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ABSTRACT: 

This paper presents the design of the benchmark dataset on multisensory indoor mapping and position (MIMAP) which is sponsored 
by ISPRS scientific initiatives. The benchmark dataset including point clouds captured by indoor mobile laser scanning system (IMLS) 
in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three fields: 
(1) SLAM-based indoor point cloud generation; (2) automated BIM feature extraction from point clouds, with an emphasis on the
elements, such as floors, walls, ceilings, doors, windows, stairs, lamps, switches, air outlets, that are involved in building management
and navigation tasks ; and (3) low-cost multisensory indoor positioning, focusing on the smartphone platform solution. MIMAP
provides a common framework for the evaluation and comparison of LiDAR-based SLAM, BIM feature extraction, and smartphone
indoor positioning methods.

1. INTRODUCTION

Indoor environments are essential to people’s daily life. Indoor 
mapping and positioning technologies have become in high 
demand in recent years. Visualization, positioning, and location-
based services (LBS), routing and navigation in large public 
buildings, navigational assistance for disabled or aged people and 
evacuation under different emergency conditions are just a few 
examples of the emerging applications that require 3D mapping 
and positioning of indoor environments. SLAM-based indoor 
mobile laser scanning systems (IMLS) like provide an effective 
tool for indoor applications. During the IMLS procedure, 3D 
point clouds and high accuracy trajectories with position and 
orientation are acquired. Many efforts have been made in the last 
few years to improve the SLAM algorithms (Zhang & singh, 
2014a) and the geometric/semantic information extraction from 
point clouds and images (Armeni  et al., 2016a). There are still 
some challenges as follows: first, lack of efficient or real-time 3D 
point cloud generation methods of as-built 3D indoor 
environment; second, difficulties of building information model 
(BIM) features extraction in the clustered and occluded indoor 
environment. Also, given the relatively high accuracy, the IMLS 
trajectory provides a good reference or ground-truth for the low-
cost indoor positioning solutions.  

2. SENSORS AND DATA ACQUISITION

Standard datasets are critical for evaluating and comparing 
indoor mapping and positioning methodologies. In this project, 
The XBeibao II system  (Wen et. al., 2016a) shown in Figure 1. 
(a) , which was developed by SCSC Lab in Xiamen University is
used to collect the multi-sensory indoor data. The system
includes two Velodyne multi-beam laser scanners, fisheye lens
camera (Figure 1. (b)). Also, the navigation-related data from
smart-phone built-in sensors, such as barometer, magnetometer,
six degrees of freedom MEMS IMU data and Wifi information
can be collected. The SLAM-based 3D point cloud of the indoor
environment can also be provided using the processing software

package of XBeibao. Also, the Rigel VZ 1000 (Figure 1. (c)) can 
provide a high accuracy point cloud as ground-truth for the 
indoor mapping. 

2.1 Sensor setup 

Our sensors are listed as below: 

 2×Velodyne VLP-16L rotating 3D laser scanner. 20Hz, 16
beams, 0.1° ~ 0.4° horizontal angle resolution, 3cm accuracy,
collecting 0.3 million points/second, field of view: 360°
horizontal, ±15° vertical, range: 100m.

 1×Mi Sphere Camera. Lens components: 2 × (5 pieces
spherical glass lens + 2 pieces aspheric glass lens + 2 pieces
right angle glass prism), 3456*1728 @ 30fps video
resolution, the field of view: 2×190°.

 1×Mi 6 smartphone. Sensors: gyroscope, accelerometer,
barometer, electronic compass, WiFi sensor, magnetometer,
GPS.

 1×Rigel VZ 1000 scanner (www.riegl.com/datasheet_vz-
1000). Range from 1.5m up to 1200m, 5mm precision, 8mm
accuracy, collecting 0.3 million points/second, with field of
view of 100° vertical ×360° horizontal.
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     (a)                                  (b)     (c) 

Figure 1. (a) The XBeibao II Multi-sensor system. (b) 
Multi-sensor coordinates system. (c) Riegl VZ-1000.  

 
When collecting the data, we placed the smartphone facing up on 
the top of the upper LiDAR sensor. A laptop is used to control 
the camera and LiDARs. Also, it is used as a hotspot to connect 
with the smartphone to synchronize the sensors and used to store 
the incoming LiDAR data streams. A system operator needs to 
carry the laptop during the collection process. 
 
