
Advances in Engineering Software 173 (2022) 103216

Available online 11 August 2022
0965-9978/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Engineering the development of quantum programs: Application to the
Boolean satisfiability problem

Diego Alonso *, Pedro Sánchez , Francisco Sánchez-Rubio
Division of Systems and Electrical Engineering (DSIE), Universidad Politécnica de Cartagena, Spain

A R T I C L E I N F O

Keywords:
Quantum computing
Model-driven engineering
Boolean satisfiability

A B S T R A C T

The development of quantum programs is becoming a reality due to the rapid advancement of quantum
computing. Over the past few years, a multitude of hardware platforms, algorithms, and programming languages
have emerged to support this paradigm. By the very nature of Quantum Mechanics principles, there is an
enormous change of philosophy when building quantum programs, which operate in a probabilistic space, unlike
the deterministic behaviour shown by classical programming languages. These conceptual differences can be
overcome by using techniques and tools of Software Engineering. In this paper, we apply Model-Driven Engi-
neering techniques in a systematic way to ease the generation of quantum programs and we apply it to solve the
satisfiability problem, very important in many engineering domains like verification of discrete systems and test
of integrated circuits. To that aim, we contribute with a metamodel for representing quantum circuits and a
model-to-text transformation to generate working IBM Qiskit code. This model-driven infrastructure is employed
to automatically generate quantum programs from SAT equations through a model-to-model transformation that
embeds Grover’s algorithm. Besides, we provide formulas for calculating the number of required quantum ele-
ments from SAT equations, crucial in the current context of limited quantum resources. The interoperability with
other tools and the extensibility to target additional quantum platforms is guaranteed thanks to the use of a
model-based toolchain. We cover several usage scenarios to validate the approach, providing exemplary SAT
equations, the generated Qiskit code and the results of executing this code in IBM Quantum infrastructure.

1. Introduction

Quantum Computing (QC) is a model of computation that employs
Quantum Mechanics principles to perform a given computation. From
an application point of view, the publication in 1994 of a paper where
Peter Shor described a quantum algorithm that could break RSA
encryption [1] in linear time, and the publication of Grover’s algorithm
for searching in an unordered dataset in constant time [2] radically
opened the field of QC and attracted a lot of attention to it, by demon-
strating that it could be applied to a wider range of computational
problems than “just” the simulation of physical and chemical systems.
Some of the application fields where QC can be applied include, but are
not limited to, the following ones [3]: privacy and cryptography, supply
chain and logistics, chemistry, economics and financial services, energy
and agriculture, medicine and health, defence and national security
programs, among others. Therefore, it is not surprising that many
companies and governments are attracted by the business and strategic

opportunities offered by quantum technologies [4].
QC can be expressed in several ways, but the circuit representation is

the most usual one. Here, the programmer designs circuits that produce
final states capable of revealing useful information about the problem at
hand. QC relies on reversible operations, which transform the initial
state of qubits into its final form by using only operations whose action
can be inverted, and also on quantum superposition and quantum
entanglement, phenomena that do not exist in classical computers. This
way of working is radically different from what is done in classical
computing. Quantum algorithms are then implemented as trans-
formations acting on a complex vector space. The existing constraints
when building quantum programs (unitarity of quantum operations, and
the impossibility of non-intrusive measurement) make it quite compli-
cated to conceive new quantum paradigms starting from existing clas-
sical ones. In the light of all this, it is of great importance to explore the
possibility of bridging the gap between the way in which quantum al-
gorithms are implemented and, at the same time, to take advantage of

Abbreviations: QC, Quantum Computing; MDE, Model-Driven Engineering; SAT, Boolean Satisfiability; CNF, Conjunctive Normal Form.
* Corresponding author.

E-mail address: diego.alonso@upct.es (D. Alonso).

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

https://doi.org/10.1016/j.advengsoft.2022.103216
Received 11 January 2022; Received in revised form 3 March 2022; Accepted 23 July 2022

mailto:diego.alonso@upct.es
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2022.103216
https://doi.org/10.1016/j.advengsoft.2022.103216
https://doi.org/10.1016/j.advengsoft.2022.103216
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103216&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Advances in Engineering Software 173 (2022) 103216

2

the good results obtained in Software Engineering (SE) over the last
decades through the adoption of automatic software generation
techniques.

All the advances in QC urge the SE community to contribute theories,
methodologies and tools to support the proper development of quantum
software, given that quantum computers are becoming more and more
powerful and quantum supremacy is closer to be achieved every day. We
are entering a new Golden Age [5] in Computer Science, where SE has to
develop a specific body of knowledge for developing quantum software
with all the quality attributes and best practices researched over the last
forty years [3].

To this aim, in this paper we contribute a method to use the well-
known Model-Driven Engineering (MDE) paradigm [6] that can
greatly improve the development of quantum programs, and we apply it
to solve the, also well-known, Boolean Satisfiability (SAT) problem [7].
On the one hand, MDE enables to raise the level of abstraction of the
software that is being designed, putting the focus on the
problem-domain concepts instead of on the solution-domain ones,
which helps developers to better model the problem and to use gener-
ation techniques to automatically produce implementation code. This is
especially needed for generating quantum software, given the large
conceptual gap that exists between QC and classical computing. SAT, on
the other hand, is a very important problem in many application do-
mains, like the verification of discrete systems and the test of integrated
circuits [8], and one of the first ones that has been proved to be
NP-complete [9], meaning that its complexity grows exponentially with
its size. This problem has been selected on purpose, since it makes no
sense, in our opinion, to develop a quantum program for solving prob-
lems that a classical computer could easily solve. The intrinsic charac-
teristics and potential applications of SAT makes it the ideal problem to
show the benefits of applying MDE to develop quantum software.

To our knowledge, there are no research papers fully demonstrating
the applicability of MDE to develop quantum programs, except some
initial works outlined in Section 2.2, that propose metamodels for the
last phases of quantum code generation, despite the increasing interest
on adopting SE techniques for the development of quantum programs.

The rest of this paper is organized as follows. Section 2 describes the
state of the art of the application of SE to QC and some known solutions
for implementing quantum programs for solving SAT problems. Section
3 presents a metamodel for quantum circuits and a model trans-
formation that generates Qiskit code, which can be run on IBM’s
Quantum infrastructure. Section 4 details the approach followed in this
paper for automating the generation of quantum programs for solving
SAT problems, which is based on a model transformation that generates
a quantum circuit that embeds Grover’s algorithm. Section 5 is devoted
to validate the proposed approach and the tools developed. Section 6
includes a discussion on the motivational aspects and main concerns
regarding the approach described in this paper. Lastly, Section 7 pre-
sents the conclusions and outlines some future research lines.

2. State of the art

This section includes an overview of the three main topics covered in
this paper: software engineering for quantum computing, model driven
engineering methods, and the main concepts behind the SAT problem
definition and its implementations in quantum computers.

2.1. Towards quantum software engineering

Without any doubt, the quantum era has arrived. Quantum
computing is more than a dream. But as with any new technology giving
its first steps, quantum software developers will need standards,
methods, and techniques to deal specifically with the singularity of the
QC paradigm. One of the main challenges comes from the change from
traditional bits to qubits, which can be physically created and managed
by using different technologies.

