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Abstract: Establishing accurate electrical load prediction is vital for pricing and power system man- 9 

agement. However, the unpredictable behavior of private and industrial users results in uncertainty 10 

in these power systems. Furthermore, the utilization of renewable energy sources, which are often 11 

variable in their production rates, also increases the complexity making predictions even more dif- 12 

ficult. In this paper an interval type-2 intuitionist fuzzy logic systems whose parameters are trained 13 

in a hybrid fashion using gravitational search algorithms with the ridge least square algorithm is 14 

presented for short term prediction of electrical loading. Simulation results are provided to compare 15 

the performance of the proposed approach with that of state-of-the-art electrical load prediction 16 

algorithms for Poland, and five regions of Australia. The simulation results demonstrate the supe- 17 

rior performance of the proposed approach over seven different current state-of-the-art prediction 18 

algorithms in literature, namely: SVR, ANN, ELM, EEMD-ELM-GOA, EEMD-ELM-DA, EEMD- 19 

ELM-PSO and EEMD-ELM-GWO.  20 

Keywords: Electrical load prediction, interval type-2 Atanassov intuitionist fuzzy logic system; 21 

ridge least square algorithm; gravitational search algorithm 22 

 23 

1. Introduction 24 

Electrical power is vital for our life, it has illuminated our living areas, workplaces, 25 

and planet. Electrical load consumption in a region varies with several parameters such 26 

as population density, wealth, social factors, climate and distribution of use between 27 

home and industry [1]. It is required to have an accurate prediction of electrical load to 28 

continue to generate electrical power to meet demand and decrease the cost of electrical 29 

power delivery. In the UK, a study has shown that one percent load prediction error is 30 

equivalent to 10 million GBP in operating costs per year for the UK power system [2] [3]. 31 

Electricity generation companies use load forecasting data from a couple of hours to a 32 

week ahead to produce energy at what is perceived to be the correct volume and to plan 33 

maintenance [4]. Traditional flat methods of pricing electrical load are not efficient as it 34 

results in high peaks corresponding to people’s social behavior and the habits of industry 35 

[4]. To avoid such peaks, manage the network and reduce bills, newer methods such as 36 

variable peak pricing tariff and real time pricing are proposed which heavily depend 37 

upon real-time load prediction. The output of the prediction algorithms is further utilized 38 

in real time pricing, decision making processes and control algorithms for power system 39 

management purposes, improving the performance of predictors is of high interest. Re- 40 

newable energy sources such as solar energy [5], wind power [6] and offshore energy [7] 41 

further increase the complexity and makes predictions even more difficult due to their 42 

natural power fluctuations. Soft sensors technology [8] can estimate solar irradiation [5] 43 

which may contribute to decreasing the uncertainty introduced by this source of energy 44 
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to the overall power system. However, along with reducing the uncertainty associated 45 

with renewable energy sources, usage of more powerful prediction approaches to deal 46 

with these uncertainties is highly desirable. 47 

A variety of machine learning techniques are already used for electrical load predic- 48 

tion. Among classical approaches, the autoregressive integrated moving average method 49 

is most commonly used in literature [9][10]. However, more recent approaches to electric- 50 

ity load prediction have explored the use of fuzzy logic due to its power to describe the 51 

real world in terms of IF-THEN statements as well as its learning capabilities. Among 52 

fuzzy logic approaches, interval type-2 fuzzy logic systems used in [1] and interval type- 53 

2 Atanassov fuzzy logic systems (IT2AIFLS) used in [11] are previous approaches which 54 

have been used to predict electrical load data in different regions of Australia and Poland, 55 

respectively. The IT2AIFLSs benefit from more degrees of freedom compared to interval 56 

type-2 fuzzy logic systems, as in addition to membership grades they benefit from non- 57 

membership grades. Based on previous studies, the greater degrees of freedom in this 58 

type of fuzzy system may improve its overall performance [11], [12] and [13]. However, 59 

the success of such fuzzy logic systems is highly dependent on the methods used to solve 60 

the complex task of training them. This motivated us to challenge the use of new optimi- 61 

zation methods to increase the performance of IT2AIFLSs. 62 

Different methods currently exist to train IT2AIFLSs including gradient descent ap- 63 

proaches as well as hybrid computational methods [12] [13]. A full gradient descent 64 

method for training this structure is investigated in [14] where statistical analysis sup- 65 

ported the null hypothesis (𝛼 = 0.05) that the IT2AIFLS outperforms type-1 Attanassov 66 

intuitionist fuzzy logic systems. Although gradient descent methods provide a computa- 67 

tional approach to train IT2AIFLSs, they suffer from falling in a local minima and insta- 68 

bility problems. 69 

Hybrid computational methods instead use different training methods in the ante- 70 

cedent and consequent parts of an IT2AIFLS to improve performance. The hybrid training 71 

algorithms investigated in [11] use gradient descent for the antecedent part of the 72 

IT2AIFLS and Kalman filter for its consequent part. This prediction model is then used for 73 

prediction of the Mackey-Glass chaotic time series, the Santa–Fe time series and the Box– 74 

Jenkins time series, in addition to the electrical load consumption of Poland in the 1990s 75 

[11]. This approach has also been applied for the prediction of energy, stock market and 76 

house price datasets [13]. Hybrid training approaches utilizing intelligent optimization 77 

algorithms previously implemented on IT2FLSs include particle swarm optimization plus 78 

Kalman filter [15], particle swarm optimization plus recursive least square [15] and parti- 79 

cle swarm optimization plus gradient descent [16]. However, to the best of the authors’ 80 

knowledge a hybrid intelligent optimization approach for the antecedent part of IT2AIFLS 81 

and a computational method for its conclusion part parameters has not been investigated 82 

in literature. Hybrid training methods offer better performance than solely using a com- 83 

putational method as they do not have local minima and instability issues. Since intelli- 84 

gent optimization approaches are more appropriate options for the antecedent part pa- 85 

rameters which appear nonlinearly in the output of an IT2AIFLS, they are more appropri- 86 

ate options for training them. 87 

In this paper, a new hybrid training approach is proposed to improve the perfor- 88 

mance of the hybrid training methods. The gravitational search algorithm (GSA) is chosen 89 

for optimizing the antecedent part parameters of the IT2FLS. The GSA is a physics in- 90 

spired optimization algorithm [17] which defines each solution in terms of an object with 91 

mass, position, velocity and acceleration. The mass assigned to each object is proportional 92 

to its cost function and gravitational force among various objects absorbs masses with 93 

worst cost function to better object while scanning the space between them to find the 94 

optimum solution to the problem [18] [19]. The GSA was chosen due to its high perfor- 95 

mance, benefiting from multiple solutions and less probability to fall in a local minimum. 96 