2.2   Dataset  

We collect the raw data in three different scenes; each scene is 
recorded more than three times with a different route. Each round 
of the data consisting of three parts, the raw data, the benchmarks 
data, and the calibration files. Only half of the complete version 
of the overall dataset was released for the purpose of applying in 
different tests. No benchmark releases for indoor LiDAR-based 
SLAM test and BIM feature extraction methods test. For 
smartphone indoor positioning methods test, there are only raw 
smartphone data and the calibration files. 
 
2.2.1 Data description: A sequence of data is compressed 
into a file with the name format “date _number_ type.zip," where 
“date” is the placeholder for recording date and “number” 
represents the serial number of this day’s recording round. The 
“type” has four values——00, 01, 03 and 04, representing the 
complete data, the SLAM test data, the BIM feature extraction 
test data and the indoor positioning test data, respectively. The 
directory structure is shown in Figure 2.  

 

 
Figure 2. Structure of the dataset. Here, ‘date’, ‘number’, 
‘unixtime’, ‘sensor_name’, ‘scene’ and ‘type’ are placeholders. 
The ‘date_x. pacp’ refers to the two LiDAR streams, and 
‘date_x.mp4' refers to the two video camera streams.  

 
The raw data is saved in the subdirectory “date_rawdata/,” there 
are three kinds of sensor mentioned above: LiDAR, camera, and 
smartphone. 
 
 Velodyne LiDAR: To separate the Velodyne readings from 

LiDAR sensor A and LiDAR B, we name the LiDAR scans 
“date_A.pcap” or “date_B.pcap”, where ‘date’ is the date that 
collecting these data. Each point is stored with its (x, y, z) 
coordinate and its reflectance intensity value (r). The 
“unixtime_start.txt” records the starting time of this record. 

 
 Camera: We convert the videos captured by the cameras into 

images according to the frame rate of the video. We name the 
images as “date_x_frameN.png," where "x" refers to the left 
or the right camera and “frameN” represents the serial frame 
number of this image in the raw video. The starting recording 
time of the first frame is saved in 
"camera/unixtime_start.txt." 

 
 Smartphone: Each sensor’s recording data is saved in the file 

“unixtime_data/sensor_name.txt," where "unixtime” and 
“sensor_name” are the placeholders of the starting time of 
this record and this sensor’s abbreviation name, respectively. 
For each piece of data of different sensors, we record the 
Unix-timestamp. The “timeOffset.txt” records the time 
offsets from the phone to a local NTP server at different time. 
The “dataformat.txt” details the format of each file in 
“/phone/unixtime_data/”. 

 
The three kinds of benchmarks are saved in the corresponding 
zip file. Files’ format and detailed description are all included in 
the zip file. The benchmark will be discussed in subsection 3.3. 
 
The calibration files are saved in the subdirectory 
“date_calaibration/." Note that camera's intrinsic matrix, 
extrinsic matrix and distortion coefficients are all saved in 
"calib_cam_x_to_LiDAR_A.txt”, where “cam_x” refers to the 
two cameras (the camera close to left hand is left camera), and 
the extrinsic matrix is used to convert the camera’s coordinate 
system to LiDAR A’s coordinate system. The 4×4  calibration 
matrix converting the LiDAR B’s coordinate system to LiDAR 
A’s coordinate system is saved in “calib_lidar_B_to_ lidar 
_A.txt."  For each scene, we manually select a coordinate system 
and origin(Figure 3) in the real world, and the 4 × 4  
transformation matrix from LiDAR A’s coordinate system to the 
world coordinate system is saved in 
“calib_LiDAR_A_to_scene.txt." We also provide each scene's 
architectural plan in "scene_architectural_plan.png." 
 

 
Figure 3. An example of a scene's architectural plan, the red dot 
on the picture is the origin we select, which is on the ground. 
Also, the blue arrows point the direction of X-axis and Y-axis. 
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The Z-axis is perpendicular to the X and Y axis and the direction 
is from the ground to the ceiling. 

 
3. CHALLENGES AND METHODOLOGY 

3.1 Time synchronization 

In order to synchronize all the sensors, our laptop is set as a local 
NTP (Network Time Protocol) server, then all the sensors are 
connected to it to synchronize the time. The LiDAR is connected 
to the laptop through a network cable; the smartphone and 
camera's connections are through WiFi. For the LiDAR, we only 
get the start Unix-timestamp of the data collection. The 
timestamp of every point or frame is a relative time to the start 
Unix-timestamp. As for the Camera, we also could only get the 
start Unix-timestamp of the videos. The good news is that every 
frame's time can be obtained via interpolation according to the 
frame rate. However, unfortunately, frame loss sometimes 
happens. For the smartphone, the time can synchronize to the 
local NTP server during the recording, so the Unix-timestamp in 
every piece of data is relatively accurate. Since all data’s 
timestamps are acquired, we can obtain the position at any time 
by interpolation and also can use the LiDAR’s positioning result 
as the smartphone’ positioning ground-truth. 