A qubit can be in a superposition of the basic states |0〉 and |1〉, where
the probabilities of a qubit being on a given state, once it is measured,
are specified by complex numbers. By the very nature of Quantum
Mechanics principles, the concrete values of these probabilities are, in
general, unknown to the programmer, who will measure a classical ‘0’ or
‘1’ once the qubit is collapsed. This implies an enormous change of
philosophy when building quantum programs because software devel-
opment is oriented in QC towards the exploration of the problem space,
searching for optimal solutions in a probabilistic space, unlike the
deterministic behaviour shown by widespread classical programming
languages. Thus, the state of a quantum system is determined by a vector
in a complex vector space. Quantum programs are transformations
acting on this vector space, following the axioms of Quantum Me-
chanics. One usual way to build up quantum programs is by means of
circuits including quantum gates [10], which manipulate the qubits by
changing their magnitude, phase, or both, in order to perform a given
computation. A review of current quantum programming languages can
be found in [11].

Just with a quick exploration of the scientific literature on Quantum
Software Engineering, it is straightforward to realise that, nowadays,
two different communities of computer scientists can be identified: on
one hand, the community of quantum computer scientists with low or no
background on SE, but highly skilled building quantum programs and
thinking on a probabilistic way using algebraic notations; on the other
hand, the community of SE researchers who are commonly too far from
the quantum concepts, but with a strong background on tools and
methods to support the classical software development process. Right in
the middle, very recently, a few researchers, aware of the mistakes of the
past for software development, are convinced that the adoption of a
more agile approach for developing quantum programs and the impor-
tance of empirical validation are both key for a successful transition
between both worlds [12].

Undoubtedly, the creation and boost of a new field, the recently
named Quantum Software Engineering, must come from initiatives at
different levels, among which training at university level is undoubtedly
the most urgent one [3]. In this vein, the Talavera Manifesto for
Quantum Software Engineering [12] is the result of recent discussions of
academia and industry, where principles and commitments about how
to adopt SE in quantum software development are identified. SE can
contribute to quantum software development after agreeing on a set of
principles and methodologies taken from experience. The Manifesto is a
call to action to those stakeholders who should be involved in the pro-
cess, mainly, software practitioners, researchers, educators, govern-
ments and funding bodies, quantum technology vendors, professional
associations, among others.

One of the most complete surveys that tries to bring the classical
concepts of SE to the quantum paradigm is [13] where, apart from some
challenges and opportunities in the field, the quantum software life cycle
is described, including the quantum software requirements analysis,
design, implementation, test, and maintenance phases in quantum
programs development. The paper also gives the first steps to close the
gap between the classical and the new paradigm by proposing a set of
extensions to UML for facilitating the modelling of quantum software.
Through class and sequence UML diagrams, modellers can visually
represent the different parts of a quantum program and the sequence of
actions carried out on the working qubits.

In terms of the software process [14], provides a Quantum Devel-
opment Life Cycle model to devise a set of systematic and cost-effective
techniques to a successful quantum software development, detailing the
different considerations to have in mind when defining each of the
phases of quantum development process. Of paramount importance in
the SE field is the definition of the basic unit of reuse. To this aim [15],
discusses the concept of quantum module and establishes some rules for
determining the cohesion and coupling levels of a quantum module.
Related to this [16], introduces some ideas for facilitating the devel-
opment of quantum software modelling languages by providing a

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

3

conceptual model for quantum programs.
Considering the above, there is a high interest on giving the first steps

on taking advantage of the previous experience on SE for classical
computers and start building new solutions compatible with the quan-
tum paradigm singularity. However, the results are still very incipient,
with little or no concrete solutions beyond general intentions or ap-
proaches. That is why this paper represents a first step towards a con-
crete solution that is also applied to the resolution of a problem that is
well-known in both classical and quantum computation.

2.2. Model-Driven engineering and its application to quantum computing

Over the last two decades, it has been demonstrated that the con-
struction of software can greatly benefit from the adoption of the well-
known MDE approach [17]. The most important motivation to adopt
MDE is improving productivity both in terms of the increase in the
software artefact’s value and the longer expectation of use [18]. The
more functionality you can derive from the models, the higher the
productivity you will obtain. In MDE, the primary focus of software
development are models and the transformations between them. A
model is a reduced version of the represented system where some details
are hidden or removed, given that they are irrelevant from a given point
of view. At the same time, models are a way to share knowledge among
technical and non-technical stakeholders. The direct advantage of MDE
is that software engineers can express models using concepts closer to
the problem domain. In this way, models can be specified and manip-
ulated easier, and they are less dependent on computing technology and
underlying execution platforms. Of course, in the end, computer pro-
grams should be automatically obtained from their corresponding input
models. Characteristics such as understandability, accuracy, pre-
dictiveness and inexpensiveness should be taken into account when
designing models [19]. Models conform to their metamodel, meaning
that a model must satisfy the concepts, relationships and constraints
established at the metamodel level. At the same time, a metamodel is “a
model that defines the structure of a modelling language” [20].

A model transformation is a set of rules to transform an input model
(conforming to a source metamodel) to an output model (conforming to
a target metamodel). A transformation engine is then a tool that uses
model transformation rules to produce output model(s) from input
model(s). Model transformations include both model-to-model trans-
formations, with which input models are used to obtain different kind of
models, probably in different languages and abstraction levels; and
model-to-text transformations, which automate the transformation of
models to textual representations such as code or documentation. A
comprehensive survey addressing of the classification of the known
model transformation approaches is given in [21]. The automated tasks
can also include the verification of models to analyse them for some
desirable properties and the absence of those to be avoided [22].

Regarding the application of modelling techniques to develop
quantum programs [23], provides a solution to model quantum circuits
by means of a UML profile applied to the UML activity diagram. This
greatly facilitates the integration of quantum models with classical ones,
favouring the development of hybrid applications. In [24], the authors
argue for researching on how MDE may be applied for quantum tech-
nologies. Particularly, they advocate for an approach for the develop-
ment of hybrid applications and point out to the most recent proposals in
this field. Of particular interest is the framework proposed in [16],
where some ideas for developing quantum software modelling lan-
guages are presented. More specifically, they consider an approach
where there are metamodels for domain specific languages, as well as for
modelling quantum programs as extensions of UML. With these meta-
models, developers may model their applications including both clas-
sical and quantum programs. Related to these works, the authors of [25]
propose MDE4QAI, a framework with a MOF-based metamodel for the
integration of QC and Artificial Intelligence. They advocate enhancing
the use of domain-specific languages to facilitate the development of

hybrid programs.
These are, to our knowledge, the existing papers that apply model-

ling techniques to QC. It is evident that we are just at the beginnings of
contributing to QC using SE techniques and methods.

2.3. Quantum approaches to solving the Boolean satisfiability problem

The Boolean satisfiability problem can be expressed as follows: given
a logical equation, determine if there exists a Boolean assignment to its
variables which makes the equation true. In general, the equation can
make use of any logical operator and SAT can be extended to include
quantifiers (like ‘for all’) and even predicates over variables and func-
tions, which define the Satisfiability Modulo Theories (SMT) problem
[26]. This paper focuses on the Boolean SAT that employs only the AND,
OR, NOT operators in conjunctive normal form (CNF), since this is the
form usually used to solve SAT problems [9].

A logical equation in CNF is expressed as a conjunction (logical AND)
of a set of clauses, where each clause is defined as a disjunction (logical
OR) of literals, where each literal has the form x or ¬x. For example, the
formula (¬a ∨ b) ∧ (¬a ∨ b ∨ c) is expressed in CNF. In the 3-SAT prob-
lem, each clause has at most three literals. It has been demonstrated that
any k-SAT problem can be transformed to a 3-SAT one [9], and therefore
there is no loss of generality in focusing on the Boolean 3-SAT problem.
The SAT problem has been extensively studied since the early seventies.
Many algorithms have been developed in order to solve it and it is
widely used in many application domains, as described in [7].

