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Abstract 
A novel gait recognition method for biometric applications is proposed. The approach has the following 
distinct features. First, gait patterns are determined via knee acceleration signals, circumventing 
difficulties associated with conventional vision-based gait recognition methods. Second, an automatic 
procedure to extract gait features from acceleration signals is developed that employs a multiple-
template classification method. Consequently, the proposed approach can adjust the sensitivity and 
specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects 
demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 
and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively. 

Highlights 

► Knee acceleration is proposed for biometric characterization of gait patterns. ► Features of knee 
acceleration signals are extracted automatically. ► Features are classified using a multiple-template 
method. ► Experimental results demonstrate flexibility and accuracy for gait recognition. 

Keywords 
Biometrics; Gait analysis; Physiological signal processing; Identity verification 

1. Introduction 
The goal of a biometric system is to identify or verify a person using individual physiological or 
behavioral characteristics (Jain et al., 2004, Xiao, 2007, Zhang and Zuo, 2007). Many biometric features, 
such as electrocardiograms (Chan, Hamdy, Badre, & Badee, 2005), fingerprints (Girgis et al., 2009, Hong 
et al., 2008), gait (Lee et al., 2009, Tao et al., 2007), heart sound (Phua, Chen, Dat, & Shue, 2008), iris 
(Chen and Chu, 2009, Rakshit and Monro, 2007), palmprint (Huang et al., 2008, Su, 2009), signature 
(Impedovo and Pirlo, 2008, Nanni et al., 2010), typing dynamics (Araújo, Sucupira, Liz´arraga, Ling, & 
Yabu-Uti, 2005), vein (Wang et al., 2008, Wu and Ye, 2009) and voice (Wahab et al., 2005, Wang et al., 
2007) have been proposed. Among these biometric features, gait has the following distinct properties. 
First, gait recognition can be processed unobtrusively. Second, gait is difficult to disguise. Third, since 
the mean comfortable walking speed is approximately 51.5 strides per minute (Bussmann, Damen, & 
Stam, 2000), one can obtain hundreds of gait cycle samples in a few minutes. This feature is significant 
since the success of the design and validation of a pattern recognition system depends strongly on the 
sample size (Dass et al., 2007, Raudys and Jain, 1991, Sordo and Zeng, 2005). 

Most current gait biometric systems use cameras to capture gait information (Boulgouris and Chi, 
2007, Boulgouris et al., 2005, Lee et al., 2009, Nixon and Carter, 2006, Sarkar et al., 2005, Tao et al., 
2007, Xu et al., 2006, Zhang et al., 2007). After separating the walking person from the background, gait 
features are extracted from the image sequence. The success of these vision-based gait recognition 
systems depends on several critical factors. First, to be most effective, the subject needs to walk in a 
direction perpendicular to the optical axis of the camera (Boulgouris et al., 2005). Second, to achieve 
accurate person-environment separation, the background needs to be as uniform and as time-invariant 
as possible (Sarkar et al., 2005). Imperfect person-environment separation introduces noise into the gait 
features that degrades the recognition rate. Third, the accuracy of the gait recognition is significantly 
limited by the distance between the subject and the camera (Zhang et al., 2007). In summary, the 
sensitivity to environmental variations, capturing angle of the camera, and the distance between the 



 

   
       
  

      
   

      
 

     
    

    
    

   
   

  
    

    
   

 

    
  

   
   

  
   

   
   

  
  

    
           

       
  

   
     

    
     

      

subject and camera make vision-based gait recognition systems difficult to implement in many real-
world situations. 

In additional to the optical motion analysis methods, accelerometers have been used in gait research in 
many studies to determine kinematic and kinetic information (Bogert van den et al., 1996, Hayes et al., 
1983, Kavanagh et al., 2006). Accelerometer-based gait recognition methods have also been proposed 
(Gafurov et al., 2007, Mäntyjärvi et al., 2005). By directly measuring the hip acceleration, these 
approaches acquire gait features without the need for cumbersome image processing techniques. The 
sensitivity to the environmental factors, such as background complexity and the appearance of other 
persons, is thus avoided. 

