quality around the crane feature 

before and after the boresight alignment in Figure 4.23. 

Although we witness a significant improvement in the geometric quality of the point 

cloud after our boresight alignment, we can go a step further and use a cloud-to-

cloud distance measurement tool of the CloudCompare software. This tool performs 

a least-square plane model to accurately estimate the quantitative difference 

between point cloud data before and after boresight alignment (Ahmad Fuad et al. 

2018). 
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(a)  (b) 

 

 

 

(c)  (d) 

 

 

 

(e)  (f) 

Figure 4.23 – Schematic comparison of the validation element. (a-b) line pattern. (c-e) Tower 

and the Crane before boresight alignment. (d-f) after the boresight alignment 
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To demonstrate the results of this comparison, we present them in the form of 

histograms of the cloud-to-cloud distance module before and after boresight 

alignment. In Figure 4.24, we can see those histograms of validation planes V3 and 

V4, before and after boresight alignment, pursuing the same pattern. The blue 

histogram, which shows the distance between point clouds before boresight 

alignment, is always wider than the brown histogram, which shows a narrower 

distance between point clouds after the boresight alignment and has a more 

gaussian shape. Therefore, the boresight alignment has decreased the distance 

between the point clouds of corresponding validation planes visible from round-trip 

passages. 

We can notice in Figure 4.24 a significant enhancement of the point cloud quality of 

validation planes V3 and V4. The longer distances between the marine MLS platform 

and these two validation planes, which are in the highest part of the validation site 

(around 40 m height), clearly show the impact of a boresight misalignment, which is 

more pronounced in this area than in an area located at the same height of the 

marine MLS platform. 

 
(a) 
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(b) 

Figure 4.24 - Histograms of two validation planes (a) V3 and (b) V4 located at 40 m height w.r.t 

the survey platform  

The results presented in Figure 4.25 also show a difference between the point cloud 

quality before and after the boresight alignment for planes V1 and V5, located at 

about the same height as the survey platform where the impact of boresight 

misalignment on these two validation planes is less apparent than for the two higher 

planes V3 and V4. This more negligible difference was expected with MLS data 

because of the impact of the systematic errors, as boresight angles are more 

noticeable in the presence of significant range distances between the platform and 

the targets. 
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(a) 

 

 
(b) 

Figure 4.25 – Histogram of two validation planes, (a) V1 and (b) V5, located at the same 

height as the platform  
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Figure 4.26 illustrates the most extended validation plane (V2) that starts at the same 

height as the survey platform (water level) and goes up to the highest point of the 

validation site, about 40 m in height. We can easily see the impact of the boresight 

misalignment on this validation plane, which is minimal on lower points and more 

significant on higher points. Therefore, choosing a validation site with a significant 

height difference (in our case, the tower) is highly recommended to comprehensively 

analyze the boresight alignment method and, consequently, validate the results. 

 

Figure 4.26 – Histogram of validation plane (V2) 

4.5.5 Repeatability Analysis 

We repeated the exact boresight alignment of the same marine MLS in the same 

area, Port of Montreal, on October 2, 2019, to analyze the proposed method's 

repeatability. Table 4.5 presents the result of the first and second tests of the 

boresight error of the marine MLS estimated with a similar procedure. 

Table 4.5 – Boresight angles with their uncertainties 
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 Date Roll ± σRoll Pitch ± σPitch Yaw ± σYaw 

First Test July 9, 2019 0.208 ° ± 0.0010 ° -1.245 ° ± 0.0118 ° 0.149 ° ± 0.0008 ° 

Second Test October 2, 2019 0.341 ° ± 0.0014 ° -0.805 ° ± 0.0110 ° 0.032 ° ± 0.0006 ° 

 

We can conclude that the method is repeatable based on the results from these two 

tests. Therefore, as we can see, the second test on October 2, 2019, estimated 

boresight errors with slightly different values. The RMSE of the difference between 

the two boresight errors is approximately 0.47 deg, which can cause around 41 cm 

positioning error in 50 m. 

This difference might be caused by the in-house customized MLS used in this 

research. This system must be mounted on the marine platform to carry out the 

scanning survey and dismounted when the survey is finished. These operations can 

displace the LiDAR scanner installation holes and deform the sensor platform in a 

permanent way (Hebel and Stilla 2012), which can impact the stability of the 

installation setup and can eventually affect the boresight angle estimation. 

Therefore, this research suggests repeating the procedure each time we assemble 

the system, especially when we have a considerable time difference between the 

surveys. 

4.6 Conclusions 

Routine monitoring of port and coastal infrastructure is vital for port authorities. This 

article explores the potential of a mobile LiDAR system (MLS) mounted on a vessel 

as a state-of-the-art 3D data acquisition technology for a high-accuracy port 

infrastructure monitoring application. To produce high-accuracy data, we must 

ensure that the MLS’s two main parts, the LiDAR scanner and position and 

orientation system (POS), are perfectly aligned. The MLS alignment consists of two 

primary operations, POS-LiDAR lever arms alignment and POS-LiDAR boresight 

alignment. This research concentrates on the second type in the context of port 

environment.  
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Many approaches exist in the literature on the boresight alignment of mobile LiDAR 

systems, mainly aerial and terrestrial ones. They are divided into two main 

categories: system-driven and data-driven. In this paper, we adopted a system-

driven robust procedure for the boresight alignment methodology due to the 

accessibility of the sensor’s raw measurements. The inputs in this method are often 

primitive surfaces, primarily available as in-situ geometric objects in structured 

environments like urban areas. The main objective of this paper is to perform the 

boresight alignment of a marine MLS before acquiring accurate LiDAR point cloud 

data in the port environment where it is not obvious to find a variety of in-situ 

geometric primitives. To overcome this difficulty, we propose a novel site design for 

boresight alignment in the context of the maritime environment that uses 

prefabricated planar targets to properly align the LiDAR scanner with respect to the 

POS sensor. The main contribution of this research was first to explore a variety of 

possible configurations of prefabricated planar targets based on a simulation 

approach and then, based on this analysis, introduce the optimal boresight alignment 

site. Afterward, a real-world case successfully tested the suggested boresight 

alignment site. The analysis of the results illustrates that the boresight angles are 

estimated at very low uncertainties, i.e., less than 0.02º for the pitch and less than 

0.002º for roll and yaw angles. Also, the correlation matrix demonstrates an 

acceptable decorrelation between the three boresight angles. Moreover, based on 

validation analysis, the point cloud discrepancy index (mismatch between two scans 

of the same object on round-trip passages) has improved considerably after 

enforcing the estimated boresight angles. Based on these analyses, we can 

conclude that with only two prefabricated planar targets, we could estimate the 

boresight angles of a marine MLS with high accuracy. 

In the future, we would also consider the impact of POS errors on the data with a 

simulation approach. In the basic version of the simulator, we only addressed the 

boresight angles systematic errors, and we considered that the point cloud is free 

from POS-related errors. However, in the real-world case, due to GNSS signal loss 

and multipath issues, the quality of the platform's position decreases, affecting the 

quality of the final point cloud. We can model the effect of this error on simulated 
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primitives like planar surfaces and explore approaches that mitigate the trajectory-

prone errors on the MLS point cloud. We would also explore the possibility of using 

other primitives like spheres for the boresight alignment of an MLS. We can pursue 

the same approach of simulating the points on spheres and trying to estimate the 

boresight angles by fitting all the deviated point clouds from various passages. We 

will also replace the planar target extraction from semi-automatic to fully automatic, 

leading to automatic plane-based accuracy assessment. Moreover, with the 

simulator design, we can optimize the configuration of the planar targets and the line 

pattern with more intelligent optimization methods like genetic algorithms and 

recursive feature elimination methods (Hartmann et al. 2019). Furthermore, we aim 

to scan the validation site (e.g., the tower) with a static LiDAR scanner and compare 

the point cloud generated after the boresight alignment of the MLS with this accurate 

reference point cloud for an absolute accuracy assessment. 
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Conclusion 

This chapter concludes the study carried out throughout this Ph.D. research by 

presenting a summary of the methodology and the essential contributions. It will also 

discuss the study's limitations and suggest recommendations for future works. 

As mentioned earlier, a mobile LiDAR system (MLS) is a state-of-the-art 3D 

geospatial data acquisition system that has the potential to generate a very dense 

and accurate 3D point cloud of real-world scenes. MLS mainly comprises a LiDAR 

scanner and a positioning and orientation system (POS). To achieve an accurate 

point cloud, we must appropriately address all the MLS sources of error. One of the 

main MLS errors is a systematic error due to the rotational misalignment between 

the POS device and the LiDAR scanner, also known as boresight error, which can 

cause significant geometrical uncertainties on the final point cloud. Therefore, this is 

the focus of this thesis. The existing methods usually utilize the input of suitable in-

situ tie-features, such as tie-point, tie-line, and tie-plane. The problem occurs in low-

feature environments like rural areas, forests, ports, and harbors, where the 

accessibility of adequate in-situ features is limited. Therefore, this study aimed to 

develop a novel data acquisition and processing methodology to serve as input for 

the boresight alignment of an MLS in low-feature environments. Ultimately, this input 

will resolve the boresight misalignment and prepare the point cloud for high-accuracy 

survey-grade infrastructure inspection applications in port and harbors 

environments. This research suggests the following procedure to achieve this 

objective. 

First, a comprehensive study of the existing methods that address mainly the 

reduction of MLS error is done. This comprehensive literature review proposes a 

specific categorization for the MLS systematic error reduction methods. For the 

selection of the MLS systematic error reduction method, a specific condition of the 

context of this research must be considered, which is the maritime environment. The 

in-situ infrastructure of a maritime environment is exposed to extreme conditions, 

such as humidity and salty waters, that can damage them drastically. This 
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phenomenon complicates the accessibility to suitable in-situ tie-features in ports and 

harbors. Therefore, for selecting the MLS error reduction method and the suitable 

tie-feature, the special condition of a low-feature maritime environment must be 

considered. Based on the literature review, a rigorous method using tie-planes is 

suggested for the boresight alignment of the marine MLS. Due to the difficulty of 

finding suitable in-situ tie-planes in a maritime environment, this thesis suggests the 

insertion of prefabricated tie-planes in the maritime environment that would 

eventually be used as input for the boresight alignment of the marine MLS. 

Meanwhile, the utilization of prefabricated tie-planes has limitations. For example, 

these tie-planes could not be used in any number and dimensions. Therefore, a 

simulation environment is designed, and different tie-plane configurations are tested 

to ultimately arrive at the best result with a proper setup. A configuration of tie-planes 

is a combination of their numbers, their inclinations to the MLS platform, their 

dimensions, and the orientation of the MLS passages with respect to these tie-

planes. For the analysis of different configurations, two types of criteria, Type I 

(planarity, linearity, and centroidal distance) and Type II (angular deviation and 

signed orthogonal distance), based on geometric characteristics of the point clouds, 

were introduced to identify the visibility of each error. Based on these analyses, the 

best configuration, which consists of a minimum of two prefabricated planar targets 

(one vertical and one inclined) and a six-fold line pattern passage, is suggested to 

augment the visibility of the boresight errors. The design of the simulation and the 

analysis performed on the simulated data were the subject of a peer-reviewed paper 

published in the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Volume V-1-2020, 2020 XXIV ISPRS Congress (2020 

edition), named, “Analysis of Systematic Errors of Mobile LiDAR Systems: A 

Simulation Approach.” 

The proposed design was implemented in a real-world environment to evaluate the 

above configuration for the calibration site. The results demonstrated the 

robustness, accuracy, and repeatability of the proposed site configuration for 

acquiring data necessary for the boresight alignment estimation of a marine MLS in 
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port and harbor environments. This work was published as a peer-reviewed paper 

in the Marine Geodesy journal (the online publication date is January 11th, 2022). 

The paper's title is “Case Study: Rigorous Boresight Alignment of a Marine 

Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure 

Monitoring.” 

Moreover, based on the proposed site configuration method, the installation of the 

targets and the scans take less than one hour to complete, and the overall time for 

post-processing and boresight angle estimation is between one to two hours. 

Although the proposed data acquisition and processing procedure are designed for 

tie-planes, they are adaptable to other tie-features such as spheres. Also, this 

method can be used in other low-feature and challenging environments like forests 

and rural areas. 

With the help of the software development team of the project partner, CIDCO, we 

developed a boresight alignment software that covers all workflow steps, from 

acquiring calibration data to extracting prefabricated planar targets and, finally, the 

estimation of boresight alignment parameters. Portions of the developed software, 

with Matlab® source codes excerpt, are presented in Appendix B. Today, this 

workflow is part of the standard procedure of CIDCO for estimating the boresight 

angles of its marine MLS. 

