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Abstract

The introduction of light-weight and low-cost multi-beam laser scanners provides
ample opportunities in positioning and mapping as well as automation and robotics.
The fields of view (FOV) of these sensors can be further expanded by actuation, for
example by rotation. These rotating multi-beam lidar (RMBL) systems can provide
fast and expansive coverage of the geometries of spaces, but the nature of the
sensors and their actuation leave room for improvement in accuracy and precision.
Geometric calibration methods addressing this space have been proposed, and
this thesis reviews a selection of these methods and evaluates their performance
when applied to a set of data samples collected using a custom RMBL platform
and six Velodyne multi-beam sensors (one VLP-16 Lite, four VLP-16s and one
VLP-32C). The calibration algorithms under inspection are unsupervised and
data-based, and they are quantitatively compared to a target-based calibration
performed using a high-accuracy point cloud obtained using a terrestrial laser
scanner as a reference. The data-based calibration methods are automatic plane
detection and fitting, a method based on local planarity and a method based on
the information-theoretic concept of information entropy. It is found that of these,
the plane-fitting and entropy-based measures for point cloud quality obtain the
best calibration results.

Keywords Laser scanning, calibration, lidar, optimisation, point cloud
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Tiivistelmä

Kevyet ja edulliset monilaserkeilaimet tuovat uusia mahdollisuuksia paikannus-
ja kartoitusaloille mutta myös automaatioon ja robotiikkaan. Näiden sensorien
näköaloja voidaan kasvattaa entisestään esimerkiksi pyörittämällä, ja näin to-
teutettavat pyörivät monilaserkeilainjärjestelmät tuottavat nopeasti kattavaa
geometriaa niitä ympäröivistä tiloista. Sensorien rakenne ja järjestelmän liikku-
vuus lisäävät kuitenkin kohinaa ja epävarmuutta mittauksissa, minkä vuoksi
erilaisia geometrisia kalibrointimenetelmiä onkin ehdotettu aiemmassa tutki-
muksessa. Tässä diplomityössä esitellään valikoituja kalibrointimenetelmiä ja
arvioidaan niiden tuloksia koeasetelmassa, jossa pyörivälle alustalle asennetuilla
Velodyne-monilaserkeilaimilla (yksi VLP-16 Lite, neljä VLP-16:aa ja yksi VLP-
32C) mitataan liikuntasalin geometriaa. Tarkasteltavat menetelmät ovat val-
vomattomia ja vain mittauksiin perustuvia ja niitä verrataan samasta tilasta
hankittuun tarkkaan maalaserkeilausaineistoon. Menetelmiä ovat tasojen auto-
maattinen etsintä ja sovitus, paikalliseen tasomaisuuteen perustuva menetelmä
sekä informaatioteoreettiseen entropiaan perustuva menetelmä. Näistä tasojen
sovitus ja entropiamenetelmä saavuttivat parhaat kalibrointitulokset referenssi-
kalibraatioon verrattaessa.
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Symbols and abbreviations
Symbols
a Scalar
ai ith scalar element of vector or set
a Vector
â Vector of observations
ai ith row of matrix or ith iteration of vector
A Matrix
Â Matrix of observations
E Errorsum, object of minimisation in optimisation routines
H Entropy of a discrete variable
h Entropy value or derivative thereof for continuous variable
σ Standard deviation

Operators
exp(a) Euler’s constant e to the power of a
E[X] Expected value of X
G(x | µ,Σ) The Gaussian probability density function with mean µ and

covariance Σ for point x∫
S

Integral over segment S
log Logarithmic operator. Base 2, unless specified otherwise
O Big O operator
AT Transpose of matrix A∑

i Sum over index i
∪ Union of sets
← Assignment operator in algorithms
⊙ Element-wise multiplication of vector or matrix
⊘ Element-wise division of vector or matrix
A◦b Matrix A element-wise exponentiation to b
⌈a⌉ a rounded up to nearest integer
a ⊥ b a is perpendicular to b
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Abbreviations
3D Three-dimensional
ALS Aerial laser scanning
CPU Central processing unit
DOF Degrees of freedom
FLANN Fast library for approximate nearest neighbors
FOV Field of view
GMM Gaussian mixture model
HDR High dynamic range
ICP Iterative closest point
IMU Inertial measurement unit
IRLS Iterative reweighted least-squares
KDE Kernel density estimation
Kd-tree k-dimensional tree
kNN k nearest neighbours
Lidar Light detection and ranging1

LS Laser scanning
MBL Multi-beam lidar
MLS Mobile laser scanning
NDT Normal distribution transform
PDF Probability density function
RANSAC Random sampling consensus
RMBL Rotating multi-beam lidar
RPM Revolutions per minute
RSBL Rotating single-beam lidar
RQE Rényi quadratic entropy
SBL Single-beam lidar
TLS Terrestrial laser scanning
TOF Time of flight

1Originally, lidar was a simple portmanteau of light and radar (James Ring, 1963; lidar, n., 2019).
The acronymic usage, though sensible, came later—albeit just a few years—from Collis (1965),
and is sometimes given as light imaging, detection and ranging (e.g. by Ellis, 2019). There is
no wide consensus on capitalisation (LIDAR, LiDAR, Lidar, lidar), and this thesis will use the
noncapitalised lidar. Lidar, like radar, is sometimes used to refer to a specific sensor, rather than
the technology more generally.
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1. Introduction

Low-cost lightweight laser sensors have been gaining momentum in the fields of
automation and mapping during the last decades. Light detection and ranging
(lidar) instruments have been a staple in surveying for years, but increased
mobility and flexibility enable faster measurements and real-time use cases such
as autonomous driving. Multi-beam lidar (MBL) sensors especially are capable
of capturing large fields of view (FOV) for real-time applications. Furthermore,
the actuation of these sensors by, for example, rotation as well as fusion with
other sensors can enable the observation of wider areas and more metrics. These
actuated sensors form the various lidar systems that this thesis is concerned
with—that is, a lidar system consists of a laser sensor, other possible sensors and
mechanics exterior to these, such as a rotating platform.

However, affordability in sensors often means a compromise in areas such as
precision and accuracy. The reported accuracy of one popular MBL device, the
Velodyne VLP-16 Puck (Velodyne Lidar, 2015b), is approximately ±3 cm at a
range of 10 meters. Any actuation mechanism is likely to increase errors in
measurements because of additional transformations, and cumulatively the need
for improved accuracy grows. Self-calibration methods offer the possibility of
a more accurate definition of both internal sensor parameters and external
system parameters. With high-accuracy sensors such as lidar, small corrections
in calibration can provide significant improvements in observation accuracy.

This thesis provides a synthesis of a selection of calibration methods proposed for
lidar systems by reviewing their theoretical background and practical implemen-
tation and evaluating their performance in a test environment using a custom
rotating MBL (RMBL) setup and a selection of MBL sensors. The calibration
methods are only concerned with sensor geometry and do not consider reflectance
values.

1.1 Goals
The main contribution of this thesis is an empirical and quantitative comparison
of the performance of different calibration approaches. This is based on calibra-
tions performed on a custom RMBL system using a set of measurements from a
variety of sensors. In practice, all calibration routines are optimisation problems,
where the method describes the cost function that is used as a measure of quality
for the observations. The optimisation procedure then attempts to find a set
of calibration parameters that evaluates the cost function optimally. The cost
functions under scrutiny here are presented schematically and in pseudocode so
as to provide replicable algorithms. In addition, where applicable, any related
cost functions are also presented—for example if a method used here was gen-
eralised from another presented elsewhere. The methods are chosen so as to be
generalisable to any MBL, RMBL or rotating single-beam lidar (RSBL) system
and setup, including those with multiple sensors.



In addition to a quantitative comparison, a qualitative evaluation of algorithms is
made to provide the reader with an understanding of the suitability of the meth-
ods in varying circumstances. This evaluation includes a look at computational
complexity, behaviour in optimisation and reliability (e.g. with respect to varying
levels of error in measurements). Additional properties, such as responsivity to
different kinds of environments are also discussed but not evaluated. The eval-
uation and discussion are based on observed phenomena as well as experience
gained through the implementation and testing of methods.

1.2 Limitations
The empirical section of this thesis only considers the calibration of a single static
RMBL system. The sensor of the system is replaceable, and measurements are
made using six separate sensors (four Velodyne VLP-16s, one Velodyne VLP-
16 Lite and one Velodyne VLP-32C), all manufactured by Velodyne Lidar. The
methods and results are not directly generalisable to moving systems, though
a consideration for the moving coordinate frame should be the only necessary
extension. The measurements for calibration method comparison were conducted
in a single environment, which means that point clouds used in calibration
were of this specific environment. Different environments may produce different
results, and the results are not validated using a separate environment in this
thesis. Rather, they are validated by comparisons with different methods.

Additionally, the selection of calibration algorithms presented here is not ex-
haustive, but the selection was made based on a review of previous literature
on the topic. The effect of the optimisation algorithm used—in this case, the
Nelder-Mead method (Nelder & Mead, 1965)—is not considered. In other words,
it is possible that calibrations using different sensor setups, measurement envi-
ronments, calibration or optimisation algorithms may produce results varying
from those presented here.

1.3 Structure
This thesis is structured to first provide a wide overview of the laser scanning
(LS) field in general, zooming in on MBL sensor systems. Additionally, Section 2
also provides the theoretical background for the calibration methods investigated.
Section 3 describes the experimental setup—the devices and environment—used
for the empirical part of this work. Next, further details on the calibration algo-
rithms and implementations along with evaluation methodology are provided in
Section 4. Results and observations are presented in Section 5, with a discussion
in Section 6 and final remarks in Section 7.
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2. Background

This section reviews the state of laser scanning at the time of writing. Special
attention is paid to mobile laser scanning and (relatively) low-cost small scan-
ners with applications in, for instance, robotics (e.g. C. Chen et al., 2017) and
autonomous driving (e.g. Pfrunder, Borges, Romero, Catt, & Elfes, 2017), as the
devices used for the experimental section of this thesis are being developed for
automation in forestry and traffic. In addition, an overview of calibration methods
that have been proposed by previous authors is given to provide background and
insight into the choices made later in this thesis.

2.1 Laser scanning
Laser scanning refers to the active measurement of an environment using laser
light and its reflection. Molebny, Kamerman, and Steinvall (2010) write that the
origins of laser scanning can be found in military research and technology. Radar
played a large role in World War II, after which interest in higher resolution and
better accuracy motivated the development of devices using shorter wavelengths.
Radar technology expanded into microwave area of the spectrum while a separate
research area sprouted that employed lasers in the infrared area of the spectrum.
By the 1960’s, the first laser range finders were being used and developed in many
countries, by both the military and by private enterprise. Around the same time,
similar instruments were being used for atmospheric and ocean measurements,
though properties (i.e. wave frequency) were changed to conform to the target or
object of interest.

Figure 2.1. A simple sketch of ALS (left), TLS (middle) and MLS (right) in action.

Molebny et al. (2010) continue that the 1970’s and 1980’s saw the advent of imag-
ing sensors which used various technologies (e.g. CO2 lidar and Doppler-velocity
imaging, to name a few) to extract more properties from targets than just range
and velocity. These imaging methods are similar to flash lidar, which emerged in
the 1990’s alongside the first terrestrial and airborne laser scanners (TLS and
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ALS, respectively). This also saw the shift towards civilian research, as such
scanners were readily deployed for surveying and mapping purposes outside the
military realm. ALS has been used to collect data about the earth’s surface and
create digital elevation and surface models. TLS has also been used for topogra-
phy, but also monitoring, documentation and forensic purposes. Development has
accelerated through the 21st century with increasingly affordable sensors and
better capacities to process the large amounts of data that they produce. Mobile
laser scanning (MLS) and real-time processing have expanded the applications of
lidar into robotics and computer vision, and these areas are currently continuing
to expand rapidly.

Scanning
action

Terrestrial laser
scanning (TLS)

Scanners that run at fixed positions, usu-
ally mounted on a tripod on the ground.
Typically multiple scans are taken from
an environment and combined. High ac-
curacy, relatively slow.

Aerial laser
scanning (ALS)

Scanners used to map the ground from
aerial vehicles. Low resolution, fast scan-
ning of large areas.

Mobile laser
scanning (MLS)

Scanners that can be mounted on a mov-
ing platform and moved around while
they scan their environments, e.g. hand-
held, backpack and non-aerial-vehicle-
bourne scanners.

Measurement
method

Time-of-flight
The scanner measures the time it takes
for a pulse of light to travel to the target
and back.

Phase shift

Technically a TOF method where the
phase of the laser is continuously shifted
and the phase of the returning beam is
used to determine TOF for a specific re-
turn.

Triangulation

Laser source and detector are separate
with precisely known displacement pa-
rameters. Geometry of target deter-
mined by observing the location of laser
(typically a line) in sensor field of view.

Table 2.1. Types of laser scanning.

Table 2.1 and Figure 2.1 provide a simple classification of different kinds of laser
scanning into terrestrial, aerial and mobile. The table also introduces three mea-
surement methods—time-of-flight (TOF), phase shift and triangulation. However,
the TLS-ALS-MLS classification is mainly useful in surveying applications. For
example, triangulation sensors are often used in industrial quality control, which
does not qualify as aerial or mobile laser scanning and is different from what is
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meant by TLS here.

2.2 Mobile laser scanning
MLS can also be considered to be a subcategory of TLS, rather than a group of its
own (though all categorisations can be considered arbitrary). This work holds the
distinction that MLS sensors are meant to move while measuring whereas TLS
sensors are not, though they typically do rotate. The sensor systems investigated
in this thesis use mobile TOF laser scanners, as the pulsed TOF method is
almost ubiquitous in MLS. Mobile sensors tend to be lighter in construction than
TLS equipment, making them more suitable for mobile applications. However,
their light weight sacrifices accuracy. Additionally, combining these sensors
with moving and rotating platforms can augment their ability to sense their
environments. The reduced accuracy and sensor fusion possibilities introduce
the need for precise calibration.

MLS sensors are mounted on some moving platform. Such platforms can include
backpacks (e.g. Leica Geosystems, 2019), handheld devices (e.g. Paracosm, 2019)
or vehicles (e.g. Xie, Xu, & Wang, 2019). The sensors themselves can be cate-
gorised as either single-beam or multi-beam lidar (SBL and MBL, respectively),
the former producing 2-dimensional and the latter 3-dimensional data. In MLS
solutions, SBL sensors are typically actuated in some rotating or nodding fashion
to add a third dimension to the observations. In some cases, MBL sensors can
also be rotated for an increased field of view (FOV). The actuated sensor systems
are named rotating single- or multi-beam lidars (RSBL or RMBL, respectively).

An increasingly common modern application of mobile lidar sensors is in vehicles.
As detailed by Hecht (2018), the development of autonomous vehicles creates a
need for more sophisticated modelling instruments. To be able to steer itself, a
vehicle needs to be able to understand the geometry of its constantly changing
environment. In practice, there are two possible approaches to real-time remote
geometric modelling - laser scanning and photogrammetry. Laser scanners have
long been rather expensive for commercial applications, but a continued fall in
pricing combined with high accuracy make them increasingly viable alternatives
as autonomous vehicle sensors. Implementations typically also involve various
other sensors, such as cameras, radar and ultrasound ranging.

2.3 Laser scanner configurations
In the fields of robotics and MLS, it is typical to employ various sensor configura-
tions that displace sensors (laser scanners, GNSS receivers, inertial measurement
units (IMUs), etc.) from one another in order to achieve optimal measurements
for whatever purpose. For example, it may be useful to mount the scanner in an
open position from which observations in all directions are possible while placing
other sensors and hardware in a more centralised position. Additionally, sensors’
fields of view can be augmented with actuation mechanisms. Jesús Morales et
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al. (2018) provide an overview of customised lidar systems that employ rotation,
which is adapted and updated in Table 2.2.

Author Type Sensor Application
Batavia (2002) RSBL Sick1 Obstacle detection
Wulf (2003) RSBL Sick LMS200 Density analysis
Weingarten (2006) RSBL 2 Sick LMS200 Indoor scene reconstruction
Dias (2006) RSBL Sick LMS200 Sensor comparison
Sheh (2006) RSBL Hokuyo URG-04LX Configuration analysis
Ueda (2006) RSBL Hokuyo URG-04LX Mapping
Bosse (2009) RSBL SICK LMS291 Mapping
Yoshida (2010) RSBL Hokuyo UTM-30LX Mapping
Morales (2011) RSBL Hokuyo UTM-30LX Mapping and modelling
Sheehan (2012) RSBL 3 SICK LMS-151 Calibration
Xiao (2013) RSBL Hokuyo UTM-30LX Indoor robot
Neumann (2014) RMBL Velodyne HDL-64E Underground mapping
Morales (2014) RSBL Hokuyo UTM-30LX Boresight calibration
Alismail (2015) RSBL Hokuyo UTM-30LX-EX Calibration for mapping
An (2015) RSBL Hokuyo URG-30LX Indoor robot
Martínez (2015) RSBL Hokuyo UTM-30LX-EX UGV and UAV environment modelling
Özbay (2015) RSBL Hokuyo UTM-30LX UGV obstacle modelling
Moon (2015) RSBL SICK LMS511-pro Cargo ship modelling
Öberlander (2015) RSBL Hokuyo UTM-30LX System calibration
Shaukat (2016) RSBL Hokuyo UTM-30LX Terrain modelling
Schubert (2016) RSBL Hokuyo UTM-30LX Robot mapping
Leingartner (2016) RMBL Velodyne HDL-64E Mapping
Neumann (2016) RSBL Hokuyo UTM-30LX-EW RSBL-RMBL comparison

RMBL Velodyne VLP-16
Kang (2016) RSBL Hokuyo UTM-30LX 6-DOF calibration
Droeschel (2017) RSBL Hokuyo UTM-30LX-EW Robot mapping
Klamt (2017) RMBL Velodyne VLP-16 Robot mapping
Jesús Morales (2018) RMBL Velodyne VLP-16 Distribution analysis
Hyyti (2019) RMBL Velodyne VLP-16 Lite Forestry automation

Table 2.2. RSBL and RMBL systems proposed by various authors over the last 20
years. (Adapted and modified from Jesús Morales et al., 2018, p. 3)

The most common laser scanner actuation mechanisms are rotation around some
axis, either fully (e.g. Alismail & Browning, 2015; Sheehan et al., 2012) or in a
nodding manner (e.g. McDaniel, Nishihata, Brooks, & Iagnemma, 2010). Often,
it is SBL sensors that are rotated in order to achieve an extra dimension in
field-of-view. For example, Sheehan et al. (2012) present a rotating lidar system
with three SBL sensors as an affordable actuation mechanism for obtaining 3D
point clouds (see Figure 2.2). However, also multi-beam lidar sensors can be
actuated or combined to increase the size of the observed area. Gong, Wen, Wang,
and Li (2018) use a non-rotating backpack setup of 2 MBL sensors (Velodyne
VLP-16), where one is set at an angle for increased FOV (Figure 2.3). At the same
time, Neumann et al. (2016) rotate a single Velodyne VLP-16 sensor to achieve a
full FOV (Figure 2.4).

Most applications of MBL sensors do not employ a rotation mechanism (and
1The paper does not specify the sensor model, but an image reveals it was produced by SICK.
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Figure 2.2. Rotating sensor system proposed by Sheehan et al. (2012), composed of
three 2D SICK LMS-151 SBL sensors with 270° FOV and a rotating platform.

Figure 2.3. Backpack MBL setup with two Velodyne VLP-16 sensors. (Adapted
from Gong et al., 2018)

are not included in Table 2.2). For example, many MLS setups mounted on
vehicles make do with the FOV provided by the MBL sensor, with at least the
exceptions of Maddern, Harrison, and Newman (2012), who mount a RSBL on
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Velodyne VLP-16

Rotating 
platform

Figure 2.4. RMBL setup with Velodyne VLP-16. (Adapted from Neumann et al.,
2016)

their Wildcat and Hyyti et al. (2019), who use a RMBL setup. MBL sensors have
been mounted on vehicles without actuation by, for example, Levinson and Thrun
(2014), Nouira, Deschaud, and Goulette (2015) and Pandey, McBride, Savarese,
and Eustice (2015).

2.3.1 Measurements to point clouds
This section details the general mathematics for transforming lidar measure-
ments into point clouds in Cartesian coordinates. The section is only concerned
with geometry, like this thesis in general, and does not consider further properties
of point clouds such as reflectance or colour.

