20 research outputs found

    Multiobjective programming for type-2 hierarchical fuzzy inference trees

    Get PDF
    This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure. Specifically, a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of HFIT takes place in two phases. Firstly, a nondominated sorting based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (low model’s complexity) with a high accuracy. Secondly, the differential evolution algorithm is applied to optimize the obtained tree’s parameters. In the obtained tree, each node has a different input’s combination, where the evolutionary process governs the input’s combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree’s structural optimization that accept inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by most of the other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selectio

    Interval type-2 intuitionistic fuzzy logic system for non-linear system prediction

    Full text link

    Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems

    Get PDF
    This paper presents a novel application of a hybrid learning approach to the optimisation of membership and non-membership functions of a newly developed interval type-2 intuitionistic fuzzy logic system (IT2 IFLS) of a Takagi-Sugeno-Kang (TSK) fuzzy inference system with neural network learning capability. The hybrid algorithms consisting of decou- pled extended Kalman filter (DEKF) and gradient descent (GD) are used to tune the parameters of the IT2 IFLS for the first time. The DEKF is used to tune the consequent parameters in the forward pass while the GD method is used to tune the antecedents parts during the backward pass of the hybrid learning. The hybrid algorithm is described and evaluated, prediction and identification results together with the runtime are compared with similar existing studies in the literature. Performance comparison is made between the proposed hybrid learning model of IT2 IFLS, a TSK-type-1 intuitionistic fuzzy logic system (IFLS-TSK) and a TSK-type interval type-2 fuzzy logic system (IT2 FLS-TSK) on two instances of the datasets under investigation. The empirical comparison is made on the designed systems using three artificially generated datasets and three real world datasets. Analysis of results reveal that IT2 IFLS outperforms its type-1 variants, IT2 FLS and most of the existing models in the literature. Moreover, the minimal run time of the proposed hybrid learning model for IT2 IFLS also puts this model forward as a good candidate for application in real time systems

    An incremental interval Type-2 neural fuzzy Classifier

    Full text link
    © 2015 IEEE. Most real world classification problems involve a high degree of uncertainty, unsolved by a traditional type-1 fuzzy classifier. In this paper, a novel interval type-2 classifier, namely Evolving Type-2 Classifier (eT2Class), is proposed. The eT2Class features a flexible working principle built upon a fully sequential and local working principle. This learning notion allows eT2Class to automatically grow, adapt, prune, recall its knowledge from data streams in the single-pass learning fashion, while employing loosely coupled fuzzy sub-models. In addition, eT2Class introduces a generalized interval type-2 fuzzy neural network architecture, where a multivariate Gaussian function with uncertain non-diagonal covariance matrixes constructs the rule premise, while the rule consequent is crafted by a local non-linear Chebyshev polynomial. The efficacy of eT2Class is numerically validated by numerical studies with four data streams characterizing non-stationary behaviors, where eT2Class demonstrates the most encouraging learning performance in achieving a tradeoff between accuracy and complexity

    Electrical Load Prediction using Interval Type-2 Atanassov Intuitionist Fuzzy System: Gravitational Search Algorithm Tuning approach

    Get PDF
    Establishing accurate electrical load prediction is vital for pricing and power system management. However, the unpredictable behavior of private and industrial users results in uncertainty in these power systems. Furthermore, the utilization of renewable energy sources, which are often variable in their production rates, also increases the complexity making predictions even more difficult. In this paper an interval type-2 intuitionist fuzzy logic systems whose parameters are trained in a hybrid fashion using gravitational search algorithms with the ridge least square algorithm is presented for short term prediction of electrical loading. Simulation results are provided to compare the performance of the proposed approach with that of state-of-the-art electrical load prediction algorithms for Poland, and five regions of Australia. The simulation results demonstrate the superior performance of the proposed approach over seven different current state-of-the-art prediction algorithms in literature, namely: SVR, ANN, ELM, EEMD-ELM-GOA, EEMD-ELM-DA, EEMD-ELM-PSO and EEMD-ELM-GWO

    Perpetual Learning Framework based on Type-2 Fuzzy Logic System for a Complex Manufacturing Process

    Get PDF
    This paper introduces a perpetual type-2 Neuro-Fuzzy modelling structure for continuous learning and its application to the complex thermo-mechanical metal process of steel Friction Stir Welding (FSW). The ‘perpetual’ property refers to the capability of the proposed system to continuously learn from new process data, in an incremental learning fashion. This is particularly important in industrial/manufacturing processes, as it eliminates the need to retrain the model in the presence of new data, or in the case of any process drift. The proposed structure evolves through incremental, hybrid (supervised/unsupervised) learning, and accommodates new sample data in a continuous fashion. The human-like information capture paradigm of granular computing is used along with an interval type-2 neural-fuzzy system to develop a modelling structure that is tolerant to the uncertainty in the manufacturing data (common challenge in industrial/manufacturing data). The proposed method relies on the creation of new fuzzy rules which are updated and optimised during the incremental learning process. An iterative pruning strategy in the model is then employed to remove any redundant rules, as a result of the incremental learning process. The rule growing/pruning strategy is used to guarantee that the proposed structure can be used in a perpetual learning mode. It is demonstrated that the proposed structure can effectively learn complex dynamics of input-output data in an adaptive way and maintain good predictive performance in the metal processing case study of steel FSW using real manufacturing dat

    A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism

    Full text link
    © 2015 Elsevier B.V. In this paper, a novel fuzzy rule transfer mechanism for self-constructing neural fuzzy inference networks is being proposed. The features of the proposed method, termed data-driven neural fuzzy system with collaborative fuzzy clustering mechanism (DDNFS-CFCM) are; (1) Fuzzy rules are generated facilely by fuzzy c-means (FCM) and then adapted by the preprocessed collaborative fuzzy clustering (PCFC) technique, and (2) Structure and parameter learning are performed simultaneously without selecting the initial parameters. The DDNFS-CFCM can be applied to deal with big data problems by the virtue of the PCFC technique, which is capable of dealing with immense datasets while preserving the privacy and security of datasets. Initially, the entire dataset is organized into two individual datasets for the PCFC procedure, where each of the dataset is clustered separately. The knowledge of prototype variables (cluster centers) and the matrix of just one halve of the dataset through collaborative technique are deployed. The DDNFS-CFCM is able to achieve consistency in the presence of collective knowledge of the PCFC and boost the system modeling process by parameter learning ability of the self-constructing neural fuzzy inference networks (SONFIN). The proposed method outperforms other existing methods for time series prediction problems

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information
    corecore