This algorithm has already outperformed several optimization algorithms such as particle 97 

swarm optimization, the real genetic algorithm, the differential evolution algorithm and 98 
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central force optimization in benchmark optimization problems [19][20][21]. Additionally, 99 

the ridge least square (R-LS) algorithm is chosen for the consequent part parameter which 100 

solves an 𝑙2 cost function as a summation over identification error square plus the 𝑙2 - 101 

norm of the weights of the prediction system [22]. The R-LS algorithm is chosen as it is 102 

widely known to have superior generalization performance than the simple least square 103 

algorithm [22]. Comparisons are made between the proposed approach and some of ex- 104 

isting approaches in the field including hybrid gradient descent Kalman filter training for 105 

an IT2AIFLS [11] for electrical load prediction in Poland. Another comparison is provided 106 

between the proposed estimation method and seven different estimation algorithms for 107 

electrical load prediction in five regions of Australia, namely: SVR, ANN, ELM, EEMD- 108 

ELM-GOA, EEMD-ELM-DA, EEMD-ELM-PSO and EEMD-ELM-GWO. The comparison 109 

results show the superior performance of the proposed approach over state-of-the-art ap- 110 

proaches in literature. In particular, it outperforms the approach investigated in [11] 111 

which uses the IT2AIFLS but hybrid Gradient descent Kalman filter as the training algo- 112 

rithm.  113 

This paper is organized as follows. Section II introduces the general structure of in- 114 

terval type-2 The methodology of this paper is presented in Section III. Simulation results 115 

are presented in Section IV. Finally concluding marks are presented in Section V. 116 

2. Attanassov Intuitionist fuzzy system  117 

Atanassov intuitionist fuzzy logic systems are a newer variant of the fuzzy logic fam- 118 

ily which have been successfully applied for prediction purposes [11] as well as pattern 119 

recognition [23]. Non-membership grade (𝜈) for an input to an ordinary fuzzy MF (𝜇) is 120 

simply calculated as the complement of its membership grade as (𝜈 = 1 − 𝜇). However, 121 

for an intuitionist fuzzy set (𝜈 + 𝜇) does not necessarily need to be equal to one [24]. This 122 

introduces a degree of hesitation or intuition for the fuzzy set. Atanassov in 1986 defined 123 

𝜋 ∈ [𝑂, 1] as the degree of hesitation which complements the membership and non-mem- 124 

bership grades of an input such that 𝜋 + 𝜈 + 𝜇 = 1.  125 

2.1. Attanassov Intutionist fuzzy set 126 

A fuzzy set is an ordinary fuzzy set if the degrees of membership and non-member- 127 

ship for every single input value add up to one. However, if the degrees of membership 128 

and non-membership do not add up to one for some input values, the fuzzy set is an 129 

intuitionist one. Let 𝑋 be the universe of discourse and 𝑥 be an individual value selected 130 

from it. The intuitionist fuzzy set 𝐴̃∗ is defined as presented in the followings:  131 
𝐴̃∗ = {<  𝜇𝐴̃∗(𝑥), 𝜈𝐴∗(𝑥) > |𝑥 ∈ 𝑋} (1) 

where 𝜇𝐴̃∗(𝑥): 𝑋 → [0, 1]  is the membership grade and 𝜈𝐴∗(𝑥): 𝑋 → [0, 1]  is the non- 132 

membership grade for the input value 𝑥 ∈ 𝑋, and we have 0 ≤ 𝜇𝐴∗(𝑥) + 𝜈𝐴∗(𝑥) ≤ 1 [25]. 133 

In the special case, when 𝜈𝐴∗(𝑥) = 1 − 𝜇𝐴∗(𝑥) the intutionist fuzzy set reduces to an ordi- 134 

nary fuzzy set. However, if this equality does not hold the intuition index of 𝑋 in 𝐴 is 135 

represented by 𝜋𝐴∗(𝑥) and defined by:  136 
𝜋𝐴∗(𝑥) = 𝑚𝑎𝑥(0, (1 − (𝜇𝐴∗(𝑥) + 𝜈𝐴∗(𝑥)))) (2) 

2.2  Structure of Attanassov Intutionist fuzzy system 137 

 Let 𝑇 be the total number of inputs for the IT2AIFLS, with each sample containing 138 

𝑛 −dimensional input values 𝑥 ∈ 𝑅𝑛  and 𝑚 −dimensional output values 𝑦 ∈ 𝑅𝑚 . The 139 

membership functions considered for this structure are interval type-2 Gaussian MFs with 140 

uncertain 𝜎 values. The inference mechanism to calculate the output of the IT2AIFLS is 141 

demonstrated in Fig. 1 and is explained as follows: 142 

Layer 1: The input layer is the first layer of this system which consists of 𝑛 nodes 143 

passing input values to the fuzzification layer.  144 

Layer 2: The fuzzification layer is the second layer which uses interval type-2 At- 145 

anassov membership functions. The inputs to this layer are the outputs of the previous 146 

layer and its outputs are the degrees of membership and non-membership which are 147 
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themselves interval values. The 𝜋𝑐,𝑖𝑘(𝑥𝑖) represents the IF-index or hesitation of center 148 

and 𝜋𝑣𝑎𝑟,𝑖𝑘(𝑥𝑖) is the IF-index of variance and are defined by:  149 

 150 

𝜋𝑐(𝑥) = 𝑚𝑎𝑥 (0, (1 − (𝜇𝐴̃∗(𝑥) + 𝜈𝐴∗(𝑥)))) 

𝜋𝑣𝑎𝑟(𝑥) = 𝑚𝑎𝑥 (0, (1 − (𝜇𝐴∗(𝑥) + 𝜈𝐴∗(𝑥)))) 