A lidar sensor records polar coordinates for each observation. These consist of
a range measurement r, calculated from TOF, and an angle encoding—let us
call this the azimuth α—that determines the direction in which the range was
measured. This applies to a single-beam sensor, which records two-dimensional
data. A multi-beam sensor will additionally have varying elevation angles ω for
the different laser beams. These are not measured, as they are constant. The
transformation from these polar coordinates to Cartesian coordinates (in the
sensor reference frame) is done by the familiar equations:

x̂s = r̂ cosω sinα

ŷs = r̂ cosω cosα

ẑs = r̂ sinω

(2.1)
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which results in what shall later be referred to as a single point observation x̂s
(= x̂s, ŷs, ẑs). The subindex s refers to the fact that the measurement is in the
sensor reference frame. In an actuated environment, the sensor reference frame
is displaced from the global coordinate system and an additional transformation
is required. This six-DOF transformation can be described as:

x̂ = Rφ,θ,ψx̂s + te (2.2)

where Rθ,ϕ,ρ is a rotation matrix based on the yaw, pitch and roll angles, respec-
tively, and te is the translation vector describing the displacement between the
origins of the sensor and global coordinate systems. The subindex e refers to the
fact that these transformation parameters are external or extrinsic to the sensor.

The calibration parameters that are introduced in Section 2.4.2 affect equations
(2.1) and (2.2) above by adding coefficients or constants to the recorded variables.

2.3.2 Point cloud distributions
Different scanners and scanner configurations produce different kinds of point
clouds. In other words, the distribution of points in space varies largely due to
the physical properties of the sensors. For example, typical TLS scanners produce
very uniform point clouds where the point density is similar in both angular
dimensions. At the same time, MBL devices such as Velodyne scanners produce
point clouds that consist of layers—the vertical point density is sparse while
the horizontal density can match that of TLS scanners. This is shown by the
simulated pattern in Figure 2.5. Real examples of the pattern can be found online
or in images presented by Levinson and Thrun (2014), for example. Similarly,
SBL sensors produce a single 2D layer of measurements. When utilising actuated
devices, the actuation mechanism also affects the point distribution. This can
happen in obvious ways, such as a rotating system causing high point density
near the axis of rotation, or in more unexpected ways, for example when a rotating
system rotates at a rate relative to the internal rotation of the sensor. An example
of the latter can be seen in Section 3.3.4.

2.4 Calibration of laser scanner systems
Usually, laser scanners are calibrated using specialised calibration setups with
accurately known target geometries and reflectances. This is typically done by
the manufacturer of the scanner in question, and concerns the internal makeup
of the device (i.e. laser angles and displacements). These are called the intrinsic
calibration parameters. More complicated laser scanner systems with sensor
fusion elements introduce additional calibration parameters (i.e. translations
between coordinate systems) which require additional calibration procedures—
these are called extrinsic calibration parameters. Moreover, black-box factory
calibration parameters can often be improved upon with proper self-calibration
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Figure 2.5. The layered distribution of MBL point clouds is caused by the multi-
beam setup, where each beam observes the surroundings at a set elevation angle.
The figure is a simulated scan of a 12× 12 metre room. The sensor is visualised at
the origin at a height of 1.5 m.

(e.g. Lichti, Stewart, Tsakiri, & Snow, 2000; Schulz, 2008, for TLS devices).
Calibration out of the factory environment can be conducted in several ways.
These can be classified into:

• Point-based calibration

• Calibration based on known features

• Calibration based on observed features

• Calibration based on some general presumed property of the point cloud

Point-based calibration, mainly used with TLS devices, involves the employment
of multiple, typically spherical calibration targets that are placed in precisely
known locations in the environment. This is really a subcategory of calibration
based on known features, as these targets are known a priori. The distinction
is that in point-based calibration, the targets are measured as single points
instead of more complex geometries, while in what this thesis calls target-based
calibration below (i.e. based on known features, targets) targets are three-
dimensional (or at least two-dimensional, as in the case of planes). Typical
targets contain very distinct corners and edges, and at least walls and boxes have
been used, for example by Atanacio-Jiménez et al. (2011) and Muhammad and
Lacroix (2010).
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The last two types of calibration could be labelled as data-based, as they require
no a priori information about the environment but rather use the measurements
themselves as a starting point. Firstly, calibration can be based on features either
manually (e.g. Hyyti et al., 2019) or automatically (e.g. Chan & Lichti, 2013)
detected in the point cloud. Typically, these methods locate planes (walls, floors,
ceilings) or cylinders (poles, water and gas pipes, columns) in the environment
and try to reduce the amount of noise in these features. The final category of
calibration methods makes some assumption about the point cloud. Examples
of such assumptions could be that there is some underlying distribution to the
points—in this case, the problem is in defining that distribution—or that the
points form continuous surfaces. Data-based calibration methods are the main
focus of this thesis.

2.4.1 Optimisation
A calibration procedure is an optimisation routine. In other words, the aim is
to find the optimal set of calibration parameters, defined in some way. This
definition is the concern of various calibration methods, which define a metric
for the quality of the parameters. The expression of this metric is called a cost
function (or objective or goal function), which takes as arguments the calibration
parameters in order to minimise (or maximise, but the difference is trivial) its
value. Some constraints can be applied on the values that parameters can take,
if necessary.

The optimisation routine then consists of evaluating this function repeatedly
with varying parameters in order to find an optimum. Venter (2010) provides
an overview of optimisation algorithms, of which there are many. Different
algorithms are suited for different types of problems, depending on the number
of parameters, constraints, linearity, dimensionality, differentiability and other
properties of the cost function. In the case of lidar calibration, some authors
(e.g. Atanacio-Jiménez et al., 2011; C.-Y. Chen & Chien, 2012; Alismail &
Browning, 2015) use the Levenberg-Marquadt algorithm (Marquardt, 1963),
some (e.g. Morales et al., 2014; Hyyti et al., 2019) the Nelder-Mead algorithm
(Nelder & Mead, 1965) and others (e.g. Maddern et al., 2012; Levinson & Thrun,
2014) a grid search approach. The last is applicable only with relatively few
calibration parameters, since its complexity increases exponentially (to the power
of 3) with parameters. All optimisations for this thesis are carried out using the
Nelder-Mead algorithm as implemented in the Matlab function fminsearch (The
MathWorks, Inc., 2019).

Shortly, the Nelder-Mead method uses a simplex, or polytope, of n+ 1 vertices (in
the n-dimensional optimisation space, n being the number of optimisation param-
eters), to gradually approach a local minimum. That is, it starts by evaluating
the function at n + 1 points. The simplex then takes a series of steps, mostly
moving the vertex with the highest value through the opposite face of the simplex.
Such reflections preserve the volume of the simplex (which can be understood as
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the area where the optimum is currently being searched for), and in addition to
them the simplex can expand or contract where possible or necessary, eventually
converging on a minimum. As with other optimisation algorithms, the initial
parameter values have an effect on the process, as the algorithm can converge
on local minima, depending on the geometry of the cost function. Explanatory
visualisations in low dimensions can be found online, for example on Wikipedia
(Nelder–Mead method, 2019), wherefrom this brief description was also adapted.

2.4.2 Calibration parameters
As mentioned in Section 2.4, the calibration parameters of actuated lidar systems
can be divided into intrinsic and extrinsic parameters. The parameters come
into play in the derivation of the kinematic chain of the sensor in Section 3.2.1.
There are many (especially intrinsic) parameters that can be defined, and it is
not necessarily useful to try to optimise them all.

Extrinsic calibration parameters define the relationship between the sensor and
some global coordinate system. Generally, we can define the transformation from
one coordinate system to another in six degrees of freedom (DOF). In this case,
all of these can be considered relevant parameters, though in any lidar system
setup, certain parameters are likely to be more influential to the calibration. The
parameter vector Θe for extrinsic calibration of a single sensor can be expressed
as:

Θe = (x, y, z, α, β, γ) (2.3)

where x, y, z are the translation parameters and α, β, γ the rotation parameters.
Adding these parameters to equation (2.2) gives:

x̂ = Rφ+α,θ+β,ψ+γx̂s + te + tc (2.4)

where tc is the calibration translation vector consisting of x, y, z. This is overly
complicated, however, because instead of adding calibration parameters to trans-
formation parameters, we can calibrate the transformation parameters them-
selves:

Θe = (tx, ty, tz, φ, θ, ψ) (2.5)

x̂ = Rφ,θ,ψx̂s + te (2.6)

where tx, ty, tz are the components of the translation vector te that incorporate
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the x, y, z calibration.

Intrinsic parameters are concerned with the internal dimensions of the sensor.
For this purpose, we can examine any single laser in a MBL individually, as in
Figure 2.6. For any laser beam we can define six DOF—translations in three
dimensions and rotations in three dimensions (yaw, pitch and roll). Additionally,
we can define additive and proportional correction parameters to the distance
metric, resulting in a total of up to eight calibration parameters per laser, leading
to a total maximum of 8× 16 = 128 intrinsic calibration parameters for a 16-beam
device and 8× 32 = 256 for a 32-beam device.

z

y

x
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�y

�

� �

�z

Figure 2.6. Intrinsic calibration parameters of a single laser beam. Sensor
coordinate frame origin at O. 6-DOF translation to beam coordinates define
calibration parameters.

However, we can immediately dismiss some of these. First, roll angle η (as
depicted in Figure 2.6) is irrelevant as it does not affect the measurement. Second,
additive correction parameters to the range measurement can be incorporated
into translation parameters tx, ty and tz, as explained by Muhammad and Lacroix
(2010). Finally, in the case of a static calibration (where the sensor does not
move, as is the case in this thesis), a proportional correction parameter cannot
be calculated. Using a moving platform with precise motion metrics would allow
this calibration as the relative locations of features would change as a function
of time, but this is not in the scope of this work. We thus have the intrinsic
calibration parameters:

Θi = (δx, δy, δz, β, ω) (2.7)
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where the δs are the displacement parameters and β and ω are the horizontal and
vertical angles, respectively. When dealing with small sensors such as the SICK,
Hokuyo and Velodyne SBLs and MBLs mentioned so far, displacements inside
the sensor are necessarily going to be small, and angular displacement is likely
to be a larger cause of error. Disregarding the internal translation parameters
can therefore be justified, but for completeness, they are kept in consideration
here.

Before Section 3 delves into the role these calibration parameters play in the
kinematic chain of the lidar system, Sections 2.4.3–2.4.6 provide the theoretical
background of the calibration methods used in this thesis.

2.4.3 Target-based calibration
Many proposed calibration methods involve the construction (or existence) of
a custom target. For example, Atanacio-Jiménez et al. (2011) and Muhammad
and Lacroix (2010) utilise, respectively, a cubic space and a planar wall with
accurately known dimensions for calibration. These methods are able to produce
good results, but their accuracy is highly contingent on the accuracy with which
the dimensions of the target and the sensor relative to the target are known.
In addition, these methods require access to a suitable target and a highly
sophisticated calibration setup. In many use cases, the construction of such
a target and setup or transporting the scanner system to such a target is not
practically feasible. Besides, transportation itself may cause small changes in
calibration parameters, so a reliable on-site calibration method would be ideal.

An alternative approach to target-based calibration is employed in this thesis.
This approach relies on creating a high-accuracy model of a target environment.
In this case, the model is created using a high-accuracy TLS device, which is
assumed to have good calibration. This removes the burden of building a custom
target, but requires a comparatively tedious measurement process, access to a
high-accuracy TLS device and a suitable environment of which a high-accuracy
model can be retrieved. The use of a separate device allows for an objective
reference that is external to the device used for experimentation and that will in
this case be representing the so-called ground truth.

In practice, the point cloud observed by the TLS device is used as the target.
The target-based calibration procedure then relies on the fact that points in the
reference point cloud are evenly distributed and high in density. The cost function
is a simple summation of the square distance to the nearest point in the reference
point cloud. The assumption here is that the reducible part of this distance metric
consists of noise mostly perpendicular to surfaces, so improving the calibration
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should improve the “sharpness” of the point cloud. Mathematically, we have:

E =
n∑
i=0

d2i (2.8)

where d is the distance to the nearest reference point and n is the number of
points observed by the sensor being calibrated. Square distance is used for
computational efficiency, as it saves having to calculate the square root (distance
between two points being calculated as d =

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2).

2.4.4 Calibration using feature detection
Instead of knowing calibration features prior to conducting measurements, it is
possible to use the measurements themselves to define features in the environ-
ment that can be used for calibration. The calibration parameters can typically
be (and should be) estimated reasonably well before calibration, meaning that
measured data should be a rather good approximation of the environment, likely
with some excess noise resulting from remaining inaccuracies in calibration pa-
rameters. Therefore, it is possible to extract features from the measured data,
and aim to improve the definition of these features during calibration.

Feature extraction can be performed manually or automatically. Manual feature
detection requires some manual work, but can be rather efficient (see, for example,
Hyyti et al., 2019). Manual detection also maintains a high level of confidence
in the integrity of the features, as long as the detector is doing her job properly.
Automatic feature detection tends to be quite efficient computationally and so
can spare some time, but requires some tuning of feature detection parameters
and does not always produce consistent results. It is highly dependent on the
point distribution and thus the environment, and often some manual oversight is
necessary to maintain confidence.

In practice, typical features to be detected are planes and cylinders (e.g. Chan
& Lichti, 2013). Planes are simple to find and can be used to define more
complicated and precise features such as corners, while locating cylinders is
slightly more complex (it would also be possible to detect spheres, for example,
but typical environments are less likely to have perfectly spherical than planar or
cylindrical features, which are rather abundant in urban environments). However,
many of the features in the physical world are not geometrically perfect, so
approximating them with perfect shapes is problematic. Therefore, the use of
feature detection and matching requires a non-arbitrary environment where
there is high confidence in the geometric integrity of the available features.

This thesis employs a plane detection and fitting method. A random sampling and
consensus (RANSAC) approach is adopted from Li et al. (2017) for plane detection,
while least-squares methods are used for plane fitting. Feature detection in

15



general is a widely studied field, and methods for plane detection that have
been proposed mainly include numerous variations of RANSAC (e.g. Torr &
Zisserman, 2000; Gallo, Manduchi, & Rafii, 2011) and the Hough transform (e.g.
Tarsha-Kurdi, Landes, & Grussenmeyer, 2007; Borrmann, Elseberg, Lingemann,
& Nüchter, 2011; Hulik, Spanel, Smrz, & Materna, 2014). RANSAC, in brief,
takes a random sample from which it derives a feature, tests this feature against
the set, compares it to the best feature so far, and iterates for either a set amount
of trials or until a satisfactory feature is found. Efficiency and accuracy can be
improved using different heuristic methods. The basic RANSAC algorithm for
plane detection and an improved version are described further in Section 4.3.1.

Plane detection results in a parametrised set of planes and points belonging to
these planes. The cost function for plane fitting tries to minimise the noise in each
of these planes. The errorsum, or cost function value, is the sum of errors that is
calculated using principal component analysis—that is, from the eigenvalues of
the covariance matrix of the points that are considered to belong to the plane. The
eigenvalues describe the variances (in the directions defined by the eigenvectors,
with the largest eigenvalue corresponding to the direction of largest variance, the
principal component) of the points in the plane. The smallest eigenvector, then,
can be interpreted as the variance perpendicular to the plane or the noise of the
points in the plane. Mathematically, we have:

E =
N∑
p=1

λp (2.9)

where p refers to the current plane, N is the number of planes and λ is the
smallest of the three eigenvalues satisfying the relationship:

λv = ΣXXv (2.10)

where v is the corresponding eigenvector and ΣXX is the covariance matrix for
points X̂ in plane p:

ΣXX = E[X̂X̂T ]− µXµ
T
X. (2.11)

2.4.5 Calibration using local planarity
In addition to trying to locate well-defined features in the point cloud, it is possible
to make assumptions about the properties of the point cloud and use these in the
calibration process. One such assumption is small-scale local planarity, which
translates to contiguous and continuous surfaces. For example, the kind of RMBL
solution such as is discussed in this work will have, at normal operating distances
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of perhaps 10 meters, a point density in the range of approximately 100-300
points per square meter per rotation. With this in mind, the assumption that any
neighbourhood of, say, 20 nearest points will be nearly planar seems reasonable.
It is this assumption that Levinson and Thrun (2014) and Nouira, Deschaud, and
Goulette (2016) make in their proposed calibration algorithm.

The method is specifically designed for MBL sensors and systems, because it uses
the beam-wise distribution of points as a key property of the point cloud. This is
because local planarity (among a small neighbourhood), is compared to the closest
point observed by a neighbouring beam. Levinson and Thrun (2014) employ a
Velodyne HDL-64E sensor and Nouira et al. (2016) a Velodyne HDL-32E (64
beams with 26.9° vertical FOV (Velodyne Lidar, 2008) and 32 beams with 41.3°
vertical FOV (Velodyne Lidar, 2015a), respectively). Both of these sensors, but
especially the former, have—in MBL terms—relatively high point density in the
vertical direction. The data collected by the Velodyne sensors consists of slices
observed by individual lasers, which is why point density is nonetheless much
higher in the horizontal direction than the vertical.

Levinson and Thrun (2014) first organise the point cloud by beam so that obser-
vations made by the same beam are in the same group. For each of these beams
i, the algorithm considers the points X̂j in N neighbouring beams j on each
side. First, it locates the nearest neighbour x̂i from the original beam i. Then,
it calculates a local normal around this point x̂i based on kNN (here, k = 20).
Finally, it calculates the squared inner product between this normal and the
vector x̂i− x̂i, a line segment connecting the two points. Since a ·b = 0 if a ⊥ b the
inner product will be equal to zero if the point x̂j lies on the plane. It is assumed
that the closer to the plane this point is, the more contiguous or uniform the point
cloud is and the less noise it contains. Thus we have the cost function:

E =
B∑
bi=1

bi+N∑
bj=bi−N

n∑
k=1

wk∥n · (p̂k,j − m̂k,i)∥2 (2.12)

where B is the number of beams, N the number of adjacent beams that each beam
is aligned to, n is the number of points observed by beam bj, wk is a weighting
term, given a value of 0 or 1 depending on whether the distance between p̂k,j and
m̂k,i is under some threshold, n is the normal at m̂k,i, p̂k,j is the kth point and
m̂k,i is its nearest neighbour observed by beam bi.

The above formulation of the cost function makes it somewhat confusing due to
the three summations. However, the underlying principle of surface continuity is
rather straightforward and logical. In fact, we can formulate a simplified version
of this cost function to generalise it to a case where points are not observed in a
layered fashion. This is the case in this thesis, where the sensor is rotated at an
angle and a continuous point cloud (within the FOV) is obtained.
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The principle is similar. We can assume that a surface observed by a lidar sensor
is continuous, or, more precisely, that the nearest neighbours to any point in a
point cloud lie on a relatively smooth and continuous surface. There are, of course,
blind spots in point clouds—so all surfaces are not continuous—but to the extent
of the few nearest points, this seems reasonable. Additionally, at a local scale of a
few to some tens of centimetres, these can be assumed to be nearly planar. To
then formulate a cost function that penalises points that lie off of the local plane,
we can use a similar method as described in Section 2.4.3. Using the nearest k
neighbours of a point, we can use the eigenvalues of the covariance matrix to
obtain a measure of planarity. The smallest eigenvalue describes variance in
the normal direction to a best-fit plane, so we can directly sum up the smallest
eigenvalues of the local covariance matrices as our cost function:

E =
n∑
i=1

λi (2.13)

where n is the number of points in the cloud and λi is the smallest of the three
eigenvalues of the covariance matrix of the nearest k points to point i (see
equations (2.10) and (2.11)).

2.4.6 Calibration using entropy
Similarly to the assumption of local planarity, authors such as Sheehan et al.
(2012), Sheehan, Harrison, and Newman (2014), Maddern et al. (2012) and
Oberlander et al. (2015) start with the very general assumptions that the distri-
bution of points in an observed point cloud is not random. Indeed, they attempt
to define a probability density function (PDF) for the environment and use the
information-theoretic measure of entropy as a quantity to be minimised for
calibration. In essence, the observed point cloud is treated as a multivariate
three-dimensional normal distribution of probabilities, and the result of the
optimisation is the set of most-likely parameters.

Information theory is based on the work of Shannon (1948). In information theory,
the concept of entropy refers to the expected amount of information delivered by a
message or, when generalised to this case, a measurement. Entropy is maximised
when the distribution of data points is even—that is, when the probability for
a measurement being in any point in the observed space is the same. This is
of course not the case when dealing with a physical environment. Points are
not randomly distributed in space since their positions are strongly correlated
with the actual physical geometry of the environment. The rationale behind the
entropy-based approach to lidar system calibration, then, is that a distribution
that contains minimum randomness is likely to be the most accurate. Many
authors describe this sought-after quality—this lack of randomness—as point
cloud crispness, though the term is rather vague and as such will not be used in
this work.
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In the foundational literature of information theory, Shannon (1948) introduces
the concept of information entropy as analogous to entropy in physics and as a
measure of the uncertainty involved in choosing a random sample from a set.
Shannon defines entropy H mathematically as:

H = −K
n∑
i=1

pi log pi (2.14)

where K is some constant, n is the number of possible outcomes and pi is the
probability for each outcome. This concept of entropy was generalised by Rényi
(1960) to the following:

Hα =
1

1− α
log2

( n∑
i=1

pαi

)
(2.15)

where α is what Rényi calls the order of the entropy measure i.e. Hα is entropy
of order α. Note that the logarithmic term is outside the summation, but this
is a consequence of the relationship between the two entropy measures and can
be verified by calculating the limit at α → 1 using L’Hôpital’s rule (Shannon
entropy).

