204 research outputs found

    A Systematic Approach for Designing Mutation Operators for MDE languages

    Get PDF
    Testing is an essential activity in software development, used to increase confidence in the quality of software. One testing approach that is used to evaluate the quality of testing inputs for a particular program is mutation analysis. The most important step in mutation analysis is the process of defining mutation operators that mimic typical errors of the users of a language. There is a wide variety of mutation operators that have been designed for a number of languages including C, Java, and SQL. However, the design of mutation operators is rarely systematic, which may result in passing over crucial operators for specific features of languages. This paper describes a way to apply mutation analysis in the context of Model Driven Engineering (MDE). In particular, the paper proposes a systematic approach for designing mutation operators for MDE languages. The systematic approach is demonstrated for the Atlas Transformation Language (ATL) and the result is a list of mutation operators that includes previously designed ones for ATL from the literature

    A Novel Approach to Mutation Operator Design for MDE Languages

    Get PDF
    Due to the increasing reliance on the software of systems, such as enterprise systems, a wide array of approaches has been found to facilitate the development of software for such systems. The growth of system complexity, however, has provoked concerns about the quality of the software. One approach that copes with complexity is model driven engineering that uses models containing only essential domain concepts, in order to represent complex systems. With some level of automation, models are then maintained by programs that are prone to error, as they are man-made. In order to find errors in programs, software engineers use mutation testing to build strong test inputs by introducing faults into the tested software using mutation operators. They then study if the introduced faults are detected by the test inputs. There have been few attempts to design mutation operators for model driven languages, which have common metamodeling language models, compared with traditional programming languages. This thesis presents an effective language-agnostic approach for mutation operator design for the rapidly emerging model driven engineering languages by considering metamodeling languages. The approach produces generic operators that can be instantiated to generate concrete ones for a given language model, which can be used to mutate program models that conform to the language model. The approach and generic operators are evaluated using empirical mutation analysis experiments over programs written in the ATL and EOL languages. The results show that the generic operators generated from the approach are instantiatable over ATL and EOL metamodels and have produced low proportions of invalid and equivalent mutants that can impact negatively on any mutation testing process. Also, the generic operators have produced useful mutants such as live and not trivially detected kinds of mutants

    Systematic engineering of mutation operators

    Full text link
    In the context of software engineering, mutation consists in injecting small changes in artefacts – like models, programs, or data – for purposes like (mutation) testing, test data generation, and all sorts of search-based methods. These tasks typically require defining sets of mutation operators, which are often built ad-hoc because there is currently poor support for their development and testing. To improve this situation, we propose a methodology and corresponding tool support for the proper engineering of mutation operators. Our proposal is model-based, representing the artefacts to be mutated as models. It includes a domain-specific language to describe the mutation operators, facilities to synthesize models that can be used to test the operators, different metrics to analyse operator coverage, and services to generate operators when the coverage is insufficient. We show automated support atop the WODEL tool, and illustrate its use by defining mutation operators for UML Class Diagrams.This work has been partially funded by the Spanish Ministry of Science (RTI2018-095255-B-I00), by the R&D programme of the Madrid Region (S2018/TCS-4314) and by the Spanish MINECO-FEDER (grant number FAME RTI2018-093608-BC31

    Engineering the development of quantum programs: Application to the Boolean satisfiability problem

    Get PDF
    The development of quantum programs is becoming a reality due to the rapid advancement of quantum computing. Over the past few years, a multitude of hardware platforms, algorithms, and programming languages have emerged to support this paradigm. By the very nature of Quantum Mechanics principles, there is an enormous change of philosophy when building quantum programs, which operate in a probabilistic space, unlike the deterministic behaviour shown by classical programming languages. These conceptual differences can be overcome by using techniques and tools of Software Engineering. In this paper, we apply Model-Driven Engineering techniques in a systematic way to ease the generation of quantum programs and we apply it to solve the satisfiability problem, very important in many engineering domains like verification of discrete systems and test of integrated circuits. To that aim, we contribute with a metamodel for representing quantum circuits and a model-to-text transformation to generate working IBM Qiskit code. This model-driven infrastructure is employed to automatically generate quantum programs from SAT equations through a model-to-model transformation that embeds Grover’s algorithm. Besides, we provide formulas for calculating the number of required quantum elements from SAT equations, crucial in the current context of limited quantum resources. The interoperability with other tools and the extensibility to target additional quantum platforms is guaranteed thanks to the use of a model-based toolchain. We cover several usage scenarios to validate the approach, providing exemplary SAT equations, the generated Qiskit code and the results of executing this code in IBM Quantum infrastructure.We acknowledge the use of IBM Quantum services for this work. The views expressed in this paper are those of the authors, and do not reflect the official policy or position of IBM or the IBM Quantum team

    From examples to knowledge in model-driven engineering : a holistic and pragmatic approach