In comparison to methods that utilize hip acceleration signals, this study relies on knee acceleration 
information to characterize the gait pattern. This change gives rise to two additional benefits. First, 
accelerometer-measured knee signals can be used to diagnose the health of the knee joint (Krishnan et 
al., 2000, McCoy et al., 1987). This can be a significant advantage since the knee joint is the most 
commonly injured or diseased joint in the body (Rangayyan & Wu, 2008). Second, knee-mounted 
devices have been developed to harvest energy from a person’s stride (Andrysek and Chau, 
2007, Donelan et al., 2008). By collecting the kinetic energy that would otherwise be dissipated at the 
end of the swing phase, such devices can generate an average of 5 W of electricity from each leg. (Such 
power is sufficient to operate 10 typical cell phones simultaneously.) By integrating such a device with 
an accelerometer, one can easily design a self-charging sensor that can simultaneously perform long-
term knee health monitoring and identity verification. 

Another important unique feature of this study is the use of a hyperspherical classifier (Telfer & 
Casasent, 1993) to explore the potential of drawing on a large number of gait samples to enhance the 
recognition accuracy. By varying its parameters, the sensitivity and specificity of the hyperspherical 
classifier can be systematically adjusted to improve the overall gait recognition rate. 

The paper is organized as follows. The following section describes the hardware setup and introduces 
the proposed feature extraction method. Section 3illustrates a systematic approach for hyperspherical 
classifier design. Section 4presents the experimental results, and a discussion and conclusion are given 
in Section 5. 

2. Gait feature extraction 
2.1. Hardware setup 
The motion sensor employed in this work is a three-dimensional accelerometer (Analog Devices 
ADXL330, ±3 g range, sensitivity 330 mV/g). The size of the accelerometer is 4 mm × 4 mm × 1.45 mm. In 
attaching the accelerometer to the knee of all tested subjects, the x, y and z-axes of the sensor were 
aligned with the anterior-posterior, medial-lateral and proximal-distal directions, respectively. The 
acceleration signal was transmitted wirelessly to a notebook computer. The z-axis component of the 
acceleration (denoted as Az hereafter) was recorded with a 12-bit National Instruments (NI) USB-6008 
data acquisition card at a 1 kHz sampling rate. In every recording session, each subject was asked to 
walk approximately forty steps. The data was recorded indoors in a 40 m tiled hallway. Fig. 1 depicts a 
typical example of Az after removing the DC component of the signal. 

https://www.sciencedirect.com/science/article/pii/S0957417411008116?via%3Dihub#s0025
https://www.sciencedirect.com/science/article/pii/S0957417411008116?via%3Dihub#s0030
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Fig. 1. A typical accelerometer output time response. 

2.2. Extraction process 
The first part of the feature extraction process is to remove the transitional part of the Az which consists 
of the initial and final portions of each walking session. This is accomplished by the following procedure. 

(1) By observing the peaks of Az in every gait cycle, determine a parameter P to represent the 
nominal value of such peaks. 
(2) Find every local maximum for Az. 
(3) Determine the first local maximum that is larger than P and remove the portion of Az that 
comes ahead of this local maximum. 
(4) Similarly, determine the last local maximum that is larger than P and remove the portion 
of Az that comes after this local maximum. 

The second part of the feature extraction process is to divide Az into a number of gait cycles by finding 
the end of the swing phase in every gait cycle. This is accomplished by applying the following procedure: 

(1) Filter Az by removing its frequency component above 1.5 Hz. Fig. 2a and b depict a 
typical Az before and after such an operation, respectively. Note that the peaks that appear in 
every gait cycle of the original Azcorrespond to heel-strike. 