Shannon entropy, equation (2.14), is thus a special case of Rényi entropy at
limα→1. Another special case is called Rényi Quadratic Entropy (or just Quadratic
Entropy), when α = 2. In this case, there is total reliance on the quadratic form
of probabilities p2k. Principe and Dongxin Xu (1999) point out that quadratic
entropy is appealing in the case of a continuous variable as it leads to more
simple calculations. In the case of measurements of a physical environment, our
variables are naturally continuous.

The generalisation of Shannon’s entropy measure to continuous variables was
proposed by Shannon himself as:

h(x) = −
∫
S

p(x) log p(x)dx (2.16)

However, as shown by Jaynes (1963), this is not correct—strictly speaking—as a
limit of Shannon’s expression. Nonetheless, it has become the measure known as
differential entropy, though, unlike its predecessor, it can take negative values
and is not invariant to a change of variables. For these reasons it is denoted here
as h(x). It is also the measure adopted by Sheehan et al. (2012), Maddern et
al. (2012) and Oberlander et al. (2015) for calibration purposes. In fact, these
authors turn to a similar generalisation of the quadratic measure of entropy as
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in equation (2.15), written explicitly below:

h(x) = − log2

∫
S

p(x)2dx (2.17)

The main difference between the discrete and continuous versions of the entropy
equation is the use of a probability density function p(x) instead of probability
pk. When applied in the case of laser scanner measurements, we have a dis-
crete number n of measurements x̂ (constituting X̂) of a continuous random
variable with PDF p(x). We are then faced with the task of determining this PDF.
Previous authors choose to represent the distribution as a Gaussian mixture
model, obtained by applying a kernel density estimation (KDE) method utilising
a Gaussian kernel at each measurement point. The KDE method (called Parzen
or Parzen-Rosenblatt Window estimation after Rosenblatt (1956) and Parzen
(1962) by some of the authors) is a data smoothing method used for this purpose,
to estimate the PDF of a random variable. Mathematically it is expressed as:

f̂h(x) =
1

n

n∑
i=1

Kξ(x− xi) =
1

nξ

n∑
i=1

K
(x− xi

ξ

)
(2.18)

where K is the kernel, ξ is a positive smoothing parameter—the bandwidth—and
Kξ denotes a scaled kernel. The bandwidth can be set to 1, which eliminates it
from the equation. The Gaussian kernel for data point x is an implementation of
the multivariate Gaussian distribution function:

G(x | µ,Σ) = e−
1
2
(x−µ)TΣ−1(x−µ)√
(2π)k|Σ|

=
1√

(2π)k|Σ|
e−

1
2
(x−µ)TΣ−1(x−µ) (2.19)

where the distribution is defined by µ and Σ, the mean vector and covariance
matrix, respectively. The following notation is also prevalent (Principe & Dongxin
Xu, 1999):

G(x− µ,Σ) = G(x | µ,Σ) (2.20)

However, for clarity, let us adhere to the right-hand side form.

In previous laser scanner calibrations, equation (2.19) is plugged into the KDE
equation (2.18) with bandwidth 1. Additionally, Σ is defined as Σ = σ2I. Diago-
nalising the covariance matrix implies independent variables while equalising
the variances implies an isotropic distribution. These are intuitively rather
reasonable assumptions in this case, since there is no a priori knowledge of the
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environment that is being modelled. Additionally, any biases in the measurement
equipment will not translate consistently into biases in Cartesian coordinates
(x, y, z variances being in the diagonal) as measurements are recorded in polar
coordinates and only later transformed. Thus we have the PDF:

f̂h(x) =
1

n

n∑
i=1

G(x̂i | x, σ2I) (2.21)

Now, we can inject this function into Rényi’s entropy measure from equation
(2.17):

h(x) = − log2

∫
S

( 1
n

n∑
i=1

G(x̂i | x, σ2I)
)2
dx (2.22)

Expanding and rearranging:

h(x) = − log2

( 1

n2

n∑
i=1

n∑
j=1

∫
S

G(x̂i | x, σ2I)G(x̂j | x, σ2I)dx
)

(2.23)

Here we see the convolution of two Gaussians, which—following Bromiley (2013)
and Principe and Dongxin Xu (1999)—can be expressed as:

∫
S

G(x̂i | x, σ2I)G(x̂j | x, σ2I)dx = G(x̂i | x̂j, 2σ2I) (2.24)

This, when combined with equations (2.23) and (2.19), yields the cost function:

h(x̂) = − log2

(
1

n2
√

(2π)k|2σ2I|

n∑
i=1

n∑
j=1

e−
1
2
(x̂i−x̂j)

T (2σ2I)−1(x̂i−x̂j)

)
(2.25)

For optimisation purposes, we can simplify the function further by removing
the monotonic logarithmic operator as well as the constant coefficient. This is
because optimisation aims to minimise the cost function, and the exact value of
the cost function is irrelevant, as long as it behaves similarly when parameters
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are adjusted. Thus, we are left with the cost function:

E = −
n∑
i=1

n∑
j=1

e−
1
2
(x̂i−x̂j)

T (2σ2I)−1(x̂i−x̂j)

= −
n∑
i=1

n∑
j=1

e−
1
σ2 (x̂i−x̂j)

T (x̂i−x̂j)

(2.26)

from which we can see that the entropy-based measure relies purely on pairwise
distances (x̂i − x̂j) between points in the observed measurement set X̂ and free
variable σ. In other words, optimisation via entropy aims to minimise point–point
distances across the entire point cloud with heavy emphasis on nearby points
(due to σ).
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3. Device and experimental setup

This section presents the RMBL device that is being calibrated using the methods
presented in Section 2.4 and the experimental setup, i.e. the environment being
scanned and the methods related to scanning. Though the tests are conducted
in the context detailed here, the calibration methods can be generalised to other
laser scanner systems as long as the calibration parameters being optimised can
be sufficiently defined from the observations.

3.1 Reference scanner

Figure 3.1. Leica ScanStation P40. (Leica Geosystems, 2018)

The reference measurements are conducted by a Leica ScanStation P40 TLS
device (Leica Geosystems, 2018), pictured in Figure 3.1. It is a TOF device that
ships with a wavelength of either 1550 nm or 658 nm. The device employed
here was equipped with the invisible wavelength 1550 nm. According to the
manufacturer, the P40 is capable of an accuracy of 0.8 mm at a distance of 10
m. The scanner is capable of measuring up to a million points per second, and
functions at a range of up to 120 or 270 metres (depending on the settings). The
FOV of the scanner is 360° horizontally and 270° vertically. There is also an
integrated camera that captures high dynamic range (HDR) images. In this case,
the scanner was used with resolution setting 3.1 mm at 10 m, normal sensitivity
and speed mode.
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Figure 3.2. The RMBL device used to actuate the Velodyne scanners.

3.2 Custom RMBL system

The setup used here is the same setup initially presented by Hyyti et al. (2019)
and is pictured in Figure 3.2. Hyyti et al. (2019) provide a detailed description of
the components of the scanner, so the particulars will be omitted here. Generally,
the system consists of a Velodyne VLP-16 Puck LITE multi-beam lidar sensor
(Velodyne Lidar, 2018a), an IMU sensor (integrated inside the bottom box),
a brushless gimbal motor, a magnetic encoder system, and a computer. The
sensor is placed on a tilted platform (the angle of which can be adjusted but
is here set at 40°), which can be rotated by the motor. The sensor can also be
switched and replaced, and the measurements for this thesis were conducted
using one Puck LITE sensor, 4 regular Puck sensors (Velodyne Lidar, 2015b)
and one 32-beam VLP-32C Ultra Puck device (Velodyne Lidar, 2018b). During
measurement, the computer records measurements and the data is processed
online into xyz-coordinates. However, calibration is performed offline.

Figure 3.3 shows the organization of the beams inside the VLP-16 and the VLP-
32C. The VLP-16 Lite is identical to the VLP-16 in this respect. As can be seen,
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Figure 3.3. Laser beam structure inside the Velodyne VLP-16 and VLP-32C as
detailed by the manufacturer.

the lasers in both sensors are presumed to originate in the same location (the
origin). In the VLP-16, all have a default azimuth offset of 0°, while in the VLP-
32C, there are azimuthal offsets in the construction. The vertical distribution in
the VLP-16 is even while there is an obvious concentration in the middle in the
VLP-32C.

3.2.1 Kinematic chain
This section derives the specific kinematic chain for the device introduced above.
As seen in Section 2.3.1, measurements can be transformed into Cartesian xyz
coordinates in the scanner reference frame using the equations:

x̂s = r̂ cosω sinα

ŷs = r̂ cosω cosα

ẑs = r̂ sinω

(3.1)

where α is the azimuth angle, recorded by the lidar, ω is the elevation angle,
constant for any individual laser beam and r is the range measurement obtained
from the TOF calculation. The angles ω are calibration parameters, in addition
to which the other intrinsic calibration parameters can be inserted as:

x̂s = kr̂ cosω sin (α + β) + δx

ŷs = kr̂ cosω cos (α + β) + δy

ẑs = kr̂ sinω + δz

(3.2)

where k is a proportional correction parameter, the δ’s are the intrinsic calibration
parameters that define translation offsets and β is the intrinsic calibration pa-
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rameter that defines the error of the azimuth angle. A point in sensor coordinates
will be denoted as x̂s:

x̂s =

⎡⎣x̂sŷs
ẑs

⎤⎦ = kr̂

⎡⎣cosω sin (α + β)
cosω cos (α + β)

sinω

⎤⎦+

⎡⎣δxδy
δz

⎤⎦ (3.3)

It should be remembered that the above equation presents the calibration param-
eters for one lidar beam, so generalising to a multi-beam device multiplies the
number of calibration parameters.

We now have a representation of our observations in the sensor coordinate system.
This needs to be further transformed to a global coordinate system. This can be
done as a 6-DOF transformation, but the transformation is not constant because
the sensor coordinate system is constantly rotating with the sensor, while the
global coordinate system should remain stationary.1

First, we introduce the rotation matrix R:

R =

⎡⎣cosφ cos θ cosφ sin θ sinψ − sinφ cosψ cosφ sin θ cosψ + sinφ sinψ
sinφ cos θ sinφ sin θ sinψ + cosφ cosψ sinφ sin θ cosψ − cosφ sinψ
− sin θ cos θ sinψ cos θ cosψ

⎤⎦ (3.4)

where φ, θ, ψ are the yaw, pitch and roll angles, respectively, and which (the
rotation matrix) is the ZY X realisation of the Tait-Bryan angles. These angles
get initial values of 0°, 40° and 0°, respectively, and are extrinsic calibration
parameters. We apply the rotation to x̂s and add an offset term:

x̂p = Rx̂s + te (3.5)

where te is the translation vector composed of x, y, z offsets, which are all cal-
ibration parameters, and x̂p is a dummy variable to illustrate this part of the
transformation. Finally, we consider the rotation of the platform with another

1No difference is drawn here between a coordinate system that stays stationary relative to
the device (as a whole) and a global coordinate system, as the device is stationary through-
out the experiment. In a deployment setting, where the device is used in motion, a further
transformation—based on the motion—is required to reach an invariant coordinate system.
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rotation matrix Rp to get global coordinate point x̂:

x̂ = Rp(Rx̂s + te), Rp =

⎡⎣cosµ − sinµ 0
sinµ cosµ 0
0 0 1

⎤⎦ (3.6)

where µ is rotation angle of the platform, recorded by the motor encoder. Thus
we reach the final global coordinates with which the calibration algorithms can
be computed.

Finally, let us examine the calibration parameters that were defined. The maxi-
mum set of intrinsic calibration parameters is:

Θintrinsic =
b⋃
i=1

Θi, Θi = {ωi, βi, δxi, δyi, δzi, ki} (3.7)

where b is the number of beams in the sensor and Θ is the set of calibration pa-
rameters, Θi being the beam-specific set. The total number of intrinsic calibration
parameters, then, is 6b. However, the proportional correction parameter k cannot
be determined from stationary measurements using a data-based method and
so will be disregarded (or rather, assigned a constant value of 1) in this thesis.
When using target-based calibration, these parameters could also be determined,
but results show that the value is not likely to change significantly.

Extrinsic calibration parameters are similar to those presented in Section 2.4.2.
However, the translation in the z direction does not change the geometry of the
cloud, only its position relative to the origin, so it cannot be determined based on
data, either. Extrinsic calibration parameters thus are:

Θextrinsic = {φ, θ, ψ, tx, ty} (3.8)

where tx, ty are the elements of te along with tz, which is held constant.

3.3 Environment and setup
This section explains the experimental setup used for the empirical comparison of
the performance of the calibration methods presented in Section 2.4 and detailed
in Section 4.

3.3.1 Environment
The experimental measurements used in this thesis were conducted in an indoor
gym during one afternoon in September 2019. The space was chosen for some
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key properties: namely, large size for measurements at a wide range, plenty
of planar surfaces for feature-based calibration, and few glass surfaces. Large
size is important because the sensors have a range of 100 m (Velodyne Lidar,
2015b); though the gym cannot provide such distances, a range of measurements
from approximately 1 to 25 metres can be obtained. Large planar surfaces are
necessary for the feature-based calibration algorithm. They may also improve
results from calibration based on local planarity. Finally, the lack of glass surfaces
reduces ambiguity in the point cloud.

Figure 3.4. The RMBL system on a tripod in the test environment.

Figure 3.4 shows the gym used as the measurement environment. The gym is
approximately 30×16×8 meters in size. One wall is largely covered by gymnastics
wall bars, while others are mainly flat except for some individual features. The
floor is also flat, but the ceiling contains basketball hoops, lights, beams, and
other discrepancies. For the purposes of identifying large planar surfaces, the
walls and floor are most useful.

Though it is true that a very specific choice for experimental environment and the
use of a single calibration environment undermine the universality of the results,
this thesis limits itself to the comparison of these methods in this environment.
This limitation allows robust comparisons between reference calibration and
experimental algorithms. The applicability of the calibration procedures in other
circumstances has been investigated in previous work and is a likely topic for
future research in the area. The results of this thesis can perhaps be used as a
starting point.
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3.3.2 Scanner setup
Figure 3.5 shows the approximate positioning of the laser scanners in the gym.
Position 1 describes the location of the RMBL device while positions 2 and 3
were supplementary for TLS scanning. The position was chosen to achieve a
large variance in the measured ranges to simulate practical environments where
objects are observed at a variety of distances. The sensors are placed on a tripod,
which is held at a fixed location. This means that there is theoretically no xy-
displacement in the RMBL’s and TLS scanner’s origins (though the height of
their optical center differs), which facilitates comparisons of point clouds from
different measurements. The Velodyne sensors have similar diplacements in the
z direction as well. In practice, small shifts in position are likely to occur when
the sensor is replaced.

1

2
3

Figure 3.5. Floor plan of the gym and placement of tripod for three scans. RMBL
measurements were made at position 1, while TLS measurements were made at
positions 1–3. Scale is approximate.

In addition to calibration measurements in one location, reference measurements
were made using the TLS scanner described in Section 3.1. These consist of
high-accuracy scans in three locations, also shown in Figure 3.5. The scans were
combined to produce a high-resolution point cloud of the entire space, which was
used as the target in target-based calibration.

3.3.3 TLS measurement processing
For TLS referencing, spherical targets were placed in the scene during TLS
scanning. The three scans were matched using these targets to produce a single
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high-density point cloud. Matching was done with Leica Cyclone software (Leica
Geosystems, 2019). For processing efficiency, a sample from the point cloud
was extracted for further analysis. The size of the original point cloud was
approximately 460 million points, and for target-based calibration this was
sampled down to a hundredth by randomly choosing 1% of the points for reasons
of efficiency.

3.3.4 Point cloud measurements
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Figure 3.6. Point cloud distributions from different sensors and settings from a
perpendicular view of a flat wall.

Figure 3.6 shows the distribution of points in different measurements of the
experimental environment. It is from a wall approximately 8 meters from the
scanner. The left-hand side clouds depict the sensors and scans used for experi-
mental purposes in this thesis—Velodyne sensors mounted on the RMBL rotating
at 29 rounds per minute (RPM). As can be seen, the 32-beam sensor has roughly
double the point density. The right-hand side shows more dense clouds. The scan
from the RMBL at 8 RPM shows how the layered pattern of the VLP-16 sensor
becomes visible at smaller rotation speeds. This is manifested as a grid-like
pattern because the cloud is composed from one full rotation of the RMBL which
covers two oppositely tilted views of one direction. The TLS point cloud is of a
much smaller area than the others, since at the same resolution it would look
simply solid. The high resolution of the TLS sensor is apparent in the axes scales
and its uniformity in the pattern.

To illustrate the difference in precision between the RMBL system and the
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Figure 3.7. A detail from the experimental scene depicting the imprecision and low
point density of the RMBL compared to TLS. The TLS data has been decimated to
one tenth of original point density.

TLS scanner, Figure 3.7 shows a detail from the experimental environment—a
basketball hoop—from two perspectives as measured by the two devices. The
RMBL sensor for which the cloud is visualised is a Velodyne VLP-16. The TLS
cloud has been randomly decimated to 1

10
of the points for visualisation purposes,
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so the actual TLS cloud is even more dense. The RMBL cloud is much more
sparse, in addition to which there is a lot more noise in the features, which is
especially evident in the backboard of the hoop. At the same time, the scattered
TLS points show that the TLS scan, too is subject to imprecisions, especially
with the intricate details of hoop (i.e. ropes and small metal bars), which cause
multiple and ambiguous echoes.
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4. Proposed methodology

This section explains the calibration methods examined in this thesis, providing
detailed explanations of the calibration algorithms implemented. Each algorithm
is described in words and presented schematically. Pseudocode is available in
Appendix 7.

4.1 Optimisation routine
As mentioned before, the values of the cost functions described in the previous
sections are minimised using MATLAB’s fminsearch function. The function
uses a default value of 200p iterations, where p is the number of optimisation
parameters. In the calibrations run for this thesis, there are 85 calibration
parameters for a 16-beam Velodyne Puck (and 165 for the 32-beam Ultra Puck),
and 200× 85 = 17, 000. Most of the functions did not converge in this timeframe,
however, so the fminsearch function was called 5 times with 10,000 iterations
each for the 16-beam sensors and 15,000 iterations each for the 32-beam sensor.
The separate function calls were used to reset the simplex so it might possibly find
a different minimum. Experimentally, this was found to speed up optimisation
and find minimas with lower values, as seen in the convergence plot in Figure
4.1. The peaks in the blue line appear at times when the function is restarted,
as the function takes larger steps in mostly higher-value directions. The restart
does help find a larger gradient as well, however, as the divergence of the two
plots shows. The graph was made using the plane fitting method to illustrate
this point and does not reflect general convergence properties. As described in
Section 5.4 and displayed in Figure 5.2, different methods behave very differently
as well.

The cost functions were implemented in both MATLAB (plane detection and
fitting) and in C++ (target-based, local planarity and entropy) as MATLAB MEX
functions (MEX File Functions - MATLAB & Simulink - MathWorks Nordic, 2019).
This allowed reductions in computation time, as the cost function evaluations
involve many a lot of looping, which is inefficient in MATLAB. Additionally, the
MEX functions utilised the C++ libraries nanoflann (Blanco & Rai, 2014) and
Eigen (Guennebaud, Jacob, & others, 2010). nanoflann is a simplified fork of
FLANN (Muja & Lowe, 2013), used for nearest neighbour searches, while Eigen
was used for matrix calculations.

4.2 Target-based calibration
Target-based calibration is mathematically simple, but requires an unambiguous
definition of the target. In this case, the target was a room, which was modelled
using a TLS scanner as described in Section 3. The TLS device was assumed to
be well calibrated. The resulting point cloud was then used as a true model of the
room, called the reference point cloud. For calibration purposes, this reference was
compared against the point cloud gathered by the RMBL device, and calibration
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Figure 4.1. Convergence plot for plane segmentation and fitting for VLP-16
scanner (4). Cost function value on the y-axis is normalised to be in range [0, 1].

parameters were optimised by minimising point–point distances between the
reference and observed environments. In addition to the intrinsic and extrinsic
calibration parameters described in Section 2.4.2, a 6-DOF transformation for
matching the calibration and reference point clouds was also computed during
this optimisation process, since any mismatch in the origin of the clouds would
likely lead to compensation by changing the calibration parameters. This removed
the need to make a transformation before optimisation, as a well calibrated point
cloud might fit slightly differently to the reference than an uncalibrated one.