    Full text link
    Le Model-Driven Engineering (MDE) est une approche de développement logiciel qui propose d’élever le niveau d’abstraction des langages afin de déplacer l’effort de conception et de compréhension depuis le point de vue des programmeurs vers celui des décideurs du logiciel. Cependant, la manipulation de ces représentations abstraites, ou modèles, est devenue tellement complexe que les moyens traditionnels ne suffisent plus à automatiser les différentes tâches. De son côté, le Search-Based Software Engineering (SBSE) propose de reformuler l’automatisation des tâches du MDE comme des problèmes d’optimisation. Une fois reformulé, la résolution du problème sera effectuée par des algorithmes métaheuristiques. Face à la pléthore d’études sur le sujet, le pouvoir d’automatisation du SBSE n’est plus à démontrer. C’est en s’appuyant sur ce constat que la communauté du Example-Based MDE (EBMDE) a commencé à utiliser des exemples d’application pour alimenter la reformulation SBSE du problème d’apprentissage de tâche MDE. Dans ce contexte, la concordance de la sortie des solutions avec les exemples devient un baromètre efficace pour évaluer l’aptitude d’une solution à résoudre une tâche. Cette mesure a prouvé être un objectif sémantique de choix pour guider la recherche métaheuristique de solutions. Cependant, s’il est communément admis que la représentativité des exemples a un impact sur la généralisabilité des solutions, l'étude de cet impact souffre d’un manque de considération flagrant. Dans cette thèse, nous proposons une formulation globale du processus d'apprentissage dans un contexte MDE incluant une méthodologie complète pour caractériser et évaluer la relation qui existe entre la généralisabilité des solutions et deux propriétés importantes des exemples, leur taille et leur couverture. Nous effectuons l’analyse empirique de ces deux propriétés et nous proposons un plan détaillé pour une analyse plus approfondie du concept de représentativité, ou d’autres représentativités.Model-Driven Engineering (MDE) is a software development approach that proposes to raise the level of abstraction of languages in order to shift the design and understanding effort from a programmer point of view to the one of decision makers. However, the manipulation of these abstract representations, or models, has become so complex that traditional techniques are not enough to automate its inherent tasks. For its part, the Search-Based Software Engineering (SBSE) proposes to reformulate the automation of MDE tasks as optimization problems. Once reformulated, the problem will be solved by metaheuristic algorithms. With a plethora of studies on the subject, the power of automation of SBSE has been well established. Based on this observation, the Example-Based MDE community (EB-MDE) started using application examples to feed the reformulation into SBSE of the MDE task learning problem. In this context, the concordance of the output of the solutions with the examples becomes an effective barometer for evaluating the ability of a solution to solve a task. This measure has proved to be a semantic goal of choice to guide the metaheuristic search for solutions. However, while it is commonly accepted that the representativeness of the examples has an impact on the generalizability of the solutions, the study of this impact suffers from a flagrant lack of consideration. In this thesis, we propose a thorough formulation of the learning process in an MDE context including a complete methodology to characterize and evaluate the relation that exists between two important properties of the examples, their size and coverage, and the generalizability of the solutions. We perform an empirical analysis, and propose a detailed plan for further investigation of the concept of representativeness, or of other representativities

    Towards using intelligent techniques to assist software specialists in their tasks