𝜋𝑣𝑎𝑟(𝑥) = 𝑚𝑎𝑥(0, (1 − (𝜇𝐴∗(𝑥) + 𝜈𝐴̃∗(𝑥)))) 

(3) 

 

such that 0 ≤ 𝜋𝑐(𝑥) ≤ 1, 0 ≤ 𝜋𝑣𝑎𝑟(𝑥) ≤ 1 and 0 ≤ 𝜋𝑣𝑎𝑟(𝑥) ≤ 1 and the degrees 

of membership as well as non-membership are defined as follows:  

𝜇𝑖𝑘(𝑥𝑖) = 𝑒𝑥𝑝 (
(𝑥𝑖 − 𝑐𝑖𝑘)

2

2𝜎2,𝑖𝑘
2 ) (1 − 𝜋𝑐,𝑖𝑘(𝑥𝑖)) , 𝑖 = 1,… , 𝑛, 𝑘 = 1,… ,𝑀 

𝜇𝑖𝑘(𝑥𝑖) = 𝑒𝑥𝑝 (
(𝑥𝑖 − 𝑐𝑖𝑘)

2

2𝜎1,𝑖𝑘
2 ) (1 − 𝜋𝑐,𝑖𝑘(𝑥𝑖)) , 𝑖 = 1, … , 𝑛, 𝑘 = 1,… ,𝑀 

𝜈𝑖𝑘(𝑥𝑖) = (1 − 𝜋𝑣𝑎𝑟,𝑖𝑘(𝑥𝑖)) − [𝑒𝑥𝑝 (
(𝑥𝑖 − 𝑐𝑖𝑘)

2

2𝜎1,𝑖𝑘
2 ) (1 − 𝜋𝑐,𝑖𝑘(𝑥𝑖))] , 𝑖 = 1,… , 𝑛, 𝑘

= 1,… ,𝑀 

𝜈𝑖𝑘(𝑥𝑖) = (1 − 𝜋𝑣𝑎𝑟,𝑖𝑘(𝑥𝑖)) − [𝑒𝑥𝑝 (
(𝑥𝑖 − 𝑐𝑖𝑘)

2

2𝜎2,𝑖𝑘
2 ) (1 − 𝜋𝑐,𝑖𝑘(𝑥𝑖))] , 𝑖 = 1,… , 𝑛, 𝑘

= 1,… ,𝑀 (4) 

The parameters 𝜎2𝑖,𝑘, 𝜎1𝑖,𝑘, 𝜋𝑐,𝑖𝑘, 𝜋𝑣𝑎𝑟,𝑖𝑘 and 𝑐 are premise part parameters associ- 151 

ated with interval type-2 intuitionistic fuzzy MFs. Furthermore, n is the number of inputs 152 

to the system and M is the total number of rules in the fuzzy system. 153 

Layer 3: The rule layer is the third layer of the IT2AIFLS which calculates the firing 154 

values of the rules of the fuzzy system are presented by [26]:  155 

𝑓
𝑘

𝜇
(𝑥) = 𝜇1𝑘(𝑥1) ∗ 𝜇2𝑘(𝑥2) ∗ … ∗ 𝜇𝑛𝑘(𝑥𝑛) 

𝑓𝑘
𝜇
(𝑥) = 𝜇1𝑘(𝑥1) ∗ 𝜇2𝑘(𝑥2) ∗. . .∗ 𝜇𝑛𝑘(𝑥𝑛) 

𝑓
𝑘

𝜈
(𝑥) = 𝜈1𝑘(𝑥1) ∗ 𝜈2𝑘(𝑥1) ∗. . .∗ 𝜈𝑛𝑘(𝑥𝑛) 

𝑓𝑘
𝜈(𝑥) = 𝜈1𝑘(𝑥1) ∗ 𝜈2𝑘(𝑥2) ∗. . .∗ 𝜈𝑛𝑘(𝑥𝑛) (5) 

Layer 4: The output layer is the last layer of the system which performs the defuzzi- 156 

fication + type reduction and calculates the output of the fuzzy system as follows.  157 

𝑦 =
𝛽 ∑𝑀𝑘=1 (𝑓𝑘

𝜇
+ 𝑓

𝑘

𝜇
) 𝐹𝑘

𝜇

∑𝑀𝑘=1 𝑓𝑘
𝜇
+ ∑𝑀𝑘=1 𝑓𝑘

𝜇 +
(1 − 𝛽)∑𝑀𝑘=1 (𝑓𝑘

𝜈 + 𝑓
𝑘

𝜈
) 𝐹𝑘

𝜈

∑𝑀𝑘=1 𝑓𝑘
𝜈 + ∑𝑀𝑘=1 𝑓𝑘

𝜈  (6) 

where the parameter 𝛽 ∈ [0, 1] is the coefficient which determines which determines the 158 

weight of its corresponding terms in the output. Moreover, the firing of the rules corre- 159 

sponding to the membership functions are defined as follows:  160 

𝑟𝑘
𝜇
=

𝑓𝑘
𝜇
+ 𝑓

𝑘

𝜇

∑𝑀𝑘=1 𝑓𝑘
𝜇
+ ∑𝑀𝑘=1 𝑓𝑘

𝜇 (7) 

 and the ones corresponding to non-membership values are defined as follows:  161 

𝑟𝑘
𝜈 =

𝑓𝑘
𝜈 + 𝑓

𝑘

𝜈

∑𝑀𝑘=1 𝑓𝑘
𝜈 + ∑𝑀𝑘=1 𝑓𝑘

𝜈 (8) 

Furthermore, 𝐹𝑘
𝜇 and 𝐹𝑘

𝜈 are defined as follows:  162 

𝐹𝑘
𝜇
=∑

𝑛

𝑖=1

𝛼𝑖𝑘
𝜇
𝑥𝑖 + 𝛽𝑘

𝜇 

𝐹𝑘
𝜈 =∑

𝑛

𝑖=1

𝛼𝑖𝑘
𝜈 𝑥𝑖 + 𝛽𝑘

𝜈 
(9) 
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 165 

The output of the IT2AIFLS can be rewritten as follows [27]:  166 

𝑦 =
𝛽 ∑𝑀𝑘=1 𝑟𝑘

𝜇
𝐹𝑘
𝜇

∑𝑀𝑘=1 𝑟𝑘
𝜇 +

(1 − 𝛽)∑𝑀𝑘=1 𝑟𝑘
𝜈𝐹𝑘

𝜈

∑𝑀𝑘=1 𝑟𝑘
𝜈  

(10) 