The target-based calibration algorithm is described by Figure 4.2. The algorithm
is simple: it iterates through all measurements, finds the nearest neighbour in
the reference point cloud, and sums the squared distances to these neighbours.
The target-based cost function is also used as a universal metric to score other cal-
ibration methods by calculating its value for the optimised parameters obtained
using the other methods.

4.3 Data-based calibration
4.3.1 Plane detection and fitting
Similarly to target-based calibration, sensors can be calibrated by first using
the measurements to model the environment and then using this model as a
calibration target. The most straightforward approach is to find planar features
in the point cloud and, tuning the calibration parameters, minimise errors in
these planes for relevant points. This section describes the plane detection and
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Figure 4.2. Target-based calibration using a reference point cloud and point–point
distances. Available in pseudocode in Algorithm 1 in Appendix B.1.

fitting algorithms implemented for this thesis.

There are several ways to automatically find planes in a point cloud. Most
implementations tend to be variations of the random sampling and consensus
(RANSAC) algorithm. As its name suggests, RANSAC relies on randomly sam-
pling a set of points, fitting a plane to these points and testing the validity of this
plane against the other points in the data. The planes receive ’votes’ based on the
number of points that fit to them (i.e. are a reasonable distance away). A naïve
version would sample 3 points to form the plane while improved versions use, for
example, a neighbourhood of n points or a maximum likelihood estimator.
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Figure 4.3. Plane detection using NDT RANSAC as proposed by Li et al. (2017).
Available in pseudocode in Algorithms 2 and 3 in Appendix B.2.

36



The plane detection algorithm implemented here is based on a RANSAC method
proposed by Li et al. (2017), who divide the point cloud into cubic cells, use
a normal distribution transform (NDT) to find planar cells and use random
sampling across these cells. The method then matches the sampled planar cell
with cells with similar plane parameters, adds other points on the plane and
refines the plane using an iterative reweighted least-squares (IRLS) procedure.
The algorithm is described in Figure 4.3. The IRLS adjustment step is described
in pseudocode in Algorithm 2 in Appendix 7. Compared to a more naïve RANSAC
approach, this method has less emphasis on random sampling and for that reason
produces more consistent results on different executions.

In this implementation, 2 × 2 × 2 metre cubic cells were used due to the large
sizes of the room and the planar features in it. As suggested by Li et al. (2017), te
is given a value of 0.04. Threshold distance d was set to 0.04 m and threshold
angle θ to 15°. The initial number of trials k was 100, but this was redefined
every time a new best plane was found using the equation

k ≥ ln (1− 0.99)

ln (1− nthis

ntotal
)

(4.1)

where nthis and ntotal are the number of points in the current best plane and in
total, respectively. 0.99 represents the confidence level that is desired for the
plane. The redefinition of k allows for the flexible determination of the number of
trials, so if a very good plane is found, fewer iterations are tried, and if the best
plane identified is still poor, more iterations are added. Once the planes have
been detected, they can be used for calibration by plane fitting as described in
Figure 4.4.

Here, plane fitting refers to the iteration during which parameters are adjusted
in order to move points into positions that best fit the planes identified earlier.
The actual fitting is performed using standard algebraic methods, namely by
calculating the eigenvalues and eigenvectors of the covariance matrix of the
coordinates of the points corresponding to a plane. The symmetric positive definite
3× 3 covariance matrix describes the distribution of the data in 3 dimensions so
that the eigenvalues define magnitude and the eigenvectors define orthogonal
directions. Therefore, the smallest eigenvalue describes variance in the direction
of the corresponding eigenvector, which is normal to the plane defined by the
other 2 eigenvectors, which is the best fitting plane. This eigenvalue can be
considered to quantify the noise in the plane, the sum of which over all planes is
what constitutes the errorsum in the algorithm.

4.3.2 Local planarity
Levinson and Thrun (2014) propose a calibration scheme that is specially de-
signed for multi-beam scenarios, where points observed by a single beam are
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Figure 4.4. Calibration parameter optimisation using previously defined planes.
Available in pseudocode in Algorithm 4 in Appendix B.3.

compared with their neighbours from other beams in an attempt to have the ob-
servations from different planes form contiguous surfaces. The suggested method
optimises the planarity of all such neighbourhoods, which in practice translates
to smoothing all continuous surfaces in the point cloud. This, of course, assumes
that the point cloud (or rather, the environment) is somewhat continuous and
locally planar.

The method is described in Figure 4.5. It iterates through all beams and for each
beam, all points observed by the beam. For each point, it finds the nearest k
neighbours observed by adjacent beams and fits a plane to these points. Finally,
it sums the squared orthogonal distances from the plane to each of the points in
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Figure 4.5. Calibration parameter optimisation as described by Levinson and
Thrun (2014), using local planarity across neighbouring beams. Available in
pseudocode in Algorithm 5 in Appendix B.4.
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the neighbourhood to produce an errorsum, which is further summed over the
rest of the iterations.

Evidently, the methodology contains much iterating, and when programmed—as
can be seen in Figure 4.5—multiple nested for loops. Additionally, there are many
nearest neighbour searches over various sets of points (each beam is ignored in
turn), which makes the algorithm computationally complex. This is caused not
just by the many searches, but also the construction of the data structures that
enable them.

A similar optimisation procedure can be implemented without consideration for
separate beams, but the relatively sparse vertical distribution of points (that
is, the layered nature of the cloud) means that any nearest neighbour search
will favour points from the same beam over points from adjacent beams. This
results in fitting a plane to what is, analogously, a line. This depends, of course,
on the scanner being used and the actuation of the scanner. Levinson and Thrun
(2014) use a Velodyne HD-64E with 64 beams that is rigidly attached to a moving
vehicle. However, the use of a RMBL in this thesis results in a more evenly
distributed point cloud—as seen in Figure 3.6—which disqualifies the beam-wise
method and allows the use of this simplified version. The simplified version
is presented in Figure 4.6. In this implementation, k = 40 was chosen as the
number of neighbours to consider, since this produced the best calibration results,
i.e. the best score as described in Section 5. The results leading to this choice are
presented in Section 5.3.

4.3.3 Entropy
Equation (2.26) described the cost function of entropy optimisation. Algorith-
mically, for optimisation purposes, this translates to (A) in Figure 4.7. Notably,
the algorithm contains a nested for loop that iterates through all points within
an iteration through all points. This slows the algorithm to running in O(n2)
time, which is typically too much when dealing with hundreds of thousands or
millions of points. Complexity can be halved by having the second loop only
iterate through points that come after it (in the matrix). This is because i and j
are interchangeable in terms of the value of exp

(
− 1

σ2 (x̂i − x̂j)
T (x̂i − x̂j)

)
. This

has the added benefit of skipping the calculation for a point itself, for which the
equation becomes a constant exp(0) = 1. The reduced complexity achieved is
hardly adequate, however.

To hasten the computation further, we can choose to only care about the near-
est neighbours of each point. In practice, when the distance between x̂i and x̂j
grows, ei,j → 0. The pace at which this convergence to 0 happens depends on the
parameter σ2. The value chosen for σ is small (some centimetres, 5 in this imple-
mentation, giving σ2 = 0.052 m2 = 0.0025m2) relative to the size of the point cloud,
which justifies limiting the entropy computation to some nearest neighbours of
each point. The limitation can either be enforced using a k Nearest Neighbours
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Figure 4.6. Calibration parameter optimisation using general local planarity.
Available in pseudocode in Algorithm 6 in Appendix B.4.

(kNN) search or a radius search. Considering that lim(x̂i−x̂j)→∞ e = 0—in practice,
once the distance between points is 3σ, for example1, e can be considered negligi-
bly small—radius search can give us an intuitive cut-off. However, radius search

13σ is justified by the 3-sigma rule, whereby in a normal distribution, the probability for a point
to lie further than three standard deviations from the mean is less than 3 in 1,000 (Upton & Cook,
2008). This does not directly apply to multivariate distributions, but provides a large enough
margin for the operation to be reasonable.
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1

Figure 4.7. Calibration parameter optimisation using entropy. (A) describes the
entropy cost function without any optimisation while (B) describes the algorithm
using kNN to decrease computational cost. Available in pseudocode in Algorithms
7 and 8 in Appendix B.5.

does emphasise areas with high point density. To eliminate this effect, we can
normalise the entropy value for a particular neighbourhood by the number of
points found within the radius.
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In practice, as explained in Section 6.1.3, radius search does not work, so a kNN
approach is implemented. (B) in Figure 4.7 describes the optimisation algorithm
using kNN search. This brings computational cost down to O(n(k + log n)) when
using kd-tree data structures for searching. This algorithm is the one used for
calibration in this thesis.

4.4 Testing
The main contribution of this thesis is the quantitative testing of the calibration
methods presented above. The calibration results are evaluated by scoring a set
of observations from each sensor using the resulting calibration parameters of
each method. The scoring function is the same as the cost function used in target-
based calibration—that is, a sum of square distances to the nearest points in
the reference point cloud. A lower score signifies smaller error and thus a better
calibration according to this metric. The scoring method and the individuality
of the scanners and the data samples mean that the scores are not comparable
between different scanners. For each device, a data sample is selected, and the
same sample transformed into a point cloud using calibrated parameters for
each method. This sample is different from the one used for the calibrations.
To avoid any displacement between the origins of the calibration and reference
clouds, a 6-DOF transformation is found for the reference cloud so that the score
is minimal. This is a similar minimisation process as the target-based calibration
algorithm, except that the parameters being optimised are the six transformation
parameters and the calibration parameters are kept constant. The score is then
computed by summing the distances to nearest neighbours in the reference point
cloud. Some examples of calibration parameters before and after calibration are
also presented, and all parameters are available in Appendix A.

The tests provide material for further examination of the methods as well. First,
the choice of k = 40 for the local planarity method is justified with experimental
results (for the entropy method k was set at 30). Second, convergence patterns
for the various algorithms are examined by recording the evolution of calibration
parameters over the iterations and scoring the parameters at different stages of
the optimisation process. Finally, the computational complexities of the methods
and the variation between them are discussed.
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5. Results

5.1 Evaluation of methods
The results of calibrations were evaluated by scoring a set of observations from
each sensor using the resulting calibration parameters of each method as ex-
plained above in Section 4.4.

Default Target-
based

Plane
fitting

Local
planarity

Entropy

VLP-16 Lite 4704.42 1765.26 1876.32 3090.02 1791.15
VLP-16 (1) 3159.07 1642.21 2826.27 3447.01 2851.45
VLP-16 (2) 3158.97 1440.51 2925.03 3588.36 2951.92
VLP-16 (3) 6310.82 1760.01 4184.16 2974.59 2740.63
VLP-16 (4) 4716.38 1729.12 1749.19 2641.04 1752.44
VLP-32C 4860.14 3036.42 3175.96 3581.12 3011.05

Sum 26 910 11 374 16 737 19 322 15 099

Table 5.1. Scores obtained by different calibration methods for different sensors.
The score values are not comparable between sensors.

Table 5.1 summarises the results of the calibration method comparison. Evidently,
the target-based method fares best, as its cost function is equal to the scoring
function. It is also the only absolute method in that it has a specifically defined
target. Of the three data-based methods, the plane fitting and entropy methods
achieve the best scores, and the local planarity method the worst. Notably, the
scores achieved by plane fitting vary significantly, indicating that the detected
planes in different cases were of uneven quality. This indicates unreliability even
in circumstances where the environment was chosen to favour plane segmenta-
tion. At the same time, the entropy method was rather consistent, suggesting
robustness, while the local planarity method seems occasionally decent, but in
some cases actually returns worse results than default values and is thus of little
compared to the others. The methods and their properties are discussed further
in Section 6.1.

5.2 Calibration results
All calibration parameters and their values for all sensors before calibration and
after calibration by each method are given in Appendix A. In this section, some
notable results and observations are presented. Focus is directed to intrinsic
calibration parameters, since values acquired for extrinsic calibration parameters
are not particularly interesting, as they only reflect the precision with which
the RMBL system was constructed. Additionally, the observations are based on
parameters calibrated using the target-based method, since this is considered
to provide the most accurate results. A visualisation of calibrated intrinsic
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parameters for each method for VLP-16 (3) can be seen in Figure 5.1. It can be
contrasted with the default configuration in Figure 3.3.

Entropy
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Figure 5.1. Calibrated internal parameters of VLP-16 (3) sensor visualised with
short (10 cm) arrows emitted from the optical centre each beam in the directions
of the laser beams. The legend indicates the default elevation angle of each beam.

Most intrinsic calibration parameters remain more or less constant through
optimisation. Values for x and y offsets are small, as are offsets in azimuth angle.
There is more variation in elevation angle, and especially notable is the fact that
in the VLP-16 Lite and one of the VLP-16 sensors, the elevation angles seem to
be systematically off from the default value by approximately 2°, an observation
made also by Hyyti et al. (2019). Significant differences to the default can be
seen elsewhere as well. Finally, there is notable variance in z offset values, and
though sometimes these parameters get values that are physically impossible
(i.e. outside the frame of the sensor), they are suggestive of the possibility that
the beam origins are on a vertical axis inside the sensor, slightly displaced from
one another. In addition, it is possible that there are non-mechanical offsets in
the measurements.

As can be seen in Figure 5.1, the z offset was largest in the target-based cali-
bration method, which is supposed to be the most accurate of the methods. It is
indicative of the vertical offset between the RBML and TLS point clouds. Because
the transformation between the coordinate frames was found in the same optimi-
sation procedure for target-based calibration—as explained in Section 4.2—this
could be a result of the offset between the point cloud origins manifesting in
the intrinsic parameters, which is, of course, not a desirable result. If this is
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the case, the transformation between target and calibration point clouds should
be separated from the calibration, even though this, too, was found intuitively
problematic, though not tested.

5.3 Local planarity
There was a large dependence on the number of nearest neighbours k used to
evaluate local planarity. An experimentation with k = {10, 20, 30, 40, 50} deter-
mined the use of k = 40, since it yielded the best score. Table 5.2 shows the
comparative scores. The comparison was made with the data from the Puck LITE
sensor.

k value Score
10 4633.50
20 4241.98
30 3090.02
40 2696.63
50 2851.39

Table 5.2. Scores for different k values in local planarity method for VLP-16 Lite.
40 nearest neighbours was chosen.

Even when choosing a more optimal number of neighbours for comparison, the
local planarity method failed to achieve scores on par with plane fitting or entropy.
Nonetheless, it may be noteworthy to note that the optimal value for k likely
depends on the environment in which the sensor is being calibrated. The environ-
ment used in this thesis contained large planar surfaces, so even with relatively
small point density k = 40 was justifiable. In environments with less planarity or
with more sparse point clouds, the optimal value may be lower, and vice versa.
However, in non-planar environments, this method is likely to fare even worse,
though it does not seem recommendable even in planar environments.

5.4 Convergence
The different calibration methods behaved differently in optimisation, as could
be expected. Figure 5.2 collects some convergence plots to illustrate this. As can
be seen, the local planarity method is the fastest to converge. Reasons for this
are unclear, as there do not seem to be any particular properties of the method
that lead to fast convergence. In fact, the method is in many ways similar to the
plane fitting method, only that the number of planes is equal to the number of
points. It is also noteworthy in the figure that the entropy method benefits most
obviously from the large number of iterations and restarted simplexes, achieving
its largest descent only in the fourth optimisation round.

It may be possible to use these convergence properties in future calibration
implementations. If one method is quick to find some minimum and improve the
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Figure 5.2. Convergence plot of different calibration methods for one scanner,
VLP-16 (4). The normalised cost function value on the y-axis is set to be in range
[0,1].

calibration parameters to some extent, it can be used to jump-start the calibration
process before switching to a more precise method, which may be slower overall
but might need less iterations after such a jump-start. Any potential here would
need to be investigated further in future research.

Similarly, we can examine the progress of the calibration methods using the
scoring function, as can be seen in Figure 5.3. It should be noted that the
methods are scored against the reference point cloud fitted to the final iteration
of the entropy calibration. The final score values thus do not correspond to those
in Table 5.1 for the plane fitting and local planarity methods. The figure largely
validates the use of both the plane fitting and entropy methods while invalidating
the local planarity method, which increases the score value instead of decreasing
it. At the same time, the local planarity method does achieve better scores than
default values, which seems to contradict this observation. The reasons for this
remain unclear, and the optimisation behaviour would need further investigation
for full understanding.

5.5 Computational complexity
As is often the case with calculations involving large point clouds, it is necessary
to consider the computational costs of calibration algorithms. When trying to
find a calibration method that can perform calibration independently of any
targets and preferably as a routine procedure e.g. before measurements, speed
is a key attribute of the method. This section provides some insight into the
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Figure 5.3. Plot showing the development of the score through the iteration of
different cost functions. Evaluated for scanner VLP-16 (4).

computational costs of the proposed methodologies, with relevant details about
the implementations to shed light on the reasons behind the results. In all cases it
is the iterative optimisation that consumes the vast majority of computation time
due to its iterative nature and the large number of parameters being optimised.
This thesis used five consecutive MATLAB fminsearch optimisation routines
with 10,000 iterations each, a total of 50,000 iterations for 16-beam sensors and
15,000 iterations each (75,000 total) for the 32-beam sensor. These were separate
because of the way the Nelder-Mead algorithm works, with a reinitialisation
providing the possibility of finding a smaller minimum. This was, in practice,
found to result in relatively stable minima, though most of the functions did not
converge to a final value even after these iterations.

Method Complexity
Target-based O(n log nT )

Plane fitting O(NP (3
2nP ))

Local planarity O(n log n+ n(log n+ 32k))

Entropy O(n log n+ n(k + log n))

Table 5.3. Approximate computational complexity of cost functions. NP is the
number of planes being fitted, n is the number of points in the cloud, nP signifying
points in a plane and nT points in the target cloud, and k is the number of nearest
neighbours considered in the algorithm.

Table 5.3 presents a comparison of complexities of the cost functions in a straight-
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forward manner. However, the actual time taken for the computations can not be
directly deduced from these. In any case, plane fitting is by far the fastest of the
calibration methods. Target-based calibration is next, since the search structure
for nearest neighbours remains the same in each iteration. Finally, the entropy
method is slightly faster than the one based on local planarity. However, the local
planarity method tended to converge much faster than the entropy method in
practice.

Many of the calibration algorithms involve matrix manipulations, the complexi-
ties of which will be briefly introduced here. The multiplication of two matrices of
size n×m and m×p, when performed in the naïve way has a complexity of O(nmp).
Le Gall (2014) shows that the complexity of square matrix multiplication can be
reduced from the brute force O(n3) for 2 n×n matrices to some O(n2.373) and later
Le Gall and Urrutia (2018) reduce the complexity of multiplying rectangular
matrices (n× nk by nk × n) to O(nω(k)+ϵ), where ϵ > 0. Exploring what these mean
in the context of point clouds is not in the scope of this work. In any case, the
software and libraries that were used—MATLAB (MATLAB, 2019) and Eigen
(Guennebaud et al., 2010)—optimise these calculations. However, in the case of
MATLAB, information on the way in which this is done is not available.

In addition, the eigenvalue decomposition is also often used and has a complexity
of approximately O(n3) (see e.g. Pan & Chen, 1999, for a more comprehensive
analysis). In this thesis, all eigenvalue decompositions are performed on 3 × 3
covariance matrices, which means that eigenvalue decompositions run in constant
time are thus omitted from complexity expressions. When computing these
covariance matrices a scaling operation (division by the number of points) is
performed, and this has a complexity of O(nm) for a matrix of size n×m. Again,
this is in practice a constant O(32), which is likewise omitted.

Finally, complexities relating to kd-trees are based on the Wikipedia article on
kd-trees (k-d tree, 2019).

5.5.1 Target-based calibration
Target-based calibration is a relatively simple procedure, taking some O(n log nT )
time as it iterates through all points and finds a nearest neighbour for each
in the target point cloud. Additionally, some time (O(n log nT ) is required to
build the kd-tree out of the target point cloud, but this can be done only once,
while the cost function is evaluated thousands of times. For efficiency reasons,
the number of points in the reference cloud was reduced from the original 450
million to approximately 4.5 million, which was still considered plenty, as it was
significantly larger than the number of points in the calibration cloud. This
decimation by random sampling should not affect the calibration results, since,
for each calibration point, a point can be found rather nearby, so there is no—or
at least very little—matching between points that do not represent the same
physical vicinity.
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5.5.2 Plane detection and fitting
Table 5.3 does not include time taken for plane detection. The NDT RANSAC
method proposed by Li et al. (2017) has many steps, many of which involve multi-
plications and decompositions of matrices of varying size. Furthermore, random
sampling and iterative nature of the algorithm mean that an exact expression
of complexity is not possible to achieve. The environment also makes a large
difference. However, plane detection is carried out only once, so it is not a signifi-
cant factor compared to the optimisation. In practice, it was found that detecting
4-9 planes in point clouds of 100,000–2,000,000 points took approximately 1–90
seconds on an Intel(R) Core(TM) i7-7500U 2.70 GHz CPU. Relative to the time
taken to calculate thousands of iterations of any of the cost functions, this is
negligible.