Fig. 2. The accelerometer output responses before and after the low-pass filtering operation. 
(2) Determine the local maxima for the filtered Az. These local maxima correspond to the end of 
the swing phase in every gait cycle. However, as shown in Fig. 2b, the low-pass filtering 

https://www.sciencedirect.com/science/article/pii/S0957417411008116?via%3Dihub#f0010
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operation has suppressed the magnitude and shifted the time-of-occurrence of the heel-strike 
peaks. The goal of the following two steps is to recover the true time-of-occurrence of these 
peaks in order to accurately divide Az into a number of gait cycles. 
(3) After finding the time differences between every pair of neighboring local maxima of the 
filtered Az, find the median (denoted as L) of these time differences. 
(4) Let ti represent the time associated with the ith local maxima for the filtered Az. Find an 
absolute maximum of the original Az from the time interval ti − 0.2L ≦ t ≦ ti + 0.2L, where t is the 
time variable. The time associated with such an absolute maximum is denoted as Ti. 
(5) Assign the time interval between every pair of Ti and Ti+1 as a gait cycle. 
(6) Normalize each gait cycle to 1000 sampling points via linear interpolation. The ith time-
normalized gait cycle is denoted as Gi in the remaining part of this paper. 
(7) The variation of many uncontrollable factors such as shoes and walking surface may alter the 
magnitude of Az. Therefore, the third step of the feature extraction process is to normalize Az so 
that the average power of every Gi is equal to unity for every gait recording session. 

The final part of the proposed feature extraction method is to determine the feature vector by finding 
the region of interest (ROI) for each gait cycle. In this study, ROI is selected from the portion of Az near 
the heel-strike since the interpersonal differences of such an interval seem to be more significant than 
the remaining part of Az. As shown in Fig. 3, heel-strike occurs at the central part of the gait cycle. 
Therefore, the time of heel-strike can be determined by finding the maximum value of Az between the 
250th and the 750th sampling points of the time-normalized Gi. With the time of heel-strike as the 
center, the ROI is selected as a 501-sample-point subinterval of the normalized gait cycle. After 
downsampling this ROI with a factor of 10, an ROI vector of dimension 50 can be acquired from each gait 
cycle. Finally, to enhance the reliability of the recognition system, a gait feature vector is obtained by 
averaging the ROI vectors from five walking steps. 

Fig. 3. Determining the region of interest (ROI) from the neighborhood region of heel strike. 

3. Hyperspherical classifier design 
Previously reported accelerometer-based gait recognition systems used template-based techniques to 
perform gait recognition. By comparing the similarity between the tested feature vector and a pre-
stored template, the decision of rejection or acceptance is made based on a “matching score” between 
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these two vectors. However, considering the magnitude and diversity of the possible variations of 
human biometric traits, accurate recognition may require multiple templates (Jain et al., 2004). 

Fig. 4 presents an example of the distribution pattern of an artificial two-dimensional biometric feature 
vector that illustrates the advantages of multiple templates. With the mean of the samples as the 
template and the Euclidean distance as the similarity measure, the acceptance region is constructed as a 
circle. The false acceptance (rejection) error can be improved (degenerated) by decreasing (increasing) 
the radius of this circle. As a result, the sensitivity and specificity of this recognition system can be 
adjusted systematically. The key weakness of this single-template approach is the redundancy of the 
acceptance region since, as shown in Fig. 4a, the shape of the true acceptance region is very different 
from a circle. 

Fig. 4. Acceptance regions for (a) a single hypersphere and (b) two hypersphere classifiers. 

This problem can be partially resolved by using two templates, as demonstrated in Fig. 4b. When circles 
can be properly placed, the redundancy of the acceptance region can be reduced further by increasing 
the number of circles. Based on this concept, several hyperspherical classifier design methods have been 
proposed to tackle classification problems of higher dimension (Telfer and Casasent, 1993, Yen and Liu, 
1997). A drawback of these approaches is that their algorithms require the setting of a number of ad hoc 
parameters which may influence the convergence of the design process. Another challenge of these 
methods is in the difficulty in balancing the sensitivity and specificity of the classifiers. 

The remaining part of this section introduces a conceptually simple hyperspherical classifier design 
method that circumvents convergence problems. The proposed approach also provides a systematic 
procedure for fine-tuning the sensitivity and specificity of the gait recognition system. The design 
process consists of two phases. The first phase generates a number of hyperspheres to cover all the 
samples of an enrolled user. The second phase revises the hyperspherical classifier to reduce false 
rejection error. The procedure for the first phase is: 

(1) Divide the samples of the enrolled user (enrolled samples) into two clusters by using the 
conventional k-means method. 
(2) Find the cluster that has the largest number of samples. Replace this cluster by two new 
clusters which are obtained by clustering the samples associated with the cluster to be replaced 
into two groups. 
(3) With the appearance of new clusters, use the nearest neighbor rule to rearrange the 
contents of each cluster by computing the distances between every sample and every cluster 
center. 