 
3.2 Multi-Sensors Calibration 

In this system, LiDAR sensor A ( 𝑋𝑋𝑙𝑙1,𝑌𝑌𝑙𝑙1,𝑍𝑍𝑙𝑙1 ) is mounted 
horizontally; LiDAR sensor B (𝑋𝑋𝑙𝑙2,𝑌𝑌𝑙𝑙2,𝑍𝑍𝑙𝑙2) is mounted  45°
below the LiDAR sensor A (Figure 1 (b)).  Based on our previous 
work (Gong et al., 2018a), point cloud data of LiDAR sensor A, 
(𝑃𝑃𝐴𝐴), and point cloud data of LiDAR sensor B, (𝑃𝑃𝐵𝐵), are fused 
into 𝑃𝑃𝑓𝑓 by the 4 × 4 transform matrix between the two LiDAR 
sensors (𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙). (Eq. (2)). Additionally, Terrestrial Laser Scanning 
(TLS) data is introduced to bridge the calibration between 
LiDAR sensors and cameras. The calibration process is shown in 
Figure 4. 
 

𝑃𝑃𝑓𝑓 = 𝑃𝑃𝐴𝐴 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙 ∗ 𝑃𝑃𝐵𝐵                           (1) 
 

 
Figure 4. Flowchart of the calibration process. 

 
3.2.1 LiDAR-to-LiDAR calibration: The calibration of the 
multi-LIDAR sensor is calculated recursively in the construction 
of the sub-map and its isomorphism constraint (Gong et al., 
2018a). Assuming 𝑇𝑇𝐴𝐴𝑛𝑛 is the trajectory of LIDAR sensor A at a 
time (0~n) in the mapping algorithm, 𝑃𝑃𝐵𝐵𝑛𝑛  is the point cloud of 
LIDAR sensor B at time n. 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 is the initial coordinate system 
transformation between the LIDAR sensors. Calibration is the 
calculation of the exact calibration matrix 𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙 by: 

 
𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑁𝑁(𝑀𝑀,𝑇𝑇𝐴𝐴𝑛𝑛 ,𝑃𝑃𝐵𝐵𝑛𝑛,𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖)  (2) 

𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙 ∗ 𝑃𝑃𝐵𝐵𝑛𝑛  −𝑛𝑛  𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛      (3) 

 
where 𝑁𝑁𝑁𝑁(·) is the nearest neighbour point search algorithm. 
Using 𝑇𝑇1𝑛𝑛 and 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖, 𝑃𝑃𝐵𝐵𝑛𝑛 is first transformed to its location at time 
n in the sub-map M. Then the 𝑁𝑁𝑁𝑁(·) algorithm is used to search 

the sub-map for the nearest neighbour point set, 𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛 . Lastly, an 
environmental consistency constraint is introduced to obtain 
𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙. 
 
3.2.2 Camera -to-LiDAR calibration: The camera Intrinsic 

calibration matrix is given by �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

�  and (𝑘𝑘1, 𝑘𝑘2,𝑘𝑘3) , 

where (𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦) is the focal length of the camera, (𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦) is the 
position of the  of the camera and (𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3) is the factors of 
radial distortion. Also, Scaramuzza’s the camera calibration 
method (Scaramuzza et al., 2006a) is used to determine the 
internal parameters and distortion factors of the camera and 
obtain the camera internal reference model. 
 
We utilize a TLS (e.g., Riegl VZ 1000) to bridge the calibration 
between LiDAR sensors and cameras. By manually selected 
matching points between them, we can acquire the camera’s 
extrinsic transformation [𝑅𝑅,𝑇𝑇] , where 𝑅𝑅  is the 3×3 rotation 
matrix, and 𝑇𝑇 is the 1×3 translation vector. 
 
3.2.3 Phone-to-LiDAR calibration: We place the 
smartphone face up on the LiDAR A (Figure 5), and making the 
Y-axis parrallel to the laser beam scanning direction. Thus, the 
phone’s coordinate system and the LiDAR’s coordinate system 
have the same XYZ-axis direction. Then we use Rigel VZ 1000 
TLS to scan the XBeibao II system and calibrate the translation 
(𝑋𝑋,𝑌𝑌,𝑍𝑍) to LiDAR by manually picking the points in the high 
accuracy 3-D point cloud. 
 