Plane fitting is computed in O(Np) time, with Np signifying the number of planes.
However, for each plane, the eigenvalue decomposition of the covariance matrix
is calculated, which has a complexity of approximately O(32n), where n is the
number of points in the plane and 3 the dimensionality of the point cloud. This
comes from matrix multiplication, scaling and the eigenvalue decomposition
as explained above. In practice, the optimisation using detected planes (4–8
in number) took approximately 1–6 hours when run in MATLAB on the above
machine, depending also on the number of points.

5.5.3 Local planarity
The original calibration prodecure proposed by Levinson and Thrun (2014) is
computationally more complex than the one used here. The original, with its
consideration for points seen be neighbouring beams, would have a complexity
of approximately O(bN n

b
(log(n

b
) + 32k)), where b signifies the number of beams,

N the number of neighbouring beams considered per beam, k the number of
neighbours considered per point and n the number of total points.

The implementation used in this thesis is simpler, though only by the removal of
the factor N and the denominator in the logarithm, giving O(n(log n+ 32k)). This
is a consequence of not considering the beam by which each point was observerd.
In practice, an optimisation round of 5 × 10, 000 iterations with 85 calibration
parameters and a point cloud of approximately 200,000 points took approximately
6 hours to converge (only 11,000–15,000 iterations were typically necessary) on
the aforementioned computer when cost function evaluation was implemented in
C++ as a MATLAB MEX file function.

5.5.4 Entropy-based calibration
In theory, the entropy-based method is by far the most expensive computationally,
taking O(n2) time. However, it considers all the points that it is fed and can
be considered more robust. Computation times can also be vastly reduced with
various optimisation procedures, such as limiting the calculation of entropy for
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each point to only the nearest points. The rationale for this is that points that
are further away have an exponentially smaller effect on the outcome of the cost
function than points near to the current point. This does introduce an additional
tuning parameter k for kNN search, which can be considered problematic. Even
so, this reduces computational cost to O(n(k+ log n)) time, where k is the number
of neighbours found, when optimising the search with a kd-tree structure. In the
case of entropy, there is no need for matrix multiplication or decompositions.

In practice, the time taken by a single evaluation of the cost function was approx-
imately the same as with the local planarity method, but the entropy method
never fully converged, so 5× 10, 000 iterations took about 24 hours to complete.
The entropy method was also implemented as a MATLAB MEX function.
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6. Discussion
6.1 Strengths and weaknesses of approaches
As seen in Section 5, the entropy method obtained the best scores with plane fit-
ting rather close behind while local planarity was found, in some cases, to worsen
the calibration. Alongside these quantitative results, some other properties of
the various calibration methods were observed. Computational complexity is
discussed below.

6.1.1 Feature-based calibration
Feature-detection-based calibration was found to be sensitive to the feature
detection process. With normal RANSAC plane segmentation, the number of
iterations and chance can have a large effect on the quality of the detected
features. However, the NDT RANSAC algorithm used here produced rather
consistent results. However, the algorithm may misidentify features as planes
or rather include outliers or disclude inliers, depending on the parameters and
the error in the point cloud. In some cases, the uncalibrated point clouds were so
noisy that the algorithm did not recognise the floor as a single surface. Figure 6.1
shows the profiles of two such point cloud floors. In (A), the points representing
the floor can be seen to curve, though this is not a real property of the floor (in
fact, a hill-like shape is formed where the top is under the origin). A plane fitted
to these points would not be parallel to a plane of the floor. In (B), there are two
unparallel planes composing the floor, though this, too, in three dimensions is
composed of the same shape as in (A) and its reflection. This is likely to be a result
of the rotating motion of the RMBL, where each area is scanned twice during one
rotation (the points in both clouds are from a single rotation). In fact, calibration
results show that in some of the VLP-16 sensors—namely, the VLP-16 Lite and
VLP-16 (3)—the elevation angle values are systematically approximately 2° off.

On a more general level, feature-based calibration is intuitive and can be mon-
itored reliably. It is possible to examine the detected features and the corre-
sponding point sets to determine whether the matching is satisfactory. It is
also possible to tune plane detection parameters for different scans and even for
different areas of the same scan. The features can also be manipulated manually.

A crucial factor in the success of feature-based calibration is the detection of
planes that are not adjacent. In the case of scanning a large gym as in this thesis,
it is imperative that the algorithm detects at least one wall and the floor. If
the algorithm only identifies the ceiling and floor, for example, the optimisation
procedure will attempt to flatten all measurements, for example by reducing the
elevation angles of different lasers to the same angle. As it is, the algorithm only
evaluates the planes with regard to the points in the plane, not the original plane
that was identified. This is a feature of the way the cost function is calculated,
only considering the smallest eigenvalue of the covariance matrix of the points
in the plane. To keep the location of the planes constant (and only minimise the
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error to this stationary plane), we could change the cost function to, for example,
calculate square distance from the plane to each point assigned to the plane.
However, using the initial planes as references is also problematic, because it
assumes that the definitions of the features do not improve, or in practice, that
the normal does not shift at all. As Figure 6.1 shows, the original plane (and its
normal) can be far from ideal.

In addition to errors such as this, plane detection results vary in quality. The
plane detection algorithms implemented here favours large planes and includes
as many points in a plane as possible without consideration for adjacency. At
the same time, the large amount of noise (±3 cm) in the Velodyne sensors means
that a rather low threshold must be maintained for including points in a detected
plane. This, in turn, means that a number of points included in a plane are almost
certainly not, in reality, located on that plane, returning instead from a different
wall on the same corner, for example. Surfaces with nonplanar details, such as a
wall covered in a tight pattern of small rectangular columns, is likely to classified
as planar since the variation of the pattern in the normal direction is small. For
feature detection purposes, such misclassifications may be rather inconsequential,
but an accurate feature-based calibration requires high confidence in features.
As it is, the plane fitting method does provide improved calibration, but does not
perform as consistently as alternative approaches.

However, the results also suggest that detected planes do not need to be perfectly
planar. For example, one of the walls of the gym was partially covered in the
aforementioned pattern of rectangular columns (see Figure 6.2). This happened
consistently, as the pattern only varies by a couple centimetres, while the error
in Velodyne sensors is ±3 cm. Other similar details were also present in the
environment. Even so, the plane fitting method was able to find good calibration
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Figure 6.1. Profiles of gym floor from two non-calibrated scans. The scanner is in
the origin.
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Figure 6.2. Views from above of wall detail with rectangular columns from.
The corresponding area in RMBL clouds was identified as planar by the plane
detection algorithm.

parameters in most cases. This is likely because even if an identified plane is
not a uniform and single plane, it is mostly planar in that it has much larger
variances in the two principal directions than in the normal direction. Since
reducing errors in the cloud is likely to reduce noise in all directions, the variance
in the normal direction should also decrease with improved calibration. Therefore,
even though the features do not truly represent the environment, optimising
them represents a realistic minimum in the optimisation space.

6.1.2 Local planarity
As was mentioned in Section 2.4.5, the nature of the RMBL setup used in this
thesis is not suitable for a beam-wise calibration approach. The continuous
rotation of the platform and the sensor allows the collection of evenly distributed
point clouds, where observations from different lasers are mixed. This is in itself
a good reason to use such a rotation mechanism for actuation, since it improves
the coverage of the measurements. This fact was used to generalise the method
presented by Levinson and Thrun (2014) to a universal measure of local planarity.
However, as seen in Section 5, the method was not particularly successful in our
tests.

In particular, it is interesting that the local planarity method converges quickly,
but does not find the correct parameters. This suggests that there is something
fundamentally wrong with the cost function as an evaluation of point cloud
quality—a fact that makes sense considering the nonplanar nature of most
environments. However, the environment used in this thesis contains a large
amount of planar surfaces, and reasons for the failure of this method can be found
perhaps in the large amount of error in the measurements. In cases such as the
divergent floors of Figure 6.1, this method may not encourage the unification of
these areas as k nearest neighbours only returns points on the same plane, and
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moving towards the merging of the floors would increase the value of the cost
function in the short term before decreasing it. In other words, distances between
local minima in the optimisation space might be too large. Calculating the local
planarity cost function value for a well-calibrated version of the same point cloud
indeed yields a lower score—for example, for VLP-16 (4), the cost function value
of the scoring data set using local planarity parameters is 1519.5, while using
entropy parameters it is 1223.9, which is significantly lower. The local planarity
cost function thus seems to have converged on a local minimum.

6.1.3 Entropy
With entropy-based calculation, Section 4.3.3 proposed limiting computational
complexity by narrowing the search down to k nearest neighbours or a certain
radius r. However, experimental calibrations show that using radius search
for entropy calculation does not work. This is because with radius search, the
optimisation algorithm finds a minimum when as few as possible points fall
within the given radius. Thus the optimisation routine chooses the calibration
parameters so that they disperse the point cloud as much as possible, yielding
completely useless results. kNN search avoids this problem because it always
considers the same number of points. Maddern et al. (2012) propose a further
optimisation for choosing the number of neighbours to consider for each point,
but this was not implemented in this thesis.

Entropy was found to yield the best and most consistent results out of the data-
based methods considered here. In addition, as the brief comparison above in
Section 6.1.2 suggested, the entropy cost function seems to be rather robust even
when faced with large errors. However, the method is slow, both in calculating the
cost function and to converge. These factors should be considered when planning
any possible implementations of the method.

6.2 Limitations
This thesis has looked at a selection of calibration methods for lidar systems
and compared their performance in a test environment. The results can not
be generalised to any environment, any sensor or any measurement, but they
provide a reference point for consideration when implementing a data-based
calibration approach on a lidar system. In addition, the integrity of the target-
based calibration method can be questioned, as there are obviously errors in TLS
data as well. The TLS data was ultimately deemed to represent such a significant
improvement in precision that it was considered a sufficient model of the space.
However, the dismissal of the target-based method would dismiss also the scoring
system, which would mean that the data-based calibration methods would have
to be evaluated in another manner, perhaps visually. As the main contribution of
this thesis is a quantitative evaluation, a purely visual, qualitative approach was
deemed inadequate.
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The results of this thesis only show calibration results for a single data set for
each of the sensors. Statistical reliability through repetition would provide more
robust results, but multiple data points were, in this case, instead achieved by
multiple sensors. This was for the practical reasons that more sensors could be
calibrated and less computational time exhausted.

6.3 Future research
The results presented in Section 5 indicate that there are real differences in
chosen data-based calibration method. Future research might investigate further
how to make the choice of calibration method in a given situation by comparing
results using different methods in different environments. In addition, attention
could be paid to the way different cost functions converge, and efficiency could
be improved by first employing a fast method and then switching to a more
accurate one. Efficiency and complexity are major concerns, since the number
of calibration parameters is large and computation slow. Further work could
also be done to determine how to choose the calibration parameters—as noted
in Section 5.2, azimuth angles are almost constant, for example, and could be
discarded—that most improve the results of measurement. More generally, the
impacts of including or excluding different parameters could be studied. As the
physical dimensions in Figure 5.1 show, the obtained calibration parameters are
not always physically possible. Could a more exclusive (or inclusive) calibration
produce more realistic results?

The methods themselves could most likely also be improved upon. The computa-
tional complexity of the entropy method could be addressed, for example, with
an implementation on fewer points or by optimising the code. Though the local
planarity method seems to be invalid, it may be interesting to experiment with
an indicator function that limits the assessment of planarity to areas that are
already somewhat planar. The plane detection method could be further improved
to adjust plane detection parameters based on the measurements—if very planar
features are available, the criteria may be tighter, and vice versa.

The work done for this thesis is meant for practical application. It would thus be
worthwhile to consider the practical applicability of RMBL calibration—when a
sensor system is deployed, is on-site recalibration useful? Do calibration param-
eters remain constant over time and in use, or should calibration be periodic?
The incorporation of platform motion into calibration should be investigated,
as the current versions of the methods do not consider it. Finally, if calibra-
tion parameters are not constant, a real-time methodology could be created for
constantly tuning calibration parameters while measuring. Maye (2014), for
example, studies online calibration for robotic systems and proposes a calibration
pipeline using properties similar to entropy as discussed in this thesis.
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7. Conclusion

This thesis set out to investigate geometric calibration methods for rotating
multi-beam lidar (RMBL) systems, to describe their properties and evaluate their
performance. Three data-based methods were investigated: plane segmenta-
tion and fitting, local planarity and entropy, in addition to which a target-based
calibration using a reference point cloud was conducted for reference. The quanti-
tative results of this thesis indicate that the data-based calibration methods can
markedly improve calibration in sensor systems. Especially the plane fitting and
entropy methods were found to be useful, with plane fitting leading the way with
short computation times and entropy providing robustness and reliability.

As discussed, the supremacy of one method is not absolute. Different circum-
stances and considerations can provide grounds for choosing another method or
combining methods. The properties and behaviour of different cost functions in
different environments require further research and any implementation should
consider this and other points raised earlier. This thesis has presented a va-
riety of factors for consideration in practical implementations, and though the
uniqueness of the test sensor and environment may hinder direct application in
universal settings, a limited amount of customisation should yield useful results.
The algorithms presented in Section 4 and Appendix B bring together research
results from across the field and provide broad replicability for practitioners.

As lidar systems become increasingly common in practical applications, further
attention might be afforded to the behaviour of calibration procedures in different
environments and different systems. As discussed, the point cloud distribution
determines, to an extent, which algorithms can or should be considered, and the
distributions produced by the system examined here only represent a limited
section of the realm of possibilities. At the same time, the stability of calibration
parameters has not been addressed by this thesis, and the possibility of online
calibration is promising especially concerning fully automatic mobile systems
that run for extended periods of time. The methods discussed address a static
offline calibration, which is only valid in future measurements if calibration
parameters are sufficiently stable. Addressing these and more considerations
provides grounds for much research.

Indeed, much of this research has been done already, and this thesis is largely
based on a selection of previous work that proposed self-calibration methods for
lidar sensors and systems. However, previously proposed calibration methods
have not previously been evaluated and compared insofar as the author is aware.
The calibration problem reduces to identifying a metric for point cloud quality, and
as such, the fundamental question is what metric best measures this quality. This
thesis proposed a scoring method for determining the quality of such metrics and
used this method to evaluate calibration approaches. All methods can improve
calibration, which suggests both that initial calibrations are often unsatisfactory
and that any calibration that can be conducted typically pays off. However, the
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local planarity method does not do so consistently and, according to these results,
provides inadequate parameters by getting stuck in local minima. Moreover,
large differences in performance emphasise that the choice between plane fitting
and entropy is not arbitrary, either. A quick calibration in an appropriate setting
can be conducted with plane detection and fitting, while the entropy method
seems to be the most accurate and universally applicable.

60



References

Alismail, H., & Browning, B. (2015, August). Automatic Calibration of Spinning
Actuated Lidar Internal Parameters: Automatic Calibration of Spinning
Actuated Lidar. Journal of Field Robotics, 32(5), 723–747. doi: 10.1002/
rob.21543

An, S.-Y., Lee, L.-K., & Oh, S.-Y. (2015, October). Line segment-based fast
3D plane extraction using nodding 2D laser rangefinder. Robotica, 33(8),
1751–1774. doi: 10.1017/S0263574714000927

Atanacio-Jiménez, G., González-Barbosa, J.-J., Hurtado-Ramos, J. B., Ornelas-
Rodríguez, F. J., Jiménez-Hernández, H., García-Ramirez, T., & González-
Barbosa, R. (2011, November). LIDAR Velodyne HDL-64E Calibration
Using Pattern Planes. International Journal of Advanced Robotic Systems,
8(5), 59. doi: 10.5772/50900

Batavia, P., Roth, S., & Singh, S. (2002, September). Autonomous coverage opera-
tions in semi-structured outdoor environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (Vol. 1, pp. 743–749 vol.1). doi:
10.1109/IRDS.2002.1041479

Blanco, J. L., & Rai, P. K. (2014). nanoflann: a C++ header-only fork of FLANN,
a library for Nearest Neighbor (NN) with KD-trees. Retrieved from https://

github.com/jlblancoc/nanoflann

Borrmann, D., Elseberg, J., Lingemann, K., & Nüchter, A. (2011, November). The
3D Hough Transform for plane detection in point clouds: A review and a new
accumulator design. 3D Research, 2(2), 3. doi: 10.1007/3DRes.02(2011)3

Bosse, M., & Zlot, R. (2009, May). Continuous 3D scan-matching with a spinning
2D laser. In 2009 IEEE International Conference on Robotics and Automa-
tion (pp. 4312–4319). Kobe: IEEE. doi: 10.1109/ROBOT.2009.5152851

Bromiley, P. A. (2013, November). Products and Convolutions of Gaussian
Probability Density Functions. Tina-Vision Memo, 3(4), 1–5. doi: 10.1.1.583
.3007

Chan, T. O., & Lichti, D. D. (2013). Feature-based self-calibration of Velodyne
HDL-32E lidar for terrestrial mobile mapping applications. In The 8th
International Symposium on Mobile Mapping Technology (pp. 1–3). Tainan,
Taiwan.

Chen, C., Zou, X., Tian, M., Li, J., Wu, W., Song, Y., . . . Yang, B. (2017, November).
Low cost multi-sensor robot laser scanning system and its accuracy inves-
tigations for indoor mapping application. ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLII-2/W8, 83–85. doi: 10.5194/isprs-archives-XLII-2-W8-83-2017

Chen, C.-Y., & Chien, H.-J. (2012, October). On-Site Sensor Recalibration of a
Spinning Multi-Beam LiDAR System Using Automatically-Detected Planar
Targets. Sensors, 12(10), 13736–13752. doi: 10.3390/s121013736

Collis, R. T. H. (1965, August). Lidar Observation of Cloud. Science, 149(3687),
978–981. doi: 10.1126/science.149.3687.978

Dias, P., Matos, M., & Santos, V. (2006). 3D Reconstruction of Real World

61

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann


Scenes Using a Low-Cost 3D Range Scanner. Computer-Aided Civil and
Infrastructure Engineering, 21(7), 486–497. doi: 10.1111/j.1467-8667.2006
.00453.x

Droeschel, D., Schwarz, M., & Behnke, S. (2017, February). Continuous mapping
and localization for autonomous navigation in rough terrain using a 3D
laser scanner. Robotics and Autonomous Systems, 88, 104–115. doi: 10.1016/
j.robot.2016.10.017

Ellis, C. G. (2019, March). Self-driving vehicles safety system. U.S. Patent
No. 10235877. Minneapolis, MN. Retrieved 2019-08-14, from http://www

.freepatentsonline.com/10235877.html

Gallo, O., Manduchi, R., & Rafii, A. (2011, February). CC-RANSAC: Fitting planes
in the presence of multiple surfaces in range data. Pattern Recognition
Letters, 32(3), 403–410. doi: 10.1016/j.patrec.2010.10.009

Gong, Z., Wen, C., Wang, C., & Li, J. (2018, January). A Target-Free Auto-
matic Self-Calibration Approach for Multibeam Laser Scanners. IEEE
Transactions on Instrumentation and Measurement, 67(1), 238–240. doi:
10.1109/TIM.2017.2757148

Guennebaud, G., Jacob, B., & others. (2010). Eigen v3. Retrieved from http://

eigen.tuxfamily.org

Hecht, J. (2018, January). Lidar for Self-Driving Cars. Optics and Photonics
News, 29(1), 26–33.

Hulik, R., Spanel, M., Smrz, P., & Materna, Z. (2014, January). Continuous
plane detection in point-cloud data based on 3D Hough Transform. Journal
of Visual Communication and Image Representation, 25(1), 86–97. doi:
10.1016/j.jvcir.2013.04.001

Hyyti, H., Mäkelä, J., Kukko, A., & Kaartinen, H. (2019). An integrated po-
sitioning and mapping sensor for forest machinery. In Open Engineering
Automation in Finland 2019 Special Issue. Oulu: Suomen Automaatioseura
ry.

James Ring. (1963, July). The laser in astronomy. New Scientist, 18(344),
672–673.