In summary, the contributions of this thesis are as follows, 

Contribution #1: Selection of the suitable tie-feature is the context of this research's 

low-feature maritime environment, based on a comprehensive review of the existing 

MLS systematic errors reduction method. 

Contribution #2: Conceptualization and design of a point cloud generator 

(simulator), along with two types, Type I and Type II, of MLS systematic errors 

visibility criteria. The simulated data is utilized to investigate different configurations 

of the suitable tie-feature and introduce the configuration which generates the higher 

visibility of the systematic errors. 
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Contribution #3: The development of a complete workflow for the boresight error 

estimation that extracts suitable tie-features as input, estimates the boresight angles 

of the MLS, and eventually validates the quality of the resulting point clouds. The 

development of this workflow is primordial for evaluating the simulated and real 

datasets. 

In this research, we also encountered some limitations, 

• First, we primarily focused on the boresight alignment issue of an MLS to 

improve the accuracy of the final 3D point cloud. Although the boresight angle 

uncertainties play an essential role in the MLS data quality, other systematic 

errors, random errors (i.e., sensor noises), and blunders also affect the data 

quality. Therefore, it is essential to consider them in the data accuracy 

improvement procedure.  

• Second, we designed and developed a point cloud generator, also known as 

a simulator, based on the direct georeferencing model of the MLS. We have 

made some assumptions to simplify the environment that might not 

correspond to the real-life criteria. For example, the POS's roll and pitch 

attitude angles were considered zero or we assumed that the positional data 

is errorless, which is not the case in real-world scenarios. It is preferable not 

to consider these assumptions to generate simulated data reflecting real-

world scenarios. 

• Third, this thesis's accuracy assessment and evaluation procedures are 

based on a relative comparison of 3D point cloud datasets before and after 

boresight alignment. It is preferable to implement an absolute accuracy 

assessment that compares the generated 3D point cloud datasets with 

exterior reference data to give a more comprehensive assessment of the 

generated 3D point cloud with the marine MLS.  

• Fourth, this thesis's proposed boresight alignment methodology is designed 

for a maritime context of port infrastructure inspection. We cannot necessarily 
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generalize the same configurations and methodology to other environments 

like terrestrial or aerial contexts. For that, a case study based on the specific 

conditions of each environment would be adequate. 

In the following, we will address some suggestions for future works. In this research, 

we tackled the boresight alignment issue in a marine MLS, a necessary step that 

improves the accuracy of the generated 3D point cloud. Although the proposed 

boresight alignment method significantly mitigates the effect of the systematic 

boresight errors and enhances the accuracy of the data, we witness that the quality 

of the 3D point cloud in some areas and some situations vary and do not entirely 

satisfy the expectations. This issue is mainly due to problems related to the loss of 

GNSS signals that impact the accuracy of the positioning data and, as a result, the 

accuracy of the final point cloud. The positioning issues can happen near big boats, 

quay walls, or under bridges. Therefore, one of the recommendations for future 

works is to address the issue in the GNSS-denied environment with particular 

attention to port and harbor areas to improve the POS trajectory data and eventually 

augment the 3D point cloud accuracy. 

Furthermore, the 3D geospatial acquisition system comprises a LiDAR scanner and 

a SONAR sensor in the port infrastructure monitoring application. It is crucial to 

properly align data acquired from over the water surface with the LiDAR and data 

acquired from under the water surface with the SONAR. Thus, registering LiDAR 

and SONAR data is an important issue to address. 

In summary, this study broadened the utility of a marine MLS for challenging and 

low-feature environments that lack a variety of suitable tie-features. These tie-

features are used to mitigate the system's error and augment the accuracy of the 

generated point cloud, which is required for applications that demand the production 

of high-accuracy 3D point clouds, such as infrastructure monitoring. In this thesis, 

we developed a novel data acquisition and processing methodology serving as the 

relevant input data for an accurate boresight alignment procedure that ultimately 

leads to a high-accuracy point cloud.  



 

136 

Bibliography 

Ackermann, F. 1999. “Airborne Laser Scanning - Present Status and Future Expectations.” 
ISPRS Journal of Photogrammetry and Remote Sensing 54 (2–3): 64–67. 
doi:10.1016/S0924-2716(99)00009-X. 

Ahmad Fuad, N., A. R. Yusoff, Z. Ismail, and Z. Majid. 2018. “Comparing the Performance 
of Point Cloud Registration Methods for Landslide Monitoring Using Mobile Laser 
Scanning Data.” International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences - ISPRS Archives 42 (4/W9): 11–21. doi:10.5194/isprs-
archives-XLII-4-W9-11-2018. 

Alho, Petteri, A. Kukko, H. Hyyppä, H. Kaartinen, J. Hyyppä, and A. Jaakkola. 2009. 
“Application of Boat-Based Laser Scanning for River Survey.” Earth Surface 
Processes and Landforms 34 (March): 613–628. doi:10.1002/esp. 

Alho, Petteri, Matti Vaaja, Antero Kukko, Elina Kasvi, Matti Kurkela, Juha Hyyppä, Hannu 
Hyyppä, and Harri Kaartinen. 2011. “Mobile Laser Scanning in Fluvial 
Geomorphology: Mapping and Change Detection of Point Bars.” Zeitschrift Fur 
Geomorphologie 55 (September 2014): 31–50. doi:10.1127/0372-8854/2011/0055S2-
0044. 

Allianz Global Corporate & Specialty. 2016. “ARC Marine – Marine Port Structure 
Guidance,” no. January 2016: 12. 
http://www.agcs.allianz.com/assets/PDFs/ARC/Risk Bulletins/Marine Port Structure 
Guidance.pdf. 

Angrisano, Antonio. 2010. “GNSS/INS Integration Methods.” Dottorato Di Ricerca (PhD) in 
Scienze Geodetiche e Topografiche Thesis. Universita’degli Studi di Napoli 
PARTHENOPE, Naple, Italy. 

Applanix. 2021. “Fugro Pelagose.” https://www.applanix.com/news/posmv-hydrographic-
survey-fugro/. 

Bang, Ki In, Ana Paula Kersting, Ayman Habib, and Dong Cheon Lee. 2009. “LiDAR 
System Calibration Using Point Cloud Coordinates in Overlapping Strips.” American 
Society for Photogrammetry and Remote Sensing Annual Conference 2009, ASPRS 
2009 1: 79–90. 

Bauwens, Sébastien, Harm Bartholomeus, Kim Calders, and Philippe Lejeune. 2016. 
“Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held 
Mobile Laser Scanning.” Forests 7 (6). doi:10.3390/f7060127. 

Blomley, R., B. Jutzi, and M. Weinmann. 2016. “Classification of Airborne Laser Scanning 
Data Using Geometric Multi-Scale Features and Different Neighbourhood Types.” 
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 
III–3 (June): 169–176. doi:10.5194/isprsannals-iii-3-169-2016. 

Böder, Volker, Thomas P. Kerstenl, Thomas Thies, and Arne Sauer. 2011. “Mobile Laser 
Scanning on Board Hydrographic Survey Vessels - Applications and Accuracy 
Investigations -.” Hydrography in Practice, 4927, no. May 2011: 18–22. 
http://www.fig.net/pub/fig2011/papers/ts05j/ts05j_boeder_kersten_et_al_4927.pdf. 

Böse, Jürgen W. 2011. Handbook of Terminal Planning. Operations Research/ Computer 
Science Interfaces Series. Vol. 49. doi:10.1007/978-1-4419-8408-1. 

Brahim, N., S. Daniel, and D. Guériot. 2008. “Potential of Underwater Sonar Systems for 
Port Infrastructure Inspection.” Oceans 2008. doi:10.1109/OCEANS.2008.5151866. 

Brown, Scott D., Daniel D. Blevins, and John R. Schott. 2005. “Time-Gated Topographic 
LIDAR Scene Simulation.” Laser Radar Technology and Applications X 5791: 342. 
doi:10.1117/12.604326. 

Brunner, Fritz K. 2007. “On the Methodology of Engineering Geodesy.” Journal of Applied 



 

137 

Geodesy 1 (2). doi:10.1515/jag.2007.008. 
Burman, Helén. 2000. “Adjustment of Laserscanner Data for Correction of Orientation 

Errors.” International Archives of Photogrammetry and Remote Sensing XXXIII (17 2): 
125–132. 

Cai, Guowei, Ben Chen, and Tong Lee. 2011. Unmanned Rotorcraft Systems. 
doi:10.1007/978-0-85729-635-1. 

Cassol, Willian Ney. 2018. “Définition d’un Modèle d’incertitude-Type Composée Pour Les 
Systèmes LiDAR Mobiles.” Master Thesis, Laval University. 

Chan, Ting On, Derek Lichti, and Craig Glennie. 2013. “Multi-Feature Based Boresight 
Self-Calibration of a Terrestrial Mobile Mapping System.” ISPRS Journal of 
Photogrammetry and Remote Sensing 82. International Society for Photogrammetry 
and Remote Sensing, Inc. (ISPRS): 112–124. doi:10.1016/j.isprsjprs.2013.04.005. 

Chen, Zequan, Jianping Li, and Bisheng Yang. 2021. “A Strip Adjustment Method of Uav-
Borne Lidar Point Cloud Based on Dem Features for Mountainous Area.” Sensors 21 
(8): 1–20. doi:10.3390/s21082782. 

Chen, Ziyue, Bingbo Gao, and Bernard Devereux. 2017. “State-of-the-Art: DTM 
Generation Using Airborne LIDAR Data.” Sensors (Switzerland) 17 (1). 
doi:10.3390/s17010150. 

Cifuentes, Renato, Dimitry Van der Zande, Christian Salas-Eljatib, Jamshid Farifteh, and 
Pol Coppin. 2018. “A Simulation Study Using Terrestrial LiDAR Point Cloud Data to 
Quantify Spectral Variability of a Broad-Leaved Forest Canopy.” Sensors 
(Switzerland). doi:10.3390/s18103357. 

Cocard, Marc. 2017. Compensation (Notes de Cours GMT2001). 
Costantino, Domenica, and Maria Giuseppa Angelini. 2013. “Production of DTM Quality by 

TLS Data.” European Journal of Remote Sensing 46 (1): 80–103. 
doi:10.5721/EuJRS20134606. 

Crombaghs, M.J.E, R. Brugelmann, and E.J. de Min. 2000. “On the Adjustment of 
Overlapping Strips of Laser Altimeter Height Data.” International Archives of 
Photogrammetry and Remote Sensing 1 (17 2): 230–237. 

Crombaghs, Marc, Sander Oude Elberink, R Brugelmann, and Erik De Min. 2002. 
“Assessing Height Precision of Laser Altimetry DEMs.” INTERNATIONAL ARCHIVES 
OF PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMATION 
SCIENCES 34 (3/A). NATURAL RESOURCES CANADA: 85–90. 

Csanyi, Nora, Charles Toth, Dorota Grejner-Brzezinska, and John Ray. 2005. 
“Improvement of LiDAR Data Accuracy Using LiDAR Specific Ground Targets.” 
American Society for Photogrammetry and Remote Sensing - Annual Conference 
2005 - Geospatial Goes Global: From Your Neighborhood to the Whole Planet 1 (4): 
152–162. 

De Blasiis, Maria Rosaria, Alessandro Di Benedetto, and Margherita Fiani. 2020. “Mobile 
Laser Scanning Data for the Evaluation of Pavement Surface Distress.” Remote 
Sensing 12 (6). doi:10.3390/rs12060942. 

De Gijt, J.G. 2010. “A History of Quay Walls Techniques, Types, Costs and Future.” 
Netherlands: TUDelft. https://repository.tudelft.nl/islandora/object/uuid:d62bbff8-e805-
434a-893e-08940d58ae8c?collection=research. 

Dix, Michael, Amr Abd-Elrahman, Bon Dewitt, and Lou Nash. 2012. “Accuracy Evaluation 
of Terrestrial LIDAR and Multibeam Sonar Systems Mounted on a Survey Vessel.” 
Journal of Surveying Engineering 138 (4): 203–213. doi:10.1061/(asce)su.1943-
5428.0000075. 

Farrell, Jay. 2008. Aided Navigation: GPS with High Rate Sensors. 1st ed. USA: McGraw-
Hill, Inc. 

Fekry, Reda, Wei Yao, Lin Cao, and Xin Shen. 2021. “Marker-Less UAV-LiDAR Strip 



 

138 

Alignment in Plantation Forests Based on Topological Persistence Analysis of 
Clustered Canopy Cover.” ISPRS International Journal of Geo-Information 10 (5). 
doi:10.3390/ijgi10050284. 

Filin, Sagi. 2003. “Recovery of Systematic Biases in Laser Altimetry Data Using Natural 
Surfaces.” Photogrammetric Engineering and Remote Sensing 69 (11): 1235–1242. 
doi:10.14358/PERS.69.11.1235. 