The equation (10) can be further compacted to the following form. 167 
𝑦 = 𝛽𝑦𝜇 + (1 − 𝛽)𝑦𝜈 (11) 

To be able to apply ridge least square algorithm to update the parameters of the IT2AIFLS, 168 

we need to write it as follows: 169 
𝑦 = 𝛽𝜃𝜇𝑇𝜙𝜇 + (1 − 𝛽)𝜃𝜈𝑇𝜙𝑣 (12) 

where the parameters 𝜙𝜇 and 𝜃𝜇  are as follows: 170 
𝜙𝜇 = [𝑅𝜇𝑇 𝑅𝜇𝑇𝑥1 … 𝑅𝜇𝑇𝑥𝑛]

𝑇 

𝑅𝜇 = [
𝑟1
𝜇

∑𝑀𝑘=1 𝑟𝑘
𝜇

𝑟2
𝜇

∑𝑀𝑘=1 𝑟𝑘
𝜇 …

𝑟𝑀
𝜇

∑𝑀𝑘=1 𝑟𝑘
𝜇] 

(13) 

1st. layer 3rd. layer 2nd. layer 4th. layer 

Figure 1. Structure of IT2AIFLS 
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𝜃 (𝑛+1).𝑀
𝜇𝑇

= [𝛽1
𝜇
, . . . , 𝛽𝑀

𝜇
, 𝛼11

𝜇
, . . . , 𝛼1𝑀

𝜇
, . . . , 𝛼𝑛1

𝜇
, . . . , 𝛼𝑛𝑀

𝜇
] 

and the parameters 𝜙𝜈 and 𝜃𝜈  are as follows: 171 
𝜙𝜈 = [𝑅𝜈𝑇 𝑅𝜈𝑇𝑥1 … 𝑅𝜈𝑇𝑥𝑛] 

𝑅𝜈 = [
𝑟1
𝜈

∑𝑀𝑘=1 𝑟𝑘
𝜈

𝑟2
𝜈

∑𝑀𝑘=1 𝑟𝑘
𝜈 …

𝑟𝑀
𝜈

∑𝑀𝑘=1 𝑟𝑘
𝜈] 

𝜃 (𝑛+1).𝑀
𝜈𝑇 = [𝛽1

𝜈 , . . . , 𝛽𝑀
𝜈 , 𝛼11

𝜈 , . . . , 𝛼1𝑀
𝜈 , . . . , 𝛼𝑛1

𝜈 , . . . , 𝛼𝑛𝑀
𝜈 ] 

 

(14) 

3. Methodology 172 

The parameters of the IT2AIFLS are estimated using the GSA and the R-LS algorithm. 173 

The GSA is used to estimate the antecedent part parameters of the IT2AIFLS which ap- 174 

pears nonlinearly in the output of the system. The R-LS algorithm is used to estimate the 175 

consequent part parameters of the IT2AIFLS as they appear linearly in the output. Because 176 

the GSA is initiated from multiple start points, the probability of falling into a local mini- 177 

mum for this algorithm is less than computational approaches, such as gradient descent, 178 

that are initiated from a single point.  179 

3.1 GSA optimization of Antecdent part parameters 180 

The GSA is employed to optimize the antecedent part parameters which include the 181 

interval associated with sigma value [𝜎1,𝑖𝑘 𝜎2,𝑖𝑘] and the crisp center (𝑐𝑖𝑘) of intutionist 182 

Gaussian functions in (4). Using the GSA, the antecedent part parameters are encoded in 183 

terms of the positions of particles in the GSA with their velocity vector and acceleration 184 

terms are updated using the GSA. Each solution in the GSA is defined as the particle 185 

positions in a 𝑑 −dimensional search space representing the antecedent part parameters. 186 

The position vector associated with the GSA is as follows: 187 

𝑝𝑙 = (𝜎1,11
𝑙 , … , 𝜎1,𝑖𝑘

𝑙 , … , 𝜎1,𝑛𝑀
𝑙 , 𝜎2,11

𝑙 , … , 𝜎2,𝑖𝑘
𝑙 , … , 𝜎2,𝑛𝑀

𝑙 , 𝑐11
𝑙 , … , 𝑐𝑖𝑘

𝑙 , … , 𝑐𝑛𝑀
𝑙 ), 𝑙 = 1,… , 𝑁 (15) 

where 𝜎1,𝑖𝑘
𝑙 , 𝜎2,𝑖𝑘

𝑙  and 𝑐𝑖𝑘 refer to antecedent part parameters as appeared in (4) which 188 

correspond to the k-th rule for i-th input and l represents the l-th solution for the particle, 189 

𝜎2,𝑖𝑘
𝑙  refers to 𝜎2  value as appeared in (4) corresponding to the k-th rule for i-th input and 190 

l is the solution counter. The total number of antecedent part parameters to be estimated 191 

in this case is equal to 3 × 𝑛 ×𝑀 . To evolve the antecedent part parameters according to 192 

the GSA, a mass value is assigned to each particle according to its merit, with a higher 193 

mass representing an antecedent part with a lower mean squared error and a lower mass 194 

representing a higher mean squared error. This makes the particles with worse perfor- 195 

mance move towards better particles. The mass of particles is updated and normalized at 196 

the 𝑡𝑡ℎ iteration as [5]:  197 

𝑀𝑙(𝑡) =
𝑚𝑙(𝑡)

∑𝑁𝑙=1 𝑚
𝑙(𝑡)

 
(16) 

where 𝑚𝑖(𝑡) is a non-normalized mass value corresponding to the 𝑖𝑡ℎ particle at itera- 198 

tion number 𝑡. The values of 𝑚𝑖(𝑡) represent the quality of a solution and are defined as 199 