Jaynes, E. (1963). Information Theory and Statistical Mechanics. In Statistical
Physics (pp. 181–218). New York, Amsterdam: W.A. Benjamin, Inc. Re-
trieved 2019-07-11, from http://bayes.wustl.edu/etj/articles/brandeis.pdf

Jesús Morales, Victoria Plaza-Leiva, Anthony Mandow, Jose Gomez-Ruiz, Javier
Serón, & Alfonso García-Cerezo. (2018, January). Analysis of 3D Scan
Measurement Distribution with Application to a Multi-Beam Lidar on a
Rotating Platform. Sensors, 18(2), 395. doi: 10.3390/s18020395

Kang, J., & Doh, N. L. (2016, October). Full-DOF Calibration of a Rotating 2-D
LIDAR With a Simple Plane Measurement. IEEE Transactions on Robotics,
32(5), 1245–1263. doi: 10.1109/TRO.2016.2596769

Klamt, T., & Behnke, S. (2017, September). Anytime hybrid driving-stepping
locomotion planning. In 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS) (pp. 4444–4451). (ISSN: 2153-0866) doi:
10.1109/IROS.2017.8206310

62

http://www.freepatentsonline.com/10235877.html
http://www.freepatentsonline.com/10235877.html
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://bayes.wustl.edu/etj/articles/brandeis.pdf


Le Gall, F. (2014). Powers of Tensors and Fast Matrix Multiplication. In
Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation (pp. 296–303). New York, NY, USA: ACM. (event-place: Kobe,
Japan) doi: 10.1145/2608628.2608664

Le Gall, F., & Urrutia, F. (2018, January). Improved Rectangular Matrix Multi-
plication using Powers of the Coppersmith-Winograd Tensor. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(pp. 1029–1046). Society for Industrial and Applied Mathematics. doi:
10.1137/1.9781611975031.67

Leica Geosystems. (2018). Leica ScanStation P50/P40/P30 User Manual. Leica
Geosystems. Retrieved 2019-10-10, from surveyequipment.com/assets/index/

download/id/457/

Leica Geosystems. (2019). Leica Pegasus: Backpack Wearable Mobile Mapping
Solution. Retrieved 2019-10-23, from https://leica-geosystems.com/products/

mobile-sensor-platforms/capture-platforms/leica-pegasus-backpack

Leingartner, M., Maurer, J., Ferrein, A., & Steinbauer, G. (2016). Evaluation
of Sensors and Mapping Approaches for Disasters in Tunnels. Journal of
Field Robotics, 33(8), 1037–1057. doi: 10.1002/rob.21611

Levinson, J., & Thrun, S. (2014). Unsupervised Calibration for Multi-beam Lasers.
In O. Khatib, V. Kumar, & G. Sukhatme (Eds.), Experimental Robotics
(Vol. 79, pp. 179–193). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:
10.1007/978-3-642-28572-1_13

Li, L., Yang, F., Zhu, H., Li, D., Li, Y., & Tang, L. (2017, May). An Im-
proved RANSAC for 3D Point Cloud Plane Segmentation Based on Nor-
mal Distribution Transformation Cells. Remote Sensing, 9(5), 433. doi:
10.3390/rs9050433

Lichti, D. D., Stewart, M. P., Tsakiri, M., & Snow, A. J. (2000). Calibration and
testing of a terrestrial laser scanner. International Archives of Photogram-
metry and Remote Sensing, 33, Part B, 485–492.

lidar, n. (2019, August). Oxford University Press. Retrieved 2019-08-14, from
http://www.oed.com/view/Entry/108026

Maddern, W., Harrison, A., & Newman, P. (2012, May). Lost in translation (and
rotation): Rapid extrinsic calibration for 2D and 3D LIDARs. In 2012 IEEE
International Conference on Robotics and Automation (pp. 3096–3102). St
Paul, MN, USA: IEEE. doi: 10.1109/ICRA.2012.6224607

Marquardt, D. (1963, June). An Algorithm for Least-Squares Estimation of
Nonlinear Parameters. Journal of the Society for Industrial and Applied
Mathematics, 11(2), 431–441. doi: 10.1137/0111030

Martínez, J. L., Morales, J., Reina, A. J., Mandow, A., Pequeño-Boter, A., &
García-Cerezo, A. (2015, March). Construction and calibration of a low-cost
3D laser scanner with 360 field of view for mobile robots. In 2015 IEEE
International Conference on Industrial Technology (ICIT) (pp. 149–154). doi:
10.1109/ICIT.2015.7125091

MATLAB. (2019). Release 2019a. Natick, Massachusetts: The MathWorks Inc.
Maye, J. (2014). Online self-calibration for robotic systems (Doctoral dissertation,

63

surveyequipment.com/assets/index/download/id/457/
surveyequipment.com/assets/index/download/id/457/
https://leica-geosystems.com/products/mobile-sensor-platforms/capture-platforms/leica-pegasus-backpack
https://leica-geosystems.com/products/mobile-sensor-platforms/capture-platforms/leica-pegasus-backpack
http://www.oed.com/view/Entry/108026


ETH Zurich, Switzerland). (Diss., Eidgenössische Technische Hochschule
ETH Zürich, Nr. 21912, 2014.) doi: 10.3929/ethz-a-010213941

McDaniel, M. W., Nishihata, T., Brooks, C. A., & Iagnemma, K. (2010, May).
Ground plane identification using LIDAR in forested environments. In 2010
IEEE International Conference on Robotics and Automation (pp. 3831–3836).
Anchorage, AK: IEEE. doi: 10.1109/ROBOT.2010.5509963

MEX File Functions - MATLAB & Simulink - MathWorks Nordic. (2019). Re-
trieved 2019-12-12, from https://se.mathworks.com/help/matlab/call-mex-file

-functions.html

Molebny, V., Kamerman, G., & Steinvall, O. (2010, October). Laser radar: from
early history to new trends. In G. W. Kamerman et al. (Eds.), Electro-Optical
Remote Sensing, Photonic Technologies, and Applications IV (Vol. 7835, pp.
9–38). Toulouse, France: SPIE. doi: 10.1117/12.867906

Moon, Y.-G., Go, S.-J., Yu, K.-H., & Lee, M.-C. (2015, July). Development of 3D
laser range finder system for object recognition. In 2015 IEEE International
Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1402–1405).
(ISSN: 2159-6247, 2159-6255) doi: 10.1109/AIM.2015.7222736

Morales, J., Martínez, J. L., Mandow, A., Pequeño-Boter, A., & García-Cerezo,
A. (2011, April). Design and development of a fast and precise low-cost 3D
laser rangefinder. In 2011 IEEE International Conference on Mechatronics
(pp. 621–626). doi: 10.1109/ICMECH.2011.5971190

Morales, J., Martínez, J. L., Mandow, A., Reina, A. J., Pequeño-Boter, A., & García-
Cerezo, A. (2014, November). Boresight Calibration of Construction Mis-
alignments for 3D Scanners Built with a 2D Laser Rangefinder Rotating on
Its Optical Center. Sensors, 14(11), 20025–20040. doi: 10.3390/s141120025

Muhammad, N., & Lacroix, S. (2010, October). Calibration of a rotating multi-
beam lidar. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (pp. 5648–5653). Taipei: IEEE. doi: 10.1109/IROS.2010
.5651382

Muja, M., & Lowe, D. (2013, January). FLANN - Fast Library for Approximate
Nearest Neighbors. Retrieved from https://www.cs.ubc.ca/research/flann/

Nelder, J. A., & Mead, R. (1965, January). A Simplex Method for Function
Minimization. The Computer Journal, 7(4), 308–313. doi: 10.1093/comjnl/
7.4.308

Nelder–Mead method. (2019, September). Retrieved 2019-10-24, from https://en

.wikipedia.org/w/index.php?title=Nelder%E2%80%93Mead_method&oldid=915181932

(Page Version ID: 915181932)
Neumann, T., Dülberg, E., Schiffer, S., & Ferrein, A. (2016). A Rotating Platform

for Swift Acquisition of Dense 3D Point Clouds. In N. Kubota, K. Kiguchi,
H. Liu, & T. Obo (Eds.), Intelligent Robotics and Applications (Vol. 9834,
pp. 257–268). Cham: Springer International Publishing. doi: 10.1007/
978-3-319-43506-0_22

Neumann, T., Ferrein, A., Kallweit, S., & Scholl, I. (2014). Towards a Mobile
Mapping Robot for Underground Mines. In Proceedings of the 2014 PRASA,
RobMech and AfLaT International Joint Symposium (pp. 279–284). Cape

64

https://se.mathworks.com/help/matlab/call-mex-file-functions.html
https://se.mathworks.com/help/matlab/call-mex-file-functions.html
https://www.cs.ubc.ca/research/flann/
https://en.wikipedia.org/w/index.php?title=Nelder%E2%80%93Mead_method&oldid=915181932
https://en.wikipedia.org/w/index.php?title=Nelder%E2%80%93Mead_method&oldid=915181932


Town, South Africa.
Nouira, H., Deschaud, J. E., & Goulette, F. (2015, August). Target-free extrinsic

calibration of a mobile multi-beam lidar system. ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, II-3/W5,
97–104. doi: 10.5194/isprsannals-II-3-W5-97-2015

Nouira, H., Deschaud, J.-E., & Goulette, F. (2016, July). Point cloud refinement
with a target-free intrinsic calibration of a mobile multi-beam lidar system.
In ISPRS congress 2016 International Society for Photogrammetry and
Remote Sensing (p. 9). Prague, Czech Republic.

Oberlander, J., Pfotzer, L., Roennau, A., & Dillmann, R. (2015, September). Fast
calibration of rotating and swivelling 3-D laser scanners exploiting mea-
surement redundancies. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (pp. 3038–3044). Hamburg, Germany:
IEEE. doi: 10.1109/IROS.2015.7353796

Pan, V. Y., & Chen, Z. Q. (1999). The Complexity of the Matrix Eigenproblem.
In Proceedings of the Thirty-first Annual ACM Symposium on Theory of
Computing (pp. 507–516). New York, NY, USA: ACM. (event-place: Atlanta,
Georgia, USA) doi: 10.1145/301250.301389

Pandey, G., McBride, J. R., Savarese, S., & Eustice, R. M. (2015, August).
Automatic Extrinsic Calibration of Vision and Lidar by Maximizing Mutual
Information. Journal of Field Robotics, 32(5), 696–722. doi: 10.1002/
rob.21542

Paracosm. (2019). PX-80 Overview. Retrieved 2019-10-23, from https://labs

.paracosm.io/px-80-overview

Parzen, E. (1962, September). On Estimation of a Probability Density Function
and Mode. The Annals of Mathematical Statistics, 33(3), 1065–1076. doi:
10.1214/aoms/1177704472

Pfrunder, A., Borges, P. V. K., Romero, A. R., Catt, G., & Elfes, A. (2017, Septem-
ber). Real-time autonomous ground vehicle navigation in heterogeneous
environments using a 3D LiDAR. In 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (pp. 2601–2608). (ISSN:
2153-0866) doi: 10.1109/IROS.2017.8206083

Principe, J. C., & Dongxin Xu. (1999, October). Learning from examples with
Renyi’s information criterion. In Conference Record of the Thirty-Third Asilo-
mar Conference on Signals, Systems, and Computers (Cat. No.CH37020)
(Vol. 2, pp. 966–970 vol.2). doi: 10.1109/ACSSC.1999.831853

Rosenblatt, M. (1956, September). Remarks on Some Nonparametric Estimates of
a Density Function. The Annals of Mathematical Statistics, 27(3), 832–837.
doi: 10.1214/aoms/1177728190

Rényi, A. (1960). On measures of entropy and information. In Proceedings of the
fourth Berkeley Symposium on Mathematics (pp. 547–561).

Schubert, S., Neubert, P., & Protzel, P. (2016). How to Build and Customize
a High-Resolution 3D Laserscanner Using Off-the-shelf Components. In
L. Alboul, D. Damian, & J. M. Aitken (Eds.), Towards Autonomous Robotic
Systems (pp. 314–326). Springer International Publishing.

65

https://labs.paracosm.io/px-80-overview
https://labs.paracosm.io/px-80-overview


Schulz, T. (2008). Calibration of a terrestrial laser scanner for engineering geodesy
(Doctoral Thesis, ETH Zurich). doi: 10.3929/ethz-a-005368245

Shannon, C. E. (1948, July). A mathematical theory of communication. The Bell
System Technical Journal, 27(3), 379–423. doi: 10.1002/j.1538-7305.1948
.tb01338.x

Shaukat, A., Blacker, P. C., Spiteri, C., & Gao, Y. (2016, November). Towards
Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces:
Review and Analysis. Sensors, 16(11), 1952. doi: 10.3390/s16111952

Sheehan, M., Harrison, A., & Newman, P. (2012, April). Self-calibration for a 3D
laser. The International Journal of Robotics Research, 31(5), 675–687. doi:
10.1177/0278364911429475

Sheehan, M., Harrison, A., & Newman, P. (2014). Automatic Self-calibration
of a Full Field-of-View 3D n-Laser Scanner. In O. Khatib, V. Kumar, &
G. Sukhatme (Eds.), Experimental Robotics (Vol. 79, pp. 165–178). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-28572-1
_12

Sheh, R., Jamali, N., Kadous, M. W., & Sammut, C. (2006, December). A Low-
Cost, Compact, Lightweight 3D Range Sensor. In Australian conference on
robotics and automation (p. 8).

Tarsha-Kurdi, F., Landes, T., & Grussenmeyer, P. (2007). Hough-Transform and
Extended RANSAC Algorithms for Automatic Detection of 3D Building Roof
Planes from Lidar Data. In ISPRS Workshop on Laser Scanning 2007 and
SilviLaser 2007 (Vol. 36, pp. 407–412).

k-d tree. (2019, November). Retrieved 2019-12-05, from https://en.wikipedia.org/

w/index.php?title=K-d_tree&oldid=928055279 (Page Version ID: 928055279)
The MathWorks, Inc. (2019). Optimizing Nonlinear Functions - MATLAB

& Simulink - MathWorks Nordic. Retrieved 2019-09-25, from https://

se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html

Torr, P. H. S., & Zisserman, A. (2000, April). MLESAC: A New Robust Estimator
with Application to Estimating Image Geometry. Computer Vision and
Image Understanding, 78(1), 138–156. doi: 10.1006/cviu.1999.0832

Ueda, T., Kawata, H., Tomizawa, T., Ohya, A., & Yuta, S. (2006). Mobile SOKUIKI
Sensor System: Accurate Range Data Mapping System with Sensor Motion.
In Proceedings of the International Conference on Autonomous Robots and
Agents (pp. 304–309). Palmerston North, New Zealand.

Upton, G., & Cook, I. (2008, January). three-sigma rule. In A Dic-
tionary of Statistics. Oxford University Press. Retrieved 2019-
08-26, from https://www.oxfordreference.com/view/10.1093/acref/9780199541454

.001.0001/acref-9780199541454-e-1639

Velodyne Lidar. (2008). HDL-64E: User’s manual. Velodyne Acoustics, Inc.
Velodyne Lidar. (2015a). HDL-32E: User’s manual and programming guide.

Velodyne LiDAR, Inc.
Velodyne Lidar. (2015b). Velodyne Lidar Puck Datasheet. Velodyne LiDAR, Inc.
Velodyne Lidar. (2018a). Puck LITE: light weight real-time 3D LiDAR sensor.

Velodyne LiDAR, Inc.

66

https://en.wikipedia.org/w/index.php?title=K-d_tree&oldid=928055279
https://en.wikipedia.org/w/index.php?title=K-d_tree&oldid=928055279
https://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html
https://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html
https://www.oxfordreference.com/view/10.1093/acref/9780199541454.001.0001/acref-9780199541454-e-1639
https://www.oxfordreference.com/view/10.1093/acref/9780199541454.001.0001/acref-9780199541454-e-1639


Velodyne Lidar. (2018b). VLP-32C User Manual.
Venter, G. (2010, December). Review of Optimization Techniques.. doi: 10.1002/

9780470686652.eae495
Weingarten, J., & Siegwart, R. (2006, October). 3D SLAM using planar segments.

In 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems (pp. 3062–3067). (ISSN: 2153-0858, 2153-0866) doi: 10.1109/
IROS.2006.282245

Wulf, O., & Wagner, B. (2003, July). Fast 3D scanning methods for laser measure-
ment systems. In International conference on control systems and computer
science (CSCS14) (pp. 2–5).

Xiao, J., Zhang, J., Adler, B., Zhang, H., & Zhang, J. (2013, December). Three-
dimensional point cloud plane segmentation in both structured and unstruc-
tured environments. Robotics and Autonomous Systems, 61(12), 1641–1652.
doi: 10.1016/j.robot.2013.07.001

Xie, D., Xu, Y., & Wang, R. (2019, March). Obstacle detection and tracking method
for autonomous vehicle based on three-dimensional LiDAR. International
Journal of Advanced Robotic Systems, 16(2), 1729881419831587. doi: 10
.1177/1729881419831587

Yoshida, T., Irie, K., Koyanagi, E., & Tomono, M. (2010, October). A sensor
platform for outdoor navigation using gyro-assisted odometry and roundly-
swinging 3D laser scanner. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems (pp. 1414–1420). (ISSN: 2153-0866,
2153-0858, 2153-0858) doi: 10.1109/IROS.2010.5652172

Özbay, B., Kuzucu, E., Gül, M., Öztürk, D., Taşcı, M., Arısoy, A. M., . . . Uyanık, I.
(2015, July). A high frequency 3D LiDAR with enhanced measurement den-
sity via Papoulis-Gerchberg. In 2015 International Conference on Advanced
Robotics (ICAR) (pp. 543–548). doi: 10.1109/ICAR.2015.7251509

67



68



Appendix A (1/16)

A. Calibration parameters

Calibrated parameter values for each sensor and each method are available in
the following tables. Angles are given in degrees and distances in millimetres.
The first five parameters for each sensor are extrinsic and the rest intrinsic, and
these are separated by a line.

A.1 VLP-16 Lite

Parameter Default Target-based Plane fitting Planarity Entropy
tx (mm) 0 -5 9 -0 10
ty (mm) 0 -0 4 0 9
φ (°) 0 -0.10 0.07 0.00 0.13
θ (°) 40 39.75 40.16 38.73 39.57
ψ (°) 0 -0.73 -0.51 -0.73 -0.64
ω1 (°) -15 -13.26 -14.41 -12.15 -12.88
ω2 (°) 1 2.80 1.81 2.57 2.63
ω3 (°) -13 -10.97 -12.16 -9.72 -11.15
ω4 (°) 3 4.80 3.78 5.13 4.18
ω5 (°) -11 -9.40 -10.17 -7.96 -9.47
ω6 (°) 5 6.92 5.83 7.04 6.98
ω7 (°) -9 -7.25 -8.12 -4.81 -7.41
ω8 (°) 7 8.85 7.76 9.52 8.40
ω9 (°) -7 -5.08 -6.15 -4.82 -5.16
ω10 (°) 9 10.80 9.82 9.92 10.35
ω11 (°) -5 -3.29 -4.18 -2.25 -3.18
ω12 (°) 11 13.02 11.91 12.54 12.61
ω13 (°) -3 -1.15 -2.08 -0.39 -1.83
ω14 (°) 13 14.78 13.87 14.21 14.48
ω15 (°) -1 0.92 -0.12 2.13 0.63
ω16 (°) 15 16.79 16.00 16.90 16.57
β1 (°) 0 -0.01 -0.02 0.00 0.04
β2 (°) 0 0.01 -0.02 -0.00 0.12
β3 (°) 0 -0.01 0.02 -0.00 0.01
β4 (°) 0 0.01 -0.00 -0.01 0.02
β5 (°) 0 -0.00 -0.00 0.00 -0.01
β6 (°) 0 0.00 -0.06 -0.01 0.00
β7 (°) 0 0.01 0.06 0.00 0.16
β8 (°) 0 0.05 0.01 -0.00 0.01
β9 (°) 0 0.00 0.07 -0.08 0.00
β10 (°) 0 0.03 -0.03 -0.04 -0.02
β11 (°) 0 0.01 0.00 -0.04 0.08
β12 (°) 0 -0.00 -0.01 -0.00 0.04
β13 (°) 0 -0.00 0.01 -0.01 -0.00
β14 (°) 0 0.04 0.00 -0.00 -0.01
β15 (°) 0 0.00 -0.00 0.00 0.02
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Parameter Default Target-based Plane fitting Planarity Entropy
β16 (°) 0 0.00 -0.00 -0.00 -0.02

δx1 (mm) 0 14 11 3 -72
δx2 (mm) 0 -9 4 -72 5
δx3 (mm) 0 -3 4 2 6
δx4 (mm) 0 -3 -3 0 21
δx5 (mm) 0 1 12 -0 12
δx6 (mm) 0 2 -2 2 0
δx7 (mm) 0 2 5 -2 -0
δx8 (mm) 0 -0 -0 1 22
δx9 (mm) 0 -1 8 -3 9
δx10 (mm) 0 -4 -7 0 30
δx11 (mm) 0 5 10 -0 9
δx12 (mm) 0 -10 -8 0 -1
δx13 (mm) 0 -3 1 -12 -0
δx14 (mm) 0 -4 -5 42 10
δx15 (mm) 0 -0 -2 -9 -3
δx16 (mm) 0 -6 -7 -1 24
δy1 (mm) 0 2 -7 -38 -3
δy2 (mm) 0 1 -6 5 -9
δy3 (mm) 0 -11 -9 4 -13
δy4 (mm) 0 -0 -5 -0 -9
δy5 (mm) 0 -6 -1 -7 -2
δy6 (mm) 0 -5 -3 8 7
δy7 (mm) 0 -4 -2 13 -0
δy8 (mm) 0 -1 -9 0 -19
δy9 (mm) 0 -1 -0 1 13
δy10 (mm) 0 -4 -9 2 -16
δy11 (mm) 0 -5 -1 -26 -23
δy12 (mm) 0 1 -9 14 1
δy13 (mm) 0 -4 -6 1 -4
δy14 (mm) 0 -2 -3 0 -13
δy15 (mm) 0 -1 -5 -10 6
δy16 (mm) 0 3 -4 -1 -7
δz1 (mm) 0 61 17 -0 67
δz2 (mm) 0 8 -4 -3 -9
δz3 (mm) 0 -0 -15 -3 -14
δz4 (mm) 0 3 -4 3 59
δz5 (mm) 0 81 -3 26 53
δz6 (mm) 0 -14 -5 -0 -58
δz7 (mm) 0 39 -15 -106 22
δz8 (mm) 0 -8 10 1 35
δz9 (mm) 0 0 -10 0 -12
δz10 (mm) 0 7 3 -0 40
δz11 (mm) 0 37 -4 -6 -17
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Parameter Default Target-based Plane fitting Planarity Entropy
δz12 (mm) 0 -35 -11 2 -7
δz13 (mm) 0 5 -19 -2 74
δz14 (mm) 0 1 2 64 -3
δz15 (mm) 0 -3 -13 -1 5
δz16 (mm) 0 0 -15 -15 0

Table 1.1. Calibration parameter values for VLP-16 Lite.