     
  

    
     

 
 

      
 

  
   

     
 

 
 

      
      
     
          

    
        

   
   

         
 

      
       

       
  

 
 

  
    

 

   
   

   
        

      
          

      
  

   
    

        

(4) Continue the process from step 2 until a sufficient number of clusters has been generated. 
(5) By using the cluster center as the center and the largest distance between the center and 
samples belonging to this cluster as the radius, the approach constructs one hypersphere from 
one cluster. The space occupied by the hyperspheres is chosen as the acceptance region for the 
enrolled user. 

The radius and the center for the ith hypersphere are denoted as Ri and Ci, respectively, in the rest of 
the paper. 

Without considering false acceptance errors, the above procedure achieves a zero false rejection error 
(and hence, 100% sensitivity) for the training samples. With this result as the starting point, by 
controlling the false acceptance error, the focus of the second phase of the design process is specificity. 
By assuming that a sufficient number of samples have been collected from persons that are not enrolled 
in the biometric system, the following procedure uses such an intruder dataset to refine the 
hyperspherical classifier. 

(1) Let Ei represents the union of the enrolled samples that are encircled by Ci. 
(2) Let Ii represents the union of the intruder samples that are contained in Ci. 
(3) Let i = 1. 
(4) Denote Pi as the distance between the center of Ci and the sample contained in Ei that is 
second farthest away from the center of Ci. 
(5) Determine the number of intruder samples that can be removed from Ii if the radius of Ci is 
reduced to Pi. Note that this operation also excludes the enrolled sample this that is farthest 
away from Ci from the acceptance region. 
(6) Let i = i + 1 and continue the process from step 4 until the radius contraction action has been 
tested for all the hyperspheres. 
(7) By assuming CJ to be the hypersphere that has rejected the largest number of intruder 
samples, reduce the radius of CJ from RJ to PJ. 
(8) After updating the contents of Ei and Ii for every hypersphere, repeat this one-hypersphere-
at-a-time radius contraction process from step 3 until all the intruder samples have been 
excluded from the acceptance region encircled by the hyperspheres. 

Essentially, the above procedure tries to optimize the cost-effective tradeoffs between sensitivity and 
specificity. Specifically, by sacrificing one enrolled sample at a time, the method tries to reject as many 
intruder samples as possible. 

In step 7 above, two exceptions require additional treatment. The first exception occurs when more 
than one hypersphere has rejected the largest number of intruder samples. In this case, the 
hypersphere that results in the largest reduction of the acceptance region is selected. Theoretically, such 
a reduction can be measured by RM − PM, where R and P represent the radii before and after the 
contraction, respectively, and M is the dimension of the feature space. However, this measure becomes 
very sensitive to the actual content of the samples when M is large. Therefore, instead of using M = 50, 
which is the dimension of the feature vector employed in this study, M is chosen to be 8 after a number 
of trial-and-error tests. 

The second exception occurs when none of the hyperspheres can reject any intruder sample. In this 
case, the approach contracts the hypersphere further by choosing parameters Pi as the distance 
between the center of Ci and the sample contained in Ei that is “third” farthest away from the center 



   
   

  
    

  
    

  
 

     
     

  
  

  
   

   
      

 
    

   

  
        

     
      
      
      
      
      
      
      
      
      
      

 

  

of Ci. A similar technique can be repeatedly applied until at least one intruder sample can be rejected 
from any of the hyperspheres. 

4. Experimental results 
Knee acceleration signals were collected from 35 subjects divided into user group (5 persons) and 
intruder group (30 persons). In each data-recording session, the tested subjects were asked to walk 
normally for forty steps. Members of the intruder group participated in only one data-recording session. 
Five gait cycles were chosen randomly from these forty steps for fifty times, from which fifty gait feature 
vectors were generated for each intruder. 