 
Figure 5. The smart phone’s position and coordinate. 

 
3.3 Reference data generation 

For benchmark evaluation, we generated reference data from a 
subset of the raw data and introduced other high accuracy data.  
 
For SLAM-based indoor point cloud evaluation, we built a high 
accuracy 3-D reference map via the data collected by Rigel VZ 
1000. Firstly, we placed many high-reflection rectangle stickers 
on the wall and ground. Then we scanned the scene in a different 
position and ensured there is an overlap between adjacent sub-
maps. Finally, the sub-maps were manually calibrated by picking 
the same sticker and other feature points via the software named 
RiSCAN PRO. 
 
For BIM feature benchmark, we used the building line 
framework exacted by the wang’s method (Wang et al. 2018a) 
and the semantic objects labeled via our manually work. We 
selected the building lines with their length greater than 0.1 m in 
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structured indoor building and saved their own two endpoints’ 
coordinates. Fig.6 gives an example of BIM features. 
 

 
Figure 6. BIM feature examples. (a) Point cloud data. (b) BIM 
structure model. The green lines are doors and pillars. The red 
lines are ceilings. The blue lines represent the ground. 

 
For our Indoor positioning evaluation, we used the LiDAR’s 
trajectory generated by a SLAM method  (Zhang & singh, 2014a) 
with loop closure as the reference.  
 
3.4 Evaluation Metrics 

3.4.1 SLAM-based indoor point cloud: Kümmerle 
(K¨ummerle at al., 2009a) proposed a metric for measuring the 
performance of a SLAM algorithm by considering poses of a 
robot during data acquisition. It is not based on the error of the 
trajectory end-point, but the average of all relations between 
poses. Geiger (Geiger at al., 2012a) extended the metric by treat 
the rotation and translation errors separately. Here, we do similar 
operation as 
 

ℰ𝑖𝑖𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡(δ) =  1
𝑁𝑁
∑ 𝑡𝑡𝑎𝑎𝑎𝑎𝑚𝑚𝑡𝑡(δ𝑖𝑖,𝑗𝑗 ⊖ 𝛿𝛿𝑖𝑖,𝑗𝑗∗ )2𝑖𝑖,𝑗𝑗   (4) 

ℰ𝑛𝑛𝑟𝑟𝑖𝑖(δ) =  1
𝑁𝑁
∑  𝑎𝑎𝑟𝑟𝑡𝑡(δ𝑖𝑖,𝑗𝑗 ⊖ 𝛿𝛿𝑖𝑖,𝑗𝑗∗ )2𝑖𝑖,𝑗𝑗   (5) 

 
where N is the number of relative relations, and ⊖ is the inverse 
of a standard motion composition operator. Let δ𝑖𝑖,𝑗𝑗  be the 
relative transformation from pose j to pose i and 𝛿𝛿𝑖𝑖,𝑗𝑗∗  be the 
reference relative relation. 𝑡𝑡𝑎𝑎𝑎𝑎𝑚𝑚𝑡𝑡(·)  and 𝑎𝑎𝑟𝑟𝑡𝑡(·)  are used to 
separate the translation and rotation error. 
 
However, for indoor environments, it is hard to get the reference 
for the trajectory poses. However, based on K¨ummerle’s method, 
we can apply the metric operating on the landmark locations 
instead of based on the trajectory poses. In this way, the relations 
can be determined by measuring the relative distances between 
landmarks.  