[5]:  200 

𝑚𝑙(𝑡) =
𝑓(p𝑙) − 𝑓𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑓𝑏𝑒𝑠𝑡(𝑡) − 𝑓𝑤𝑜𝑟𝑠𝑡(𝑡)
 

(17) 

where 𝑓(𝑝l) is the mean squared error value corresponding to 𝑝l after estimating the 201 

consequent part parameters corresponding to 𝑝l parameters using the R-LS algorithm. 202 

The R-LS is summarized in Section 5.3, 𝑓𝑤𝑜𝑟𝑠𝑡(𝑡) and 𝑓𝑏𝑒𝑠𝑡(𝑡) are updated at every itera- 203 

tion as follows:  204 
𝑓𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥{𝑓(𝑝𝑙)}𝑙=1,...,𝑁 
𝑓𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛{𝑓(𝑝

𝑙)}𝑙=1,...,𝑁 
(18) 

In each iteration, the acceleration term and velocity value must be calculated to update 205 

the position vector 𝑝𝑙. The position term in each step is updated as follows: 206 

𝑝𝑙(𝑡 + 1) = 𝑝𝑙(𝑡) + 𝑣𝑙(𝑡 + 1) (19) 

where 𝑣𝑙  represents the velocity vector and is updated using the acceleration term 𝑎𝑙 207 

as follows: 208 
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𝑣l(𝑡 + 1) = 𝑟𝑖   𝑣
l(𝑡) + 𝑎l(𝑡) (20) 

where 𝑣l(𝑡) ∈ 𝑅𝑑  represents the 𝑑 −dimensional velocity of the particles at 𝑡𝑡ℎ iteration 209 

and 𝑟𝑖 ∈ [0, 1] is a uniform random number. The acceleration term, 𝑎l(𝑡), is then up- 210 

dated as follows: 211 

𝑎𝑙(𝑡) = ∑

𝑗∈{1,...,𝑘𝑏}

𝑟𝑗𝐺(𝑡)
𝑀𝑙(𝑡)(𝑝𝑗(𝑡) − 𝑝l(𝑡))

∥ 𝑝𝑙(𝑡) − 𝑝𝑗(𝑡) ∥𝑟𝑝+ 𝜀
 

(21) 

where 𝑘𝑏 represents the number of best solutions selected, ∥. ∥ stands for the Euclidean 212 

norm, 𝜀 is a small value added to prevent division by 𝑧𝑒𝑟𝑜, 𝑟𝑝 is the power considered 213 

for the Euclidean distance between two particles, 𝐺(𝑡) is the gravitational constant and 214 

𝑟𝑗 ∈ [0, 1] is a uniform random value. The gravitational constant is then updated at each 215 

iteration using the following equation:  216 

𝐺(𝑡) = 𝐺0𝑒𝑥𝑝 (−𝛽
𝑡

𝑡𝑚𝑎𝑥
) (22) 

where 𝐺0 has a constant real value and 𝑡𝑚𝑎𝑥 is the maximum value of algorithm itera- 217 

tion. 218 

3.2 Ridge Least Square Estimation of Consequent Part Parameters 219 

The consequent part parameters of the IT2AIFLS are trained using the R-LS algorithm 220 

also known as Tikhonov regularization. To be able to apply the R-LS algorithm to the 221 

consequent part parameters we need to write them in a matrix form as in (23). Then the 222 

R-LS algorithm of (27) can be applied to estimate the consequent part parameters. The R- 223 

LS algorithm, also known as Tikhonov regularization, is the solution to the following 𝒍𝟐- 224 

norm cost function [22].  225 

min
𝜃∈𝑅𝑛

‖𝛷𝜃 − 𝑌‖2
2 + λ‖𝜃‖2

2 (24) 

where ‖. ‖𝟐  denotes the 𝑙2-norm and λ is a regulation parameter. Furthermore, the pa- 226 

rameters 𝛷, 𝜃 and 𝑌 are as follows: 227 

𝛷 =

[
 
 
 
 𝜙1

𝜇𝑇
𝜙1
𝜈𝑇

𝜙2
𝜇𝑇

𝜙2
𝜈𝑇

⋮

𝜙𝑆
𝜇𝑇

𝜙𝑆
𝜈𝑇]
 
 
 
 

 

(25) 

𝑌 = [

𝑦1
𝑦2
⋮
𝑦𝑆

] 

(26) 

𝜃 = [𝜃
𝜇𝑇

𝜃𝜈𝑇] (27) 

where 𝜙𝜇 and 𝜙𝜈 for each sample are defined in (13) and (14), S is the total number of 228 

samples, 𝜃𝜇 and 𝜃𝜈 are defined in (13) and (14), 𝑦𝑠, 𝑠 = 1, . . . , 𝑆 are the measured val- 229 

ues. This solution to this problem prevents over-fitness and the analytical solution to the 230 

problem is obtained by 231 

𝜃 = (𝛷𝑇𝛷 + λI)−1𝛷𝑇𝑌 (28) 

where 𝐈 is the identity matrix. It is then necessary to select the parameter λ for the R-LS 232 

algorithm. Large values for 𝛌 need to be avoided to maintain the prediction accuracy of 233 

the system. An appropriate value for this parameter was found to be 0.01 in this paper 234 

through trial and error.  235 

3.3. Performance measurement 236 

Root mean squared error (RMSE), as the most common performance evaluation method, 237 

is used to illustrate the identification performance with its mathematical formula being 238 

as follows. 239 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝐼𝑇2𝐴𝐼𝐹𝐿𝑆(𝑡) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑡))

2

𝑁

𝑡=1

 

(29) 

where 𝑁 is the number of test samples, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) is the actual value of the system target 240 

and 𝑦𝐼𝑇2𝐴𝐼𝐹𝐿𝑆(𝑡) is the output of the IT2AIFLS. 241 

The flow chart of the proposed tuning method for the IT2AIFLS using GSA for the ante- 242 

cedent part parameters and the R-LS algorithm for the consequent part parameters is 243 

illustrated in Fig. 2. The first step is to create the random initial population, then the con- 244 

sequent part parameters are estimated using R-LS according to (28). The output of the 245 