Considering the possible day-to-day variation of the walking pattern, members of the enrolled group 
participated in ten data-recording sessions which were separated by at least one day. By randomly 
choosing five gait cycles from the 400 recorded gait cycles of each enrolled user for 200 times, 200 gait 
feature vectors were generated for each member of the user group. 

The design process for the hyperspherical classifier was repeated fifty times for each enrolled user. The 
training dataset consisted of 100 randomly chosen gait samples of the enrolled user and gait samples 
from 20 randomly selected intruders. The testing dataset included the remaining 100 gait samples of the 
enrolled user and the gait samples from the remaining ten intruders. Table 1, Table 2 summarize the 
averaged experimental results associated with the testing datasets obtained by a single hypersphere 
classifier (SHC) and a multiple hypersphere classifier (MHC) using 20 hyperspheres. The tables also show 
how the specificity of the recognition system varies with the sensitivity. 

Table 1. Summary of experimental results for one-hypersphere gait recognition system. 
Sensitivity Specificity of the enrolled users 

1 2 3 4 5 
0.95 1.000 0.152 0.277 0.356 0.117 
0.90 1.000 0.242 0.359 0.492 0.390 
0.85 1.000 0.320 0.417 0.504 0.511 
0.80 1.000 0.363 0.446 0.509 0.599 
0.75 1.000 0.390 0.489 0.510 0.683 
0.70 1.000 0.420 0.569 0.567 0.736 
0.65 1.000 0.470 0.745 0.716 0.767 
0.60 1.000 0.525 0.889 0.807 0.779 
0.55 1.000 0.573 0.943 0.849 0.795 
0.50 1.000 0.728 0.960 0.896 0.834 



   
        

     
      
      
      
      
      
      
      
      
      
      

        
    

      
     

       
     

  
   

   
 

  
  

 

    
 

  
  

  
    

    
  

 

 
     

    
     

             
 

    

Table 2. Summary of experimental results for 24-hypersphere gait recognition system. 
Sensitivity Specificity of the enrolled users 

1 2 3 4 5 
0.95 0.999 0.783 0.887 0.834 0.835 
0.90 1.000 0.897 0.962 0.894 0.890 
0.85 1.000 0.931 0.975 0.950 0.946 
0.80 1.000 0.945 0.984 0.967 0.965 
0.75 1.000 0.952 0.984 0.975 0.992 
0.70 1.000 0.955 0.987 0.980 0.993 
0.65 1.000 0.956 0.988 0.981 0.994 
0.60 1.000 0.962 0.988 0.983 0.994 
0.55 1.000 0.964 0.988 0.985 0.994 
0.50 1.000 0.970 0.989 0.986 0.994 

The results of Table 1, Table 2 demonstrate that the MHC outperforms the SHC. For example, by 
requiring the false rejection error to be no larger than 5% (sensitivity of 0.95), the specificity achieved by 
the SHC varies from 1.000 to 0.152. In contrast, the specificity of the MHC ranges from 1.000 to 0.783. If 
we try to improve the specificity by downgrading the sensitivity requirement to 0.80, the specificity of 
the SHC varies from 1.000 to 0.363, which is still not very satisfactory, but for the MHC the resulting 
specificity varies from 1.000 to 0.945, which is excellent. 

5. Conclusion 
This paper presents a gait recognition system for biometric applications based on knee acceleration 
signals. A feature extraction method has been developed to characterize the walking pattern of different 
individuals. To distinguish the differences in the walking patterns, a hyperspherical classifier is employed 
to perform gait recognition. A systematic design method for the hyperspherical classifier has also been 
developed. The potential of the proposed approach for biometric applications has been demonstrated 
by experimental results. 

To further improve the performance of the gait recognition system, the following directions may be 
pursued. First, the proposed approach uses a fixed set of feature variable generation rules for every 
person. To reflect interpersonal differences, a walker-dependent gait feature generation method has 
the potential to improve the gait recognition rate. Second, this study has not considered the influences 
of different shoes and different walking surfaces. In order to study the robustness of the gait recognition 
system, future work may investigate the sensitivity of the performances the gait recognition system with 
respect to these uncertainties. Finally, the number of the tested subjects and the time periods for the 
gait data collection process could be investigated further to fully test the performance of the proposed 
approach. 
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