Filin, Sagi, and George Vosselman. 2004. “Adjustment of Airborne Laser Altimetry Strips.” 
In International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences 34 (Part B3), 285–289. 

Firoozi, Ali Akbar, Mohd Raihan Taha, S. M. Mir Moammad Hosseini, and Ali Asghar 
Firoozi. 2014. “Examination of the Behavior of Gravity Quay Wall against Liquefaction 
under the Effect of Wall Width and Soil Improvement.” Scientific World Journal 2014 
(July). Hindawi Publishing Corporation. doi:10.1155/2014/325759. 

Fischler, Martin A., and Robert C. Bolles. 1981. “Random Sample Consensus: A Paradigm 
for Model Fitting with Applications to Image Analysis and Automated Cartography.” 
Communications of the ACM 24 (6): 381–395. doi:10.1145/358669.358692. 

Friess, Peter. 2006. “Toward a Rigorous Methodology for Airborne Laser Mapping.” 
Proceedings EuroCOW, 25–27. 

Gao, Yunlong, Xianfeng Huang, Fan Zhang, Zhengwen Fu, and Chong Yang. 2015. 
“Automatic Geo-Referencing Mobile Laser Scanning Data to UAV Images.” 
International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences - ISPRS Archives 40 (1W4): 41–46. doi:10.5194/isprsarchives-
XL-1-W4-41-2015. 

Ghilani, Charles D. 2010. Adjustment Computations Spatial Data Analysis. Fifth. Wiley. 
Girardeau-Montaut, Daniel. 2021. Cloud Compare. 3D Point Cloud and Mesh Processing 

Software-Open Source Project. http://www.cloudcompare.org/. 
Glennie, Craig. 2008. “Rigorous 3D Error Analysis of Kinematic Scanning LIDAR 

Systems.” Journal of Applied Geodesy 1 (3): 147–157. doi:10.1515/jag.2007.017. 
Glennie, Craig. 2012. “Calibration and Kinematic Analysis of the Velodyne HDL-64E S2 

Lidar Sensor.” Photogrammetric Engineering and Remote Sensing 78 (4): 339–347. 
doi:10.14358/PERS.78.4.339. 

Glennie, Craig, A. Kusari, and A. Facchin. 2016. “Calibration and Stability Analysis of the 
VLP-16 Laser Scanner.” International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences - ISPRS Archives 40 (3W4): 55–60. 
doi:10.5194/isprsarchives-XL-3-W4-55-2016. 

Glennie, Craig, and Derek Lichti. 2010. “Static Calibration and Analysis of the Velodyne 
HDL-64E S2 for High Accuracy Mobile Scanning.” Remote Sensing 2 (6): 1610–1624. 
doi:10.3390/rs2061610. 

Glira, P., N. Pfeifer, C. Briese, and C. Ressl. 2015. “Rigorous Strip Adjustment of Airborne 
Laserscanning Data Based on the Icp Algorithm.” ISPRS Annals of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (3W5): 73–80. 
doi:10.5194/isprsannals-II-3-W5-73-2015. 

Gonsalves, Michael Oliver. 2010. “A Comprehensive Uncertainty Analysis and Method of 
Geometric Calibration for a Circular Scanning Airborne Lidar.” ProQuest Dissertations 
and Theses. The University of Southern Mississippi. 
http://search.proquest.com/docview/835075165/fulltextPDF/BB0E363A81F246C3PQ/
1?accountid=10267. 

Gross, H., B. Jutzi, and U. Thoennessen. 2007. “Segmentation of Tree Regions Using 
Data of a Full-Waveform Laser.” PIA 2007 - Photogrammetric Image Analysis, 
Proceedings, no. March: 57–62. 

Groves, Paul. 2013. Principles of GNSS, Inertial, and Multisensor Integrated Navigation 



 

139 

Systems. GNSS Technology and Application Series. 2nd editio. Boston ; SE - 1 vol. 
(xix-776 p.) : ill. ; 26 cm + 1 DVD-ROM.: Artech House. 
https://ieeexplore.ieee.org/document/9101092. 

Guan, Haiyan, Jonathan Li, Shuang Cao, and Yongtao Yu. 2016. “Use of Mobile LiDAR in 
Road Information Inventory: A Review.” International Journal of Image and Data 
Fusion 7 (3): 219–242. doi:10.1080/19479832.2016.1188860. 

Guo, Ming, Bingnan Yan, Tengfei Zhou, Deng Pan, and Guoli Wang. 2021. “Accurate 
Calibration of a Self-Developed Vehicle-Borne LiDAR Scanning System.” Journal of 
Sensors 2021. doi:10.1155/2021/8816063. 

Hartmann, J., I. Von Gösseln, N. Schild, A. Dorndorf, J. A. Paffenholz, and I. Neumann. 
2019. “Optimisation of the Calibration Process of a K-Tls Based Multi-Sensor-System 
by Genetic Algorithms.” International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences - ISPRS Archives 42 (2/W13): 1655–1662. 
doi:10.5194/isprs-archives-XLII-2-W13-1655-2019. 

Hebel, Marcus, and Uwe Stilla. 2012. “Simultaneous Calibration of ALS Systems and 
Alignment of Multiview LiDAR Scans of Urban Areas.” IEEE Transactions on 
Geoscience and Remote Sensing 50 (6): 2364–2379. 
doi:10.1109/TGRS.2011.2171974. 

Heinz, Erik, Christian Eling, Lasse Klingbeil, and Heiner Kuhlmann. 2019. “Monitoring the 
Planarity and Subsidence of a Motorway Using Kinematic Laser Scanning.” 
Proceedings of the 4th Joint International Symposium on Deformation Monitoring 
(JISDM), Athhens, Greece, no. May: 8. 

Heinz, Erik, Christian Eling, Markus Wieland, Lasse Klingbeil, and Heiner Kuhlmann. 2015. 
“Development, Calibration and Evaluation of a Portable and Direct Georeferenced 
Laser Scanning System for Kinematic 3D Mapping.” Journal of Applied Geodesy 9 
(4): 227–243. doi:10.1515/jag-2015-0011. 

Heinz, Erik, Christian Eling, Markus Wieland, Lasse Klingbeil, and Heiner Kuhlmann. 2017. 
“Analysis of Different Reference Plane Setups for the Calibration of a Mobile Laser 
Scanning System.” Ingenieurvermessung, no. July: 131–146. 

Heinz, Erik, Christoph Holst, Heiner Kuhlmann, and Lasse Klingbeil. 2020. “Design and 
Evaluation of a Permanently Installed Plane-Based Calibration Field for Mobile Laser 
Scanning Systems.” Remote Sensing 12 (3). doi:10.3390/rs12030555. 

Heinz, Erik, Markus Mettenleiter, Heiner Kuhlmann, and Christoph Holst. 2018. “Strategy 
for Determining the Stochastic Distance Characteristics of the 2d Laser Scanner z + f 
Profiler 9012a with Special Focus on the Close Range.” Sensors (Switzerland) 18 (7). 
doi:10.3390/s18072253. 

Hong, Seunghwan, Ilsuk Park, Jisang Lee, Kwangyong Lim, Yoonjo Choi, and Hong Gyoo 
Sohn. 2017. “Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile 
Mapping Systems.” Sensors (Switzerland) 17 (3). doi:10.3390/s17030474. 

Huang, Xianfeng, Armin Gruen, Rongjun Qin, Tangwu Du, and Wei Fang. 2013. 
“Integration of Mobile Laser Scanning Data with UAV Imagery for Very High 
Resolution 3D City Modeling.” The International Symposium on Mobile Mapping 
Technology 2013, no. May. 

Hussnain, Zille, Sander Oude Elberink, and George Vosselman. 2018. “An Automatic 
Procedure for Mobile Laser Scanning Platform 6Dof Trajectory Adjustment.” 
International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences - ISPRS Archives 42 (1): 203–209. doi:10.5194/isprs-archives-
XLII-1-203-2018. 

Hussnain, Zille, Sander Oude Elberink, and George Vosselman. 2019. “Automatic 
Extraction of Accurate 3D Tie Points for Trajectory Adjustment of Mobile Laser 
Scanners Using Aerial Imagery.” ISPRS Journal of Photogrammetry and Remote 



 

140 

Sensing 154 (May). Elsevier: 41–58. doi:10.1016/j.isprsjprs.2019.05.010. 
Hussnain, Zille, Sander Oude Elberink, and George Vosselman. 2021. “Enhanced 

Trajectory Estimation of Mobile Laser Scanners Using Aerial Images.” ISPRS Journal 
of Photogrammetry and Remote Sensing 173 (January). Elsevier B.V.: 66–78. 
doi:10.1016/j.isprsjprs.2021.01.005. 

Hyyppä, Eric, Xiaowei Yu, Harri Kaartinen, Teemu Hakala, Antero Kukko, Mikko 
Vastaranta, and Juha Hyyppä. 2020. “Comparison of Backpack, Handheld, under-
Canopy UAV, and above-Canopy UAV Laser Scanning for Field Reference Data 
Collection in Boreal Forests.” Remote Sensing 12 (20): 1–31. 
doi:10.3390/rs12203327. 

IXblue. 2019. Hydrins INS Specifications. www.ixblue.com. 
IXblue Software Manual. 2017. Advanced Post-Processing Software. www.ixblue.com. 
Jekeli, Christopher. 2012. Inertial Navigation Systems with Geodetic Applications: . De 

Gruyter. doi:doi:10.1515/9783110800234. 
Kager, H. 2004. “Discrepancies between Overlapping Laser Scanner Strips--Simultaneous 

Fitting of Aerial Laser Scanner Strips.” International Archives of Photogrammetry, 
Remote Sensing and Spatial Information Sciences 35 (B1): 555–560. 

Kalenjuk, Slaven, and Werner Lienhart. 2022. “A Method for Efficient Quality Control and 
Enhancement of Mobile Laser Scanning Data.” Remote Sensing 14 (4): 857. 
doi:https://doi.org/10.3390/ rs14040857. 

Kalman, Rudolph Emil. 1960. “A New Approach to Linear Filtering and Prediction 
Problems.” Transaction of the ASME-Journal of Basic Engineering 82 (Series D): 35–
45. 

Kalyan, T. Sri, Puyan A. Zadeh, Sheryl Staub-French, and Thomas M. Froese. 2016. 
“Construction Quality Assessment Using 3D As-Built Models Generated with Project 
Tango.” Procedia Engineering 145. Elsevier B.V.: 1416–1423. 
doi:10.1016/j.proeng.2016.04.178. 

Karamperidou, Anastasia. 2008. “Parametric Analysis of Quay Walls with Relieving 
Platform, by Means of Elastic Supported Beam and Finite Element Method,” 220. 

Kersting, Ana Paula Baungarten. 2006. “Quality Assurance of Multi-Sensor Systems.” 
University of Calgary. PhD Thesis, UNIVERISTY OF CALGARY. 

Keyetieu, Rabine, and Nicolas Seube. 2019. “Automatic Data Selection and Boresight 
Adjustment of LiDAR Systems.” Remote Sensing 11 (9): 1–18. 
doi:10.3390/rs11091087. 

Keyetieu, Rabine, Nicolas Seube, Vignyl Djine, Gael Roue, Benoit Clement, and Pierre 
Bosser. 2018. “Multi-Beam Echo Sounders–INS Automatic Latency Calibration.” 
Marine Geodesy 41 (5). Taylor & Francis: 477–493. 
doi:10.1080/01490419.2018.1478349. 

Kim, Seongjoon, Seonghong Min, Geunhan Kim, Impyeong Lee, and Chulmin Jun. 2009. 
“Data Simulation of an Airborne Lidar System.” Laser Radar Technology and 
Applications XIV 7323 (May 2009): 73230C. doi:10.1117/12.818545. 

Kishi, N., A. Asada, K. Abukawa, and K. Fujisawa. 2015. “Inspection Methods for 
Underwater Structures of Ports and Harbors.” 2015 IEEE Underwater Technology, UT 
2015. IEEE. doi:10.1109/UT.2015.7108265. 

Kraus, K., and N. Pfeifer. 2001. “Advanced Dtm Generation From Lidar Data.” International 
Archives of Photogrammetry and Remote Sensing XXXIV: 22–24. 

Kukko, Antero, Juha Hyyppä, Commission Vi, and W G Vi. 2007. “Laser Scanner 
Simulator for System Analysis and Algorithm Development : A Case With Forest 
Measurements.” ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, no. 
May: 234–240. http://www.isprs.org/proceedings/XXXVI/3-
W52/final_papers/Kukko_2007a.pdf. 