IT2AIFLS can then be calculated using (2)-(14). The cost function associated with each 246 

member of the population is calculated using the RMSE formula (29). The GSA algo- 247 

rithm is then iterated for a single iteration to generate the next positions according to 248 

(16) – (22). If the stop conditions are not met, we need to iterate the algorithm until the 249 

stop condition is satisfied. 250 

 251 

Figure 2. Flow chart of the proposed tuning method for the IT2AIFLS using the GSA for antecedent part parameters and the R-LS algorithm for 252 

the consequent part parameters 253 

4. Simulation Results 254 

4.1. Benchmark Identification Problem 255 

Although the proposed prediction method is mainly designed for electricity load predic- 256 

tion, to test its efficacy, it is implemented on a benchmark second order nonlinear dy- 257 

namic system with time-varying parameters [28]. This nonlinear dynamic system has 258 

been previously tested in several papers with other prediction methods to show their 259 

efficacy. The output of this dynamic system is a nonlinear time-varying function of in- 260 

puts, with time delays of input and output as follows  [28]. 261 

𝑦(𝑡 + 1) = 𝑓(𝑦(𝑡), 𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑢(𝑡), 𝑢(𝑡 − 1) (30) 

where the nonlinear function 𝑓(. ) is defined as follows: 262 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) =
𝑥1𝑥2𝑥3𝑥5(𝑥3 − 𝑏) + 𝑐𝑥4

𝑎 + 𝑥2
2 + 𝑥3

2  
(31) 

and parameters 𝑎, 𝑏 and 𝑐 are time-varying parameters defined by: 263 

𝑎(𝑡) = 1.2 − 0.2 cos (
2𝜋𝑡

𝑇
) 

(32) 
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𝑏(𝑡) = 1.0 − 0.4 sin (
2𝜋𝑡

𝑇
) 

𝑐(𝑡) = 1.0 + 0.4 sin (
2𝜋𝑡

𝑇
) 

with 𝑇, the total number of samples, taken to be equal to 1000. The input signal to the 264 

system 𝑢(𝑡) is taken as follows: 265 

𝑢(𝑡) =

{
 
 

 
 sin (

𝜋𝑡

25
) 𝑡 < 250

1.0 250 ≤ 𝑡 < 500
−1.0 500 ≤ 𝑡 < 750
𝑓(𝑡) 750 ≤ 𝑡 < 1000

 

(33) 

where: 266 

𝑓(𝑡) = 0.3 sin (
𝜋𝑡

25
) + 0.1sin (

𝜋𝑡

32
)  +0.6sin (

𝜋𝑡

10
) (34) 

The first 80% of the generated data is used for training and the last 20% is chosen for 267 

testing purposes. The comparison results with several other methods including Type-1 268 

TSK FNS [29], Type-2 TSK FNS [29], Feedorward Type-2 FNN [11], SIT2FNN [30], SEIT2 269 

FNN [31], TSCIT2FNN [32], IT2 FNN-GD [28], IT2 FNN-SMC [28], IT2 FNNPSO+ SMC 270 

[28], IT2 IFLS -DEKF+GD [12], IT2FLS with Modified SVR [33] are presented in Table I. 271 

Where results support the idea that the proposed approach is effective at system 272 

identification by outperforming the other tested algorithms. The behaviour of the 273 

proposed identification system for the training and tesing data is presented in Figs 3 and 274 

4, respectively. As these figures show, the error between the real data and the output of 275 

the IT2AIFLS is very low. 276 

 277 

Figure 3 Performance of the proposed prediction method for the time-varying nonlinear system dataset (train set) 278 
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Figure 4  Performance of the proposed prediction method for the time-varying nonlinear system dataset (test set) 280 
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Table I. Performance of the Proposed Approach as well as Several Existing Methods in 281 

Literature on Time-Varying System Identification. Bold faced results indicate the best re- 282 

sults. 283 

Motivated by the fact that the proposed system identification method can successfully 284 

outperform several state-of-the-art system identification approaches in literature. This 285 

method was then used for electrical load prediction in Sections 4.2 and 4.3, where the real- 286 

time electrical load of Poland and five different regions in Australia are considered, re- 287 

spectively. Comparisons with state-of-the-art prediction models are then presented to il- 288 

lustrate the performance of the proposed prediction method.  289 

 290 

4.2. Electrical Load Prediction for Poland  291 

The dataset selected in this part shows the performance of the proposed approach to deal 292 

with electrical load prediction using the Poland electricity load dataset available online 293 

[34] which presents electricity load values of Poland in the 1990s on a daily basis [35]. A 294 

statistical analysis is conducted for the Poland dataset to examine if this time series is sta- 295 

tionary or not. To evaluate this property of the Poland electrical load dataset, Augmented 296 

Dickey Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are utilized. 297 

These two tests are available under the statsmodels Python package. The test statistic 298 

value under these two tests as well as their critical vales are given in Table II where it can 299 

 

Rules Epoch Training 

RMSE 

Testing 

RMSE 

Type-1 TSK FNS [29] 9 100 0.0282  0.0598 

Type-2 TSK FNS [29] 4 100 0.0284  0.0601 

Feedorward Type-2 FNN [11] 3 100 0.0281  0.0593 

SIT2FNN [30] 4 100 0.0351  0.0560 

SEIT2 FNN [31] 3 100 0.0274  0.0574 

TSCIT2FNN [32] 3 100 0.0279  0.0576 

IT2 FNN-GD [28] - 200 0.0540  0.0613 

IT2 FNN-SMC [28] - 200 0.0360  0.0390 

IT2 FNNPSO+ SMC [28] - 200 0.0199  0.0390 

IT2 IFLS -DEKF+GD [12] 4 100 0.0250  0.0310 

IT2FLS with Modified SVR [33] 11 Non-

iterative 

0.0146 0.0348 

Proposed approach 14 200 0.0095 0.0106 
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be seen that the test value for ADF is greater than the critical value with a 5% confidence 300 

interval, and the test value for KPSS is less than the critical value with a 5% confidence 301 

interval. This means that this type of dataset is a trend stationary one. Although the sta- 302 

tionary property of the signal is required in some statistical approaches, it is expected that 303 

the IT2AIFLS can handle this trend stationary signal due to its nonlinear nature. 304 