    Full text link
    L’automatisation et l’intelligence constituent des préoccupations majeures dans le domaine de l’Informatique. Avec l’évolution accrue de l’Intelligence Artificielle, les chercheurs et l’industrie se sont orientés vers l’utilisation des modèles d’apprentissage automatique et d’apprentissage profond pour optimiser les tâches, automatiser les pipelines et construire des systèmes intelligents. Les grandes capacités de l’Intelligence Artificielle ont rendu possible d’imiter et même surpasser l’intelligence humaine dans certains cas aussi bien que d’automatiser les tâches manuelles tout en augmentant la précision, la qualité et l’efficacité. En fait, l’accomplissement de tâches informatiques nécessite des connaissances, une expertise et des compétences bien spécifiques au domaine. Grâce aux puissantes capacités de l’intelligence artificielle, nous pouvons déduire ces connaissances en utilisant des techniques d’apprentissage automatique et profond appliquées à des données historiques représentant des expériences antérieures. Ceci permettra, éventuellement, d’alléger le fardeau des spécialistes logiciel et de débrider toute la puissance de l’intelligence humaine. Par conséquent, libérer les spécialistes de la corvée et des tâches ordinaires leurs permettra, certainement, de consacrer plus du temps à des activités plus précieuses. En particulier, l’Ingénierie dirigée par les modèles est un sous-domaine de l’informatique qui vise à élever le niveau d’abstraction des langages, d’automatiser la production des applications et de se concentrer davantage sur les spécificités du domaine. Ceci permet de déplacer l’effort mis sur l’implémentation vers un niveau plus élevé axé sur la conception, la prise de décision. Ainsi, ceci permet d’augmenter la qualité, l’efficacité et productivité de la création des applications. La conception des métamodèles est une tâche primordiale dans l’ingénierie dirigée par les modèles. Par conséquent, il est important de maintenir une bonne qualité des métamodèles étant donné qu’ils constituent un artéfact primaire et fondamental. Les mauvais choix de conception, ainsi que les changements conceptuels répétitifs dus à l’évolution permanente des exigences, pourraient dégrader la qualité du métamodèle. En effet, l’accumulation de mauvais choix de conception et la dégradation de la qualité pourraient entraîner des résultats négatifs sur le long terme. Ainsi, la restructuration des métamodèles est une tâche importante qui vise à améliorer et à maintenir une bonne qualité des métamodèles en termes de maintenabilité, réutilisabilité et extensibilité, etc. De plus, la tâche de restructuration des métamodèles est délicate et compliquée, notamment, lorsqu’il s’agit de grands modèles. De là, automatiser ou encore assister les architectes dans cette tâche est très bénéfique et avantageux. Par conséquent, les architectes de métamodèles pourraient se concentrer sur des tâches plus précieuses qui nécessitent de la créativité, de l’intuition et de l’intelligence humaine. Dans ce mémoire, nous proposons une cartographie des tâches qui pourraient être automatisées ou bien améliorées moyennant des techniques d’intelligence artificielle. Ensuite, nous sélectionnons la tâche de métamodélisation et nous essayons d’automatiser le processus de refactoring des métamodèles. A cet égard, nous proposons deux approches différentes: une première approche qui consiste à utiliser un algorithme génétique pour optimiser des critères de qualité et recommander des solutions de refactoring, et une seconde approche qui consiste à définir une spécification d’un métamodèle en entrée, encoder les attributs de qualité et l’absence des design smells comme un ensemble de contraintes et les satisfaire en utilisant Alloy.Automation and intelligence constitute a major preoccupation in the field of software engineering. With the great evolution of Artificial Intelligence, researchers and industry were steered to the use of Machine Learning and Deep Learning models to optimize tasks, automate pipelines, and build intelligent systems. The big capabilities of Artificial Intelligence make it possible to imitate and even outperform human intelligence in some cases as well as to automate manual tasks while rising accuracy, quality, and efficiency. In fact, accomplishing software-related tasks requires specific knowledge and skills. Thanks to the powerful capabilities of Artificial Intelligence, we could infer that expertise from historical experience using machine learning techniques. This would alleviate the burden on software specialists and allow them to focus on valuable tasks. In particular, Model-Driven Engineering is an evolving field that aims to raise the abstraction level of languages and to focus more on domain specificities. This allows shifting the effort put on the implementation and low-level programming to a higher point of view focused on design, architecture, and decision making. Thereby, this will increase the efficiency and productivity of creating applications. For its part, the design of metamodels is a substantial task in Model-Driven Engineering. Accordingly, it is important to maintain a high-level quality of metamodels because they constitute a primary and fundamental artifact. However, the bad design choices as well as the repetitive design modifications, due to the evolution of requirements, could deteriorate the quality of the metamodel. The accumulation of bad design choices and quality degradation could imply negative outcomes in the long term. Thus, refactoring metamodels is a very important task. It aims to improve and maintain good quality characteristics of metamodels such as maintainability, reusability, extendibility, etc. Moreover, the refactoring task of metamodels is complex, especially, when dealing with large designs. Therefore, automating and assisting architects in this task is advantageous since they could focus on more valuable tasks that require human intuition. In this thesis, we propose a cartography of the potential tasks that we could either automate or improve using Artificial Intelligence techniques. Then, we select the metamodeling task and we tackle the problem of metamodel refactoring. We suggest two different approaches: A first approach that consists of using a genetic algorithm to optimize set quality attributes and recommend candidate metamodel refactoring solutions. A second approach based on mathematical logic that consists of defining the specification of an input metamodel, encoding the quality attributes and the absence of smells as a set of constraints and finally satisfying these constraints using Alloy

    On the Value of Quality Attributes for Refactoring Model Transformations Using a Multi-Objective Algorithm

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152454/1/QMOOD_for_ATL__Copy_.pd

    Recommender systems in model-driven engineering: A systematic mapping review

    Full text link
    Recommender systems are information filtering systems used in many online applications like music and video broadcasting and e-commerce platforms. They are also increasingly being applied to facilitate software engineering activities. Following this trend, we are witnessing a growing research interest on recommendation approaches that assist with modelling tasks and model-based development processes. In this paper, we report on a systematic mapping review (based on the analysis of 66 papers) that classifies the existing research work on recommender systems for model-driven engineering (MDE). This study aims to serve as a guide for tool builders and researchers in understanding the MDE tasks that might be subject to recommendations, the applicable recommendation techniques and evaluation methods, and the open challenges and opportunities in this field of researchThis work has been funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 813884 (Lowcomote [134]), by the Spanish Ministry of Science (projects MASSIVE, RTI2018-095255-B-I00, and FIT, PID2019-108965GB-I00) and by the R&D programme of Madrid (Project FORTE, P2018/TCS-431
    • …
    corecore