 

141 

Kukko, Antero, Harri Kaartinen, Juha Hyyppä, and Yuwei Chen. 2012. “Multiplatform 
Mobile Laser Scanning: Usability and Performance.” Sensors (Switzerland) 12 (9): 
11712–11733. doi:10.3390/s120911712. 

Landry, Michaël. 2017. “Développement d’une Nouvelle Méthode de Calibrage Des 
Systèmes LiDAR Mobiles ( SLM ) En Laboratoire.” Master Thesis, Laval University. 

Le Scouarnec, R., T. Touzé, J. B. Lacambre, and N. Seube. 2014. “A New Reliable 
Boresight Calibration Method for Mobile Laser Scanning Applications.” International 
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - 
ISPRS Archives 40 (3W1): 67–72. doi:10.5194/isprsarchives-XL-3-W1-67-2014. 

Lee, Jaebin, Kiyun Yu, Yongil Kim, and Ayman F. Habib. 2007. “Adjustment of 
Discrepancies between LIDAR Data Strips Using Linear Features.” IEEE Geoscience 
and Remote Sensing Letters 4 (3): 475–479. doi:10.1109/LGRS.2007.898079. 

Lefevre, Herve, Adrien Steib, Alain Claire, Alex Sekeriyan, André Couderette, Anne-Laure 
Pointel, Annie Viltard, et al. 2020. “The Fiber Optic Gyro ‘adventure’ at Photonetics, 
IXsea and Now IXblue.” Proc. SPIE 11405, Optical Waveguide and Laser Sensors 
1140505 (May 2020): 5. doi:10.1117/12.2560791. 

Leslar, Michael, Baoxin Hu, and Jianguo Wang. 2014. “Error Analysis of a Mobile 
Terrestrial LiDAR System.” GEOMATICA 68 (September): 183–194. 
doi:10.5623/cig2014-303. 

Leslar, Michael, Jianguo Wang, and Baoxin Hu. 2016. “Boresight and Lever Arm 
Calibration of a Mobile Terrestrial LiDAR System.” Geomatica 70 (2): 97–112. 
doi:10.5623/cig2016-202. 

Li, Dong, Huadong Guo, Cheng Wang, Pinliang Dong, and Zhengli Zuo. 2016. “Improved 
Bore-Sight Calibration for Airborne Light Detection and Ranging Using Planar 
Patches.” Journal of Applied Remote Sensing 10 (2): 024001. 
doi:10.1117/1.jrs.10.024001. 

Li, Zhen, Junxiang Tan, and Hua Liu. 2019. “Rigorous Boresight Self-Calibration of Mobile 
and UAV LiDAR Scanning Systems by Strip Adjustment.” Remote Sensing 11 (4): 1–
16. doi:10.3390/rs11040442. 

Lindenthal, S M, V R Ussyshkin, J G Wang, and M Pokorny. 2011. “Airborne LIDAR: A 
Fully-Automated Self-Calibration Procedure.” International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences 38. Citeseer: 5. 

Liu, Ke, Hongchao Ma, Liang Zhang, Zhan Cai, and Haichi Ma. 2019. “Strip Adjustment of 
Airborne LiDAR Data in Urban Scenes Using Planar Features by the Minimum 
Hausdorff Distance.” Sensors (Switzerland) 19 (23). doi:10.3390/s19235131. 

Liu, Wanli. 2017. “Lidar-Imu Time Delay Calibration Based on Iterative Closest Point and 
Iterated Sigma Point Kalman Filter.” Sensors (Switzerland) 17 (3): 1–19. 
doi:10.3390/s17030539. 

Lohani, Bharat, Parameshwar Reddy, and Rakesh Kumar Mishra. 2006. “Airborne 
Altimetric Lidar Simulator: An Education Tool.” International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Science XXXVI: 179–183. 

Lu, Xiushan, Chengkai Feng, Yue Ma, Fanlin Yang, Bo Shi, and Dianpeng Su. 2019. 
“Calibration Method of Rotation and Displacement Systematic Errors for Ship-Borne 
Mobile Surveying Systems.” Survey Review 51 (364). Taylor & Francis: 78–86. 
doi:10.1080/00396265.2017.1362731. 

Maas, Hans Gerd. 2002. “Methods for Measuring Height and Planimetry Discrepancies in 
Airborne Laserscanner Data.” Photogrammetric Engineering and Remote Sensing 68 
(9): 933–940. 

Moisan, Emmanuel, Pierre Charbonnier, Philippe Foucher, Pierre Grussenmeyer, Samuel 
Guillemin, and Mathieu Koehl. 2015. “Adjustment of Sonar and Laser Acquisition 
Data for Building the 3D Reference Model of a Canal Tunnel.” Sensors (Switzerland) 



 

142 

15 (12): 31180–31204. doi:10.3390/s151229855. 
Mokroš, Martin, Tomáš Mikita, Arunima Singh, Julián Tomaštík, Juliána Chudá, Piotr 

Wężyk, Karel Kuželka, et al. 2021. “Novel Low-Cost Mobile Mapping Systems for 
Forest Inventories as Terrestrial Laser Scanning Alternatives.” International Journal of 
Applied Earth Observation and Geoinformation 104. doi:10.1016/j.jag.2021.102512. 

Morin, Kris, and N El-Sheimy. 2002. “Post-Mission Adjustment Methods of Airborne Laser 
Scanning Data.” FIG XXII International Congress, Washington, DC USA, 1–12. 

Munim, Ziaul Haque, and Hans-Joachim Schramm. 2018. “The Impacts of Port 
Infrastructure and Logistics Performance on Economic Growth: The Mediating Role of 
Seaborne Trade.” Journal of Shipping and Trade 3 (1). Journal of Shipping and 
Trade: 1–19. doi:10.1186/s41072-018-0027-0. 

Munjy, Riadh. 2015. “Simultaneous Adjustment of LIDAR Strips.” Journal of Surveying 
Engineering 141 (1): 04014012. doi:10.1061/(asce)su.1943-5428.0000139. 

Nagarajan, Sudhagar, and Shahram Moafipoor. 2018. “Boresight Calibration of Low Point 
Density Lidar Sensors.” Photogrammetric Engineering and Remote Sensing 84 (10): 
619–627. doi:10.14358/PERS.84.10.619. 

Ndir, Papa Médoune. 2019. “Implantation et Évaluation de La Performance d’une Méthode 
d’ajustage En Mode Statique Des Systèmes Lidar Mobiles Terrestres.” Master 
Thesis, Laval Univeristy. 

Novatel. 2021. “Heave.” https://novatel.com/products/firmware-options-pc-software/gnss-
receiver-firmware-options/heave. 

Olsen, Michael J., Gene V. Roe, Craig Glennie, Fred Persi, Persi Consulting, Marcus 
Reedy, David Evans, et al. 2013. “Guidelines for the Use of Mobile Lidar in 
Transportation Applications Final Guidelines.” Transportation Research, no. February 
2013: 208. 

Pauly, Mark, Richard Keiser, and Markus Gross. 2003. “Multi‐scale Feature Extraction on 
Point‐Sampled Surfaces.” Computer Graphics Forum 22 (September): 281–289. 
doi:10.1111/1467-8659.00675. 

Petovello, Mark G. 2003. “Real-Time Integration of a Tactical-Grade IMU and GPS for 
High-Accuracy Positioning and Navigation.” University of Calgary. 

Pothou, A., Charles Toth, S. Karamitsos, and A. Georgopoulos. 2008. “An Approach to 
Optimize Reference Ground Control Requirements for Estimating LIDAR/IMU 
Boresight Misalignment.” International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences - ISPRS Archives 37. 

Puente, Iván, Mercedes Solla, Higinio González-Jorge, and Pedro Arias. 2013. “Validation 
of Mobile LiDAR Surveying for Measuring Pavement Layer Thicknesses and 
Volumes.” NDT and E International 60. Elsevier: 70–76. 
doi:10.1016/j.ndteint.2013.07.008. 

Ravi, Radhika, and Ayman Habib. 2020. “Fully Automated Profile-Based Calibration 
Strategy for Airborne and Terrestrial Mobile LiDAR Systems with Spinning Multi-
Beam Laser Units.” Remote Sensing 12 (3). doi:10.3390/rs12030401. 

Ravi, Radhika, Tamer Shamseldin, Magdy Elbahnasawy, Yun Jou Lin, and Ayman Habib. 
2018. “Bias Impact Analysis and Calibration of UAV-Based Mobile LiDAR System 
with Spinning Multi-Beam Laser Scanner.” Applied Sciences (Switzerland) 8 (2). 
doi:10.3390/app8020297. 

Rentsch, Matthias, and Peter Krzystek. 2012. “Lidar Strip Adjustment with Automatically 
Reconstructed Roof Shapes.” Photogrammetric Record 27 (139): 272–292. 
doi:10.1111/j.1477-9730.2012.00690.x. 

Ressl, Camillo, Gottfried Mandlburger, and Norbert Pfeifer. 2009. “Investigating 
Adjustment of Airborne Laser Scanning Strips Without Usage of Gnss/Imu Trajectory 
Data.” Laser Scanning 2009, IAPRS XXXVIII (1): 195–200. 



 

143 

Ressl, Camillo, Norbert Pfeifer, and Gottfried Mandlburger. 2012. “Applying 3D Affine 
Transformation and Least Squares Matching for Airborne Laser Scanning Strips 
Adjustment Without Gnss/Imu Trajectory Data.” The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-5/ 
(May): 67–72. doi:10.5194/isprsarchives-xxxviii-5-w12-67-2011. 

Riegl. 2022. “Riegl Laser Measurement Systems.” 
http://www.riegl.com/fileadmin/gallery/mobil/mls_vmx-
250_scanningsystem_korea.JPG. 

Rondeau, Mathieu, and Frédéric Pelletier. 2013. “Using Integrated Technology to Inspect 
Quay Walls.” In Port Technology International, 1–2. 

Rönnholm, P., X. Liang, A. Kukko, A. Jaakkola, and J. Hyyppä. 2016. “Quality Analysis 
and Correction of Mobile Backpack Laser Scanning Data.” ISPRS Annals of 
Photogrammetry, Remote Sensing and Spatial Information Sciences III–1 (June): 41–
47. doi:10.5194/isprsannals-iii-1-41-2016. 

Ruggeri, Paolo, Viviene Marianne Esther Fruzzetti, and Giuseppe Scarpelli. 2021. 
“Upgrading of Quay Walls at the Ravenna Port, Italy: Evaluation of the Steel Piles 
Degradation after a Long Working Life.” Structure and Infrastructure Engineering 17 
(2). Taylor & Francis: 249–259. doi:10.1080/15732479.2020.1736101. 

Rusu, Radu Bogdan, Steve Cousins, and Willow Garage. 2011. “3D Is Here: Point Cloud 
Library (PCL).” IEEE International Conference on Robotics and Automation (ICRA). 

Ryding, Joseph, Emily Williams, Martin J. Smith, and Markus P. Eichhorn. 2015. 
“Assessing Handheld Mobile Laser Scanners for Forest Surveys.” Remote Sensing 7 
(1): 1095–1111. doi:10.3390/rs70101095. 

Schaer, Philipp. 2010. In-Flight Quality Assessment and Data Processing for Airborne 
Laser Scanning. Institut für Geodäsie und Photogrammetrie. 

Schenk, Anton F. 2001. “Modeling and Analyzing Systematic Errors in Airborne Laser 
Scanners.” Technical Notes in Photogrammetry 19 (January). 
doi:10.13140/RG.2.2.20019.25124. 

Sentry, Matthew, Abdelmalek Bouazza, Riadh Al-Mahaidi, Darren Loidl, Chris Bluff, and 
Len Carrigan. 2007. “Advancements in Ground Anchors: Carbon Fibre Reinforced 
Polymer (CFRP) Strands.” In Ground Anchorages and Anchored Structures in 
Service 2007: Proceedings of the Two Day International Conference Organised by 
the Institution of Civil Engineers and Held in London on 26 and 27 November 2007, 
321–330. 

Seube, Nicolas, Alan Picard, and Mathieu Rondeau. 2012. “A Simple Method to Recover 
the Latency Time of Tactical Grade IMU Systems.” ISPRS Journal of 
Photogrammetry and Remote Sensing 74. International Society for Photogrammetry 
and Remote Sensing, Inc. (ISPRS): 85–89. doi:10.1016/j.isprsjprs.2012.09.001. 

Shahraji, Mohsen H., and Christian Larouche. 2022. “Case Study: Rigorous Boresight 
Alignment of a Marine Mobile LiDAR System Addressing the Specific Demands of 
Port Infrastructure Monitoring.” Marine Geodesy 45 (3). Taylor & Francis: 295–327. 
doi:10.1080/01490419.2022.2025503. 