There are several strategies to apply QC to solve the SAT problem.
The most well-known ones are those that rely on the application of
Grover’s search algorithm [2] to find solutions, if they exist. The basic
description of the application of Grover’s algorithm to the SAT problem
can be consulted in [27]. The application of this algorithm requires (i) an
oracle, which can distinguish between correct and incorrect solutions
(assignments to the logical variables in this case), and (ii) the inclusion
of the Grover diffuser, a quantum circuit that amplifies the probabilities
of correct solutions. Both the oracle and the diffuser circuits constitute
the Grover iteration.

If the oracle is constructed naïvely, that is, by directly translating the
AND, OR, NOT logical operators into their equivalent quantum gates,
the resulting quantum circuit has, however, an important drawback: the
number of required qubits increases linearly with the number of dis-
junctions that appear on the logical equation, since one additional qubit
is needed to store the superposition result of each of them. For instance,
the logical equation shown before, (¬a ∨ b) ∧ (¬a ∨ b ∨ c), requires 5
qubits to be solved: 3 for the variables (a,b,c) and 1 for each disjunction.
Thus, we have almost doubled, in this particular example, the number of
input qubits required by the equation. Qubits are not only scarce re-
sources, but they are also difficult to manage and control with currently
available technologies. Moreover, the greater the number of qubits, the
greater the probability of suffering de-coherence effects while executing
the computation, which can ruin the result [28].

Some research works focus on modifying the application of Grover’s
algorithm in order to improve some properties of the resulting quantum
program, such as the number of required qubits, the number and types of
the employed quantum gates, the number of steps required to solve the
problem, etc. In [29], an overview of searching algorithms that are
commonly applied in QC, describing an application to the 3-SAT, is
provided. Cheng [30] presents a proposal where they solve a smaller
version of the SAT problem by employing well-known classical algo-
rithms, and then apply Grover’s algorithm to solve the remaining vari-
ables. More recently, Wang [31] describes a solution to the 3-SAT that
combines the non-quantum algorithm developed by Schoning [32] with
a step of amplitude amplification to reduce computation time and the
number of qubits and quantum gates needed to solve it.

Furthermore, there are some research works that focus on other
properties or other ways of exploiting Quantum Mechanics principles to
perform computation. The first work we highlight is [33], which

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

4

employs the adiabatic model of QC. This very mathematical model uses
Hamiltonian matrices to model the quantum evolution of a system. The
authors of the paper describe how to modify the computation to be able
to start it from an initial guess of the solution to the SAT problem, so that
the evolution of the adiabatic model itself “guides” the computation to
find a possible solution to it. The more recent work [34] employs
continuous-time quantum walks to find a solution to K-SAT problems.
Such algorithm is also based on the use of Hamiltonians.

As can be seen, quantum solutions for SAT problems have been
properly analyzed, enough to consider them as an appropriate case study
for testing an MDE solution to automate the generation of quantum
programs. The following sections describe the approach proposed in this
paper.

3. A metamodel for quantum circuits and quantum code
generation

We need, as a first asset that enables supporting the approach, a
metamodel to model quantum circuits, as it is the most usual repre-
sentation of quantum computations. After that, a model-to-text trans-
formation is required to generate working code for a quantum computer
or simulator.

To our understanding, when representing quantum circuits using
metamodels, two main options can be identified. The first one is the
approach oriented to represent the flow of control given as a sequence of
connected actions (gates), obtaining as a result a fully connected acyclic

graph. This is the solution adopted by [23] and may have some benefits
in terms of optimization of quantum algorithms. The second approach,
which is the one chosen in this work, sees the circuit as a sequence of
ordered vertical slices in which single or complex gate operations can be
included. This way of modelling has the advantage of identifying very
directly the set of gates operating on the qubits without the need of
traversing a graph. Furthermore, additions or removal of gates when
editing the circuit are more straightforward.

According to this, the intuitive idea behind the metamodel proposed
in this paper, entitled Qcore and shown in Fig. 1, is dividing the circuit in
vertical slices. Each circuit has associated a set of input and ancilla
qubits, and a set of classical (output) bits. Each Slice can be either
a Barrier (used only for printing the circuit) or a QSlice containing
operations. Operations are sub-classified into Measure, basic Gate,
Controlled operation, and Reset operations. As subclasses of
Gate, all the different quantum gates of a quantum computer can be
identified. Each of these gates has a link to the qubit in which the
operation is performed.

The SWP (swap) gate is a special one as it also stores the second qubit
with which the swapping operation is performed. Measure and reset
operations reference the qubit in which the operation is performed. The
Controlled operation is the most complex one. It allows to model
zero or many control-qubits acting on one or more basic gates. This is the
way to model, for instance, the CNOT gate (one qubit as control and one
qubit targeted with a single gate), the CCNOT gate (two qubits as control
and one as target), as well as other combinations such as CCNOTNOT

Fig. 1. Qcore metamodel for modelling quantum circuits.

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

5

(that is, two control qubits acting on two NOT gates). The specific
number of basic gates can be extended as needed depending on the
specific platform.

From this general-purpose metamodel, which allows us to model
quantum circuits, it is possible to generate code for almost any quantum
programming language. In our case, we have decided to target the Qiskit
SDK [35] language by IBM, since it is one of the most well-known. Given
the structure of the Qcore metamodel, the Qcore-to-Qiskit model-to-text
transformation is quite straightforward. Fig. 2 shows an excerpt of the
main part of this transformation, which has been programmed in the
Epsilon language [36]. As can be seen on the transformation source
code, registers of qubits and classical bits are initialized according to the
input model and a quantum circuit is then constructed (lines 1 to 3).
After that, the slices conforming the circuit are processed, one by one. In
case it is a QSlice, all the gates inside it are again processed (lines 4 to
13) by invoking a to_qiskit() operation that has been defined for
each Operation. At the end of Fig. 2 we show the operation to_qiskit
() created for the Hadamard gate (lines 15 to 18). Some more code is
added in order to generate a working Qiskit source file, like import
statements, printing the circuit and configuring and running the simu-
lator, for instance.

4. Generation of quantum programs for solving SAT problems

Once the infrastructure for modelling quantum circuits has been
created, it is possible to create a new metamodel, conceptually above the
Qcore one, that enables us to model problems at a higher level of
abstraction, in our case, the SAT problem. Thus, the application of MDE
principles to generate quantum programs for solving the SAT problem
comprises two metamodels and two model transformations, as shown in
Fig. 3. This follows a classical MDE scheme, where the final result of the
transformation chain is source code for IBM Qiskit SDK, which can be
directly run on IBM’s Quantum infrastructure.

The metamodel for modelling Boolean equations in CNF is shown in
Fig. 4. As can be seen, it comprises three meta-classes: representation of
the whole Logical equation, which is an AND operation of Clau-
ses, which in turn are an OR operation of Atoms, which can be negated.