 
3.4.2 BIM feature: We propose a method to evaluate the BIM 
feature extraction method. Here, we assume that we have the 
ground truth line 𝐿𝐿𝑔𝑔  and the evaluation line 𝐿𝐿𝑛𝑛 (the nearest 
midpoint to 𝐿𝐿𝑔𝑔 ’ midpoint). For both lines, we calculate the 
corresponding direction vector 𝑣𝑣𝑔𝑔 and 𝑣𝑣𝑛𝑛 , midpoint 𝑝𝑝𝑔𝑔 and  𝑝𝑝𝑛𝑛 , 
and length 𝑙𝑙𝑔𝑔 and 𝑙𝑙𝑛𝑛. Based on the above information, we can get 
the angle 𝜃𝜃 between the two lines, the distance 𝑑𝑑 between the 
two midpoints, and the length difference Δ𝑙𝑙 by Eq. (6). Then we 
set three thresholds 𝜃𝜃𝑖𝑖ℎ𝑛𝑛 , 𝑑𝑑𝑖𝑖ℎ𝑛𝑛  and Δ𝑙𝑙𝑖𝑖ℎ𝑛𝑛 . We consider the 
evaluation line 𝐿𝐿𝑛𝑛 is valid only if three conditions are all met: (1) 
𝜃𝜃 ≤ 𝜃𝜃𝑖𝑖ℎ𝑛𝑛, (2) 𝑑𝑑 ≤ 𝑑𝑑𝑖𝑖ℎ𝑛𝑛, (3) Δ𝑙𝑙 ≤ Δ𝑙𝑙𝑖𝑖ℎ𝑛𝑛. Finally, we can calculate 
the accuracy acc by Eq. (6). 
 

⎩
⎪
⎨

⎪
⎧𝜃𝜃 = arccos ( 𝑣𝑣𝑔𝑔∙𝑣𝑣𝑒𝑒 

�𝑣𝑣𝑔𝑔�|𝑣𝑣𝑒𝑒|)

𝑑𝑑 =  �𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑛𝑛�2
Δ𝑙𝑙 = �𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑛𝑛�1

𝑎𝑎𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑇𝑇
𝑁𝑁

                         (6) 

where 𝑁𝑁𝑇𝑇 is the true line number and 𝑁𝑁 is the all ground-
truth line number. 
 
3.4.3 Indoor positioning: The approach of evaluating indoor 
positioning is the same as the translation evaluating in subsection 
3.4.1. However, there exists a problem that the frequency of 
positions output by mobile phones varies with the ground-truth's 
frequency generated by SLAM. To solve this problem, we 
generate position at a time by a linear interpolation according to 
the timestamp. Formally, the ground truth position at time 𝑡𝑡 is 
calculated by: 
 

𝐩𝐩𝑖𝑖 = 𝑖𝑖−𝑖𝑖𝑠𝑠
𝑖𝑖𝑒𝑒−𝑖𝑖𝑠𝑠

𝐩𝐩𝑛𝑛 ⊕
𝑖𝑖𝑒𝑒−𝑖𝑖
𝑖𝑖𝑒𝑒−𝑖𝑖𝑠𝑠

𝐩𝐩𝑡𝑡            (7) 
 
where 𝑡𝑡  falls within the interval ( 𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑛𝑛 ) which are two 
timestamps of the trajectory from the benchmark. 𝐩𝐩𝒔𝒔  and 𝐩𝐩𝒆𝒆 
represents the ground-truth positions at time 𝑡𝑡𝑡𝑡  and 𝑡𝑡𝑛𝑛  
respectively. And ⊕ denotes a compositional operator. 
 
3.5 Examples of dataset 

Fig. 7 shows some examples of this dataset. The Fig 7. (a)  is a 
frame of the Velodyne VLP-16L LiDAR data. Different color 
represents the intensity of every point, the brighter color means 
the stronger intensity. The Fig 7. (b) shows the high accuracy data 
from Rigel VZ 1000, which is used as Indoor LiDAR SLAM 
ground truth. The (c) and (d) in Figure 7 show the BIM 
benchmark, and (e) and (d) show the Indoor positioning 
benchmark. The blue dots in (d) are trajectories generated from 
LiDAR SLAM method, and the yellow dots are trajectories 
generated by the smartphone sensor data.  
 

 
(a)    (b) 

 
(c)    (d) 

 
(e)    (f) 

Figure 7.  (a)A single frame from LiDAR stream. (b) An indoor 
view of Rigel VZ 1000 data. (c) BIM structure model of a circular 
corridor. (d) BIM structure model with its point cloud. (e) An 
example of the indoor positioning benchmark. (f) The ground-
truth trajectory with the corresponding point cloud. 
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4. CONCLUSION  

This paper presents the design of the benchmark dataset on 
multisensory indoor mapping and position (MIMAP). Each scene 
in the dataset contains the point clouds from the multi-beam laser 
scanner, the images from fisheye lens camera, the signals from 
MIMU and the records from the attached smartphone sensors. 
The benchmark dataset can be used to evaluate algorithms on: (1) 
SLAM-based indoor point cloud generation; (2) automated BIM 
feature extraction from point clouds; and (3) low-cost 
multisensory indoor positioning, focusing on the smartphone 
platform solution. 
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