Shahraji, Mohsen H., Christian Larouche, and Marc Cocard. 2020. “ANALYSIS OF 
SYSTEMATIC ERRORS OF MOBILE LiDAR SYSTEMS: A SIMULATION 
APPROACH.” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 
Information Sciences V-1–2020 (August): 253–260. doi:10.5194/isprs-annals-V-1-
2020-253-2020. 

Shan, Jie, and Charles Toth. 2008. Topographic Laser Ranging and Scanning: Principles 
and Processing. CRC Press. Taylor & Francis Group. 
http://www.tandfonline.com/doi/abs/10.1080/01431160903112612. 

Shi, Bo, Yuntian Bai, Shun Zhang, Ruofei Zhong, Fanlin Yang, Shizhu Song, and Guoyu 



 

144 

Li. 2021. “Reference-Plane-Based Approach for Accuracy Assessment of Mobile 
Mapping Point Clouds.” Measurement: Journal of the International Measurement 
Confederation 171. Elsevier Ltd: 108759. doi:10.1016/j.measurement.2020.108759. 

Shi, Bo, Xiushan Lu, Fanlin Yang, Chuanyin Zhang, Yanquan Lv, and Min Cheng. 2017. 
“Shipborne Over- and Under-Water Integrated Mobile Mapping System and Its 
Seamless Integration of Point Clouds.” Marine Geodesy 40 (2–3). Taylor & Francis: 
104–122. doi:10.1080/01490419.2016.1272510. 

Skaloud, Jan, and Derek Lichti. 2006. “Rigorous Approach to Bore-Sight Self-Calibration in 
Airborne Laser Scanning.” ISPRS Journal of Photogrammetry and Remote Sensing 
61 (1): 47–59. doi:10.1016/j.isprsjprs.2006.07.003. 

Skaloud, Jan, and Philipp Schaer. 2003. “Towards A More Rigorous Boresight 
Calibration.” In ISPRS International Workshop on Theory, Technology and Realities 
of Inertial / GPS Sensor Orientation, Commission 1, WG I/5. Castelldefels, Spain. 

Skaloud, Jan, and Philipp Schaer. 2007. “Towards Automated LiDAR Boresight Self-
Calibration.” International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences - ISPRS Archives 36 (5C55). 

Skog, Isaac. 2007. “GNSS-Aided INS for Land Vehicle Positioning and Navigation.” KTH 
Royal Institute of Technology. 

Soilán, Mario, Ana Sánchez-Rodríguez, Pablo Del Río-Barral, Carlos Perez-Collazo, 
Pedro Arias, and Belén Riveiro. 2019. “Review of Laser Scanning Technologies and 
Their Applications for Road and Railway Infrastructure Monitoring.” Infrastructures 4 
(4). doi:10.3390/infrastructures4040058. 

Song, Bo, Zhou Guoqing, and Feng Wang. 2021. “Multi-Feature Airborne Lidar Strip 
Adjustment Method Combined with Tensor Voting Algorithm.” In 2021 IEEE 
International Geoscience and Remote Sensing Symposium IGARSS, 8049–8052. 

Soudarissanane, Sylvie, Roderik Lindenbergh, Massimo Menenti, and P J G Teunissen. 
2009. “Incidence Angle Influence on the Quality of Terrestrial Laser Scanning Points.” 
In Proceedings ISPRS Workshop Laserscanning 2009, 1-2 Sept 2009, Paris, France. 

Stewart, Mark G., and Emilio Bastidas-Arteaga. 2019. Corrosion of Concrete and Steel 
Structures in a Changing Climate. Climate Adaptation Engineering: Risks and 
Economics for Infrastructure Decision-Making. Elsevier Inc. doi:10.1016/B978-0-12-
816782-3.00004-8. 

Stockwell, Walter. 2003. Angle Random Walk. Crossbow Technology, Inc. 
http://www.xbow.com/. 

Talaya, J, R Alamus, E Bosch, A Serra, W Kornus, and A Baron. 2004. “Integration of a 
Terrestrial Laser Scanner with GPS/IMU Orientation Sensors.” In Proceedings of the 
XXth ISPRS Congress, 35:1049–1055. 

Thies, Thomas. 2011. “A Vessel-Based Mobile Mapping System – From Sensor 
Integration to Multipurpose Products.” HafenCity University Hamburg. 
http://www.riegl.com/uploads/tx_pxpriegldownloads/Thies_Thomas__2011_-
_A_Vessel-
Based_Mobile_Mapping_System__Master_Thesis__HafenCity_University_Hamburg_
_Germany_part1.pdf. 

Toth, Charles K., N Csanyi, and D A Grejner-Brzezinska. 2002. “Automating the 
Calibration of Airborne Multisensor Imaging Systems.” FIG XXII International 
Congress, 1–14. 

TrimbleGeospatial. 2022. “Trimble MX50.” https://geospatial.trimble.com/products-and-
solutions/trimble-mx50. 

United Nations Publications. 2020. “Review of Maritime Transport.” In United Nations 
Conference on Trade and Development. Geneva: United Nations Publications. 
doi:10.18356/edeca49a-en. 



 

145 

Valdez, Benjamín, Jorge Ramirez, Amir Eliezer, Michael Schorr, Rogelio Ramos, and 
Ricardo Salinas. 2016. “Corrosion Assessment of Infrastructure Assets in Coastal 
Seas.” Journal of Marine Engineering and Technology 15 (3): 124–134. 
doi:10.1080/20464177.2016.1247635. 

van der Sande, Corné, Sylvie Soudarissanane, and Kourosh Khoshelham. 2010. 
“Assessment of Relative Accuracy of AHN-2 Laser Scanning Data Using Planar 
Features.” Sensors 10 (9): 8198–8214. doi:10.3390/s100908198. 

Vosselman, George. 2002. “Strip Offset Estimation Using Linear Features.” In 3rd 
International Workshop on Mapping Geo-Surfical Processes Using Laser Altimetry, 9. 

Vosselman, George, and Hans-Gerd Maas. 2011. Airborne and Terrestrial Laser 
Scanning. Whittles Publishing. Vol. 4. Scotland: CRC Press Taylor & Francis Group. 
doi:10.1080/17538947.2011.553487. 

Wang, Yanjun, Qi Chen, Qing Zhu, Lin Liu, Chaokui Li, and Dunyong Zheng. 2019. “A 
Survey of Mobile Laser Scanning Applications and Key Techniques over Urban 
Areas.” Remote Sensing 11 (13): 1–20. doi:10.3390/rs11131540. 

Wehr, Aloysius, and Uwe Lohr. 1999. “Airborne Laser Scanning - An Introduction and 
Overview.” ISPRS Journal of Photogrammetry and Remote Sensing 54 (2–3): 68–82. 
doi:10.1016/S0924-2716(99)00011-8. 

West, Karen, Brian Webb, James Lersch, Steven Pothier, Joseph Triscari, and Evan 
Iverson. 2004. “Context-Driven Automated Target Detection in 3D Data.” Proceedings 
of SPIE - The International Society for Optical Engineering 5426 (September). 
doi:10.1117/12.542536. 

Wilkinson, Benjamin, H. Andrew Lassiter, Amr Abd-Elrahman, Raymond R. Carthy, Peter 
Ifju, Eben Broadbent, and Nathan Grimes. 2019. “Geometric Targets for UAS Lidar.” 
Remote Sensing 11 (24). doi:10.3390/rs11243019. 

Williams, Keith, Michael J. Olsen, Gene V. Roe, and Craig Glennie. 2013. Synthesis of 
Transportation Applications of Mobile LIDAR. Remote Sensing. Vol. 5. 
doi:10.3390/rs5094652. 

Wyllie, Katrina, Grant Froelich, Karen Cove, and Karen Hart. 2012. “Process for Capturing 
Real World Features from 3D Laser Scanned Point Clouds,” no. May 2012: 1–14. 

Yan, Zhaojin, Rufei Liu, Liang Cheng, Xiao Zhou, Xiaoguang Ruan, and Yijia Xiao. 2019. 
“A Concave Hull Methodology for Calculating the Crown Volume of Individual Trees 
Based on Vehicle-Borne LiDAR Data.” Remote Sensing 11 (6): 623. 
doi:10.3390/rs11060623. 

You, Rey Jer, and Chao Liang Lee. 2020. “Accuracy Improvement of Airborne Lidar Strip 
Adjustment by Using Height Data and Surface Feature Strength Information Derived 
from the Tensor Voting Algorithm.” ISPRS International Journal of Geo-Information 9 
(1). doi:10.3390/ijgi9010050. 

Zeng, Yadan, Heng Yu, Houde Dai, Shuang Song, Mingqiang Lin, Bo Sun, Wei Jiang, and 
Max Q.H. Meng. 2018. “An Improved Calibration Method for a Rotating 2D LIDAR 
System.” Sensors (Switzerland) 18 (2): 1–12. doi:10.3390/s18020497. 

Zhang, J., W. Jiang, and S. Jiang. 2012. “AUTOMATED MOUNTING BIAS CALIBRATION 
for AIRBORNE LIDAR SYSTEM.” ISPRS Annals of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences 1 (September): 263–268. 
doi:10.5194/isprsannals-I-4-263-2012. 

Zhang, Yongjun, Xiaodong Xiong, Maoteng Zheng, and Xu Huang. 2015. “LiDAR Strip 
Adjustment Using Multifeatures Matched with Aerial Images.” IEEE Transactions on 
Geoscience and Remote Sensing 53 (2). IEEE: 976–987. 
doi:10.1109/TGRS.2014.2331234. 

Zoller & Frohlich GmbH. 2012. Z+F PROFILER 9012 Manual - Advanced Users. Germany: 
Zoller + Frohlich GmbH. 



 

146 

Zoller & Frohlich GmbH. 2022. “Z&F Profiler 9012.” https://www.zofre.de/en/laser-
scanners/2d-laser-scanner/z-f-profilerr-9012. 



 

147 

Appendix A – In-house Mobile LiDAR System 

Integration 

This appendix introduces the work behind integrating the different components 

selected for the setup of the customized in-house terrestrial mobile LiDAR system. 

For this, specialists of Jakarto Cartographie 3d inc., a project partner, contributed to 

the design and integration of the system and the fabrication of the PPS cables that 

linked the POS device to the LiDAR scanner and synchronized the GNSS time to 

the scanner time. Figure A.1 shows some components and accessories used to 

connect and synchronize the primary sensors of our customized in-house MLS. 

 

Figure A.1 – Main components and accessories of our customized in-house MLS 

After integrating all main components (the LiDAR scanner and the POS device) and 

accessories, we installed and tested them on a trolley to ensure the system could 

adequately collect the data. Second, we installed and operated the system on a road 

vehicle and collected datasets on a long road corridor, as seen in Figure A.2. 
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(a) (b) 

 

(c) 

Figure A.2 – Test of the customized MLS on the various platforms; trolley (a) and road vehicle 

(b and c) 

Figure A.3 illustrates the surveyed corridor on the campus of Laval University with 

this assembled MLS and a small portion of the collected point cloud. 
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(a) 

 

(b) 

Figure A.3 – (a) Trajectory of the acquisition test on the campus of Laval University. (b) A 

portion of the georeferenced point cloud around the Pavillon Casault of Laval University. 

By analyzing the data collected on this field test, we can observe a vital boresight 

alignment issue in the georeferenced point cloud, as presented in Figure A.4. Thus, 

for the next test, we concentrated our efforts on the estimation of the boresight 

angles of the POS-LiDAR components. 
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Figure A.4 – Boresight misalignment effect (white circles) of point clouds collected on a 

building facade in round-trip passages presented in two colors (green and red). 

Based on the initial scanning results of a scene from various passages, we can 

see that the point clouds do not match, and we know that this deviation is caused 

by the boresight misalignment of the POS-LiDAR systems. Thus, to improve the 

quality of the final point clouds, we must estimate the POS-LiDAR boresight 

angles. Therefore, we suggested a boresight alignment method using a 

prefabricated planar target that we scanned with a specific line pattern, as 

illustrated in Figure A.5. This test was performed on November 7th, 2018, at the 

Laval University campus. 
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(a) (b) 

  

 
(c) 

Figure A.5 – Boresight alignment procedure with one vertical planar target. (a) Planar target 

in vertical orientation w.r.t the terrestrial MLS. (b) The terrestrial MLS is installed on a road 

vehicle platform. (c) the line pattern followed by the terrestrial MLS. 

The idea behind the suggested method is to facilitate the boresight alignment 

task and make it easier for a non-expert operator to estimate the boresight 

angles at any place and any time with a robust and reliable approach. As 

illustrated in Figure A.6, the obtained result of the planar target demonstrates a 

deviation between the scanned point clouds of the plane, primarily due to 

systematic errors, especially the boresight misalignment issue. 
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(a) (b) 

Figure A.6 – Deviation between various scans of the vertical planar target caused by MLS 

errors (a) Front view (b) Side view. The colour on the points is with respect to the timestamp 

of scans, blue signifies the lower time, and red signifies the higher time. 