The model transformation that generates the quantum circuit for
solving a given SAT problem follows the scheme described in [27]. Being

SAT a search problem, it is natural to apply Grover’s algorithm [2] to
solve it. This algorithm includes the generation of an oracle to mark
correct solutions and a Grover diffuser to amplify their probabilities. If
the search space has size N and there are M solutions to the SAT equa-
tion, both the oracle and the Grover diffuser have to be iterated
O(

̅̅̅̅̅̅̅̅̅̅
N/M

√
) times in order to obtain a solution to the search problem with

high probability, as described on [37]. In the case where M is not known,
some approaches can be adopted to make an estimation of its value, such
as quantum counting [38]. An excerpt of the model-to-model trans-
formation, where it is possible to identify the creation of the main parts
of the quantum circuit as described in the following paragraphs, is
shown in Fig. 5.

The CNF-to-Qcore model-to-model transformation starts by creating
a qubit and a measure for each atom, and adding a Hadamard gate to
each input qubit to put it in superposition state (line 1 in Fig. 5), which is
a basic quantum state. Putting qubits in a superposition state is one of
the first operations performed on every quantum program. Almost all
quantum manipulation operations are performed on qubits in this state,
in which all possible combinations of 0′ s and1′ s are explored at the same
time thanks to quantum principles. The oracle is then constructed as
follows: for each clause, we create the quantum version of the OR
operation over the corresponding qubits (by adding a controlled-NOT
gate), and one ancilla qubit to store its result. Ancilla qubits are
commonly used on QC for storing temporal values generated as part of
the computation. In case any of the input atoms is negated, we need to
also negate the qubit by adding a NOT gate before and after performing
the OR operation. The second NOT gate is needed because we need to
restore the qubit to its original state after manipulating it. All the
Qslices created to store the quantum gates generated by the afore-
mentioned transformation constitute the oracle, and are added to the
output quantum circuit (line 2 in Fig. 5). Lastly, we finish constructing
the oracle by adding a controlled-Z gate that acts on all ancilla qubits,
flipping the phase of all combinations that are true, and then add it to the
output circuit (line 3 in Fig. 5).

The circuit is not finished yet since we first need to undo all the
modifications applied to the input qubits, and lastly apply the Grover
diffuser. The undo operation is needed in order to preserve the revers-
ibility properties of QC and requires us to reverse the order of execution
of the oracle circuit. Fortunately, this is easily achieved by using the

Fig. 2. Excerpt of the Qcore-to-Qiskit model-to-text transformation, written in Epsilon Generation Language (EGL), focusing on the overall generation of Qiskit code.

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

6

invert() operation available in Epsilon (lines 4 and 5 in Fig. 5). After
that, we only need to add the Grover diffuser (lines 6 and 7 in Fig. 5),
which is a set of gates that operate over the input qubits, and the mea-
sure operations (line 8 in Fig. 5). It is possible now to provide a non-
quantum explanation on how Grover’s algorithm works:

1. By putting all input qubits into superposition state, we prepare them
to take all possible combinations of 0′ s and1′ s at the same time. Thus,

we are capable of exploring 2n combinations running the circuit
once.

2. The oracle then flips the phase (a qubit state is specified by complex
numbers and thus a qubit state is characterized by magnitude and
phase) by 180∘ of all the combinations of 0′ s and1′ s that make the
oracle answer true. This is why the oracle implements the logical SAT
equation.

3. The Grover diffuser converts phase differences into magnitudes (the
only value that affects the probability of reading a 0 or 1 when

Fig. 3. Scheme of the MDE process: from CNF logical equations to Qiskit source code.

Fig. 4. Metamodel for modelling SAT problems in CNF.

Fig. 5. Excerpt of the CNF-to-Qcore model-to-model transformation, written in Epsilon Transformation Language (ETL), focusing on the overall generation of the
quantum circuit.

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

7

measuring a qubit), amplifying the magnitudes of the combinations
that have been flipped, therefore making the probabilities of the
qubits collapsing to those combinations, which are answers to the
problem, higher.

4. The Grover iteration has to be repeated O(
̅̅̅̅̅̅̅̅̅̅
N/M

√
) times in order to

increase the probability of obtaining a valid solution.

The transformation scheme followed for implementing Grover’s al-
gorithm is the general one, as described in the state of the art. Thus, the
transformation does not consider potential optimizations that could be
performed in order to (i) reduce the number of gates of the generated
quantum circuit (for instance, in the concrete quantum circuit shown in
Fig. 6, it is possible to cancel out two consecutive NOT gates on qubit
q0), (ii) reduce the number of required qubits, for instance, by applying
Grover’s algorithm to a subset of the variables involved in the SAT
equation, as described in [30].

As shown in this section, the use of well-known best practices,
methods and tools in SE can definitely ease the implementation of
quantum programs. Given the facilities provided by the MDE approach,
it is possible to develop and include new tools that optimize the
generated QCore model before generating the Qiskit code. In this way,
the contribution of MDE to ease the development of quantum programs
is twofold: on the one hand, it provides a higher abstraction level where
the developer can use the concepts of the problem domain (Boolean
formulas in this case) instead of the concepts of the solution domain
(quantum gates) and on the other hand, it minimizes potential errors
introduced by programmers when they directly encode the solution in
the quantum programming language. For instance, as described in the
following section, the quantum circuit generated by a Boolean formula
that includes five clauses with nine atoms comprises sixty-nine quantum
elements (both qubits and gates). Therefore, MDE can make the design
and development process significantly more efficient and cost-effective
through automation.

Next section is devoted to validating the transformations through
some representative examples covering distinct situations. All the

metamodels, example models and tools described in the paper are
available in the GitHub repository [39].

5. Validation of the approach

Testing model-to-model transformations has been broadly
researched in the literature [40], where three main challenges are
commonly identified [41]: the creation of a set of input test models, the
definition of adequacy criteria for checking whether the input models
are sufficient for the testing task, and lastly, the verification that the
generated models are actually the expected ones. In this regard, there
have been many approaches providing solutions for these challenges,
like unit testing [42], mutation analysis techniques [43], or static ana-
lyses [44], to mention a few. Despite these contributions, there is little
consensus in how to adequately validate model transformations given
the broad spectrum of approaches to model testing as well as the
intrinsic difficulty of this task. Because of the difficulty to assure that a
set of input test models satisfies all the constraints required for a con-
crete test, automatic test model generation is not usually performed, but
rather test models are manually created. Since this task is also difficult,
error-prone and tedious, model transformations are commonly best
validated by checking a set of properties on the output model in order to
determine if the transformation has been correctly performed.

In face of it, we have implemented a validation approach that re-
volves around two types of tests: (i) check the correctness of the
generated quantum circuits by running them using the facilities pro-
vided by IBM and the Qiskit SDK, and (ii) verify the output model in
terms of the expected number of quantum elements to be generated. The
description of the validation tests follows.

5.1. First test

The first test would involve checking that all possible types of input
models, SAT equations in CNF in our case, generate valid quantum cir-
cuits in the Qiskit language, and that these circuits solve the input SAT

Fig. 6. Quantum circuit for solving the SAT logical equation with three solutions, as generated by IBM Quantum Computing Lab online tool. Each vertical set of gates
or barrier is modelled as a slice on the Qcore metamodel.

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

8

problem. Since this is impossible for obvious reasons, we have manually
generated and tested a variety of input CNF models in order to achieve a
complete coverage of the most representative scenarios, i.e. equations
with multiple clauses and atoms appearing in all of them and in a subset
of the clauses. Given that the number of qubits needed to implement the
CNF equations grows proportionally with the number of clauses and
atoms (more details about this on Section 5.2), there is a real limitation
in the size of the formulae that can be tested (at the time of writing,
measured in tens of qubits). Considering this, and in order to ease the
presentation of the results of the approach, we focus on three concrete
equations, taken from [27], that have a different number of solutions,
ranging from multiple solutions to none. After this, we present the re-
sults of solving three larger equations with varying number of atoms and
clauses, up to 20 qubits, which is the current limitation imposed by the
simulator available on IBM’s Quantum infrastructure.