 305 

Table II. Results of the ADF and KPSS tests for the Poland electrical load dataset 306 

Test Value Critical value (5% confidence 

interval) 

ADF-test -2.55 -2.86 

KPSS-test 0.34 0.46 

As separated on the website, 1400 sample data are selected for training and 201 data sam- 307 

ples are selected for testing. In this approach the one-step ahead prediction problem is 308 

investigated. The inputs taken for this prediction are the current value of electricity load 309 

and its time delays as [𝑦(𝑡), 𝑦(𝑡 − 1) 𝑦(𝑡 − 2) 𝑦(𝑡 − 3)]. Here 14 rules (number of 𝑟𝑘
𝜇s 310 

and 𝑟𝑘
𝜈s) are considered for the fuzzy system and the number of rules was obtained by 311 

trial and error to maximize performance. The performance comparison between the pro- 312 

posed approach and previous approaches in literature are presented in Table III. As can 313 

be seen from the table, IT2AIFLS with GSA-R-LS outperforms IT2FLS DEFKF+GD, IFLS 314 

DEKF+GD, IT2 IFLS DEKF+GD and IT2 AIFLS DEKF+GD (previously studied in [11] on 315 

the same dataset) by at least 5.7%. The prediction performance of the proposed algorithm 316 

for the training and testing data are presented in Figs 5 and 6, respectively. As can be seen 317 

from these figures, the prediction output of the IT2AIFLS replicates the real data with high 318 

performance. The enlarged portion of the plot given in Fig 5 shows that the prediction 319 

output of the IT2AIFLS closely follows not only the low frequency part of the measured 320 

data but also the high frequency oscillations of the measured data present in the train 321 

dataset. 322 

Table III. Performance comparison of the proposed hybrid algorithm for IT2AIFLS on 323 

Poland electrical load dataset in terms of RMSEs. The best results are highlighted in 324 

bold. 325 

Model Train/Test RMSE Train  RMSE Test 

IT2FLS DEKF+GD 

[11] 

1395/196 0.0564 0.0595 

IFLS DEKF+GD [11] 1395/196 0.0589 0.0599 

IT2 IFLS DEKF+GD 

[11] 

1395/196 0.0560 0.0572 

IT2AIFLS GSA-R-LS  

(proposed algorithm) 

1395/196 0.0528 0.0501 
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Figure 5 Performance of the proposed prediction method for the Poland electrical load dataset (train set) 328 

 329 

 330 

Figure 6 Performance of the proposed prediction method for the Poland electrical load dataset (test set) 331 
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 332 
Figure 7 Regression analysis for IT2AIFLS on the Poland electrical load dataset for test data 333 

Figure 7 shows the regression analysis for the IT2AIFLS on the Poland electrical load da- 334 

taset for test data. It can be seen that the predicted value-target value graph is close to the 335 

ideal graph of (Y=T). Furthermore, the R value for this prediction is equal to 0.94 which is 336 

close to one. Hence, the prediction is performed with high quality. 337 

4.3. Electrical Load Prediction for Five regions in Australia 338 

In this Section, the proposed hybrid training method is used for the prediction of electrical 339 

load (MW) for five different regions in Australia namely: New South Wales (NSW), 340 

Queensland (QLD), South Australia (SA), Tasmania (TAS) and Victoria (VIC). The da- 341 

tasets used in this part are retrieved from the Australian Energy Market Operator (AEMO) 342 

website at http://www.aemo.com.au. Data available on this website is available at a 30 343 

minute sample time basis. For comparison purposes, the time range of the test and train 344 

data are selected as the same as the previous study in [36]. This means that 1152 data 345 

samples from 2018/11 0:30 to 2018/ 2125 0:00 are used for training purposes. The data sam- 346 

ples available from 201812/25 0:30 to 2018/2/270:00 are used for testing the prediction per- 347 

formance of the IT2AIFLS. The time delayed input values considered for the study are 348 

[𝑦(𝑡), 𝑦(𝑡 − 1) 𝑦(𝑡 − 2) 𝑦(𝑡 − 3) 𝑦(𝑡 − 4)] and 14 rules are considered for the fuzzy sys- 349 

tem. The number of the rules were selected via trial and error.  350 

 351 
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Table IV. Statistical parameters of the electrical load data in five regions of Australia.   354 

 Type 

of 

data 

Number 

of 

samples 

min max mean std skewness 

NSW Train 1152 5809.3 12846 8288 1306.7 0.35 

Test 96 5884.2 8563.3 7618.2 754.5 -0.67 

QLD Train 1152 5127.4 9480.1 6737.8 1020.5 0.73 

Test 96 5337.0 8910.9 6821.9 1060.0 0.22 

SA Train 1152 816.3 2798.0 1447.6 377.8 1.13 

Test 96 778.0 1479.8 1134.5 179.4 0.03 

TAS Train 1152 896.0 1302.1 1082.0 88.38 0.03 

Test 96 902.7 1294.1 1072.1 90.25 0.28 

VIC Train 1152 3601.6 9044.9 5049.3 927.04 1.15 

Test 96 3482.3 5945.2 4466.2 692.3 0.49 

Table V the result of ADF-test and KPSS-test for electrical load prediction of five regions 355 

of Australia 356 

Dataset ADF-test-

value 

Critical 

value (5% 

confidence 

interval) for 

ADF 

KPSS-test Critical 

value (5% 

confidence 

interval) for 

KPSS 

Result 

NSW -5.05 -2.86 0.45 0.46 Stationary 

QLD -6.07 -2.86 0.69 0.46 Differ-

ence sta-

tionary 

SA -3.99 -2.86 0.39 0.46 stationary 

TAS -5.95 -2.86 0.15 0.46 stationary 

VIC -4.46 -2.86 0.25 0.46 stationary 

 357 
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Table VI. Performance criteria in terms of RMSEs for electrical load prediction data in 358 

five regions of Australia (test data). The best results are highlighted in bold and MPI rep- 359 

resents the minimum percentage improvement. 360 

 SVR[36] ANN 

[36] 

ELM 

[36] 

EEMD-

ELM_GOA 

[36] 

EEMD-

ELM-

DA[36] 

EEMD-

ELM-

PSO 

[36] 

