415 research outputs found

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    VoIP capacity over multiple IEEE 802.11 WLANs.

    Get PDF
    Chan, An.Thesis (M.Phil.)--Chinese University of Hong Kong, 2007.Includes bibliographical references (leaves 80-84).Abstracts in Chinese and English.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivations and Contributions --- p.1Chapter 1.2 --- Related Works --- p.3Chapter 1.3 --- Organization of the Thesis --- p.4Chapter Chapter 2 --- Background --- p.5Chapter 2.1 --- IEEE 802.11 --- p.5Chapter 2.1.1 --- Basic IEEE 802.11 Standards --- p.5Chapter 2.1.2 --- Types of Networks --- p.7Chapter 2.2 --- Voice over IP (VoIP) Codecs --- p.8Chapter 2.3 --- VoIP over WLAN --- p.9Chapter 2.3.1 --- System Architecture of VoIP over WLAN --- p.9Chapter 2.3.2 --- VoIP Capacity over an Isolated WLAN --- p.10Chapter Chapter 3 --- VoIP Capacity over Multiple WLANs --- p.12Chapter 3.1 --- Topology Settings and Assumptions --- p.12Chapter 3.2 --- Low VoIP Capacity Found in NS2 Simulations --- p.16Chapter 3.3 --- Applying Frequency Channel Assignment --- p.18Chapter Chapter 4 --- Clique Analysis and Call Admission Control --- p.21Chapter 4.1 --- Conflict Graph Model and Cliques --- p.21Chapter 4.2 --- Cliques in Multi-Cell WLANs --- p.22Chapter 4.3 --- Clique-Based Call Admission Control Algorithm --- p.24Chapter 4.3.1 --- Algorithm Description --- p.24Chapter 4.3.2 --- Algorithm Performance Evaluation --- p.27Chapter 4.3.3 --- Clique-Based Admission Control in Three-Frequency- Channel WLAN --- p.29Chapter Chapter 5 --- Time Division Multiple Access (TDMA) on IEEE 802.11MAC --- p.32Chapter 5.1 --- Coarse-Grained Time-Division Multiple Access (CTDMA) --- p.33Chapter 5.1.1 --- Basic Ideas of CTDMA --- p.33Chapter 5.1.2 --- Conflict Graph Modeling of CTDMA --- p.35Chapter 5.1.3 --- Parameter Values in CTDMA --- p.41Chapter 5.2 --- Possible Realization of TDMA on 802.11 Standards --- p.47Chapter Chapter 6 --- Coloring Problem in Wireless Networks: A Theoretical Treatment --- p.52Chapter 6.1 --- Coloring of One-Dimensional Linear Network --- p.53Chapter 6.1.1 --- Network with Same Link Length --- p.53Chapter 6.1.2 --- Network with Variable Link Length --- p.54Chapter 6.2 --- Coloring of Two-Dimensional Network --- p.63Chapter Chapter 7 --- Conclusion --- p.66Appendices --- p.69References --- p.8

    Scheduling Data Delivery in Heterogeneous Wireless Sensor Networks

    Full text link
    In this paper we present a proxy-level scheduler that can significantly improve QoS in heterogeneous wireless sensor networks while at the same time reducing the overall power consumption. Our scheduler is transparent to both applications and MAC in order to take the advantage of the standard off-the-shelf components. The proposed scheduling reduces collisions through a generalized TDMA implementation, and thus improves throughput and QoS, by activating only a subset of stations at a time. Power savings are achieved by scheduling transfer of larger bursts of IP packets followed by longer idle periods during which node’s radio can either enter sleep or be turned off. Our simulation and measurement results show significant power savings with an improvement in QoS. On average we get 18% of saturation throughput enhancement for real traffic and 79 % of power reduction in a highly loaded network

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks

    Get PDF
    The next-generation wireless networks are expected to integrate diverse network architectures and various wireless access technologies to provide a robust solution for ubiquitous broadband wireless access, such as wireless local area networks (WLANs), Ultra-Wideband (UWB), and millimeter-wave (mmWave) based wireless personal area networks (WPANs), etc. To enhance the spectral efficiency and link reliability, smart antenna systems have been proposed as a promising candidate for future broadband access networks. To effectively exploit the increased capabilities of the emerging wireless networks, the different network characteristics and the underlying physical layer features need to be considered in the medium access control (MAC) design, which plays a critical role in providing efficient and fair resource sharing among multiple users. In this thesis, we comprehensively investigate the MAC design in both single- and multi-hop broadband wireless networks, with and without infrastructure support. We first develop mathematical models to identify the performance bottlenecks and constraints in the design and operation of existing MAC. We then use a cross-layer approach to mitigate the identified bottleneck problems. Finally, by evaluating the performance of the proposed protocols with analytical models and extensive simulations, we determine the optimal protocol parameters to maximize the network performance. In specific, a generic analytical framework is developed for capacity study of an IEEE 802.11 WLAN in support of non-persistent asymmetric traffic flows. The analysis can be applied for effective admission control to guarantee the quality of service (QoS) performance of multimedia applications. As the access point (AP) becomes the bottleneck in an infrastructure based WLAN, we explore the multiple-input multiple-output (MIMO) capability in the future IEEE 802.11n WLANs and propose a MIMO-aware multi-user (MU) MAC. By exploiting the multi-user degree of freedom in a MIMO system to allow the AP to communicate with multiple users in the downlink simultaneously, the proposed MU MAC can minimize the AP-bottleneck effect and significantly improve the network capacity. Other enhanced MAC mechanisms, e.g., frame aggregation and bidirectional transmissions, are also studied. Furthermore, different from a narrowband system where simultaneous transmissions by nearby neighbors collide with each other, wideband system can support multiple concurrent transmissions if the multi-user interference can be properly managed. Taking advantage of the salient features of UWB and mmWave communications, we propose an exclusive region (ER) based MAC protocol to exploit the spatial multiplexing gain of centralized UWB and mmWave based wireless networks. Moreover, instead of studying the asymptotic capacity bounds of arbitrary networks which may be too loose to be useful in realistic networks, we derive the expected capacity or transport capacity of UWB and mmWave based networks with random topology. The analysis reveals the main factors affecting the network (transport) capacity, and how to determine the best protocol parameters to maximize the network capacity. In addition, due to limited transmission range, multi-hop relay is necessary to extend the communication coverage of UWB networks. A simple, scalable, and distributed UWB MAC protocol is crucial for efficiently utilizing the large bandwidth of UWB channels and enabling numerous new applications cost-effectively. To address this issue, we further design a distributed asynchronous ER based MAC for multi-hop UWB networks and derive the optimal ER size towards the maximum network throughput. The proposed MAC can significantly improve both network throughput and fairness performance, while the throughput and fairness are usually treated as a tradeoff in other MAC protocols
    • …
    corecore