Based on our initial analysis of the results, we concluded that with one vertical 

planar target, the boresight alignment algorithm does not converge to a solution. 

Therefore, only one vertical plane located at a lower altitude than the scanner is 

insufficient to estimate the boresight angles of a terrestrial MLS. Thus, we need 

more planar targets with various configurations to be able to estimate the 

systematic errors of an MLS. To study different planar configurations and line 

patterns, we designed an MLS simulator, presented in detail in Chapter 3. This 

simulation-based approach helped us to study the effects of each systematic 

error of an MLS without the interference of other systematic errors or system 

noises. 
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Appendix B – Software Development 

In this research, due to the customized nature of the in-house marine mobile LiDAR 

system, we developed a workflow for processing the raw data received from the POS 

and the LiDAR scanner and producing georeferenced 3D point clouds. The workflow 

is divided into two main parts: the “Input Data Preparation” and the “LISPAC 

Software Package” processing. Figure B.1 represents the first part of the overall 

workflow. 

 

Figure B.1 – Input data preparation part of the overall workflow 

 

In the input data preparation part, we gather raw data from the LiDAR scanner and 

the INS, process them, and export them for the LISPAC software package, as 

illustrated in Figure B.2. 
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Figure B.2 – LISPAC Software Package developed in a collaboration between Laval University 

and CIDCO 

The LISPAC software package takes the input data prepared in the last part of the 

workflow, and it generates a 3D georeferenced point cloud of the scanned scene 

with the planar targets located in them with its “Georeferencing” module. Then, with 

the “GUI-Planes” module, the planar targets are extracted in a semi-automatic mode. 

The software operator localizes a point in the middle of the planar target, and after 

that, the plane detection algorithm defines the whole plane’s point cloud. In the next 
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step, the software operator fixes a subsampling rate, and finally, the essential points 

of each scanned planar target with the specific line pattern are merged into an 

individual file. The next step is to use the point cloud that contains the various scans 

of the planar targets in an iterative adjustment procedure, which produces the best 

possible fit of the planar targets and simultaneously estimates the boresight angles. 

The first prototype of the suggested method in this research has been implemented 

in MATLAB®, which the source code can be found in the following link 

https://github.com/MHS1985/phd_thesis. 

This section is divided into three sub-sections: Georeferencing module, 

PlanePreparation module, and BoresightEstimation module. 

B.1 Georeferencing Module 

The inputs for this module are the raw Z+F® LiDAR data and the corresponding 

interpolated POS data. The POS data come in SBET format and contain positioning 

data (Northing, Easting, and Ellipsoid Height) and attitude data (Roll, Pitch, and 

Heading). Due to the higher acquisition frequency of LiDAR data (1 MHz) with 

respect to POS data (200 Hz), we applied linear interpolation to assign position and 

orientation data to each ZF LiDAR point. 

First, we calculate the coordinate of the points in the LGF coordinate system based 

on Figure B.3. For “Linear Interpolation,” we use the interp1 function in MATLAB®. 
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Figure B.3 – Algorithm that produces the georeferenced coordinates of the LiDAR points. The 

blue boxes represent the functions that we use in the georeferencing module. 

In Figure B.4, the P_LGF_NWU is calculated based on the algorithm 

demonstrated in Figure B.3. 
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Figure B.4 – The algorithm calculates the points' coordinates in the LGF coordinate system. The 

blue boxes are the functions that we use in the georeferencing module. 

Algorithms for calculating different parts of the direct georeferencing model 

(Equation (3.1)) are presented in Figure B.5 and Figure B.6. 

[
𝑋𝐿𝐺𝐹

𝑌𝐿𝐺𝐹

𝑍𝐿𝐺𝐹

] = [

𝑃𝑋
𝐿𝐺𝐹

𝑃𝑌
𝐿𝐺𝐹

𝑃𝑍
𝐿𝐺𝐹

] + 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ)(𝑅𝐿𝑖𝐷𝐴𝑅

𝑃𝑂𝑆 (𝛼, 𝛽, 𝛾) [

𝑥𝐿𝑖𝐷𝐴𝑅
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𝑎𝑋
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𝑎𝑍
𝑃𝑂𝑆
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ALGORITHM 1: ALGORITHM TO CALCULATE PLGF 

 Input: Position of the trajectory in the Geographic Coordinate System (Latitude and Longitude) 

 Output: Position of the trajectory in the Local Geodetic Frame (LGF) 

1 number-of-Points ← count the total number of points in the trajectory 

2 Initialization of variables: assign zero to the variable i, 𝝀, 𝝋, 𝝀𝑹𝒆𝒇, 𝝋𝑹𝒆𝒇 

3 for (i  <  number-of-Points) // read all the points and accumulate their values into one variable 

4  𝝀 ← read the 𝜆 coordinate of each point and add to the variable 

5  𝝋 ← read the 𝜑 coordinate of each point and add to the variable 

6 end 

7 𝝀𝑹𝒆𝒇     ← 𝝀 / number-of-Points 

8 𝝋𝑹𝒆𝒇    ← 𝝋 / number-of-Points 

9 𝑅𝐸𝐶𝐸𝐹
𝐿𝐺𝐹   ←  𝝀𝑹𝒆𝒇, 𝝋𝑹𝒆𝒇    // Rotation matrix (Equation (B.1)) between ECEF frame and LGF 

frame 10 𝑃𝐸𝐶𝐸𝐹(𝜆𝑅𝑒𝑓 , 𝜑𝑅𝑒𝑓)  ←  𝝀𝑹𝒆𝒇, 𝝋𝑹𝒆𝒇    // Translation vector (Equation (B.2)) between ECEF 

frame and LGF frame 11 for (i  <  number-of-Points) // read all the points and calculate the 𝑃𝐸𝐶𝐸𝐹 for each position 

12  𝑃𝐸𝐶𝐸𝐹 ← calculate the 𝑃𝐸𝐶𝐸𝐹 for each position 

13  𝑃𝐿𝐺𝐹  ← calculate the 𝑃𝐿𝐺𝐹 for each position with Equation (B.3) 

14 end  

   
 

Figure B.5 – Algorithm 1 to calculate PLGF 

Equation (B.1) calculates the rotation matrix between the Earth Centric Earth Fixed 

(ECEF) frame and the LGF, with the latitude and longitude entries coming from the 

GNSS sensor. Equation (B.2) calculates the 3D coordinates of a point in the ECEF 

frame. The output of the two Equations (B.1) and (B.2) is used as input in Equation 

(B.3). To calculate the 3D coordinates of the point in the LGF, we use Equation (B.3). 

The detail of this equations is discussed in inertial navigation systems references 

(Groves 2013; Jekeli 2012). 

𝑅𝐸𝐶𝐸𝐹
𝐿𝐺𝐹 (𝜆𝑅𝑒𝑓, 𝜑𝑅𝑒𝑓) = [

−cos(𝜆𝑅𝑒𝑓) sin(𝜑𝑅𝑒𝑓) − sin(𝜆𝑅𝑒𝑓) sin (𝜑𝑅𝑒𝑓) cos (𝜑𝑅𝑒𝑓)

sin (𝜆𝑅𝑒𝑓) −cos (𝜆𝑅𝑒𝑓) 0

cos(𝜆𝑅𝑒𝑓) cos (𝜑𝑅𝑒𝑓) sin(𝜆𝑅𝑒𝑓) cos (𝜑𝑅𝑒𝑓) sin (𝜑𝑅𝑒𝑓)

] (B.1) 

𝑃𝐸𝐶𝐸𝐹 = (
𝑥
𝑦
𝑧
)

𝐸𝐶𝐸𝐹

= [

(𝑁𝐸 + ℎ)𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆
(𝑁𝐸 + ℎ)𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆

(𝑁𝐸(1 − 𝑒2) + ℎ)𝑠𝑖𝑛𝜑

] (B.2) 

𝑃𝐿𝐺𝐹 = 𝑅𝐸𝐶𝐸𝐹
𝐿𝐺𝐹 (𝜆𝑅𝑒𝑓, 𝜑𝑅𝑒𝑓)[𝑃𝐸𝐶𝐸𝐹(𝜆, 𝜑) − 𝑃𝐸𝐶𝐸𝐹(𝜆𝑅𝑒𝑓, 𝜑𝑅𝑒𝑓)] (B.3) 
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ALGORITHM 2: ALGORITHM TO CALCULATE 𝑹𝑷𝑶𝑺
𝑳𝑮𝑭

 AND 𝑹𝑳𝒊𝑫𝑨𝑹
𝑷𝑶𝑺  

 Input: Attitude observations of the POS (𝑟, 𝑝, ℎ) and initial boresight angles (𝛼, 𝛽, 𝛾) 

 Output1: Rotation Matrix between POS frame and LGF frame 

 Output2: Rotation Matrix between LiDAR frame and POS frame 

1 number-of-Points ← count the total number of points in the trajectory 

2 Initialization of variables: assign zero to the variable i 

3 for (i  <  number-of-Points) // read all the points and calculate the rotation matrix 

4  𝑀𝑋(𝑟) ← read the roll attitude angle 

5  𝑀𝑌(𝑝) ← read the pitch attitude angle 

6  𝑀𝑍(ℎ) ← read the heading attitude angle 

7  // Calculate the rotation matrix for each trajectory point 

8  𝑅𝐼𝑁𝑆
𝐿𝐺𝐹(𝑟, 𝑝, ℎ) ← 𝑀𝑍(ℎ)𝑀𝑌(𝑝)𝑀𝑋(𝑟)   

9 end 

 10 // Calculate the rotation matrix between LiDAR frame and POS frame 

11 𝑀𝑍(𝛾)   ← read the 𝛾 roll boresight angle 

12 𝑀𝑌(𝛽)   ← read the  𝛽 pitch boresight angle 

13 𝑀𝑋(𝛼)  ← read the 𝛼 yaw boresight angle 

14 𝑅𝐿𝑖𝐷𝐴𝑅
𝐼𝑁𝑆   ← 𝑀𝑍(𝛾)𝑀𝑌(𝛽)𝑀𝑋(𝛼) 

 
 

Figure B.6 – Algorithm 2 to calculate 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹 and 𝑅𝐿𝑖𝐷𝐴𝑅

𝑃𝑂𝑆  

B.2 Plane Preparation Module 

In this section, we present in detail the theory and the model that enable us to extract 

the necessary information from each planar target and produce the input data for the 

boresight angles estimation module illustrated in Figure B.7. Firstly, we visualize the 

georeferenced point cloud from each passage. This data contains all the scanned 

instances of the planar targets. Secondly, we manually select a point on the plane, 

and thirdly, with the available RANSAC tool in the Point Cloud Library package 

(Rusu, Cousins, and Garage 2011), which is a robust plane extraction algorithm, we 

extract all the points on the planar targets while removing the outliers effectively. The 

extracted planar target points without outliers will augment the performance of the 

method, which depends in a significant part on the extracted planes’ reliability (van 

der Sande, Soudarissanane, and Khoshelham 2010). 

Fourthly, we perform a spatial subsampling to reduce the volume of the points on 

each plane. Fifthly, we fit a plane to the point cloud of each plane and define the 

initial and approximative normal vector for each point. The approximative normal 
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value is essential for the boresight angles estimation algorithm. The last step of data 

preparation for the boresight angles estimation algorithm is to merge all the selected 

points from all the passages for each planar target and create a single file for each 

plane. Thus, if we have two planar targets, we will have two final input files that will 

be introduced to the boresight angles estimation algorithm. 

 

Figure B.7 – Input data preparation procedure for the boresight error estimation module 

This procedure is done for each planar target, and at the end, we will have a file for 

each plane. Most of the plane extraction in the MATLAB prototype is manual, and 

here we present the function that estimates the initial normal vector for each plane 

that will serve as input parameters for the boresight angles estimation module, 

presented in Appendix A.3. 

This procedure has been automated in the LISPAC software package, which is 

designed based on the proposed prototype developed in this thesis. For each planar 

target, we merge all the point clouds of all the passages and add the initial normal 

vector to the raw LiDAR and POS data. Figure B.8 illustrates the LISPAC interface 

from the visualization of the georeferenced point cloud to the extraction of each 

planar target.    
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(a) 

 
(b) 

Figure B.8  – LISPAC Plane Finder Module. (a) we define a point in the point cloud. (b) the 

module automatically extracts the planar targets. 

B.3 Boresight Estimation Module 

In this section, we present the theory and the mathematical model that enable us to 

estimate the boresight angles and their uncertainties. Figure B.9 illustrates the 

details of the boresight angles estimation module.  