All the generated circuits have been run on IBM’s Quantum infra-
structure, running for each of them 1024 simulations (see Section 5.3 for
more details about the number of simulations). This is another charac-
teristic that radically differentiates QC from classical computing: given
the probabilistic nature of the manipulation of the circuit qubits, it is
necessary to run the quantum circuit hundreds or thousands of times to
obtain a probability distribution of the possible solutions to the problem.
The combinations that have higher probabilities (see Fig. 9) are the
candidates to be real solutions of the problem, but you cannot be
completely sure since QC operates in a probabilistic space. The equa-
tions are the following ones:

• Equation with three solutions (SAT #1):
(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x3). Solutions are x1 = F,x2 = T,x3 =

T; x1 = T, x2 = F, x3 = T; x1 = T, x2 = T, x3 = T. The quantum
circuit generated for this equation is shown in Fig. 6, while the re-
sults of the simulation are shown in Fig. 9a. As can be seen on the last

figure, the three combinations with the highest frequencies in the
histogram are the solutions to the equation.

• Equation with one solution (SAT #2):
(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x3). The only solution is
x1 = T, x2 = F, x3 = T. The quantum circuit generated for this
equation is shown in Fig. 7, while the results of the simulation are
shown in Fig. 9-b. As can be seen on the last figure, the combination
with the highest frequencies in the histogram is the solution to the
equation.

• Equation with no solution (SAT #3):
(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x3) ∧ (x2). The quantum
circuit generated is shown in Fig. 8, while the results of the simula-
tion are shown in Fig. 9c. In the last figure, it is possible to see that
the frequencies of the combinations shown in the histogram are
roughly the same, meaning than either all combinations are correct,
or all are incorrect. After checking one of them, it is possible to
conclude that are all incorrect. This behaviour is expected given the
probabilistic nature of QC.

The more complex equations simulated comprise 15 atoms and 5
clauses, 10 atoms and 10 clauses, and 5 atoms and 15 clauses, respec-
tively (considering the aforementioned limitation in the number of
qubits available). These CNF equations are the following ones:

• 15 clauses and 5 atoms: (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧

(x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ ¬x3 ∨

x4) ∧(x3 ∨ x4 ∨ ¬x5) ∧ (¬x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ ¬x4 ∨ x5) ∧ (¬

x1 ∨ ¬x2 ∨ x3 ∨ x5) ∧(x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x3 ∨ x5) ∧ (x1 ∨ x2 ∨ ¬x3∨

¬x4 ∨ ¬x5) ∧ (¬x2 ∨ ¬x3 ∨ x4 ∨ ¬x5). The quantum circuit comprises
20 qbits and the following number of gates: 172 NOT, 30 CNOT, 2
CZ, and 15 Hadamard. 375 lines of Qiskit code have been generated.

• 10 clauses and 10 atoms: (x1 ∨ x2 ∨ ¬x3 ∨ x5) ∧ (x6 ∨ ¬x7) ∧(x7 ∨

x8 ∨ x9 ∨ ¬x10) ∧ (x1 ∨ x3 ∨ x5 ∨ x7 ∨ x9) ∧ (x2 ∨ x4 ∨ x6 ∨ ¬x8 ∨ x10)

Fig. 7. Quantum circuit for solving the SAT logical equation with one solution, as generated by IBM Quantum Computing Lab online tool.

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

9

∧(¬x1 ∨ x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ x8 ∨ ¬x9 ∨ ¬x10) ∧ (x2 ∨ ¬x3 ∨ x4 ∨ ¬

x6 ∨ ¬x8) ∧(x3 ∨ x4 ∨ ¬x5 ∨ x7 ∨ ¬x8 ∨ x9 ∨ ¬x10) ∧ (¬x1 ∨ x3 ∨ ¬

x8 ∨ x9 ∨ x10) ∧(x2 ∨ ¬x4 ∨ x6 ∨ ¬x7 ∨ x8 ∨ ¬x10). The quantum cir-
cuit comprises 20 qbits and the following number of gates: 172 NOT,
20 CNOT, 2 CZ, and 30 Hadamard. 350 lines of Qiskit code have been
generated.

• 5 clauses and 15 atoms: (x2 ∨ x4 ∨ x6 ∨ ¬x8 ∨ x10 ∨ x12 ∨ ¬x13 ∨ ¬

x14) ∧(¬x1 ∨ x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ x8 ∨ ¬x9 ∨ ¬x10 ∨ x14 ∨ ¬x15) ∧

(x2 ∨ ¬x3 ∨ ¬x6 ∨ ¬x8 ∨ x11 ∨ x13) ∧ (x3 ∨ x4 ∨ ¬x5 ∨ x7 ∨ ¬x8 ∨ x9 ∨

¬x10 ∨ x12 ∨ ¬x14) ∧(x2 ∨ ¬x4 ∨ x6 ∨ ¬x7 ∨ x8 ∨ ¬x10 ∨ x13 ∨ ¬x15).
The quantum circuit comprises 20 qbits and the following number of
gates: 128 NOT, 10 CNOT, 2 CZ, and 45 Hadamard. 270 lines of
Qiskit code have been generated.

5.2. Second test

The aim of the second test is to check the number of quantum ele-
ments generated by the CNF-to-Qcore model transformations, according
to the equations shown in Table 1. In the table, ν represents the number
of variables (the set of variables is the set of distinct values of the
property ‘name’ of the atoms), κ is the number of clauses, α is the
number of non-negated atoms of the equation, and ρ is the number of
repetitions of the Grover iteration. These equations have been integrated
into the source code of the CNF-to-Qcore model transformation, so that
we can verify that it generates the expected number of quantum ele-
ments. The table also shows the number of quantum elements generated
for each of the three CNF equations. Regarding the scalability of the
proposed approach, as can be seen in the table, the number of generated
qubits and gates is linear with respect to the size of the input SAT

equation, which will allow for solving large SAT problems, provided the
available quantum infrastructure can run the generated quantum
programs.

These equations allow us to further test the approach by using larger
CNF equations as input models and checking that the QCore model
contains the number of expected quantum elements. For this, we have
developed a random model generator using the Epsilon Model Generator
language. With this tool, we have tested several input models ranging
from tens of clauses and atoms per clause, to almost a thousand clauses
and a hundred atoms per clause. As an example, from a CNF equation
comprising 951 clauses with between 30 and 99 atoms per clause, the
model transformation generates a QCore model with 1051 qubits,
125,006 NOT gates, 1902 CNOT gates, 2 CZ gates and 300 Hadamard
gates, as predicted by the equations shown in Table 1 with one Grover
iteration. This QCore model is then transformed into a Qiskit file with
around 135,000 lines of code, which cannot be simulated on IBM’s
Quantum infrastructure right now for the reasons already mentioned.
The size of the generated Qiskit file shows another advantage of the
approach, since it would be very easy for a human programmer to make
a mistake implementing such a large quantum circuit.

Further tests would involve having a test suite to perform unit testing
on the generated Qiskit code, similarly to what is done with Java code by
using JUnit. However, there is currently no such unit testing framework
for checking quantum code. This is another of the deficiencies of the QC
field when compared to classical software development, as identified by
[3], and one of the many areas waiting for contributions from the SE
community.

