23,575 research outputs found

    Convolutional neural network-based finger vein recognition using near infrared images

    Get PDF
    Convolutional Neural Network (CNN) is opening new horizons in biometrics-based authentication field and finger vein recognition is the prominent one which can provide the best possible security system depending on this aforementioned technology. In this paper, we used 5 convolutional layers and 4 fully-connected layers where our developed network has shown the capability to produce the result with almost 100% accuracy rate which became possible due to the fact that deep learning, an end-to-end system is used which performs better in a lot of aspects in comparison to conventional techniques.Convolutional Neural Network (CNN) is opening new horizons in biometrics-based authentication field and finger vein recognition is the prominent one which can provide the best possible security system depending on this aforementioned technology. In this paper, we used 5 convolutional layers and 4 fully-connected layers where our developed network has shown the capability to produce the result with almost 100% accuracy rate which became possible due to the fact that deep learning, an end-to-end system is used which performs better in a lot of aspects in comparison to conventional techniques

    Gait Verification using Knee Acceleration Signals

    Get PDF
    A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively

    Fingervein Verification using Convolutional Multi-Head Attention Network

    Full text link
    Biometric verification systems are deployed in various security-based access-control applications that require user-friendly and reliable person verification. Among the different biometric characteristics, fingervein biometrics have been extensively studied owing to their reliable verification performance. Furthermore, fingervein patterns reside inside the skin and are not visible outside; therefore, they possess inherent resistance to presentation attacks and degradation due to external factors. In this paper, we introduce a novel fingervein verification technique using a convolutional multihead attention network called VeinAtnNet. The proposed VeinAtnNet is designed to achieve light weight with a smaller number of learnable parameters while extracting discriminant information from both normal and enhanced fingervein images. The proposed VeinAtnNet was trained on the newly constructed fingervein dataset with 300 unique fingervein patterns that were captured in multiple sessions to obtain 92 samples per unique fingervein. Extensive experiments were performed on the newly collected dataset FV-300 and the publicly available FV-USM and FV-PolyU fingervein dataset. The performance of the proposed method was compared with five state-of-the-art fingervein verification systems, indicating the efficacy of the proposed VeinAtnNet.Comment: Accepted in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 202

    Finger-vein individuals identification on massive databases

    Get PDF
    In massive biometric identification, response times highlydepend on the searching algorithms. Traditional systems operate with databases of up to 10,000 records. In large databases, with an increasing number of simultaneous queries, the system response time is a critical factor. This work proposes a GPU-based implementation for the matching process of finger-vein massive identification. Experimental resultss how that our approach solves up to 256 simultaneous queries on large databases achieving up to 136x.Instituto de Investigación en InformáticaInstituto de Investigación en Informátic

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    Finger Vein Recognition Using Principle Component Analysis and Adaptive k-Nearest Centroid Neighbor Classifier

    Get PDF
    The k-nearest centroid neighbor kNCN classifier is one of the non-parametric classifiers which provide a powerful decision based on the geometrical surrounding neighborhood. Essentially, the main challenge in the kNCN is due to slow classification time that utilizing all training samples to find each nearest centroid neighbor. In this work, an adaptive k-nearest centroid neighbor (akNCN) is proposed as an improvement to the kNCN classifier. Two new rules are introduced to adaptively select the neighborhood size of the test sample. The neighborhood size for the test sample is changed through the following ways: 1) The neighborhood size, k will be adapted to j if the centroid distance of j-th nearest centroid neighbor is greater than the predefined boundary. 2) There is no need to look for further nearest centroid neighbors if the maximum number of samples of the same class is found among jth nearest centroid neighbor. Thus, the size of neighborhood is adaptively changed to j. Experimental results on theFinger Vein USM (FV-USM) image database demonstrate the promising results in which the classification time of the akNCN classifier is significantly reduced to 51.56% in comparison to the closest competitors, kNCN and limited-kNCN. It also outperforms its competitors by achieving the best reduction ratio of 12.92% whilemaintaining the classification accuracy

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems

    Multi-modal palm-print and hand-vein biometric recognition at sensor level fusion

    Get PDF
    When it is important to authenticate a person based on his or her biometric qualities, most systems use a single modality (e.g. fingerprint or palm print) for further analysis at higher levels. Rather than using higher levels, this research recommends using two biometric features at the sensor level. The Log-Gabor filter is used to extract features and, as a result, recognize the pattern, because the data acquired from images is sampled at various spacing. Using the two fused modalities, the suggested system attained greater accuracy. Principal component analysis (PCA) was performed to reduce the dimensionality of the data. To get the optimum performance between the two classifiers, fusion was performed at the sensor level utilizing different classifiers, including K-nearest neighbors (K-NN) and support vector machines (SVMs). The technology collects palm prints and veins from sensors and combines them into consolidated images that take up less disk space. The amount of memory needed to store such photos has been lowered. The amount of memory is determined by the number of modalities fused

    Finger Vein Template Protection with Directional Bloom Filter

    Get PDF
    Biometrics has become a widely accepted solution for secure user authentication. However, the use of biometric traits raises serious concerns about the protection of personal data and privacy. Traditional biometric systems are vulnerable to attacks due to the storage of original biometric data in the system. Because biometric data cannot be changed once it has been compromised, the use of a biometric system is limited by the security of its template. To protect biometric templates, this paper proposes the use of directional bloom filters as a cancellable biometric approach to transform the biometric data into a non-invertible template for user authentication purposes. Recently, Bloom filter has been used for template protection due to its efficiency with small template size, alignment invariance, and irreversibility. Directional Bloom Filter improves on the original bloom filter. It generates hash vectors with directional subblocks rather than only a single-column subblock in the original bloom filter. Besides, we make use of multiple fingers to generate a biometric template, which is termed multi-instance biometrics. It helps to improve the performance of the method by providing more information through the use of multiple fingers. The proposed method is tested on three public datasets and achieves an equal error rate (EER) as low as 5.28% in the stolen or constant key scenario. Analysis shows that the proposed method meets the four properties of biometric template protection. Doi: 10.28991/HIJ-2023-04-02-013 Full Text: PD
    corecore