We can enter the least-squares iterative procedure with the input prepared in the 

previous section. The algorithm estimates the boresight angle values and their 

respective uncertainties in the first iteration. The iterations continue until the 
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statistical tests are satisfied. In a typical case, it takes 3 to 4 iterations to converge 

to a solution.   

In Figure B.9, we introduce more details of the iterative least-squares procedure. 

 

Figure B.9 – Boresight angles estimation module. Blue boxes are the functions that we utilize 

in the boresight estimation module. The white boxes are the input parameters from the sensors 

and the planar extraction module. The green boxes are the output for each step. 
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Table B.1 represents the indices of the matrices (defining their size) used in the 

least-squares technique and enables us to understand the equations easily and to 

be able to implement them in our software in a simple manner. 

Table B.1 – Definition of the indices used in the matrices of the least-squares technique 

# 𝑝𝑜𝑖𝑛𝑡𝑠/𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 pts 

# 𝑝𝑙𝑎𝑛𝑎𝑟 𝑡𝑎𝑟𝑔𝑒𝑡/Constraints c  = pls 

#.𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑛 = 9 × 𝑝𝑡𝑠 

# 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠 𝑢0 =  3 + 4 × 𝑝𝑙𝑠 

# 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑛0 = 𝑟 + 𝑢0 + 𝑐 

 

Firstly, in Equation (B.4), we define the matrix 𝐴, which is the partial derivatives of 

Equation (4.4) w.r.t the unknowns vector 𝑥[𝑢0×1] = (𝛼, 𝛽, 𝛾, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖). 

𝐴[𝑛0× 𝑢0] = [
𝜕𝐹

𝜕𝛼
 
𝜕𝐹

𝜕𝛽
 
𝜕𝐹

𝜕𝛾
 
𝜕𝐹

𝜕𝑎𝑖
 
𝜕𝐹

𝜕𝑏𝑖
 
𝜕𝐹

𝜕𝑐𝑖
 
𝜕𝐹

𝜕𝑑𝑖
 ] (B.4) 

Secondly, in Equation (B.5), we define the matrix B, which is the partial derivative of 

Equation (4.4) with respect to observations vector 

(𝑃𝑋
𝐿𝐺𝐹 , 𝑃𝑋

𝐿𝐺𝐹 , 𝑃𝑋
𝐿𝐺𝐹 , 𝑟, 𝑝, ℎ, 𝑥𝐿𝑖𝐷𝐴𝑅 , 𝑦𝐿𝑖𝐷𝐴𝑅 , 𝑧𝐿𝑖𝐷𝐴𝑅). 

𝐵[𝑛0× 𝑛] = [

[𝐵1×9] ∅ ∅

∅ [𝐵2×9] ∅
⋮ ∅ ⋱

    

⋯
⋯
⋮
] 

 

𝑊𝑖𝑡ℎ   𝐵[𝑖×9] = [
𝜕𝐹

𝜕𝑃𝑥𝐿𝐺𝐹
 

𝜕𝐹

𝜕𝑃𝑦𝐿𝐺𝐹
 

𝜕𝐹

𝜕𝑃𝑧𝐿𝐺𝐹
 
𝜕𝐹

𝜕𝑟
 
𝜕𝐹

𝜕𝑝
 
𝜕𝐹

𝜕ℎ
 

𝜕𝐹

𝜕𝑥𝐿𝑖𝐷𝐴𝑅

  
𝜕𝐹

𝜕𝑦𝐿𝑖𝐷𝐴𝑅

  
𝜕𝐹

𝜕𝑧𝐿𝑖𝐷𝐴𝑅

] 

(B.5) 

Thirdly, to define 𝑄𝑙𝑙, we consider the uncertainties related to each observation 

parameter, presented in Equation (B.6). 

𝑄𝑙𝑙 = [

[𝑄𝑙𝑙1]9×9
∅ ∅

∅ [𝑄𝑙𝑙1]9×9
∅

⋮ ∅ ⋱

    

⋯
⋯
⋮
] (B.6) 
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𝑊𝑖𝑡ℎ    𝑄𝑙𝑙 𝑖
= 𝑑𝑖𝑎𝑔𝑀𝑎𝑡𝑟𝑖𝑥 [𝜎𝑃

𝑥𝐿𝐺𝐹
2   𝜎𝑃

𝑦𝐿𝐺𝐹   
2 𝜎𝑃

𝑧𝐿𝐺𝐹
2   𝜎𝑟

2  𝜎𝑝
2  𝜎ℎ

2  𝜎𝑥𝐿𝑖𝐷𝐴𝑅
2   𝜎𝑦𝐿𝑖𝐷𝐴𝑅

2   𝜎𝑧𝐿𝑖𝐷𝐴𝑅
2 ] 

Fourthly, in Equation (B.7), we define the disclosure matrix, 

𝑤[𝑛0×1] = 𝑎𝑖𝑋𝐿𝐺𝐹 + 𝑏𝑖𝑌𝐿𝐺𝐹 + 𝑐𝑖𝑍𝐿𝐺𝐹 + 𝑑𝑖 (B.7) 

Equations (B.4), (B.5), (B.6), and (B.7) lead to Equation (B.8), which calculates the 

unknown parameters. 

(𝐴𝑇(𝐵𝑄𝑙𝑙𝐵
𝑇)−1𝐴)𝑥[𝑢0×1] = −𝐴𝑇(𝐵𝑄𝑙𝑙𝐵

𝑇)−1𝑤 (B.8) 

The constraints are defined by Equation (4.5) which is first linearized based on 

Equation (B.9),  

𝐴𝑐[𝑛𝑐×𝑢0]
𝑥[𝑢0×1] = 𝑤𝑐[𝑛𝑐×1]

 (B.9) 

𝑤𝑖𝑡ℎ 𝐴𝑐[𝑛𝑐×𝑢0]
= [

𝜕𝐺

𝜕𝑑𝑟
 
𝜕𝐺

𝜕𝑑𝑝
 
𝜕𝐺

𝜕𝑑ℎ
 
𝜕𝐺

𝜕𝑎𝑖
 
𝜕𝐺

𝜕𝑏𝑖
 
𝜕𝐺

𝜕𝑐𝑖
 
𝜕𝐺

𝜕𝑑𝑖
 ]   

and 𝑤𝑐[𝑛𝑐×1]
= 𝑎𝑖

2 + 𝑏𝑖
2 + 𝑐𝑖

2 − 1  

 

To consider the constraints in the overall least-squares procedure, we arrive at 

Equation (B.10), 

𝑥[𝑢0×1] = (𝐴𝑇(𝐵𝑄𝑙𝑙𝐵
𝑇)−1𝐴 + 𝐴𝑐

𝑇𝑃𝑐𝐴𝑐)
−1(−𝐴𝑇(𝐵𝑄𝑙𝑙𝐵

𝑇)−1−𝐴𝑐
𝑇𝑃𝑐𝑤𝑐) (B.10) 

𝑃𝑐[𝑛𝑐×𝑛𝑐]
= 

[
 
 
 
 
1

𝜎𝑐
2 0 …

0
1

𝜎𝑐
2 0

⋮ 0 ⋱]
 
 
 
 

 𝜎𝑐
2  → 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 𝑙𝑖𝑘𝑒 10−6 
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A posterior variance factor which is considered one of the iteration loop parameters 

in presented in Equation (B.11), 

𝑣 =  𝑄𝑙𝑙𝐵
𝑇𝑀−1(𝐴𝑁−1𝐴𝑇𝑀−1 − 𝐼)𝑤 

𝑆0
2 =

𝑣𝑇𝑃𝑣

𝑑𝑓
 

(B.11) 

Finally, we consider Equation (B.12) to estimate the boresight angles' 

standard deviations. 

𝑄𝑥𝑥 = (𝐴𝑇(𝐵𝑄𝑙𝑙𝐵
𝑇)−1𝐴)−1 (B.12) 

𝜎𝑑𝑟 = √𝑄𝑥𝑥(1, 1)
2

 𝜎𝑑𝑝 = √𝑄𝑥𝑥(2, 2)
2

 𝜎𝑑𝑦 = √𝑄𝑥𝑥(3, 3)2
  

 

The above procedures are from various well-established literature in least-squares 

adjustments in surveying and geodesy (Ghilani 2010; Cocard 2017; Skaloud and 

Lichti 2006). The algorithm of boresight estimation is presented in Figure B.10. 
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ALGORITHM 3: ALGORITHM TO ESTIMATE BORESIGHT ANGLES (𝜶,𝜷, 𝜸) 

 Input1: 𝑛𝑥, 𝑛𝑦, 𝑛𝑧, d                          // Normal of the plane targets  

 Input2: 𝑥𝐿𝑖𝐷𝐴𝑅 , 𝑦𝐿𝑖𝐷𝐴𝑅, 𝑧𝐿𝑖𝐷𝐴𝑅           // Plane points coordinates in LiDAR frame 

 Input3: 𝝈𝑥𝐿𝑖𝐷𝐴𝑅
, 𝝈𝑦𝐿𝑖𝐷𝐴𝑅

, 𝝈𝑧𝐿𝑖𝐷𝐴𝑅
    // Uncertainties of plane points in LiDAR frame 

 Input4: r, p, h, 𝝈𝑟 , 𝝈𝑝, 𝝈ℎ               // POS attitudes of plane points & their uncertainties 

 Input5: 𝑷𝐿𝐺𝐹, 𝝈𝑷𝐿𝐺𝐹
                       // POS positions in LGF of plane points & their uncertainties 

 Output: Boresight Angles (𝛼, 𝛽, 𝛾) and their Uncertainties 

1 Initialization of variables: assign 1 to the variable ∆𝒙          // Correction differences 

2 Initialization of variables: assign 0 to the variables 𝛼, 𝛽, 𝛾, 𝝈𝛼 , 𝝈𝛽, 𝝈𝛾 

3 number-of-Points ← count the total number of points on the planes 

4 while (∆𝒙 > eps) 

5  Initialization of variables: assign zero to the variable i 

6  for (i  <  number-of-Points) // read all the points and calculate the rotation matrix 

7   (𝑋𝐿𝐺𝐹, 𝑌𝐿𝐺𝐹 , 𝑍𝐿𝐺𝐹) ← Re-georeferencing the points 

8   A    ← Design Matrix 

9   B    ← Observation Matrix 

10   Qll ← Weight Matrix 

11   W   ← Closure Vector 

12   Ac  ← Constraint Design Matrix 

13   Pc  ← Constraint Weight Matrix 

14   Wc ← Constraint Closure Vector 

15  end  

16  M   ←  BQllBT 

17  N   ←  ATM -1A + 𝐴𝑐
𝑇Pc Ac 

18  n   ←  - ATM -1W - 𝐴𝑐
𝑇Pc Wc 

19  ∆𝒙 ← norm(N-1n ) 

20  ∆𝛼, ∆𝛽, ∆𝛾 ← ∆𝒙     // the three first elements of the correction vector 

21  𝛼 ← 𝛼 + ∆𝛼 

22  𝛽 ← 𝛽 + ∆𝛽 

23  𝛾 ← 𝛾 + ∆𝛾 

24 end  

25 Qxx ← N-1 

26 𝝈𝛼 , 𝝈𝛽, 𝝈𝛾 ← Qxx   // the sqrt of the three first elements on the diagonal of the matrix 

27 disp (𝛼, 𝛽, 𝛾, 𝝈𝛼 , 𝝈𝛽, 𝝈𝛾) 
 

Figure B.10  - Algorithm 3 for the estimation of boresight angles and their uncertainties 
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Appendix C – Further Analysis of Systematic 

Errors of Mobile LiDAR Systems 

C.1 Introduction 

Chapter 3 has discussed the systematic errors of a terrestrial MLS with simulated 

point clouds, and Section 3.5.2 presents the detailed results and analysis of the pitch 

boresight angle. This chapter presents the results of the other seven systematic 

errors in detail. These seven remaining systematic errors are as follows: roll 

boresight error, yaw boresight error, X lever arm error, Y lever arm error, Z lever arm 

error, range offset error, and scan angle offset error. For each of these systematic 

errors, we visually introduce their Type I and Type II visibility criteria and a brief 

discussion on the effect of each systematic error on the planar targets' simulated 

point clouds. 

C.2 Simulation-Based Systematic Errors Analysis 

This section discusses in detail the behavior of systematic errors of a terrestrial MLS. 

Based on the theoretical and conceptual aspects developed in Chapter 3, we 

generate a simulated point cloud based on various scenarios. 