Fig. 8. Quantum circuit for solving the SAT logical equation with no solutions, as generated by IBM Quantum Computing Lab online tool.

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

10

5.3. On the number of simulations of the quantum program

Given the probabilistic nature of QC, it is common to run a quantum
program several times so that the probability distribution of the solu-
tions obtained by running the program corresponds to the actual solu-
tions to the problem. In this sense, the IBM platform allows the
parameterization of the number of simulations run, which by default is
set to 1024, and this is the number we have used. Several authors have
approached the analysis of the probability of success of Grover’s algo-
rithm [38,45], which depend on the number of solutions (M), the size of
the problem (N) and the number of Grover iterations. For the case of a
single iteration, Eq. (1) determines the probability of not finding a valid

solution with a single run of the circuit [45].

Pfailure = 1 − 9⋅
M
N

+ 24⋅
(

M
N

)2

− 16⋅
(

M
N

)3

(1)

A key question that arises is how many simulations (κ, an integer
value) of the circuit should be performed to obtain at least a valid so-
lution with probability greater or equal than a certain value ρ. Consid-
ering the above equation and performing basic statistical manipulation,
κ is determined with the expression shown in Eq. (2).

(
Pfailure

)κ
≤ (1 − ρ)→κ ≥

⌈
log(1 − ρ)
log

(
Pfailure

)

⌉

(2)

According to Eqs. (1) and (2), the probabilities of failure for equa-
tions SAT #1 and SAT #2, shown in Section 5.1, are 15.63% and
21.87%, respectively. Setting the probability of success to 95% for
obtaining at least one valid solution, just two runs will suffice in both
cases. Rising the probability of success to 99%, three and four runs are at
least needed, respectively.

6. Discussion

The proposed application of the MDE approach to generate a quan-
tum program to solve the SAT problem is very flexible and it is possible
to extend it in order to make it more powerful or to adapt it to any
particular need. Without aiming to provide a complete set of

Fig. 9. Probabilities histogram of the solutions to each SAT equation.

Table 1
Number of quantum elements generated by the transformations for a SAT
equation. ν is the number of variables (atoms with distinct names), κ is the
number of clauses, α is the number of non-negated atoms and ρ is the number of
repetitions of the Grover iteration.

Quantum meta-classes # elements generated SAT #1 SAT #2 SAT #3

qubit ν 3 3 3
ancilla κ 3 4 5
CX gate 2⋅κ⋅ρ 6 8 10
H gate (1+ 2⋅ρ)⋅ν 9 9 9
CZ gate 2⋅ρ 2 2 2
X gate 2⋅(ν+ κ+ 2⋅α)⋅ρ 28 34 40

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

11

improvements, some further extensions that could be included on the
basis of the infrastructure that has been developed are the following
ones:

• Regarding the targeted quantum computer, the most obvious
extension could be to develop a new model-to-text transformation to
generate source code for other quantum computers, provided that
the target computer supports the circuit representation of a quantum
computation. The Qcore metamodel could be also extended by
adding subclasses of the Gate metaclass as needed in order to target
other platforms that provide new primitive operations.

• Regarding the intermediate level of the proposed approach, we could
design a new metamodel that supports other models of quantum
computation, or to consider hybrid computation (a program that
comprises parts that will be executed on a classical computer and on
a quantum one). In any case, this improvement will require, provided
that no additional steps/metamodels are added to the toolchain, a
new model-to-text transformation to generate the quantum code.

• Regarding the SAT problem, we could substitute the CNF metamodel
by a more general one that allows users to model Boolean formulas in
any form, not just CNF. This improved version could also provide
other logical operators, such as XOR, implication, etc. In this case, a
new model-to-model transformation will be needed to generate the
appropriate quantum circuit, but the quantum metamodel and the
last model-to-text transformation can be fully reused. Or, alterna-
tively, we could develop a model-to-model transformation that
generates a CNF model from an input Boolean formula, therefore
reusing the developed infrastructure.

• Regarding the extension to tackle new problems, we could add new
metamodels that provide the modelling concepts required by them,
like factoring or quantum cryptography, reusing the implementation
infrastructure already developed for generating Qiskit code.

The generation of executable quantum code from quantum circuits
developed in this paper is quite straightforward. This is a direct conse-
quence of having, in some way, both representations at the same
abstraction level. The main contribution from the code part is adding the
details in terms of the specific execution platform. It should be relatively
easy to build reverse transformations to get the quantum circuits given
the implementation in any quantum programming language, which
enormously favour the portability between quantum platforms
(assuming that some specific attributes or instructions specific of the
platform would be added ad hoc).

The main difficulty in adopting an MDE approach for quantum
program developments is on designing the transformation that generates
the quantum circuit. In some way, this is not a surprise. Here is where we
face the existing gap between modelling a problem from a non-quantum
perspective and then obtaining the equivalent quantum one. As stated
in [15], most of the current software problems are not specified in terms
of probability spaces. Traditional software engineers make use of con-
ceptual tools to model the system in the problem domain and, by means
of transformations, get an executable representation where the concepts
have found a direct correspondence. However, in quantum program-
ming, the developer must deal with qubits and algebra operators to
manipulate them, always having in mind the probability distribution of
qubit values. In other words, there is a clear impedance mismatch be-
tween classical and quantum programming which will need of complex
transformations.

Domain specific languages and patterns may be part of the solution.
A quick view on the main literature on quantum computing is enough to
see that most of the quantum programs are built around the use of some
basic building quantum blocks or primitives. These include for instance
the Grover diffuser, the QFT amplitude amplificator, the use of oracles,
and some other operations for quantum arithmetic and logic. Indeed,
there are some very well-known references [46] cataloguing the set of
basic paradigms considered for implementing quantum programs. This

means that, for a very representative set of problems to be solved, these
primitives will be used, so it could be of interest to explore the
conception of a quantum (domain) specific language which would serve
to take those primitives and interconnect them in order to assemble a
quantum solution as an aggregation of existing functionality. Still, it
needs of much experience to exactly know what elements and in which
order are needed to have a valid implementation. Certainly, the
consideration of patterns to provide a set of common structures would be
very helpful and it is a matter of interest for further research.

A good starting point would be having many examples of trans-
formations. We believe that no one will dispute that the best demon-
stration of the usefulness of using MDE for quantum programs
development will come through getting a big asset of problem-to-
quantum circuit transformations. This is the best way to favour the
definition of domain specific languages and patterns. We are only at the
beginning of this task. Researchers have very recently started contrib-
uting to the definition of metamodels for the representation of quantum
circuits. Our work is in this way a clear contribution as it is the first full
implementation from the definition of the problem to the executable
representation of the quantum circuit. The definition of the metamodel
for representing quantum circuits, as described in this paper, is a reus-
able asset which will facilitate for sure the contribution of other
researchers.

7. Conclusions and future work

In this paper we have demonstrated the suitability of the MDE
approach for the automatic generation of quantum programs. A meta-
model for representing quantum circuits is provided, which serves as an
input model to generate Qiskit code, which is executable on real quan-
tum computers and simulators. We conceived and implemented the
approach to be extensible. Given the way in which quantum circuits are
represented as models, other transformations to generate code to reach
other platforms and languages are feasible.