EEMD-

ELM-

GWO 

[36] 

Proposed 

approach  

MPI 

NSW 2351 1468 1651 603 684 839 766 89 85% 

QLD 905 717 705 564 336 941 558 76 77% 

SA 552 380 381 154 155 261 207 41 73% 

TAS 168 192 162 61 81 257 139 20 67% 

VIC 1323 975 961 419 499 877 975 103 75% 

Table IV presents the statistical parameters associated with data samples which show that 361 

this dataset has high levels of variations with a large standard deviation. Furthermore, 362 

there exist some cases in Table IV for which the Skewness value is larger than 0.5 which 363 

means that data is moderately right skewed in these cases. Example moderately right- 364 

skewed cases are the train data for QLD, the train data for SA, and the train and test data 365 

for VIC. Furthermore, the skewness for the test data in the case of the NSW region is -0.69 366 

which is less than -0.5. This means that test data in the NSW region is moderately left- 367 

skewed. In the remaining cases, the absolute value of skewness belongs to the interval of 368 

[-0.5 0.5] which means that those datasets are fairly symmetrical. Table V presents the 369 

results of the ADF and KPSS tests for the electrical load datasets of five regions of Aus- 370 

tralia. As Table V shows, the datasets associated with the electrical load for the NWS, SA, 371 

TAS and VIC regions of Australia are stationary, however, the dataset associated with the 372 

QLD region is difference stationary. Usually, it is easier to deal with stationary signals. 373 

Despite this, it is expected that the IT2AIFLS can handle difference stationary signals, 374 

where the difference of the signal is stationary, due to its nonlinear nature. 375 

The comparison results of the proposed training algorithm for the IT2AIFLS with seven 376 

different approaches using the RMSE performance index on the test data are presented 377 

in Table VI. As Table VI shows, the IT2AIFLS with the proposed training method out- 378 

performs seven other previously studied algorithms in [36] namely: SVR, ANN, ELM, 379 

EEMD-ELM-GOA, EEMD-PSO-ELM, and EEMD-ELM-GWO. The percentage improve- 380 

ment over these algorithms are significant and is at least 67% of improvement. Fig 8 pre- 381 

sents plots of the prediction output of the proposed algorithm against the measured data 382 

for the electrical load data in each of the five regions of Australia. These plots show that 383 

the prediction output of the proposed algorithm closely follows the measured data 384 

which indicated that the performance of the proposed algorithm is satisfactory. 385 
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Figure 8  Estimation performance of the proposed prediction method for five regions of Australia electrical load dataset (train set): a) NSW b) 386 

QLD c) SA d) TAS e) VIC 387 
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(a) NSW region (b) QLD region 

  
(c) SA region (d) TAS region 

 
(e) VIC region 

Figure 9 Regression analysis of the proposed prediction method for five regions of Australia electrical load dataset (train set): a) NSW b) QLD c) 389 

SA d) TAS e) VIC 390 

To provide greater insight on the obtained results, regression analysis is performed 391 

on the results. Fig. 9 provides regression analysis for all 5 regions of Australia for the 392 

test data. As Fig. 9 shows, the R value in all cases is very close to 1 and the bias term 393 

is reasonable. This indicates that the electrical load forecasting for 5 regions of Aus- 394 

tralia is performed with high quality. Moreover, although the electrical load dataset 395 
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of the QLD region is a difference stationary signal, the R value obtained for it is 0.9967 396 

which is very close to one and supports the idea that an IT2AIFLS, because of its non- 397 

linear nature, can handle this class of data as well. 398 

5. Conclusions 399 

In this paper, a IT2AIFLS is trained using a hybrid method containing the GSA for 400 

the antecedent part parameters and the R-LS algorithm for consequent part parameters. 401 

A benchmark system identification problem is studied to investigate the efficacy of the 402 

proposed system parameter tuning approach on previous identification benchmark prob- 403 

lems. The comparisons with several other methods including Type-1 TSK FNS, Type-2 404 

TSK FNS, Feedorward Type-2 FNN, SIT2FNN, SEIT2 FNN, TSCIT2FNN, IT2 FNN-GD, 405 

IT2 FNN-SMC, IT2 FNNPSO+ SMC, IT2 IFLS -DEKF+GD, and IT2FLS with Modified SVR 406 

support the idea that the proposed approach is an efficient approach in system 407 

identification problems. The proposed approach is then investigated on electrical load 408 

prediction for five regions of Australia and Poland in the presence of noise and uncer- 409 

tainty which inherently exist in these datasets. Statistical properties of these datasets are 410 

presented that show they can be either stationary, trend stationary or difference station- 411 

ary. In the case of the Poland electrical load dataset, the inputs to the IT2AIFLS are con- 412 

sidered to be current values as well as three consecutive time delays of data. In the case of 413 

the five regions in Australia, current data values as well as four consecutive lags are used 414 

as the inputs to the fuzzy logic system. In both cases, one-step ahead prediction is consid- 415 

ered. For the Poland dataset, the obtained prediction results are compared with several 416 

other algorithms including IT2FLS DEKF+GD, IFLS DEKF+GD and IT2IFLS DEKF+GD. 417 

The comparisons made in this paper show that the proposed algorithm results in superior 418 

performance when it is compared to these methods. For the case of the five regions of 419 

Australia, it is observed that the proposed prediction can perform with a much higher 420 

performance as compared with SVR, ANN, ELM, EEMD-ELM-GOA, EEMD-ELM-DA, 421 

EEMD-ELM-PSO and EEMD-ELM-GWO methods of prediction. Hence, the proposed ap- 422 

proach is an automated solution to develop the antecedent part parameters of an 423 

IT2AIFLS, which successfully outperforms current state-of-the-art approaches in litera- 424 

ture when applied to an electrical load prediction problem. 425 

A possible direction of future work is the development of an interpretable IT2AIFLS  426 

which would lead to IF-THEN rules to describe the overall behavior of the electrical load 427 

system. Such IF-THEN rules are easy to communicate and may help experts to make more 428 

efficient decisions using their knowledge and experience. An additional direction of fu- 429 

ture work would be to apply the model to other time series prediction or system identifi- 430 

cation problems to test its applicability to enhance prediction in other industries. 431 
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