C.2.1 Roll Boresight Error 

In this section, to study the impact of the roll boresight angle, we inserted 2° roll 

boresight error into the MLS simulator and analyzed the impact on the hypothetical 

planar target. The inclination of the plane varies between -60° and 30°. Figure C.1 

presents the values for the Type I criterion for all the six MLS passages and the 19 

plane inclinations. The blue box in Figure C.1 is considered the plane’s inclination, 

and the Type I criterion is within the expected threshold. 

Figure C.2 illustrates the values for the Type II criteria. The blue box in Figure C.2 

is considered the plane’s orientation that the Type II criteria are within the expected 

threshold. 
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Figure C.1– Roll boresight angle Type I systematic-error visibility criterion (vertical axis in 

meter) of all the possible orientations or inclinations (horizontal axis in degree) 

  

(a) (b) 

  

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure C.2  – Roll boresight angle systematic error Type II criteria (a) Signed orthogonal distance 

(vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible orientations 

or inclinations (horizontal axis in degree) 
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Based on the results of the Type II visibility criteria, illustrated in Figure C.2, for 

inserting the roll boresight angle on an MLS, a planar target with an orientation of -

40° with respect to terrestrial MLS is considered as the optimum value. 

 

 

(a) (b) 

Figure C.3  – Schematic presentation of a simulated point cloud of a terrestrial MLS simulator 

with inserted roll boresight angle. (a) side-looking view. (b) Y-Z view. 

To go further in our analysis, we use the schematic results of the selected orientation 

(30°) as illustrated in Figure C.3.  

Thus, based on our analysis, we suggest a planar target of 1m x 1m with a 30° 

orientation and a round-trip parallel and one side round-trip (45°-225° or 315°-135°) 

in any of the two sides of the planar target, to achieve the optimum configuration for 

the roll boresight angle. 

C.2.2 Yaw Boresight Error 

In this section, to study the impact of the yaw boresight angle, we inserted 2° yaw 

boresight error into the MLS simulator and analyzed the impact on the hypothetical 

planar target. The orientation of the plane varies between -60° and 30°. Figure C.4 

presents the values for the Type I criterion for all the six MLS passages and the 19 

plane inclinations. The blue box in Figure C.4 is considered the plane’s inclination, 

and the Type I criterion is within the expected threshold. Figure C.5 illustrates the 

values for the Type II criterion. The blue box in Figure C.5 is considered the plane’s 

orientation that the Type II criterion is within the expected threshold. 
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Figure C.4– Yaw boresight angle Type I systematic-error visibility criterion (vertical axis in 

meter) of all the possible orientations or inclinations (horizontal axis in degree) 

  

(a) (b) 

  

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure C.5  – Yaw boresight angle systematic error Type II criterion (a) Signed orthogonal 

distance (vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible 

orientations or inclinations (horizontal axis in degree) 

For the yaw boresight angle, the inclination of 0° (vertical plane) is the optimum 

value, as shown in Figure C.6.  
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(a) (b) 

Figure C.6 – Schematic presentation of a simulated point cloud of a terrestrial MLS simulator 

with inserted heading boresight angle. (a) side-looking view. (b) Y-Z view. 

Thus, we suggest a vertical planar target of 1m x 1m with 0° inclinations and one of 

the round-trips parallel to the planar target (0° or 180°) and a round-trip on each of 

the two sides of the planar target (45°-315° or 45°-135° or 225°-315° or 225°-315°), 

to achieve the optimum configuration for the yaw boresight angle. 

C.2.3 X Lever arm Error 

In this section, to study the impact of the X lever arm systematic error, we inserted 

an error of 10 cm into the MLS simulator and analyzed the impact on the hypothetical 

planar target. The inclination of the plane varies between -90° and 30°. Figure C.7 

presents the values for the Type I criterion for all the six MLS passages and the 19 

plane inclinations. The blue box in Figure C.7 is considered the plane’s inclination, 

and the Type I criterion is within the expected threshold. 

Figure C.8 illustrates the values for the Type II criteria. The blue box in Figure C.8 

is considered the plane’s inclination, and the Type II criteria are within the expected 

threshold. 
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Figure C.7 – X lever arm Type I systematic-error visibility criterion (vertical axis in meter) of all 

the possible orientations or inclinations (horizontal axis in degree) 

    

(a) (b) 

  

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure C.8  – X lever arm systematic error Type II criteria (a) Signed orthogonal distance 

(vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible 

orientations or inclinations (horizontal axis in degree) 

For the X lever arm, the inclination of 0° is the optimum value, as we can see in 

Figure C.8. As we expect and see in Figure C.9, lever arm systematic errors, which 

are translations. The generated point cloud will not have any rotations contrary to 
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the boresight angle systematic errors, which is valid for all the lever arms in the X, 

Y, and Z directions. 

 

 

(a) (b) 

Figure C.9 – Schematic presentation of a simulated point cloud of a terrestrial MLS simulator 

with the inserted X lever arm. (a) side-looking view. (b) Y-Z view. 

Thus, based on our analysis, we suggest a planar target of 1m x 1m with 0° 

inclination and one of the round-trips parallel to the planar target (0° or 180°) and a 

side round-trip of one of the sides of the planar target (45°-225° or 315°-135°), to 

achieve the optimum configuration for the X lever arm. 

C.2.4 Y Lever arm Error 

In this section, to study the impact of the Y lever arm systematic error, we inserted 

an error of 10 cm into the MLS simulator and analyzed the impact on the hypothetical 

planar target. The inclination of the plane varies between -90° and 30°. Figure C.10 

presents the values for the Type I criterion for all the six MLS passages and the 19 

plane inclinations. The blue box in Figure C.10 is considered the plane’s inclination, 

and the Type I criterion is within the expected threshold. 
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Figure C.10 – Y lever arm Type I systematic-error visibility criterion (vertical axis in meter) of all 

the possible orientations or inclinations (horizontal axis in degree) 

 

 

 

 
(a) (b) 

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure C.11  – Y lever arm systematic error Type II criteria (a) Signed orthogonal distance 

(vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible inclinations 

(horizontal axis in degree) 
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Figure C.11 illustrates the values for the Type II criteria. The blue box in Figure C.11 

is considered the plane’s inclination, and the Type II criteria are within the expected 

threshold. 

For the Y lever arm error, the inclination of 0° is the optimum value, as we can see 

in Figure C.11. As we expect, for the lever arm, systematic errors are translations. 

The generated point cloud will not have any rotations contrary to the boresight angle 

systematic errors, which is valid for all the lever arms in the X, Y, and Z directions. 

Thus, based on our analysis, as we illustrate in Figure C.12, we suggest a planar 

target of 1m x 1m with 0° inclination and a full round-trip parallel to the planar target 

(0° - 180°) and a round-trip of one of the sides of the planar target (45°-225° or 315°-

135°), to achieve the optimum configuration for the Y lever arm. 

 

 

(a) (b) 

Figure C.12 – Schematic presentation of a simulated point cloud of a terrestrial MLS simulator 

with the inserted Y lever arm. (a) side-looking view. (b) Y-Z view. 
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C.2.5 Z Lever arm Error 

In this section, to study the impact of the Z lever arm systematic error, we inserted a 

Z lever arm error of 10 cm into the MLS simulator and analyzed the impact on the 

hypothetical planar target. The inclination of the plane varies between -90° and 30°. 

Figure C.13 presents the values for the Type I criterion for all the six MLS passages 

and the 19 plane inclinations. The blue box in Figure C.13 is considered the plane’s 

inclination, and the Type I criteria are within the expected threshold. 

Figure C.14 illustrates the values for the Type II criterion, and as we can see, all the 

passages superpose each other. For the Z lever arm, we do not recognize any 

difference between the various inclinations of the planar target. Nevertheless, as we 

can see in Figure C.15, we choose the orientation of -60°. 

If we insert the Z lever arm systematic error to a terrestrial MLS and we scan the 

hypothetical plane with a six-line pattern (0° - 180° - 45° - 225° - 315° - 135°), the 

impact of such error on a planar target is the same and as we can see all the 

generated point cloud will lay on the same planar target. 
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Figure C.13 – Z lever arm Type I systematic-error visibility criterion (vertical axis in meter) of all 

the possible orientations or inclinations (horizontal axis in degree) 

   

(a) (b) 

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure C.14  – Z lever arm systematic error Type II criterion (a) Signed orthogonal distance 

(vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible 

orientations or inclinations (horizontal axis in degree) 
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(a) (b) 

Figure C.15 – Simulated point cloud of a terrestrial MLS simulator with the inserted Z lever arm. 

(a) side-looking view. (b) Y-Z view. 

The only possibility, as illustrated in Figure C.16, for the detection of the impact of a 

Z lever arm systematic error on a planar target is that the platform scans the plane 

in a parallel passage with the constraint that in one direction, the platform must be 

upside down, which is impossible in a terrestrial or marine MLS. 

 

 

(a) (b) 

Figure C.16 – Schematic presentation of a simulated point cloud of a marine MLS simulator 

with an inserted Z lever arm in two opposite directions. (a) side-looking view. (b) Y-Z view. 



 

179 

C.2.6 LiDAR Range Offset Error 

In this section, to study the impact of LiDAR range offset systematic error, we 

inserted a range offset of 10 cm into the MLS simulator and analyzed the impact on 

the hypothetical planar target. The inclination of the plane varies between -40° and 

10°. Figure C.17 presents the values for the Type I criterion for all the six MLS 

passages and the 19 plane inclinations. The blue box in Figure C.17 is considered 

the plane’s inclination, and the Type I criterion is within the expected threshold. 

Passage 0° 180° 45° 225° 315° 135° 

Color       

Figure C.18 illustrates the values for the Type II criterion, and the blue box is 

considered the plane’s inclination that the Type II criterion is within the expected 

threshold. For LiDAR range offset, the inclination of -60° is the optimum value, as 

shown in Figure C.18. 
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Figure C.17 – LiDAR range offset Type I systematic-error visibility criterion (vertical axis in 

meter) of all the possible orientations or inclinations (horizontal axis in degree) 

  

(a) (b) 

  

Passage 0° 180° 45° 225° 315° 135° 

Color       

Figure C.18  – LiDAR range offset systematic error Type II criteria (a) Signed orthogonal 

distance (vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible 

orientations or inclinations (horizontal axis in degree) 
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Thus, based on our analysis and Figure C.19, we suggest a planar target of 1m x 

1m with -60° inclination and a full round-trip parallel to the planar target (0° - 180°) 

and a side round-trip of one of the sides of the planar target (45°-225° or 315°-135°), 

to achieve the optimum configuration for the range offset systematic error. 

 

 

(a) (b) 

Figure C.19 – Schematic presentation of a simulated point cloud of a terrestrial MLS simulator 

with inserted range offset. (a) side-looking view. (b) Y-Z view. 

C.2.7 LiDAR Scan Angle Offset Error 

In this section, to study the impact of the LiDAR scan angle offset systematic error, 

we inserted a scan angle offset of 1º into the MLS simulator and analyzed the impact 

on the hypothetical planar target. The inclination of the plane varies between -50° 

and 10°. Figure C.20 presents the values for the Type I criterion for all the six MLS 

passages and the 19 plane inclinations. The blue box in Figure C.20 is considered 

the plane’s inclination, and the Type I criterion is within the expected threshold. 

Figure C.21 illustrates the values for the Type II criterion with the blue box 

considering the plane’s inclination that the Type II criteria are within the expected 

threshold. For LiDAR range offset, the inclination of 30° is the best value, as shown 

in Figure C.21. 
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Figure C.20 – LiDAR scan angle offset Type I systematic-error visibility criterion (vertical axis 

in meter) of all the possible orientations (horizontal axis in degree) 

    

(a) (b) 

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

Figure C.21  – LiDAR scan angle systematic error Type II criteria (a) Signed orthogonal 

distance (vertical axis in meter) and (b) Angular deviation (vertical axis in degree) of possible 

orientations or inclinations (horizontal axis in degree) 

Thus, based on our analysis and Figure C.22, we suggest a planar target of 1m x 

1m with -50° inclination and a full round-trip parallel to the planar target (0° - 180°) 
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and a side round-trip of one of the sides of the planar target (45°-225° or 315°-135°), 

to achieve the optimum configuration for the scan angle offset systematic error. 

 

 

(a) (b) 

Figure C.22 – Simulated point cloud of a terrestrial MLS simulator with a scan angle offset. (a) 

side-looking view. (b) Y-Z view. 

C.3 Conclusions 

In this appendix, we complemented Chapter 3 by presentation of the results and 

analysis of all eight systematic errors of a terrestrial MLS. The results show that to 

have strong visibility of the systematic errors of an MLS mounted on a terrestrial 

platform, the best configuration consists of two to three planar targets of 1m x 1m 

size with vertical, inclined, and horizontal orientations installed in a lower height than 

the LiDAR scanner, combined with a five passages line pattern. 