The type of applications that can benefit from the proposed approach
includes (i) those problems that have a well-known and structured
quantum solution, which can be automatically generated (as has been
the case for SAT, other problems, such as factorization of prime numbers
or graph colouring, among others, fall in this category); and (ii) those
applications that are implemented using some of the basic algorithms of
QC and in which the programmer would have to manually complete the
generated code (for instance, a quantum program for cryptography that
generates the skeleton of the quantum circuit where the programmer has
to add the part of the circuit that computes the information to be
encrypted). As the number of implemented case studies grows, we also
envision the scenario in which quantum code generation will be
approached from a perspective similar to the one that has been followed
in classical computing using design patterns, reference architectures and
frameworks.

The case study adopted in this paper, the SAT problem, is very well-
known and employed in the context of many engineering problems, like
the validation of electronic circuits, for instance, to check the correct-
ness of hardware designs. The gains in terms of reduced computation
time provided by quantum solutions can improve not only the validation
time of Electronic Design Automation software, but also enable it to
carry out validations that are not currently possible given its complexity.

Although there are several notations to graphically represent quan-
tum algorithms, the metamodeling contributes with a notation that is
not only understood by quantum software engineers, but also it is a
useful asset from which to extend existing tools. One of these possibil-
ities is reverse SE, allowing developers to automatically generate UML-
compliant models from existing quantum circuits, opening in this way
even more the possibilities for integrating other validation and code
generation tools (for instance, for getting a compiler to transform
quantum programs between different execution platforms). Thus, the
approach has two main benefits, apart from providing the automatic

D. Alonso et al.

Advances in Engineering Software 173 (2022) 103216

12

generation of quantum code: the possibility of integrating other existing
SE tools, and the integration with existing UML models, of great interest
for the implementation of hybrid systems (i.e., quantum exchanging
data with classic computers).

The decision of splitting quantum circuits in slices has proven to be
very useful when traversing the models to apply the transformation
rules. Moreover, the solution adopted is not affected by the possible
variations on the graphical representations of the quantum gates. Also,
there is no limitation on the number of gates that can be added as they
are only subclasses of the existing Gate superclass. The main result of
this work is that executable quantum programs can be automatically
obtained from other models at higher abstraction levels (that is, at the
problem domain).

In terms of scalability of the length of the SAT equations that can be
solved, the proposed approach is limited only by the characteristics of
the available quantum infrastructure in terms of the number of qubits,
and the maximum length of the quantum circuit (the longer the circuit,
the higher the probability of de-coherence of the quantum system).

As a further extension we consider some refining steps in the trans-
formation from the SAT problem to the quantum circuit to reduce the
number of gates and qubits required. Furthermore, the transformation
step from the quantum model to the Qiskit code can be extended with a
set of constraints to assure that the origin model is well-formed ac-
cording to the quantum restrictions and the limitations of the chosen
infrastructure.

This paper is, to our knowledge, the first demonstration of a full
transformation, using MDE techniques, from a problem to be solved
(expressed as a model conformed to a given metamodel) to executable
quantum code. As this, long-term research is ahead of us in order to
facilitate the development of quantum programs and its integration
within the community of classical software developers. But it is never-
theless a need given the huge conceptual leap that exists between the
concepts employed by both disciplines.

CRediT authorship contribution statement

Diego Alonso: Conceptualization, Software, Validation, Investiga-
tion, Writing – original draft, Writing – review & editing. Pedro
Sánchez: Conceptualization, Methodology, Investigation, Writing –
original draft, Writing – review & editing. Francisco Sánchez-Rubio:
Software, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

We acknowledge the use of IBM Quantum services for this work. The
views expressed in this paper are those of the authors, and do not reflect
the official policy or position of IBM or the IBM Quantum team.

References

[1] Shor PW. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer (revised version of the original paper,
published in 1994). SIAM Rev 1999;41(2):303–32. https://doi.org/10.1137/
S0036144598347011.

[2] Grover L. K.. A fast quantum mechanical algorithm for database search, in:
Proceedings of the 28th annual ACM symposium on theory of computing. STOC
’96, Association for Computing Machinery, New York, NY, USA1996;:212–219.
10.1145/237814.237866.

[3] Piattini M, Serrano M, Perez-Castillo R, Petersen G, Hevia JL. Toward a quantum
software engineering. IT Prof 2021;23(1):62–6. https://doi.org/10.1109/
MITP.2020.3019522.

[4] Mohseni M, Read P, Neven H, Boixo S, Denchev V, Babbush R, Fowler A,
Smelyanskiy V, Martinis J. Commercialize quantum technologies in five years.
Nature 2017;543(7644):171–4. https://doi.org/10.1038/543171a.

[5] Piattini M, Peterssen G, Pérez-Castillo R. Quantum computing: a new software
engineering golden age. SIGSOFT Softw Eng Notes 2020;45(3):12–4. https://doi.
org/10.1145/3402127.3402131.

[6] Selic B. The pragmatics of model-driven development. IEEE Softw 2003;20(5):
19–25. https://doi.org/10.1109/MS.2003.1231146.

[7] Knuth D. The art of computer programming. Satisfiability. vol. 4. Addison–Wesley;
2016.

[8] Biere A, Heule M, Maaren HV, Walsh T. Handbook of satisfiability (frontiers in
artificial intelligence and applications). IOS Press; 2009.

[9] Cook S.A.. The complexity of theorem-proving procedures, in: Proceedings of the
third annual ACM symposium on theory of computing. STOC ’71, Association for
Computing Machinery, New York, NY, USA1971;:151–158. 10.1145/
800157.805047.

[10] Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T,
Smolin JA, Weinfurter H. Elementary gates for quantum computation. Phys Rev A
1995;52:3457–67. https://doi.org/10.1103/PhysRevA.52.3457.

[11] Heim B, Soeken M, Marshall S, Granade C, Roetteler M, Geller A, Troyer M,
Svore K. Quantum programming languages. Nat Rev Phys 2020;2(12):709–22.
https://doi.org/10.1038/s42254-020-00245-7.

[12] Piattini M., Paradela C.A., Phillipson F., Pérez-Castillo R., Guzmn I., Serrano M.,
Polo M., Gonzlez G.H., Oliver J.L.H., Marqueo J., Murina E., Nodarse G.P.. The
talavera manifesto for quantum software engineering and programming. In:
Proceedings of the international workshop on the QuANtum SoftWare engineering
& programming. 2020b.

[13] Jianjun Zhao. 2021. Quantum Software Engineering: Landscapes and Horizons.
arXiv:2007.07047 [cs.SE] (accessed Aug. 2022). arXiv:2007.07047.

[14] Dey N, Ghosh M, kundu SS, Chakrabarti A. QDLC - the quantum development life
cycle. arXiv:2010.08053 (accessed Aug. 2022).

[15] Sánchez P, Alonso D. On the definition of quantum programming modules. Appl Sci
2020;11(13). https://doi.org/10.3390/app11135843.

[16] Ali S, Yue T. Modeling quantum programs: challenges, initial results, and research
directions 2020:14–21. https://doi.org/10.1145/3412451.3428499.

[17] Bézivin J. On the unification power of models. Softw Syst Model 2005;4(2):
171–88. https://doi.org/10.1007/s10270-005-0079-0.

[18] Atkinson C, Khne T. Model-driven development: a metamodeling foundation. IEEE
Softw 2003;20(5):36–41. https://doi.org/10.1109/MS.2003.1231149.

[19] Selic B. The pragmatics of model-driven development. IEEE Softw 2003;20(5):
19–25. https://doi.org/10.1109/MS.2003.1231146.