A.2 VLP-16 (1)

Parameter Default Target-based Plane fitting Planarity Entropy
tx (mm) 0 1 -3 0 -5
ty (mm) 0 -6 1 -0 -0
φ (°) 0 0.00 0.05 0.00 0.01
θ (°) 40 39.69 39.73 39.37 39.65
ψ (°) 0 0.40 0.42 -0.00 0.40
ω1 (°) -15 -15.12 -15.01 -14.39 -14.94
ω2 (°) 1 1.02 1.00 0.84 1.05
ω3 (°) -13 -13.04 -12.90 -13.15 -12.97
ω4 (°) 3 3.09 3.02 3.14 2.89
ω5 (°) -11 -11.07 -10.98 -11.22 -11.03
ω6 (°) 5 5.15 5.06 5.40 4.88
ω7 (°) -9 -9.13 -9.06 -9.09 -9.03
ω8 (°) 7 -635.67 -114.36 5.99 -10.57
ω9 (°) -7 -6.89 -7.11 -6.76 -7.19
ω10 (°) 9 9.18 8.98 8.36 8.87
ω11 (°) -5 -5.08 -5.00 -4.42 -5.03
ω12 (°) 11 11.32 11.04 10.70 11.01
ω13 (°) -3 -3.06 -3.03 -2.08 -3.05
ω14 (°) 13 13.22 13.04 12.89 12.93
ω15 (°) -1 -1.10 -1.11 -1.63 -1.22
ω16 (°) 15 15.38 15.05 15.23 15.01
β1 (°) 0 -0.00 0.06 0.00 0.07
β2 (°) 0 0.00 0.02 -0.00 -0.00
β3 (°) 0 -0.01 0.04 -0.00 -0.00
β4 (°) 0 -0.03 0.00 0.00 -0.00
β5 (°) 0 -0.03 0.05 -0.00 0.00
β6 (°) 0 -0.00 0.00 0.00 0.00
β7 (°) 0 -0.03 -0.00 0.00 -0.00
β8 (°) 0 -0.34 -0.96 -0.00 0.01
β9 (°) 0 -0.07 0.02 -0.00 -0.01
β10 (°) 0 0.00 -0.00 -0.00 0.00
β11 (°) 0 0.00 -0.00 0.00 -0.01
β12 (°) 0 -0.01 0.00 0.00 0.00
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Parameter Default Target-based Plane fitting Planarity Entropy
β13 (°) 0 -0.06 -0.01 0.00 0.00
β14 (°) 0 0.00 0.02 -0.00 0.00
β15 (°) 0 -0.00 0.01 0.00 0.01
β16 (°) 0 -0.05 -0.00 0.00 -0.00

δx1 (mm) 0 -3 -4 0 0
δx2 (mm) 0 -5 -4 -1 -7
δx3 (mm) 0 -4 -10 0 -8
δx4 (mm) 0 -3 -2 -0 3
δx5 (mm) 0 0 -5 -0 -0
δx6 (mm) 0 7 -0 0 21
δx7 (mm) 0 5 -4 0 -3
δx8 (mm) 0 -5 -1954 -0 44
δx9 (mm) 0 6 2 -0 12
δx10 (mm) 0 -4 1 -0 -0
δx11 (mm) 0 5 -5 0 -3
δx12 (mm) 0 0 -3 1 9
δx13 (mm) 0 -0 -3 -0 -0
δx14 (mm) 0 2 -3 -0 9
δx15 (mm) 0 14 6 1 18
δx16 (mm) 0 -15 -2 0 7
δy1 (mm) 0 8 -0 1 -1
δy2 (mm) 0 -0 -2 1 -1
δy3 (mm) 0 8 1 0 3
δy4 (mm) 0 0 -0 1 -2
δy5 (mm) 0 -1 0 0 4
δy6 (mm) 0 1 1 0 -4
δy7 (mm) 0 4 2 -1 0
δy8 (mm) 0 146 -10 -1 -3
δy9 (mm) 0 0 -1 1 -0
δy10 (mm) 0 1 -2 -0 -2
δy11 (mm) 0 3 0 1 0
δy12 (mm) 0 2 -0 1 -0
δy13 (mm) 0 2 -0 -0 -2
δy14 (mm) 0 8 1 0 -1
δy15 (mm) 0 1 -0 -0 -1
δy16 (mm) 0 4 -0 0 -1
δz1 (mm) 0 55 6 -1 -0
δz2 (mm) 0 17 -5 -1 -10
δz3 (mm) 0 39 -13 -0 -1
δz4 (mm) 0 1 -8 -1 10
δz5 (mm) 0 62 2 -0 9
δz6 (mm) 0 -7 -1 -1 24
δz7 (mm) 0 48 0 -1 -4
δz8 (mm) 0 1195 186 -0 -103
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Parameter Default Target-based Plane fitting Planarity Entropy
δz9 (mm) 0 6 24 0 30
δz10 (mm) 0 -17 -0 0 15
δz11 (mm) 0 38 -5 -0 -4
δz12 (mm) 0 -48 -10 -1 -9
δz13 (mm) 0 31 1 -0 0
δz14 (mm) 0 -31 -13 -1 -0
δz15 (mm) 0 45 26 1 37
δz16 (mm) 0 -61 -11 -1 -11

Table 1.2. Calibration parameter values for VLP-16 (1).

A.3 VLP-16 (2)

Parameter Default Target-based Plane fitting Planarity Entropy
tx (mm) 0 -9 9 0 4
ty (mm) 0 -5 -1 -0 -1
φ (°) 0 0.12 0.14 -0.00 0.05
θ (°) 40 39.77 39.78 39.48 39.74
ψ (°) 0 0.31 0.29 -0.00 0.28
ω1 (°) -15 -15.19 -15.12 -15.00 -15.14
ω2 (°) 1 1.12 1.01 1.10 1.04
ω3 (°) -13 -13.06 -13.06 -12.53 -13.06
ω4 (°) 3 3.10 2.90 2.99 2.94
ω5 (°) -11 -11.11 -11.04 -10.58 -11.12
ω6 (°) 5 5.15 4.95 4.80 4.91
ω7 (°) -9 -9.09 -9.04 -8.38 -9.05
ω8 (°) 7 7.30 6.97 6.95 6.93
ω9 (°) -7 -7.02 -7.06 -6.57 -7.03
ω10 (°) 9 9.29 9.02 8.73 9.04
ω11 (°) -5 -5.18 -5.23 -4.66 -5.26
ω12 (°) 11 11.18 10.89 10.60 10.66
ω13 (°) -3 -3.03 -3.02 -2.86 -3.09
ω14 (°) 13 13.20 12.68 12.49 12.65
ω15 (°) -1 -1.12 -1.13 -0.70 -1.31
ω16 (°) 15 15.49 15.09 14.51 15.16
β1 (°) 0 0.10 0.04 0.00 0.03
β2 (°) 0 0.03 -0.02 0.00 -0.04
β3 (°) 0 0.05 -0.00 0.00 -0.00
β4 (°) 0 -0.01 0.01 0.00 0.01
β5 (°) 0 -0.04 0.01 -0.00 0.00
β6 (°) 0 -0.04 -0.00 -0.00 -0.04
β7 (°) 0 0.01 0.03 0.00 -0.00
β8 (°) 0 0.00 -0.02 0.00 -0.05
β9 (°) 0 0.00 -0.04 0.00 -0.05
β10 (°) 0 0.05 -0.00 0.00 -0.03
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Parameter Default Target-based Plane fitting Planarity Entropy
β11 (°) 0 0.02 0.02 0.00 0.00
β12 (°) 0 -0.01 -0.02 -0.00 -0.05
β13 (°) 0 -0.02 -0.01 0.00 -0.02
β14 (°) 0 0.06 -0.01 0.00 -0.04
β15 (°) 0 -0.00 -0.00 0.00 -0.02
β16 (°) 0 0.04 0.04 -0.00 0.00

δx1 (mm) 0 4 2 -0 13
δx2 (mm) 0 -14 -12 0 -10
δx3 (mm) 0 -1 -9 0 1
δx4 (mm) 0 -5 -1 0 7
δx5 (mm) 0 3 -8 -0 0
δx6 (mm) 0 -7 -2 0 9
δx7 (mm) 0 -5 -11 0 -1
δx8 (mm) 0 -15 -2 1 8
δx9 (mm) 0 2 -9 0 -1
δx10 (mm) 0 -13 -6 0 9
δx11 (mm) 0 -0 8 -0 20
δx12 (mm) 0 -26 7 0 6
δx13 (mm) 0 0 -8 1 3
δx14 (mm) 0 -17 -1 -1 7
δx15 (mm) 0 2 0 0 25
δx16 (mm) 0 -28 -13 0 1
δy1 (mm) 0 1 1 -0 1
δy2 (mm) 0 2 -1 0 -2
δy3 (mm) 0 -1 -0 -0 -2
δy4 (mm) 0 -2 -1 0 -2
δy5 (mm) 0 -2 0 0 0
δy6 (mm) 0 4 0 -0 -1
δy7 (mm) 0 -6 -1 0 0
δy8 (mm) 0 4 -1 0 0
δy9 (mm) 0 -3 -0 -0 -0
δy10 (mm) 0 -2 -0 0 0
δy11 (mm) 0 -1 -1 -0 -2
δy12 (mm) 0 3 -0 0 -0
δy13 (mm) 0 3 -1 0 -2
δy14 (mm) 0 -0 -2 -0 -2
δy15 (mm) 0 2 -1 0 -1
δy16 (mm) 0 1 -0 -0 -2
δz1 (mm) 0 102 33 0 31
δz2 (mm) 0 26 -11 0 -22
δz3 (mm) 0 72 14 0 7
δz4 (mm) 0 26 13 -1 -4
δz5 (mm) 0 85 11 0 16
δz6 (mm) 0 16 10 0 3
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Parameter Default Target-based Plane fitting Planarity Entropy
δz7 (mm) 0 71 1 -2 -4
δz8 (mm) 0 -9 6 -0 0
δz9 (mm) 0 58 0 -0 -15
δz10 (mm) 0 -14 -6 -0 -26
δz11 (mm) 0 94 49 0 46
δz12 (mm) 0 6 12 -0 33
δz13 (mm) 0 59 -0 -0 -1
δz14 (mm) 0 -5 43 0 34
δz15 (mm) 0 75 31 0 48
δz16 (mm) 0 -53 -22 1 -49

Table 1.3. Calibration parameter values for VLP-16 (2).

A.4 VLP-16 (3)

Parameter Default Target-based Plane fitting Planarity Entropy
tx (mm) 0 -9 5 11 9
ty (mm) 0 -3 -5 -2 1
φ (°) 0 -0.00 0.00 -0.00 0.01
θ (°) 40 39.75 40.00 39.54 39.72
ψ (°) 0 -0.14 -0.10 0.00 -0.16
ω1 (°) -15 -13.35 -14.44 -12.91 -13.28
ω2 (°) 1 2.78 1.57 2.50 2.53
ω3 (°) -13 -11.31 -12.40 -10.92 -11.39
ω4 (°) 3 4.77 3.56 4.44 4.34
ω5 (°) -11 -9.10 -10.42 -9.53 -9.41
ω6 (°) 5 6.83 5.61 6.87 6.58
ω7 (°) -9 -7.36 -8.40 -7.56 -7.42
ω8 (°) 7 8.96 7.52 9.04 8.52
ω9 (°) -7 -5.41 -6.48 -5.27 -5.52
ω10 (°) 9 10.87 9.61 10.16 10.51
ω11 (°) -5 -3.11 -4.48 -3.22 -3.42
ω12 (°) 11 12.74 11.56 12.09 12.55
ω13 (°) -3 -1.16 -2.41 -0.75 -1.44
ω14 (°) 13 14.91 13.58 14.41 14.58
ω15 (°) -1 0.58 -0.43 -0.04 0.50
ω16 (°) 15 16.76 15.49 16.57 16.38
β1 (°) 0 0.06 0.00 0.00 0.06
β2 (°) 0 -0.00 -0.01 -0.00 -0.02
β3 (°) 0 -0.00 -0.00 -0.01 0.08
β4 (°) 0 -0.00 -0.02 0.00 0.00
β5 (°) 0 -0.01 0.04 -0.00 0.04
β6 (°) 0 0.00 0.00 -0.00 -0.00
β7 (°) 0 -0.05 0.01 -0.00 0.01
β8 (°) 0 0.02 -0.00 0.00 0.00
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Parameter Default Target-based Plane fitting Planarity Entropy
β9 (°) 0 -0.01 -0.00 0.00 -0.00
β10 (°) 0 0.04 -0.03 0.00 -0.00
β11 (°) 0 -0.01 -0.03 -0.00 -0.01
β12 (°) 0 -0.01 -0.02 -0.00 0.01
β13 (°) 0 -0.03 -0.04 0.01 -0.01
β14 (°) 0 0.03 -0.02 0.00 -0.00
β15 (°) 0 0.01 -0.03 0.00 0.00
β16 (°) 0 0.00 -0.01 0.00 -0.01

δx1 (mm) 0 10 9 1 -1
δx2 (mm) 0 2 6 9 8
δx3 (mm) 0 -3 8 -4 -6
δx4 (mm) 0 -6 1 1 7
δx5 (mm) 0 1 8 0 -7
δx6 (mm) 0 4 -12 2 12
δx7 (mm) 0 -0 5 -1 -5
δx8 (mm) 0 -8 -4 2 -0
δx9 (mm) 0 7 9 0 -0
δx10 (mm) 0 -2 -0 3 1
δx11 (mm) 0 2 12 1 1
δx12 (mm) 0 -0 -0 3 -0
δx13 (mm) 0 -5 2 2 -7
δx14 (mm) 0 0 -10 -3 3
δx15 (mm) 0 7 -1 2 -0
δx16 (mm) 0 -1 -6 -1 2
δy1 (mm) 0 3 6 -3 -0
δy2 (mm) 0 2 1 -4 1
δy3 (mm) 0 0 4 -1 -4
δy4 (mm) 0 -2 1 -1 -0
δy5 (mm) 0 1 5 -11 1
δy6 (mm) 0 -3 -1 -3 -0
δy7 (mm) 0 5 -1 2 2
δy8 (mm) 0 0 -6 3 1
δy9 (mm) 0 1 -1 10 0
δy10 (mm) 0 -0 1 1 0
δy11 (mm) 0 -0 2 -1 1
δy12 (mm) 0 -3 1 -6 -0
δy13 (mm) 0 1 -0 -3 -1
δy14 (mm) 0 4 0 -1 1
δy15 (mm) 0 -2 -2 -1 -0
δy16 (mm) 0 3 -3 0 -0
δz1 (mm) 0 74 2 -1 2
δz2 (mm) 0 17 8 -4 3
δz3 (mm) 0 72 -5 -1 5
δz4 (mm) 0 -0 4 3 17
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Parameter Default Target-based Plane fitting Planarity Entropy
δz5 (mm) 0 14 -4 -7 4
δz6 (mm) 0 2 -3 -1 -9
δz7 (mm) 0 58 -8 -3 -5
δz8 (mm) 0 -35 6 -1 -13
δz9 (mm) 0 59 6 -2 9
δz10 (mm) 0 -10 5 1 -3
δz11 (mm) 0 -0 13 1 -0
δz12 (mm) 0 9 11 3 -9
δz13 (mm) 0 1 -11 1 -12
δz14 (mm) 0 -12 4 3 -8
δz15 (mm) 0 55 0 -2 7
δz16 (mm) 0 -9 11 -3 2

Table 1.4. Calibration parameter values for VLP-16 (3).

A.5 VLP-16 (4)

Parameter Default Target-based Plane fitting Planarity Entropy
tx (mm) 0 16 16 2 9
ty (mm) 0 6 -0 1 -1
φ (°) 0 -0.03 -0.13 0.00 -0.08
θ (°) 40 39.78 39.82 39.32 39.75
ψ (°) 0 -1.05 -0.84 -0.00 -1.07
ω1 (°) -15 -15.02 -15.14 -14.83 -15.19
ω2 (°) 1 0.96 0.83 1.28 0.78
ω3 (°) -13 -13.36 -13.12 -13.32 -13.24
ω4 (°) 3 3.03 2.77 3.12 2.57
ω5 (°) -11 -11.28 -11.23 -11.42 -11.36
ω6 (°) 5 4.79 4.77 5.12 4.70
ω7 (°) -9 -9.25 -9.24 -9.45 -9.33
ω8 (°) 7 6.85 6.83 7.22 6.58
ω9 (°) -7 -7.52 -7.23 -7.34 -7.27
ω10 (°) 9 9.35 8.80 8.76 8.68
ω11 (°) -5 -5.06 -5.25 -4.41 -5.14
ω12 (°) 11 11.32 10.67 10.64 10.56
ω13 (°) -3 -3.01 -3.20 -2.38 -3.26
ω14 (°) 13 12.81 12.74 12.58 12.73
ω15 (°) -1 -1.09 -1.17 -0.28 -1.07
ω16 (°) 15 14.84 14.85 14.66 14.77
β1 (°) 0 0.17 -0.00 -0.00 0.00
β2 (°) 0 0.01 -0.02 -0.00 0.02
β3 (°) 0 -0.06 -0.04 -0.00 0.01
β4 (°) 0 -0.00 -0.02 0.00 0.05
β5 (°) 0 -0.00 -0.03 -0.00 -0.02
β6 (°) 0 0.07 -0.00 -0.00 -0.02
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Parameter Default Target-based Plane fitting Planarity Entropy
β7 (°) 0 0.03 -0.01 -0.00 -0.00
β8 (°) 0 0.02 0.01 0.00 -0.00
β9 (°) 0 0.06 -0.04 0.00 -0.00
β10 (°) 0 0.14 0.00 0.00 0.03
β11 (°) 0 -0.03 -0.06 -0.00 0.03
β12 (°) 0 0.00 0.03 -0.00 0.02
β13 (°) 0 -0.00 -0.03 0.00 0.04
β14 (°) 0 0.07 0.00 0.00 0.07
β15 (°) 0 0.02 -0.03 -0.00 -0.01
β16 (°) 0 0.02 0.01 -0.00 0.05

δx1 (mm) 0 7 -6 -1 -4
δx2 (mm) 0 15 -0 -2 -0
δx3 (mm) 0 -16 -7 -1 -8
δx4 (mm) 0 -10 -0 -1 -2
δx5 (mm) 0 19 -2 0 1
δx6 (mm) 0 25 -2 -4 -3
δx7 (mm) 0 16 -1 0 1
δx8 (mm) 0 11 -4 1 7
δx9 (mm) 0 7 -4 3 3
δx10 (mm) 0 -18 -2 -1 -0
δx11 (mm) 0 4 -2 0 12
δx12 (mm) 0 -18 8 1 -0
δx13 (mm) 0 25 -4 -1 0
δx14 (mm) 0 14 4 0 -0
δx15 (mm) 0 22 0 2 2
δx16 (mm) 0 8 -5 0 0
δy1 (mm) 0 -28 -2 -0 4
δy2 (mm) 0 0 -1 1 0
δy3 (mm) 0 -10 -1 2 -0
δy4 (mm) 0 13 -2 1 -1
δy5 (mm) 0 -14 -3 2 3
δy6 (mm) 0 -11 0 -0 5
δy7 (mm) 0 -14 -3 -1 2
δy8 (mm) 0 -8 -2 -4 3
δy9 (mm) 0 -16 -0 0 5
δy10 (mm) 0 -8 -2 0 -2
δy11 (mm) 0 -9 0 0 -3
δy12 (mm) 0 -3 0 1 2
δy13 (mm) 0 -5 -0 2 -1
δy14 (mm) 0 -2 -2 1 2
δy15 (mm) 0 -2 -1 -1 -0
δy16 (mm) 0 -16 -1 -2 3
δz1 (mm) 0 0 -3 1 9
δz2 (mm) 0 -6 1 0 12
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Parameter Default Target-based Plane fitting Planarity Entropy
δz3 (mm) 0 62 -6 0 7
δz4 (mm) 0 -41 -10 -1 21
δz5 (mm) 0 51 1 1 21
δz6 (mm) 0 16 -2 -1 7
δz7 (mm) 0 40 4 -1 14
δz8 (mm) 0 -1 -13 1 20
δz9 (mm) 0 84 2 1 -4
δz10 (mm) 0 -104 -11 0 -1
δz11 (mm) 0 3 14 0 -3
δz12 (mm) 0 -88 8 0 33
δz13 (mm) 0 -1 7 -2 23
δz14 (mm) 0 1 -1 1 -1
δz15 (mm) 0 15 -1 1 -4
δz16 (mm) 0 -1 -20 1 -14

Table 1.5. Calibration parameter values for VLP-16 (4).