[20] Rodrigues A, Silva D. Model-driven engineering: a survey supported by the unified
conceptual model. Comput Lang Syst Struct 2015;43:139–55. https://doi.org/
10.1016/j.cl.2015.06.001.

[21] Kahani N, Bagherzadeh M, Cordy J, Dingel J, Varro D. Survey and classification of
model transformation tools. Softw Syst Model 2020;18. https://doi.org/10.1007/
s10270-018-0665-6.

[22] Sendall S, Kozaczynski W. Model transformation: the heart and soul of model-
driven software development. IEEE Softw 2003;20(5):42–5. https://doi.org/
10.1109/MS.2003.1231150.

[23] R. Pérez-Castillo, L. Jiménez-Navajas, M. Piattini. Modelling quantum circuits with
uml. Proceedings - 2021 IEEE/ACM 2nd International Workshop on Quantum
Software Engineering, Q-SE 2021, 7-12. doi 10.1109/Q-SE52541.2021.00009.

[24] Gemeinhardt F., Garmendia A., Wimmer M.. Towards model-driven quantum
software engineering. Proceedings of the 2nd international workshop on quantum
software engineering, co-located with ICSE2021;. 10.5281/zenodo.4593888.

[25] Moin A, Challenger M, Badii A, Gnnemann S. Mde4qai: towards model-driven
engineering for quantum artificial intelligence. arXiv:2107.06708 (accessed Aug.
2022).

[26] Barrett C., Sebastiani R., Seshia S., Tinelli C.. Frontiers in artificial intelligence and
applicationsCh Satisfiability Modulo Theories, IOS Press2009; 185:825–885.
10.3233/978-1-58603-929-5-825.

[27] Johnston ER, Harrigan N, Gimeno-Segovia M. Programming quantum computers:
essential algorithms and code samples. O’Reilly Media; 2019.

[28] Sutor R. Dancing with qubits: how quantum computing works and how it can
change the world. Packt Publishing; 2019.

[29] Ambainis A. Quantum search algorithms. SIGACT News 2004;35(2):22–35.
https://doi.org/10.1145/992287.992296.

[30] Cheng S-T, Tao MH. Quantum cooperative search algorithm for 3-sat. J Comput
Syst Sci 2007;73(1):123–36. https://doi.org/10.1016/j.jcss.2006.09.003.

[31] Wang P., Liu G., Liu L.. A generic variable inputs quantum algorithm for 3-sat
problem. Proceedings of the IEEE international conference on advances in
electrical engineering and computer applications(AEECA)2020;:308–312.
10.1109/AEECA49918.2020.9213471.

[32] Schoning T.. A probabilistic algorithm for k-sat and constraint satisfaction
problems. Proceedings of the annual symposium on foundations of computer
science1999;:410–414. 10.1109/SFFCS.1999.814612.

[33] Perdomo-Ortiz A, Venegas-Andraca SE, Aspuru-Guzik A. A study of heuristic
guesses for adiabatic quantum computation. Quantum Inf Process 2011;10(1):
33–52. https://doi.org/10.1007/s11128-010-0168-z.

[34] Campos E, Venegas-Andraca SE, Lanzagorta M. Quantum tunneling and quantum
walks as algorithmic resources to solve hard k-sat instances. Sci Rep 2021;11(1):
16845. https://doi.org/10.1038/s41598-021-95801-1.

[35] Many Qiskit: an open-source framework for quantum computing, 2021. https:
//raw.githubusercontent.com/Qiskit/qiskit/master/Qiskit.bib.

D. Alonso et al.

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1038/543171a
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1109/MS.2003.1231146
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0008
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1038/s42254-020-00245-7
http://arxiv.org/abs/2010.08053
https://doi.org/10.3390/app11135843
https://doi.org/10.1145/3412451.3428499
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/MS.2003.1231150
http://arxiv.org/abs/2107.06708
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0028
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0028
https://doi.org/10.1145/992287.992296
https://doi.org/10.1016/j.jcss.2006.09.003
https://doi.org/10.1007/s11128-010-0168-z
https://doi.org/10.1038/s41598-021-95801-1
https://raw.githubusercontent.com/Qiskit/qiskit/master/Qiskit.bib
https://raw.githubusercontent.com/Qiskit/qiskit/master/Qiskit.bib

Advances in Engineering Software 173 (2022) 103216

13

[36] Kolovos D, Paige R, Polack F. The epsilon transformation language. Proceedings of
the theory and practice of model transformations conference, ICMT. 5063,
Springer; 2008. https://doi.org/10.1007/978-3-540-69927-9_4.Lecture Notes in
Computer Science, pp. 46–60

[37] Boyer M, Brassard G, Hayer P, Tapp A. Tight bounds on quantum searching.
Fortschr Phys 1998;46(4–5):493–505. https://doi.org/10.1002/(SICI)1521-3978
(199806)46:4/5.

[38] Nielsen MA, Chuang IL. Quantum computation and quantum information.
Cambridge University Press; 2000.

[39] Qcore repository, https://github.com/DiegoAlonso/sat_qcore (accessed Aug.
2022).

[40] Kahani N, Bagherzadeh M, Cordy JR, Dingel J, Varró D. Survey and classification of
model transformation tools. Softw Syst Model 2019;18(4):2361–97. https://doi.
org/10.1007/s10270-018-0665-6.

[41] Baudry B, Ghosh S, Fleurey F, France R, Traon YL, Mottu JM. Barriers to systematic
model transformation testing. Commun ACM 2010;53(6):139–43. https://doi.org/
10.1145/1743546.1743583.

[42] Ciancone A., Filieri A., Mirandola R.. Mantra: towards model transformation
testing. Proceedings of the 7th international conference on the quality of
information and communications technology2010;:97–105. 10.1109/
QUATIC.2010.15.

[43] Aranega V, Mottu J-M, Etien A, Degueule T, Baudry B, Dekeyser JL. Towards an
automation of the mutation analysis dedicated to model transformation. Softw Test
Verif Reliab 2015;25(5–7):653–83. https://doi.org/10.1002/stvr.1532.

[44] Mottu J.-M., Sen S., Tisi M., Cabot J.. Static analysis of model transformations for
effective test generation. Proceedings of the IEEE 23rd international symposium on
software reliability engineering2012;:291–300. 10.1109/ISSRE.2012.7.

[45] A. Younes. Strength and weakness in Grover’s quantum search algorithm. (Aug.
2022) arXiv:0811.4481 [quant-ph].

[46] Many authors. Quantum Algorithm Implementations for Beginners. ACM
Transactions on Quantum Computing 3, 4, Article 18 (December 2022). https://
doi.org/10.1145/3517340.

D. Alonso et al.

https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00121-1/sbref0038
https://github.com/DiegoAlonso/sat_qcore
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1145/1743546.1743583
https://doi.org/10.1145/1743546.1743583
https://doi.org/10.1002/stvr.1532

	Engineering the development of quantum programs: Application to the Boolean satisfiability problem
	1 Introduction
	2 State of the art
	2.1 Towards quantum software engineering
	2.2 Model-Driven engineering and its application to quantum computing
	2.3 Quantum approaches to solving the Boolean satisfiability problem

	3 A metamodel for quantum circuits and quantum code generation
	4 Generation of quantum programs for solving SAT problems
	5 Validation of the approach
	5.1 First test
	5.2 Second test
	5.3 On the number of simulations of the quantum program

	6 Discussion
	7 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