A.6 VLP-32C

Parameter Default Target-based Plane fitting Planarity Entropy
tx (mm) 0 19 -0 1 2
ty (mm) 0 1 1 1 0
φ (°) 0 0.00 -0.00 0.00 0.00
θ (°) 40 39.74 39.84 39.46 39.69
ψ (°) 0 -0.03 0.00 -0.00 0.00
ω1 (°) -25.00 -24.77 -24.79 -24.39 -24.69
ω2 (°) -1.00 -0.98 -0.95 -0.59 -1.10
ω3 (°) -1.67 -1.41 -1.56 -0.66 -1.23
ω4 (°) -15.64 -15.54 -15.56 -15.27 -15.42
ω5 (°) -11.31 -11.06 -11.11 -11.02 -11.02
ω6 (°) 0.00 0.00 0.00 -0.00 -0.00
ω7 (°) -0.67 -0.61 -0.56 -0.46 -0.49
ω8 (°) -8.84 -8.75 -8.75 -8.16 -8.71
ω9 (°) -7.25 -7.03 -7.04 -7.00 -6.98
ω10 (°) 0.33 0.04 0.39 0.15 0.44
ω11 (°) -0.33 -0.05 -0.19 -0.32 -0.09
ω12 (°) -6.15 -6.14 -6.10 -5.79 -6.04
ω13 (°) -5.33 -5.25 -5.24 -5.47 -5.19
ω14 (°) 1.33 1.39 1.48 1.56 1.52
ω15 (°) 0.67 0.13 0.70 1.41 0.63
ω16 (°) -4.00 -3.98 -3.94 -3.95 -3.77
ω17 (°) -4.67 -4.47 -4.52 -4.04 -4.46
ω18 (°) 1.67 1.67 1.72 1.63 1.57
ω19 (°) 1.00 1.16 1.21 1.50 1.42
ω20 (°) -3.67 -3.54 -3.62 -3.88 -3.64
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Parameter Default Target-based Plane fitting Planarity Entropy
ω21 (°) -3.33 -3.22 -3.14 -2.56 -3.21
ω22 (°) 3.33 3.31 3.36 3.41 3.40
ω23 (°) 2.33 2.51 2.52 3.16 2.57
ω24 (°) -2.67 -2.77 -2.60 -2.46 -2.55
ω25 (°) -3.00 -2.88 -2.85 -2.49 -2.64
ω26 (°) 7.00 6.99 7.11 7.00 7.09
ω27 (°) 4.67 4.82 4.86 4.96 4.87
ω28 (°) -2.33 -2.35 -2.30 -2.41 -2.42
ω29 (°) -2.00 -1.94 -1.89 -0.71 -1.91
ω30 (°) 15.00 15.10 15.11 15.02 15.12
ω31 (°) 10.33 10.44 10.51 10.72 10.56
ω32 (°) -1.33 -1.28 -1.26 -0.65 -1.20
β1 (°) 1.40 1.73 1.73 1.74 1.77
β2 (°) -4.20 -3.79 -3.76 -3.75 -3.69
β3 (°) -3.00 1.82 0.41 1.84 1.85
β4 (°) -1.40 -1.18 -1.14 -1.22 -1.15
β5 (°) 1.40 1.71 1.79 1.80 1.83
β6 (°) -1.40 -1.04 -1.01 -0.94 -0.96
β7 (°) 4.20 4.74 4.65 4.68 4.72
β8 (°) -1.40 -1.09 -1.05 -1.01 -1.01
β9 (°) 1.40 1.72 1.80 1.79 1.83
β10 (°) -4.20 -3.73 -3.73 -3.69 -3.65
β11 (°) 1.40 1.83 1.82 1.85 1.89
β12 (°) -1.40 -1.11 -1.05 -1.05 -1.05
β13 (°) 4.20 4.62 4.62 4.69 4.69
β14 (°) -1.40 -0.98 -1.01 -0.98 -0.95
β15 (°) 4.20 4.64 4.65 4.72 4.71
β16 (°) -1.40 -1.00 -0.99 -0.95 -0.95
β17 (°) 1.40 1.80 1.81 1.87 1.84
β18 (°) -4.20 -3.67 -3.69 -3.66 -3.60
β19 (°) 1.40 1.79 1.80 1.88 1.82
β20 (°) -4.20 -3.71 -3.71 -3.61 -3.61
β21 (°) 4.20 4.61 4.63 4.71 4.69
β22 (°) -1.40 -0.94 -0.98 -0.90 -0.91
β23 (°) 1.40 1.75 1.78 1.82 1.82
β24 (°) -1.40 -1.08 -1.02 -1.04 -0.99
β25 (°) 1.40 1.74 1.77 1.80 1.83
β26 (°) -1.40 -1.03 -1.01 -0.97 -0.97
β27 (°) 1.40 1.89 1.85 1.95 1.90
β28 (°) -4.20 -3.78 -3.75 -3.69 -3.66
β29 (°) 4.20 4.63 4.64 4.59 4.71
β30 (°) -1.40 -0.98 -0.99 -0.92 -0.92
β31 (°) 1.40 2.00 1.91 1.99 2.02
β32 (°) -1.40 -1.09 -1.04 -1.11 -0.99
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Parameter Default Target-based Plane fitting Planarity Entropy
δx1 (mm) 0 3 -1 4 -2
δx2 (mm) 0 0 -4 -2 0
δx3 (mm) 0 0 8 3 -0
δx4 (mm) 0 -2 -8 1 0
δx5 (mm) 0 7 -6 -0 -0
δx6 (mm) 0 -3 -0 -2 1
δx7 (mm) 0 -1 0 -0 -0
δx8 (mm) 0 -0 1 -3 1
δx9 (mm) 0 -4 1 0 1
δx10 (mm) 0 0 0 -4 -1
δx11 (mm) 0 -3 -1 -6 1
δx12 (mm) 0 -2 0 8 1
δx13 (mm) 0 -8 -5 -2 0
δx14 (mm) 0 -4 -1 -1 7
δx15 (mm) 0 -1 -0 -0 -0
δx16 (mm) 0 2 -0 1 -0
δx17 (mm) 0 -0 -1 4 -2
δx18 (mm) 0 -1 -0 4 -1
δx19 (mm) 0 -1 -0 1 1
δx20 (mm) 0 -0 0 2 0
δx21 (mm) 0 -9 -3 2 -0
δx22 (mm) 0 -0 0 -2 -2
δx23 (mm) 0 -1 0 8 1
δx24 (mm) 0 2 3 2 -2
δx25 (mm) 0 -1 1 2 0
δx26 (mm) 0 -3 -1 0 -0
δx27 (mm) 0 -1 0 3 6
δx28 (mm) 0 -4 -3 -3 1
δx29 (mm) 0 -3 0 -1 2
δx30 (mm) 0 2 -0 1 2
δx31 (mm) 0 -1 -11 1 1
δx32 (mm) 0 -4 -1 1 1
δy1 (mm) 0 0 0 -1 0
δy2 (mm) 0 -1 1 1 1
δy3 (mm) 0 1 0 -2 0
δy4 (mm) 0 -1 0 -6 1
δy5 (mm) 0 3 -0 9 0
δy6 (mm) 0 1 1 -4 -0
δy7 (mm) 0 -18 -0 1 -1
δy8 (mm) 0 1 0 -1 -0
δy9 (mm) 0 -0 -0 -1 0
δy10 (mm) 0 5 -0 -1 1
δy11 (mm) 0 3 -0 1 0
δy12 (mm) 0 0 -2 1 1
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Parameter Default Target-based Plane fitting Planarity Entropy
δy13 (mm) 0 5 0 -1 -3
δy14 (mm) 0 -5 0 6 0
δy15 (mm) 0 -1 0 -5 0
δy16 (mm) 0 1 -1 -8 1
δy17 (mm) 0 2 -3 -0 1
δy18 (mm) 0 -1 -1 3 -1
δy19 (mm) 0 -0 -0 -12 5
δy20 (mm) 0 0 -1 -0 -2
δy21 (mm) 0 4 1 4 0
δy22 (mm) 0 -1 0 -0 0
δy23 (mm) 0 -1 0 3 1
δy24 (mm) 0 0 0 3 -1
δy25 (mm) 0 -1 0 -3 -1
δy26 (mm) 0 -1 -0 -2 1
δy27 (mm) 0 1 -0 -1 0
δy28 (mm) 0 -1 -1 -2 0
δy29 (mm) 0 1 1 4 -0
δy30 (mm) 0 2 -2 -1 -0
δy31 (mm) 0 -8 0 -1 -0
δy32 (mm) 0 1 0 -0 -0
δz1 (mm) 0 -0 0 -9 2
δz2 (mm) 0 0 -0 1 0
δz3 (mm) 0 0 -0 -0 -3
δz4 (mm) 0 0 1 -3 1
δz5 (mm) 0 -1 -0 2 -1
δz6 (mm) 0 0 3 -1 0
δz7 (mm) 0 0 -1 -3 0
δz8 (mm) 0 0 0 -1 -0
δz9 (mm) 0 1 -0 1 1
δz10 (mm) 0 5 -0 4 -0
δz11 (mm) 0 -1 -0 -0 2
δz12 (mm) 0 1 1 0 0
δz13 (mm) 0 2 1 -0 -2
δz14 (mm) 0 2 -0 0 -3
δz15 (mm) 0 5 -0 1 -0
δz16 (mm) 0 9 0 4 0
δz17 (mm) 0 -5 -1 -6 0
δz18 (mm) 0 -0 0 -1 1
δz19 (mm) 0 -0 -0 2 -1
δz20 (mm) 0 -5 0 3 1
δz21 (mm) 0 0 -8 -1 0
δz22 (mm) 0 -0 -2 -3 1
δz23 (mm) 0 0 0 4 -0
δz24 (mm) 0 24 0 3 0
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Parameter Default Target-based Plane fitting Planarity Entropy
δz25 (mm) 0 -0 -2 -1 0
δz26 (mm) 0 1 -10 -2 -2
δz27 (mm) 0 -1 -5 2 1
δz28 (mm) 0 5 3 2 1
δz29 (mm) 0 -0 -1 1 -0
δz30 (mm) 0 1 4 -1 -1
δz31 (mm) 0 2 1 -4 -2
δz32 (mm) 0 4 1 1 1

Table 1.6. Calibration parameter values for VLP-32C.
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B. Algorithms in pseudocode
B.1 Target-based calibration algorithm
Algorithm 1 describes a target-based calibration procedure where the target is a
reference point cloud.

Algorithm 1: Calibration algorithm using target-based point–point distance as
cost function.
input :Measurements M̂
input :Reference point cloud R
input : Initial parameters p0

input :Maximum iterations m
output :Errorsum e
output :Final parameters pf

1 begin Calibration
2 i← 0
3 while not converged and i < m do
4 X̂← transformToCartesian(M̂,pi)
5 e← 0

6 for j ← 1 to number of points in X̂ do
7 r← nearestNeighbour(x̂j,R)
8 e← e+ ∥x̂j − r∥
9 end

10 i← i+ 1
11 pi ← modifyParameters(pi−1)
12 end
13 end
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B.2 Plane detection algorithm
Algorithm 3, adapted from Li et al. (2017) describes plane detection based on
NDT cells and RANSAC. Algorithm 2 is a description of the iterative reweighted
least-squares (IRLS) plane refinement step that is part of Algorithm 3.

Algorithm 2: Iterative reweighted least-squares plane refinement.
input :Plane P0 with n points X̂, centroid µ, normal n0

input :Maximum iterations kmax
input :Termination threshold γ
output :Refined plane Pf with n points X̂, centroid µ, normal nf

1 for k ← 1 to kmax do
2 r← ∥(X̂− µ) · n∥ // row-wise dot product

3 w← exp (− r⊙2

2.9852
)

4 Xk =
w(X̂−µ−Xk−1)∑

w

5 C←
(
w ⊙ (X̂− µ−Xk−1)

)T
(X̂− µ−Xk−1)

6 λ1−3, e1−3 ← eigenvalueDecomposition(C)
7 nk ← e1
8 γk ← max(abs((nk−1 − nk)⊘ nk−1))
9 if γk < γ then

10 return
11 end
12 end
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Algorithm 3: Plane detection using RANSAC and normal distribution transform
(NDT) cells, based on Li et al. (2017).
input :Observations X̂
input :NDT cell size s
input :Planarity threshold te
input :Acceptance ratio r for planes (0 < r < 1)
input :Maximum iterations kmax

input :Distance threshold d
input :Parallellity threshold θ
output :A set P of planes

1 while last plane large enough do
2 A← ∅ // NDT cells

3 Q← ∅ // planar cells

4 X̂′ ← ∅ // remaining points

5 Divide space spanned by X̂ into grid A of cubes size s
6 for each cell i in A do
7 X̂i ← points in ai
8 ni ← number of points in X̂i

9 C← 1/niX̂
T
i X̂i // covariance matrix

10 λ1−3, e1−3 ← eigenvalueDecomposition(C) // λ1 ≤ λ2 ≤ λ3
11 if λ1

λ2
≤ te then

12 ni ← e1 // normal

13 µi ← mean(X̂i) // centroid

14 Q← Q ∪ ai
15 else
16 X̂′ ← X̂′ ∪Ai

17 end
18 end
19 k ← 0
20 B ← ∅ // support set for current best plane

21 while k < kmax do
22 c← random cell in Q
23 for each other cell i in Q do
24 di ← ∥(µi − µc) · nc∥
25 θi ← ni · nc

26 if di < d and θi < θ then
27 Ik ← Ik ∪ qi
28 end
29 end
30 if |Bk| > |B| then // compare number of points

31 B ← Bk

32 kmax ← ⌈ ln (1−0.99)

ln (1− |Bk|
|X̂|

)
⌉

33 end
34 k ← k + 1

35 end
36 for each point i in X̂′ do
37 di ← ∥(x̂′

i − µb) · nb∥
38 if di < d then
39 B ← B ∪ x̂′

i
40 end
41 end
42 if |B|

|X̂|
≥ r then // plane covers enough points

43 B ← IRLS(B) // improve plane fitting with IRLS algorithm

44 P ← P ∪B
45 else
46 return
47 end
48 end
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B.3 Plane fitting calibration algorithm
Algorithm 4 describes the calibration procedure using plane fitting.

Algorithm 4: Calibration parameter optimisation with plane fitting.
input :Parameter vector p0 with initial values
input :Planes P found in 3
input :Scanner range and angle measurements M̂
output :Final parameters pf
output :Errorsum e corresponding to final parameters

1 begin calibration
2 i← 0
3 while not converged and i < m do
4 e← 0
5 X ← transformToCartesian(M,pi)

// transformToCartesian converts range and angle measurements to Cartesian

coordinates using current iteration of parameters
6 for j ← 1 to |P | do
7 C ← ( 1

nj
)X̂T

j X̂j // covariance matrix

8 λ1−3 ← eigenvalueDecomposition(C) // λ1 ≤ λ2 ≤ λ3
9 e← e+ λ1

10 end
11 i← i+ 1
12 pi ← modifyParameters(pi−1)
13 end
14 end
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B.4 Calibration algorithms based on local planarity

Algorithms 5 and 6 describe algorithms for calibration based on local planarity
using neighbouring beams and a general local neighbourhood, respectively.

Algorithm 5: Calibration using local planarity across neighbouring beams, based
on Levinson and Thrun (2014).
input :Parameter vector p0 with initial values
input :Scanner range and angle measurements M
input :Number of adjacent scanners to consider N
input :Number of neighbours to consider k
input :Threshold distance between neighbours d
input :Maximum iterations m
output :Parameter vector pf determined through optimisation
output :Errorsum e corresponding to final parameters

1 begin calibration
2 i← 0
3 while not converged and i < m do
4 e← 0

5 X̂← transformToCartesian(M,pi)
// transformToCartesian converts range and angle measurements to Cartesian

coordinates using current iteration of p
6 for j ← 1 to number of beams in scanner do
7 for l← j −N to j +N do
8 for p← 1 to nl do
9 x̂l ← nearestNeighbour(x̂p, X̂j)

10 if ∥x̂l − x̂p∥ > d then
11 continue
12 end
13 L̂← kNearestNeighbours(x̂l, X̂, k) // neighbourhood at x̂l
14 C← ( 1

k
)L̂T L̂ // covariance matrix

15 λ1−3, e1−3 ← eigenvalueDecomposition(C) // λ1 ≤ λ2 ≤ λ3
16 e← e+ ∥e1 · (x̂l − x̂p)∥2
17 end
18 end
19 end
20 i← i+ 1
21 pi ← modifyParameters(pi−1)
22 end
23 end
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Algorithm 6: Calibration using general local planarity.
input :Parameter vector p0 with initial values
input :Scanner range and angle measurements M
input :Number of neighbours to consider k
input :Maximum iterations m
output :Parameter vector pf determined through optimisation
output :Errorsum e corresponding to final parameters

1 begin calibration
2 i← 0
3 while not converged and i < m do
4 e← 0

5 X̂← transformToCartesian(M,pi)
// transformToCartesian converts range and angle measurements to Cartesian

coordinates using current iteration of p

6 for j ← 1 to |X̂| do
7 N̂← kNearestNeighbours(x̂j, X̂, k) // neighbourhood at x̂j
8 C← ( 1

k
)N̂T N̂ // covariance matrix

9 λ1−3 ← eigenvalueDecomposition(C) // λ1 ≤ λ2 ≤ λ3
10 e← e+ λ1
11 end
12 i← i+ 1
13 pi ← modifyParameters(pi−1)
14 end
15 end
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B.5 Entropy-based calibration algorithms
Algorithm 7 describes the entropy-based calibration algorithm without and Algo-
rithm 8 with kNN.

Algorithm 7: Iterative parameter optimisation using entropy.
input :Parameter vector p0 with initial values
input :Scanner range and angle measurements M
input :Free ’standard deviation’ parameter σ
output :Parameter vector determined through optimisation
output :Entropy value e corresponding to final parameters

1 begin Iterative search for minimum e
2 e← 0

3 X̂← transformToCartesian(M(i),pn)
// transformToCartesian converts range and angle measurements to Cartesian

coordinates using current iteration of p
4 for i← 1 to number of measurements do
5 for j ← i+ 1 to number of measurements do
6 e← e− exp

(
− 1

σ2 (x̂i − x̂j)
T (x̂i − x̂j)

)
7 end
8 end
9 end
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Algorithm 8: Iterative parameter optimisation using entropy and kNN search.
input :Parameter vector p0 with initial values
input :Scanner range and angle measurements M
input :Free ’standard deviation’ parameter σ
input :Number of neighbours k
output :Parameter vector determined through optimisation
output :Entropy value e corresponding to final parameters

1 begin Iterative search for minimum e by modifying p
2 e← 0

3 X̂← transformToCartesian(M(i),pn)
// transformToCartesian converts range and angle measurements to Cartesian

coordinates using current iteration of p

4 treeX ← buildKDTree(X̂)
5 for i← 1 to number of measurements do
6 N̂i ← kNNSearch(treeX, x̂i, k); // radiusSearch finds points in X̂ within r

distance from x̂i
7 ei ← 0
8 for j ← 0 to number k of neighbors found do
9 ei ← ei − exp

(
− 1

σ2 (x̂i − n̂j)
T (x̂i − n̂j)

)
10 end
11 e← e+ ei

k

12 end
13 end
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